
Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

NLR-Memorandum ID-2002-16

Building an Intelligent Help System 
for AdaptIt

Distribution: 

Jos Rohling (ID) (3x)
Martijn Vastenburg (TUD)
Anneke Donker (ID)
Jelke van der Pal (VE)
Harmen Abma (VE)
Henrik Schlanbusch (UiB)

Oyvind Meistad (UiB)
Nikos Vlassis (UvA)
UvA Onderwijsburo (2x)
Wouter Kalis (3x)

No part of this document may be reproduced and/or disclosed, in any form or by 
any means, without the prior written permission of NLR.

Division: Order-/codenumber:

Information and Communication Technology 1506.4.3
Prepared: Issued:

Wouter Kalis / September 2002
Approved: Classification title:

JCD /                         JR / Unclassified



-2- 
Memorandum ID-2002-16



-3- 
Memorandum ID-2002-16

Summary

The National Aerospace Laboratory (NLR) is participating in a project called AdaptIt. The 
main goal of this project is to develop a marketable ICT-based tool for training designers. 
Future users are currently testing the tool and they have indicated that they would like the 
AdaptIt tool to give them more operational support. 

This thesis describes the building of an intelligent help system for the AdaptIt tool called the I-
Advisor. This I-Advisor will provide the users with more context-sensitive support, e.g. by 
giving detailed help information on the task the user is currently working on. This support is 
based on an internal user model, which the I-Advisor uses to model the user's interactions with 
AdaptIt, as well as a previously learned task model. The task model is learned from logs of 
experienced users’ actions and describes the way a user should behave in the AdaptIt 
application to successfully design a training. Two different architectures for the I-Advisor are 
described in detail. The first architecture is based on Collagen and the second makes use of 
Hidden Markov Models. Prototypes of both architectures were implemented, and a summary of 
the performance of these prototypes is given.



-4- 
Memorandum ID-2002-16

Acknowledgements

My master thesis project was a very interesting and fun project to work on. The AdaptIt 
application turned out to be ideal for implementing and testing the intelligent help system 
architectures I had in mind. The fact that a prototype of the I-Advisor worked so well that it was 
actually added to the AdaptIt application is proof of that. In the beginning seven months seemed 
like more than enough time, but somehow at the end I still had thousands of ideas left I wanted 
to try out. All these ideas for further research can be found in section 10.3 for those of you who 
are interested.

All the people involved in the project were very enthusiastic and helped me out in a lot of ways. 
I am almost afraid to name all the people who helped me, since this might make it seem like I 
didn’t do anything myself.

First of all I’d like to thank both my mentors at NLR, Martijn Vastenburg and Jos Rohling. 
Martijn for all his enthusiasm for the project and helping me out even after he left NLR. Jos for 
putting up with all my questions throughout the whole project. I would also like to thank 
Harmen Abma, Jelke van der Pal, Henrik Schlanbusch and Øyvind Meistad of the AdaptIt 
project. Harmen and Jelke for the opportunity to have the I-Advisor tested at LVNL and for 
answering all my questions about AdaptIt. Henrik and Øyvind for all their help in integrating 
my I-Advisor prototype into the AdaptIt application. My thanks also goes out to the people at 
LVNL who tested my I-Advisor, Jeano de Bock and Jolanda Groothuismink. Thanks also to my 
room-mate at NLR, Rudy Ujzanovitch, I must have bothered him a thousand times with ideas I 
wanted some feedback on and questions. And last but not least, Nikos Vlassis, my mentor from 
the University for all his help.



-5- 
Memorandum ID-2002-16

Contents

1 Introduction 8

2 Analysis of the Support in AdaptIt 9
2.1 Description of AdaptIt 9
2.2 Description of the Advisor and the Q-Advisor 11
2.3 Role of the I-Advisor 14

3 Literature Research 16
3.1 Intelligent User Interfaces 16
3.1.1 Properties of Intelligent User Interfaces 17
3.1.2 Applications of Intelligent User Interfaces 18
3.2 Plan Recognition 19
3.3 Possible Architectures for Intelligent Help Systems 21
3.4 Collagen 21
3.4.1 Discourse State 22
3.4.2 Task Model 23
3.4.3 Why Collagen Was Not Used 24

4 Requirements for the I-Advisor 25
4.1 Functional Requirements 25
4.2 Technical Requirements 25
4.3 Possible Future Expansions 25

5 Task Model 26
5.1 Task Model Basics 26
5.2 Annotating Logs 28
5.3 Alignment 29
5.4 Induction 32
5.5 Finished Task Model 34

6 User Model 35

7 AdaptIt and the I-Advisor 40
7.1 Listening to AdaptIt 40



-6- 
Memorandum ID-2002-16

7.1.1 Types of Events 40
7.1.2 Properties of the Events 41
7.2 Learning the Task Model: Practical Issues 44
7.3 Advising the User 47
7.4 Lessons Learned While Building the I-Advisor 49
7.4.1 Events Listened To 49
7.4.2 Structure of the Task Model 50

8 LVNL Test Results 52
8.1 Results 52
8.1.1 Methodology 52
8.1.2 Tool 53
8.1.3 Advisor 53
8.1.4 I-Advisor 54
8.2 Summary 55
8.2.1 Understanding the Methodology 55
8.2.2 Current Task vs. Advised Next Task 56
8.2.3 I-Advisor Remaining Silent 56

9 Hidden Markov Model 57
9.1 Initialising the HMM 59
9.1.1 Observation Probabilities 62
9.1.2 Transition Probabilities 63
9.2 Computing the Probabilities of Each State 67
9.3 HMM and the I-Advisor 68

10 Conclusion 72
10.1 Requirements 72
10.1.1 Functional Requirements 72
10.1.2 Technical Requirements 73
10.2 Final Remarks 74
10.3 Future Work 75

Appendix A Glossary 77

Appendix B References 81

Appendix C Questionnaire 83



-7- 
Memorandum ID-2002-16

Appendix D Traceability of the Requirements 85

Appendix E Implementation 87

(100 pages in total)



-8- 
Memorandum ID-2002-16

1 Introduction

The National Aerospace Laboratory (NLR) is participating in a project called AdaptIt. The 
main goal of this project is to develop a marketable ICT-based tool for training designers. This 
tool embodies a validated training design methodology for personalised training. Future users 
are currently testing the program. They have indicated that they would like the AdaptIt tool to 
give them more operational support.

The level of support currently available in AdaptIt includes the Advisor and the Q-Advisor. The 
Advisor is a static JavaHelp-based help system, which includes how-to information, examples 
and background information. The user can navigate through the pages of the advisor using a 
table of contents, an index, and also via a graphical overview of the methodology. 

The Q-Advisor, short for Quick Advisor, aims to aid the user in finding the appropriate help 
information in the Advisor. It consists of a separate panel within the AdaptIt application. This 
panel shows links to the pages in the Advisor corresponding to the editor that the user last 
selected. For instance if the user is working within the Skill Hierarchy diagram, then the Q-
Advisor shows links to all the help pages on how to make a Skill Hierarchy.

Users of the AdaptIt tool still had trouble learning how to use the tool. The users felt they did 
not have a good overview of the whole process of designing a training. Although the Q-Advisor 
provided them with background information about how to use the different editors, it did not 
give them information about when to use the editor, or where they were located in the whole 
process of designing a training.

We propose a new advisor to give the users more context-sensitive support, e.g. by giving 
detailed help information on the task the user is currently working on. This new advisor is called 
the I-Advisor, short for Intelligent Advisor. My master thesis consists of a search for possible 
architectures for the I-Advisor, as well as a description of the design and implementation of two 
of these architectures. Chapter 2 starts with an analysis of the existing AdaptIt application, 
Advisor and Q-Advisor, followed by a description of what the role of the I-Advisor should be. 
Literature research to intelligent help systems in general can be found in chapter 3. Chapter 4 
describes all the formal requirements that the new advisor should meet. Chapters 5 through 7 
consist of a detailed description of the architecture chosen for the I-Advisor. Tests of a 
prototype of the chosen architecture by future users are described in chapter 8. Chapter 9 
describes an alternative architecture for the I-Advisor, namely Hidden Markov Models. My 
thesis concludes with a summary of the lessons learned and ideas for possible future extensions.



-9- 
Memorandum ID-2002-16

2 Analysis of the Support in AdaptIt

The users of the AdaptIt tool, i.e. the training designers for whom the tool was developed, 
felt something was missing from the level of support. They wanted information about the 
context of the task they were working on at that moment. They also felt they did not have a 
good idea of how their current task related to the whole task of designing a training. First 
AdaptIt and the methodology the tool is based on will be described in more detail in order to 
explain why they had this feeling. Previous work to give the user more context-sensitive support 
was done by one of my mentors at NLR, Martijn Vastenburg. Section 2.2 describes the 
improvements he made to the Advisor and the Q-Advisor to help the user. This chapter 
concludes with a section about the role the I-Advisor should have in the AdaptIt tool. 

2.1 Description of AdaptIt

The AdaptIt tool embodies a validated training design methodology for personalised training 
of complex skills (de Croock et al. 2002). This training design methodology is based on 
cognitive science and optimises the integrated use of advanced training technologies. 
Traditional training techniques focus on a single simple skill. A training consists of a series of 
predesigned steps which each train a single simple skill. To train this skill the trainee is given a 
small workload in the beginning, which increases gradually during the training. This leads to 
stress at the end of the training. The AdaptIt methodology aims to integrate all the different 
skills from the beginning of the training. This is accomplished by constantly training the whole 
task and not one single skill. The workload is distributed evenly over the whole training, leading 
to less stress at the end of the training. The objective of the training is to train skills and not 
knowledge. Knowledge is merely supportive in the training.

Designing a training in AdaptIt consists of two parts: building a skill hierarchy and making a 
blueprint. The skill hierarchy is a graphical presentation of a set of skills and sub skills that 
enable an expert to perform a complex skill. An example of a skill hierarchy describing the 
complex skill of driving a car is shown in figure 2.1. This complex skill consists of three 
different sub skills, namely shifting, braking and steering. These sub skills can also be divided 
into sub skills. Shifting gears for instance can be described with the sub skills shifting gears up 
and shifting gears down. This example skill hierarchy however has only two levels. 



-10-
Memorandum ID-2002-16

The blueprint describes a global outline of the training program in the form of a simple to 
complex sequence of task classes. A task class describes a series of learning tasks with the same 
complexity. If we take the example of training the complex skill “Driving a Car”, a possible 
task class would be a series of learning tasks for driving in sunny weather with a small amount 
of other cars on the road. A more complex task class would contain learning tasks for driving in 
rush hour with snow on the road. The specific learning tasks would then be the different types 
of traffic situations the trainee is confronted with during the driving, such as a highway or a 
roundabout.

The two main parts in AdaptIt, building the skill hierarchy and making the blueprint, consist of
several steps. Figure 2.2 shows all the constituting steps. Building a skill hierarchy is composed 
of five steps. These steps have to be carried out by the training designer to create a good skill 
hierarchy.

The Main Steps in Designing a Training

a) Analyse Complex Skill a) Define Skill Clusters
b) Determine Skills To Be Trained b) Sequence Task Classes
c) Specify Performance Objectives c) Design Learning Tasks
d) Classify Skills as (Non) Recurrent d) Design Supportive Information
e) Identify Complexity Factors e) Design Just-In-Time Information

f )Design Part-Task Practice

Figure 2.2

An Example Skill Hierarchy for the Complex Skill "Driving a Car"

Driving a Car

SteeringBrakingShifting

Complex skill

Sub skills

Figure 2.1

1) Build Skill Hierarchy 2) Make Blueprint



-11-
Memorandum ID-2002-16

This division of the methodology into these parts and steps is meant to guide the users through 
the AdaptIt tool. The users of the tool are the training designers who will use the tool to help 
them design their trainings. As a user becomes more experienced, he will have less need of this 
division of the methodology into parts and steps to guide him. He will develop his own way of 
using the tool. All the different steps listed in figure 2.2 have to be carried out at one time or 
another, but they can be achieved in different orders. The steps can for instance be executed in a 
cyclical way. Some users might have the tendency to first achieve the first four goals of the 
building of a skill hierarchy, and then go back to the first goal again to refine the hierarchy. At 
the end they will focus on the last goal, i.e. identify the complexity factors. A user can even 
decide to start off with identifying the complexity factors if he chooses to, as well as jump 
around between the goals at any time. The AdaptIt tool is built in such a way that it places no 
restrictions on the execution order of the goals. 

2.2 Description of the Advisor and the Q-Advisor

Both the Advisor and the Q-Advisor were built to aid the user in learning how to use the 
AdaptIt tool. Some parts of the Advisor were added specifically to give the user a better 
overview of the whole application. Figure 2.3 shows an example Advisor page. This page gives 
information about the design of a skill hierarchy. A graphical overview of the methodology 
behind AdaptIt is located at the top of the Advisor. The graphical representation of the skill 
hierarchy is highlighted in this overview because the user has opened the Advisor page about 
the skill hierarchy. On the top left a list of the different phases in AdaptIt can be found, and a 
table of contents of all the help pages is shown at the bottom left. All these different parts of the 
Advisor were added with one goal in mind: to give the user a better overview of the whole 
process of designing a training. 

Although the user had several navigation possibilities through the Advisor pages at his 
disposal, he still had to find the right Advisor pages on his own. He had to know what goal he 
was working on. He could then look for this goal in the Advisor pages by using the graphical 
overview, the list of phases or the table of contents. The Q-Advisor’s main objective is to make 
this task easier for the user. The Q-Advisor displays links to the Advisor pages, based on which 
editor the user has selected. Figure 2.4 contains a screenshot of the AdaptIt tool, along with the 
Q-Advisor in the bottom left corner. The user is currently working within the Skill Hierarchy 
diagram, which is the top right panel. The Q-Advisor thus shows links to all the help pages 
about how to make a Skill Hierarchy. These links are in this case “How to create a skill 
hierarchy” and “Description of a skill hierarchy”. Clicking on these will take the user directly to 
the corresponding Advisor pages. 



-12-
Memorandum ID-2002-16

Table of Contents

Graphical Overview of the Methodology

Help Page in the Advisor 

The Advisor

Figure 2.3



-13-
Memorandum ID-2002-16

The Q-Advisor

Currently selected editor: the SkillHierarchy Diagram

Link to a page in the Advisor

AdaptIt application with the Q-Advisor

Figure 2.4



-14-
Memorandum ID-2002-16

It is possible though to accomplish the different steps of designing a training in one and the 
same editor. In the Blue Print Diagram editor for instance the user can accomplish almost all the 
steps listed in figure 2.2 as being part of making a blueprint. By looking only at the editor, the 
Q-Advisor can say nothing about which of these steps the user is trying to accomplish at that 
moment. He can only list all the different possible goals the user can accomplish in that editor. 
The Q-Advisor does not take into account the context in which the user selected that specific 
editor.

2.3 Role of the I-Advisor

The I-Advisor should be seen as an improved version of the Q-Advisor, which not only 
looks at the user’s last action, but also bases its advice on the context of the user’s actions. The 
I-Advisor will build an internal model of the user based on all the user’s actions in AdaptIt. It 
will need some form of a previously learned task model that describes the way an experienced 
user of the AdaptIt tool behaves in the application. The I-Advisor can compare this dynamic 
user model to the static task model, and learn where in the whole process of designing a training 
a certain user is to be found. Once the I-Advisor has learned the user’s current task, it can show 
links to the corresponding Advisor pages in the I-Advisor panel. These links will be shown to 
the user in such a way that he can see the context of his current task, as well as where he is in 
the whole task of designing a training. Chapter 4 contains a formal description of the 
requirements the I-Advisor should meet. 

The whole process of giving advice is shown in figure 2.5. The user performs an action in the 
AdaptIt tool. The I-Advisor listens to the AdaptIt tool and receives this action. It updates its user 
model with this action with the help of the previously learned task model. If the I-Advisor has 
successfully deduced the user’s current task, it will send new advice to the I-Advisor panel in 
the AdaptIt tool. This panel shows links to the help pages in the Advisor corresponding to the 
user’s current task context.

The I-Advisor’s advice is given in the same panel as the Q-Advisor, without disturbing the user 
during his work. It is left up to the user whether or not he makes use of the advice. It was 
possible to give the I-Advisor a more active role than the Q-Advisor, for instance by leading the 
new user through the application. The next paragraph will explain why the I-Advisor will not be 
given this more active, tutor-like role. 



-15-
Memorandum ID-2002-16

Figure 2.2 described all the different goals that are part of designing a good training according 
to the AdaptIt methodology. New users can use this sequence of goals to guide them through the 
tool. The AdaptIt tool was built in such a way that it places no restrictions on the execution 
order of the goals. This is to encourage experienced AdaptIt users to discover their own way of 
using the tool. The I-Advisor also wants to encourage users to learn to use the tool in the way 
that suits them most. A wizard or tutor often makes a lot of choices for the user, whereas we 
want the user to makes these choices himself. That way he is more conscious of the choices he 
has made. Therefore the I-Advisor will have the same passive role as the Q-Advisor and be 
more of an advisor than a tutor.

I-Advisor

AdaptIt
Tool

User

actions

interact

display

The Architecture for I-Advisor and AdaptIt

Figure 2.5

I-Advisor
Panel

advice
User Model

Task Model



-16-
Memorandum ID-2002-16

3 Literature Research

The I-Advisor's objective is to help users in learning how to interact with the AdaptIt tool. 
To accomplish this the I-Advisor makes use of an intelligent technique called user modeling to 
maintain a model of the user. User modeling is part of a research domain called intelligent user 
interfaces (IUI’s). Section 3.1 explains what IUI's are, including examples of the different 
intelligent techniques used in IUI’s and examples of the possible application areas for IUI's.

In order to be able to provide a user of the AdaptIt application with support, the I-Advisor has to 
discover what goal this user wants to accomplish with his actions in the AdaptIt tool. In other 
words, the I-Advisor has to recognise what the user's plan is. This process is called plan 
recognition. Section 3.2 looks at the different types of plan recognition, and explains the type of 
plan recognition chosen in the I-Advisor. 

The last two sections will become more specific. First I will go over the possible architectures 
for intelligent help systems such as the I-Advisor. This chapter concludes with a description of 
the architecture I chose to base the I-Advisor on which is called Collagen (Rich, Sidner & Lesh, 
2001).

3.1 Intelligent User Interfaces

Users today have access to more information than ever before. Interfaces through which 
users interact with all this information tend to become very complex. It can also happen that 
there is a limited amount of time in which a task needs to be achieved, and it is nearly 
impossible to achieve tasks quickly with certain interfaces. Or you can have a certain 
application, which is used by completely different users with different needs. All these users 
however have to use exactly the same interface. Another possibility is that the domain in which 
the application is used changes. All of the above situations are examples of when regular 
interfaces can become too complex or too inflexible. To help users in these kind of situations 
intelligent user interfaces were born (Lieberman 1997).

The research area of intelligent user interfaces is at the boundary of a large amount of different 
research areas. The two most important of these research areas are called artificial intelligence
(AI) and human-computer interaction (HCI). AI tries to model the way a human thinks in order 
to create a computer system that can do intelligent actions. In HCI computer interfaces are 
designed that leverage off a human user to aid the user in the execution of intelligent actions. An 
IUI should both be able to do intelligent actions and to leverage off the human user’s 
intelligence. In other words, IUI’s are human-machine interfaces that aim to improve the 



-17-
Memorandum ID-2002-16

efficiency, effectiveness, and naturalness of human-machine interaction by representing, 
reasoning and acting on models of the user, domain, task, discourse, or media (Maybury & 
Wahlster 1998). In the following paragraphs a few of the "intelligent" techniques that enable an 
intelligent user interface to improve human-machine interaction are described. Also some 
examples of possible application areas for IUI’s will be given.

3.1.1 Properties of Intelligent User Interfaces
One of the key intelligent techniques used in intelligent user interfaces is user modeling. In 

order to be able to adapt the interface to a user, a model is built that contains the unique 
properties of that specific user. Properties of a user can be for example the user’s knowledge or 
experience, interests, intentions and cognitive properties of the user. An example of such a 
cognitive property is reaction speed in case the interface has to operate in a time-critical 
environment. A property of a user is stored in the user model if it is useful for that specific 
application.

An intelligent interface that maintains a user model can either be adaptable or self-adaptive. An 
adaptable interface lets the user choose how the system should adapt, whereas a self-adaptive 
interface adapts to the users autonomously. It learns the user’s needs from his interactions with 
the system and adapts to them. The distinction between adaptable and self-adaptive programs 
can be made even more precise, with several levels of adaptivity in between the two. These 
levels can depend on who takes initiative to an adaptation, who proposes the adaptation, who 
decides upon it and who finally carries it out. An example can be that a program decides that a
user is better off with a different format of menus. He proposes it to the user, thus taking 
initiative himself. The user can accept or reject the idea. If he accepts it the program will carry it 
out. In this case the program has the initiative, does the proposal and carries it out, whereas the 
control remains with the user because he decides whether to carry out the proposal or not. 

The main intelligent technique the I-Advisor will use is user modeling. The I-Advisor maintains 
an internal model of the user that stores certain properties of that specific user. Based on the 
information in this user model, the I-Advisor’s panel is adapted to the user. The I-Advisor is 
self-adaptive, it adapts to the user autonomously. However it only adapts the interface in its own 
panel. The rest of the interface of the AdaptIt tool is never changed, since we do not want to 
disturb the user in his work. 

Two other intelligent techniques used in IUI's are called natural language processing and 
speech techniques. With this an interface can either interpret or generate natural language 
utterances, either in text or in speech. This makes it easier for users to communicate with an 
interface, or easier for the interface to make something clear to the user. 



-18-
Memorandum ID-2002-16

Some intelligent user interfaces use a technique called multimodal interaction. This means that 
different modalities or ways of communicating between the user and the interface are made 
available. The idea behind this is that the human-computer interaction is made easier due to the 
richer set of channels through which the program and the user can now communicate. One can 
think of adding such ways of communicating such as natural language, video or three-
dimensional graphics to a simple graphical and textual interface and combining all these 
different inputs to get a better idea of what the user wants.  

3.1.2 Applications of Intelligent User Interfaces
The main application area for intelligent interfaces is in those situations where knowledge 

about how to solve a task partially resides in the computer system. The computer system can 
then help the user by doing certain actions himself or suggesting certain actions to the user. An 
inexperienced user’s commands to the system will often be vague and maybe even incorrect 
given the user’s real needs (Wærn 1999). A couple of applications areas that involve a lot of 
situations like the one mentioned above are information filtering, intelligent tutoring and 
intelligent help.

People today are flooded with massive amounts of information. They find it hard to extract the 
information which is relevant to them. Information filtering aims to find a structure in the 
available information. This structure can then be used to aid users in finding the information 
that is useful to them. In this case the intelligent interface models the user’s reading patterns to 
determine what kind of information the user finds interesting. For instance a user might have the 
tendency to only read the sports section of the paper. An intelligent interface can filter out all 
the other parts of the paper, and point the user at other interesting sports information.

Tutors in general are programs that teach a user how a certain computer program works or how 
a certain real-life task has to be accomplished. Intelligent tutors can infer the user’s 
understanding of the program from his performance on specific tasks. Based on this model of 
the user’s understanding, the tutor can give the user advice on how to improve his performance. 
This can be done actively by suggesting other actions, or more passively by only answering the 
user’s questions. 

An intelligent help system, sometimes also referred to as an intelligent assistant, is very similar 
to an intelligent tutor. Only a help system is not there to teach the user something, but to help 
the user get a certain task done. Whereas a tutor gives the user specific tasks to accomplish in 
order to diagnose his understanding of the program, a help system lets the user plot his own 
course through the program. From the user’s interactions with the program the help system 



-19-
Memorandum ID-2002-16

gathers information to aid the user. Just like intelligent tutors, help systems can also be either 
active or passive.

The I-Advisor will be an example of a passive intelligent help system. This decision was made 
to encourage users to discover their own way of using the AdaptIt tool. A tutor would not leave 
the user any freedom to discover the tool on his own. 

3.2 Plan Recognition

When a customer in a CD store takes a CD out of a rack and walks to the cash register, we 
all automatically assume that the customer intends to buy the CD. The customer doesn’t have to 
explicitly say that to the cashier. This process of inferring an intention from the actions of a 
person is called plan recognition. 

Plan recognition can come in three different forms (Wærn 1996). When a person is aware of it 
and actively co-operates to make the plan recognition easier, this is called intended plan 
recognition. An example of intended plan recognition is when a user gives a command to a 
computer. The user explicitly states his intentions, making it easy for the computer to discover 
what he is supposed to do. The second form of plan recognition occurs when a person is 
unaware of or indifferent to the plan recognition. This is called keyhole plan recognition. An 
example of this is a cashier robot that has to learn how to behave as a cashier from interactions 
with customers such as the one described in the first paragraph of this section. By combining 
previous encounters with customers and extra world knowledge, such as how the cash register 
works, it can learn how to recognise the customer’s plans. When the person is actively aware of 
the plan recognition and does his best to obstruct it, then you have obstructed plan recognition. 
In card games such as poker players will do their best to stop their opponents from recognising 
their plans.

In order to provide the AdaptIt user with the most appropriate help information, the I-Advisor 
will have to infer the user’s intentions from his actions within AdaptIt. It is not hard to infer the 
intention behind low-level commands such as for example “Open Edit Menu” within a text 
editor. The tricky part, though, is to infer the higher goal behind that action. The user’s higher-
level goal might be to copy a certain piece of a text or he may want to undo his most recent 
action. Both of these intentions can be accomplished with commands that are located in that 
Edit menu. However if that user did not select a piece of text before issuing the "Open Edit 
Menu" command, you can safely assume that he did not open the edit menu to copy a piece of 
text.



-20-
Memorandum ID-2002-16

If it had been the case that the user’s interactions with AdaptIt were all the information the I-
Advisor had, this would have been pure keyhole plan recognition. The I-Advisor would then 
have to compare the user's actions to all his previous interactions with AdaptIt, in the hope of 
finding typical patterns of actions he usually does. The problem with pure keyhole recognition 
is that most users do not follow optimal or even pre-planned paths through an application. Users 
will suddenly change their plans along the way, and decide to do something completely 
different. Relying solely on keyhole plan recognition would make recognising the user’s 
intentions a difficult task for the I-Advisor.

The I-Advisor's situation is a combination of keyhole plan recognition and intended plan 
recognition. The situation of the plan recognition within the I-Advisor is shown in figure 3.1. 
The user does an action in the AdaptIt tool. This action is observed by the I-Advisor, and using 
plan recognition the I-Advisor will attempt to discover the user's current plan. So far this is a 
classic example of keyhole plan recognition. 

The task model is what facilitates plan recognition considerably. This is because the task model 
is learned with pure intended plan recognition from the actions of experienced users of the 
AdaptIt tool. These previous users will explicitly state their intentions while performing their 
actions in the AdaptIt tool. For example the customer who takes a CD out of a rack will add to 
that action that his intention during this action was to buy the CD. The task model is then 
learned using the logs of the users’ actions, as well as their intentions during these actions. The 
I-Advisor will compare the current user's actions to the examples of previous user's actions in 
the task model. If these actions are the same or almost the same, it can retrieve the user's 
intentions from the task model. 

AdaptIt
Tool

User

action

interact

Plan Recognition within the I-Advisor

Figure 3.1

Plan 
Recognition

Task 
Model

User's
Current

Plan



-21-
Memorandum ID-2002-16

3.3 Possible Architectures for Intelligent Help Systems

During my search for possible architectures which were used for intelligent help systems two 
architectures were mentioned often. The first one was the one used in the most well known 
example of an intelligent assistant, the Office Assistant. This intelligent assistant in the form of 
a paperclip is located in most Microsoft Office applications. The Office Assistant uses Bayesian 
networks to infer the user’s needs (Horvitz, 1998).

The other possibility was an object-oriented middleware for building collaborative interface 
agents called Collagen (Rich, Sidner & Lesh, 2001). Collagen is an abbreviation that stands for 
COLLaborative AGENt. Collagen assumes that a user and an agent collaborate and thus co-
ordinate their actions in order to achieve shared goals. In our case the I-Advisor and the user of 
the AdaptIt application collaborate to successfully design a training. 

Both Collagen and Bayesian networks seemed appropriate for the I-Advisor. However the 
Collagen approach had a slight advantage. Statistical approaches such as Bayesian networks 
need a lot of logs from example users to be effective. There were not that many logs of 
experienced test users available. This is caused primarily by the fact that the AdaptIt tool is still 
being developed and there are thus not that many training designers experienced at using it. 
Furthermore Collagen is less of a black box than the Bayesian network. It is easier to determine 
why it gives a certain advice, whereas in a Bayesian network it is often hard to discover why a 
probability has a certain value. This is caused by the large amount of computations involved in 
calculating a certain probability due to the way the probabilities in a Bayesian network influence 
each other. Last but not least, Collagen was very well documented (see 
http://www.merl.com/projects/collagen/ ), making it the most logical choice.

3.4 Collagen

Collagen is based on a theory called the collaborative discourse theory. When two or more 
people (or agents) collaborate, they need to communicate to co-ordinate their actions to achieve 
the shared goals. This communication is called the discourse. The collaborative discourse 
theory is based on research about how people collaborate, and in Collagen this theory is applied 
to human-computer interaction. The collaborative interface agent mimics the relationships that 
typically hold when two humans collaborate on a task involving a shared artefact. 



-22-
Memorandum ID-2002-16

3.4.1 Discourse State
Collagen makes use of a discourse state to follow and store the state of the discourse during 

a collaboration (Lesh, Rich & Sidner, 1999). This state is a model of the status of the 
collaborative tasks and the conversation about them. The discourse state is made up of two 
parts, a  focus stack and a  plan tree.

The focus stack consists of a stack of goals and for each goal on the stack there is an element in 
the plan tree. The goal on top of the focus stack is the current purpose of the discourse. Figure 
3.2 shows an example discourse state, with a focus stack and a plan tree. In this case the current 
purpose on top of the focus stack is called Display Schedule. A plan tree in Collagen is an 
encoding of a partial SharedPlan between the user and the agent. A SharedPlan is a formal 
representation of the mutual beliefs about the goals and actions to be performed in a 
collaboration (Grosz & Sidner, 1986).

After every action performed by the user in the AdaptIt tool the discourse state is updated, as 
shown in figure 3.3. Suppose I-Advisor observes the user while performing an action A. The I-
Advisor will use the task model to update the discourse state so that it explains action A. If the 
I-Advisor successfully recognises the user's plan, a new slide is built. This slide contains the 
current purpose the I-Advisor has learned that the user is working on. Chapter 6 will describe in 
detail the discourse state and how it is updated with the help of a simple example. 

Example Discourse State

Figure 3.2 

(from Rich, Sidner and Lesh 2001)

DisplaySchedule

RecordProgram

Focus Stack Plan Tree

RecordProgram

AddProgram ReportConflictDisplaySchedule

1

2 3



-23-
Memorandum ID-2002-16

3.4.2 Task Model
The task model plays a very important role in plan recognition. This section will give an 

overview of what a task model actually consists of. All the terms which are introduced here will 
be explained in more detail in chapter 5. 

The task model in Collagen consists of actions and recipes (Garland & Lesh, 2001). Sometimes 
the task model is referred to as the recipe library. Actions can be either primitive actions or non-
primitive actions, also known as intermediate goals. Primitive actions can be executed directly 
within an application, such as for example "Click On Save Button". Non-primitive actions can 
only be achieved indirectly by achieving other actions. Examples of non-primitive actions are 
"Buy a CD" and "Do Christmas Shopping".  

Recipes describe a set of steps that can be performed to achieve a non-primitive action. It is 
possible to have several different recipes to achieve a single non-primitive action. The steps in 
the recipe can be both primitive actions and non-primitive actions. Recipes can also contain 
constraints on the temporal ordering of the steps, as well as logical relations between the 
parameters, such as equality relationships. Figure 3.4 shows an example recipe for recording a 
program on a VCR. The steps in this recipe are DisplaySchedule and AddProgram, along with 
an optional step ReportConflict. 

The Collagen-Based Architecture

User

Update 
Discourse State

Task Model
(Recipe Library)

Discourse State

Build a Slide
with the Advice 

AdaptIt
Tool

observations

interact

display

Finished Slide
Figure  3.3 



-24-
Memorandum ID-2002-16

3.4.3 Why Collagen Was Not Used
The Mitsubishi Electric Research Laboratories (MERL) who created Collagen were so kind 

as to provide us with the Collagen code. Although this was appreciated, it was decided to only 
use their code as an example for the I-Advisor. The main reason for this was that the I-Advisor 
was in a quite different situation than the one Collagen was originally intended for. Collagen 
assumes that both the agent and the user can and will do actions within the application. The I-
Advisor will however not perform any actions in the AdaptIt application. This would require 
quite a lot of changes in the Collagen code. Therefore we decided to build a simplified version 
of Collagen based on their articles. This simplified version of Collagen could easily be modified 
to better fit the I-Advisor's situation.

An Example Recipe

public recipe RecordRecipe achieve RecordProgram {

step DisplaySchedule display ;

step AddProgram add ;

optional step ReportConflict report ;

constraints {

display precedes add ;

add precedes report ;

add.program == achieves.program ;

report.program == achieves.program ;

report.conflict == add.conflict ;

}

}

Figure 3.4

(from Rich, Sidner and Lesh 2001)



-25-
Memorandum ID-2002-16

4 Requirements for the I-Advisor

The main requirement for the I-Advisor is that it must be able to give a user of the AdaptIt 
application context-sensitive support. This support is meant to aid him in learning how to use 
the AdaptIt application.

4.1 Functional Requirements

(1) The support given by the I-Advisor shall consist of links to the pages in the help system 
corresponding to the user's current task context. 

(2) This support given by the I-Advisor shall be based on: 
• the user's actions within AdaptIt.
• a task model.

(3) The I-Advisor shall contain a task model, which describes a part of the AdaptIt 
application. 

(4) A domain expert shall be able to view and annotate the logs of previous users, in order 
to aid the learning of the task model.

4.2 Technical Requirements

(5) The I-Advisor shall be implemented in Java just like the AdaptIt tool.
(6) The I-Advisor shall operate within a small part of the AdaptIt application. 
(7) No changes within the original AdaptIt application shall be necessary to link the I-

Advisor to the AdaptIt application.
(8) The I-Advisor shall interact with the AdaptIt application in the same way as the Q-

Advisor and the Advisor.

4.3 Possible Future Expansions

(1) The support given by the I-Advisor should consist of a list of the advised next steps. 
(2) The I-Advisor should be able to operate within other parts of the AdaptIt application. 
(3) The I-Advisor should give an adjustable amount of assistance, such as for example 

making the I-Advisor more active / passive.
(4) The I-Advisor should be able to cope with and adapt to changes in the Help System.



-26-
Memorandum ID-2002-16

5 Task Model

With the help of some examples this chapter will explain the basics of how a task model is 
learned by the I-Advisor. Section 5.1 describes how the user's actions are logged and explains 
the structure of the actual task model. How a domain expert adds certain knowledge to the task 
model by annotating the logs of the user's actions is explained in section 5.2. Sections 5.3 and 
5.4 explain the two phases of the learning of the task model, namely alignment and induction. 
The last section concludes with an example of a finished task model. The way a task model is 
learned is based on Collagen (Garland & Lesh, 2001). Whenever the I-Advisor differs from 
Collagen, this will be stated explicitly.

The task model is learned using previous users' interactions and added domain expert's 
knowledge. At the moment the previous users are domain experts. This decision was made to 
facilitate the learning of the task model, since a domain expert has more knowledge of the 
application and thus has more structure in his actions. New users will not have enough structure 
in their actions to learn a useful task model from. Once a user becomes more experienced at 
using the application, it is possible to also base the task model on his actions. 

5.1 Task Model Basics

Figure 5.1 contains an example log of 13 different actions performed by a user. The actions 
are all represented by two variables, namely the action type and the parameter. The first action 
in our example log is of action type a and has as parameter 1. This signifies that the user 
performed an action of type a upon the object 1. 

The learning of the task model takes place in two phases. In order to explain these phases, it 
first has to be explained what a task model consists of. A task model is made up of actions and 
recipes. Actions can be either primitive actions or non-primitive actions. Primitive actions are 

An Example Log Consisting of 13 Actions:
1) Action a (1) 8) Action b (6)

2) Action b (2) 9) Action b (5)

3) Action c (1) 10) Action g (3)

4) Action d (1) 11) Action e (4)

5) Action e (1) 12) Action a (5)

6) Action f (2) 13) Action f (4)

7) Action a (3) Figure 5.1



-27-
Memorandum ID-2002-16

actions that can be executed directly within an application, such as clicking on a button. The 
actions shown in figure 5.1 are all primitive actions. Non-primitive actions can only be achieved 
indirectly by achieving other actions. An example of a non-primitive action can be writing a 
letter to someone, an action which can only be accomplished by performing a lot of different 
primitive actions, such as typing a letter or hitting the space bar. All the examples in this thesis 
will use capital letters to signify non-primitive actions and lower-case letters for primitive 
actions.

Recipes describe all the different ways a non-primitive action can be achieved. They decompose 
the non-primitive action into sub goals, which are called steps. These steps can be either non-
primitive or primitive actions. Figure 5.2 shows an example recipe for the non-primitive action 
A, consisting of 4 steps. To achieve A one must first perform the non-primitive actions B and D, 
followed twice by the primitive action b. Steps of a recipe can be optional, like the first and 
third step in our example recipe. It is thus also possible to achieve A by performing first D and 
then b. There can also be equality relations among the parameters. The equality relation in our 
example is for the third and fourth step. This means that the parameters for both of these steps 
have to be equal for the action A to be achieved. 

The learning of the task model consists of two phases. The first phase is called alignment and 
the second phase induction. In the alignment phase simplified recipes are created without 
optional steps and without equality relations among the steps. In this phase all the user's actions 
are mapped to steps in a recipe. The optional steps and equality relations are both learned in the 
induction phase with the help of the mappings from the alignment phase. Section 5.4 will 
explain this in more detail. 

An Example Recipe for A:

(1) Step B Optional

(2) Step D

(3) Step b Optional

(4) Step b

Equality: step 3 and 4

Figure 5.2



-28-
Memorandum ID-2002-16

5.2 Annotating Logs

Before we can start with the alignment phase on the example log from figure 5.1 we need to 
know which actions are steps in achieving the same non-primitive action. We call a sequence of 
actions which achieve the same non-primitive action a segment. The process of indicating which 
segments of actions contribute to the same non-primitive action is called annotating the logs of 
actions. It is possible to learn which actions belong to a non-primitive action by using statistical 
learning methods. In this case all the actions which occur together regularly are put in the same 
non-primitive actions. We however would like the structure of the non-primitive actions to be 
similar to the hierarchy in the pages of the Advisor. This is to make it easier to link the I-
Advisor's advice to the corresponding pages in the Advisor. Furthermore statistical methods 
typically require lots of test data, which we do not have at our disposal. They also tend to ignore 
prior domain knowledge. Therefore a domain expert annotates the logs of the user's actions. 

In figure 5.3 a domain expert has annotated the user's actions from figure 5.1. All the actions 
together form a segment contributing to the non-primitive action G. G is made up of two sub 
goals of type H. At the lowest level there are two segments of actions which can be performed 
to achieve the non-primitive action J. The first segment of actions which achieves J consists of 
e (1) and f (2). The second segment consists of the actions e (4), a (5) and f (4).  There are also 
two ways to achieve the non-primitive action I.  The first segment of actions that achieves I is 
made up of a (1), b (2) and c (1). The second segment consists of a (3), b (6) and b (5). 

An Example Log with Annotations:

I

J

I

J

H

H

G

Figure 5.3

Action a (1)

Action b (2)

Action c (1)

Action d (1)

Action e (1)

Action f (2) 

Action a (3)

Action b (6)

Action b (5)

Action g (3)

Action e (4)

Action a (5)

Action f (4)



-29-
Memorandum ID-2002-16

The fact that the domain expert adds the hierarchy to the actions has the disadvantage that the 
task model cannot be learned automatically anymore. For every log of a certain user's actions 
added to the task model, a domain expert has to annotate those user's actions. This makes 
refining the task model by basing it on more logs more difficult. It might be possible to later on 
implement a tool to make it easier to add a hierarchy to the actions. This tool can for instance 
show a user the existing hierarchy of the task model up to now, as well as all the possible non-
primitive actions a primitive action can be a part of. Possibly this tool can make annotating the 
actions so simple that users can do it themselves without the help of a domain expert.

5.3 Alignment

The first step of the alignment phase consists of sorting all the annotated segments of the 
same type into sets of segments. As shown in figure 5.4, both of the segments of type I are 
placed in one segment set. The method also checks if each new segment which is to be added to 
an existing segment set is already a subset of the segments in the set. This is to ensure that 
segments which are similar are mapped to the same recipe.

The segments are sorted in the set by their diversity, or how many different types of actions they 
consist of. The lowest diversity for a segment is 1, meaning it contains actions of only one type. 
The highest possible diversity is equal to the total number of actions in a segment. This signifies 
that there are no actions in this segment of the same type. In figure 5.4 the first segment in the 
segment set of type I has the highest diversity, i.e. a diversity of 3. The second segment's 
diversity is only 2, since there are two primitive actions of type b in this segment. A new 
segment which is to be added to the set is only checked against the first and most diverse 
segment. Due to the sorting of the segments in the set by diversity, all other segments in the 
segment set are subsets of the first. A new segment thus does not have to be checked against all 
the different segments in the set.

The subset relation is used differently in the I-Advisor than it usually is. The I-Advisor only 
looks at the different types contained in a segment, it does not check how many times the 
different types appear. The second segment in figure 5.4 of type I is thus a subset of the first 
using the I-Advisor’s subset relation, because both the actions a and b appear in the first 
segment. It does not matter that the action b appears twice in the second segment and only once 
in the first. 

The diversity of a new segment can be higher or lower than or equal to the diversity of the first 
segment of a certain segment set. If the diversity of a new segment is lower or equal, then it is



-30-
Memorandum ID-2002-16

The Segments Sets After Alignment Step 1

Figure 2.4

Segment Set 1 of 

Type G:

Segment 1:

diversity = 1

Segment I

Action d (1)

Segment J

Segment Set 2 of 

Type H:

Segment 1:

diversity = 3

Segment I

Action g (3)

Segment J

Segment Set 3 of 

Type H:

Segment 1:

diversity = 3

Action a (1)

Action b (2)

Action c (1)

Segment Set 4 of 

Type I:

Segment 1:

diversity = 3

Action a (3)

Action b (6)

Action b (5)

Segment 2:

diversity = 2

Action e (4)

Action a (5)

Action f (4)

Segment Set 5 of 

Type J:

Segment 1:

diversity = 3

Action e (1)

Action f (2)

Segment 2:

diversity = 2
Figure 5.4

Segment H

Segment H



-31-
Memorandum ID-2002-16

checked whether this new segment is a subset of the first segment. When this check succeeds, 
the new segment is added to the set. Otherwise a new segment set is created. In the case that a 
new segment has a higher diversity than the first segment, then it is checked if the first segment 
is a subset of the new segment. If this is true, the new segment becomes the first segment of the 
set. A new segment set is once again created if this check fails.

Figure 5.4 shows the annotated example log from figure 5.3 after the first step of the alignment 
phase. The first segments of all the segment sets have the highest diversity and all the other 
segments are subsets of the first. In the case of the non-primitive action of type H, there are two 
separate segment sets. When it was checked whether the segment from segment set 3 was a 
subset of the segment from segment set 2, the subset relation failed. This was caused by the fact 
that the action g is not located in the other segment. Thus a new segment set is created for this 
segment.

The diversity is not based on Collagen. It is something which was introduced to simplify the use 
of the subset test. By using the diversity to sort the segments in a set, a new segment does not 
have to be tested against all the different segments in a set.

The use of the subset relation to put the segments together into sets stems from Collagen 
(Garland & Lesh, 2001). It helps us gather the segments together with the same action types. If 
you look at the example from figure 5.4, you might say that it is possible to make one segment 
set for the non-primitive action H. It is however possible to capture all combinations of action 
types in one recipe. In that case though you will learn large recipes with a lot of optional steps. 
We would like to learn short, simple recipes which capture the similarities between the 
segments. 

The second and final step of the alignment phase is the creation of the actual simplified recipes.  
These simplified recipes have only required steps and no equality relations. For each set of 
segments a recipe is created which is equal to the union of the actions in all the segments of the 
set. All the actions in the different segments are mapped to the steps of this recipe. 

This is explained using the segment sets of I and J from figure 5.4. Figure 5.5 consists of the 
recipes created from these segment sets. The recipe is initialised to be equal to the actions in the 
segment with the highest diversity of the segment set. The recipe for the segment set of type I in 
our example is initialised to be equal to the first segment. It will thus contain three steps, one for 
each action in the segment. 



-32-
Memorandum ID-2002-16

Then we go through all the other segments of the set and check if there is a matching step in the 
recipe for each of the actions in the segment. In the case of segment 2 in the segment set for I, 
there is no step in the recipe for the third action, namely b (5). Therefore a step is inserted after 
the step the preceding action was mapped to. The preceding action, in this case b (6), was 
mapped to step 1. Thus the new step for the action b (5) is inserted after step 1. 

The resulting recipes are passed on to the induction phase, along with the segment sets and all 
the mappings between the actions in the segments and the steps of the recipes. 

5.4 Induction

The induction phase consists of learning the optional steps and the equality relations between 
the parameters in the recipes. I will go over both steps briefly, since the I-Advisor does not use 
the optional steps and the equality relations. It can learn them however, in the same way as 
Collagen does. Chapter 7 explains why the I-Advisor does not use them.

To discover which steps are optional, the mappings learned earlier in the alignment phase are 
used. If a segment in a certain segment set exists which does not have an action mapped to a 
step of the corresponding recipe, then that step is marked as optional. In figure 5.6 step 1 is 
marked as optional, since the second segment has no action mapped to that step.

Type I
Segment 1 Mapped to: Segment 2 Mapped to: The Recipe:

Action a (1) � Step 0 Action a (3) � Step 0 Step 0 � Action a

Action b (2) � Step 1 Action b (6) � Step 1 Step 1 � Action b

Action c (1) � Step 3 Action b (5) � Step 2 Step 2 � Action b

Step 3 � Action c

Type J
Segment 1 Mapped to: Segment 2 Mapped to: The Recipe:

Action e (4) � Step 0 Action e (1) � Step 0 Step 0 � Action e

Action a (5) � Step 1 Action f (2) � Step 2 Step 1 � Action a

Action f (4) � Step 2 Step 2 � Action f

The Recipes After Alignment Step 2

Figure 5.5



-33-
Memorandum ID-2002-16

The induction of the equality relations between the parameters is shown in figure 5.7. We look 
at each action of a certain segment, and remember which parameters are equal to each other. 
Each discovered equality is then tested against all the other segments before it is added to the 
recipe. In figure 5.7 an equality is found in the first segment between step 0 and step 2. The 
parameters of the actions mapped to step 0 and step 2 in the second segment are not equal, 
however. The equality relation between step 0 and step 2 is thus not added to the recipe.

Figure 5.7 

Induction of the Equality Relations

Type J
Segment 1 Mapped to: Segment 2 Mapped to: The Recipe:

Action e (4) � Step 0 Action e (1) � Step 0 Step 0 � Action e

Action a (5) � Step 1 Action f (2) � Step 2 Step 1 � Action a

Action f (4) � Step 2 Step 2 � Action f

Equalities: Equalities: Equalities:

(Step 0, Step 2) none none

Induction of the Optional Steps

Type J
Segment 1 Mapped to: Segment 2 Mapped to: The Recipe:

Action e (4) � Step 0 Action e (1) � Step 0 Step 0� Action e

Action a (5) � Step 1 Step 1� Action a

Action f (4) � Step 2 Action f (2) � Step 2 Step 2� Action f

Optional: Step 1

Figure 5.6



-34-
Memorandum ID-2002-16

5.5 Finished Task Model

The complete task model is displayed in figure 5.8.  For each non-primitive action there is 
now a recipe which successfully describes all the segments in the set of segments matched to 
that recipe. For the non-primitive action H two recipes were necessary, all the other non-
primitive actions have been described using one recipe. Only the recipe for I has an equality 
relation, namely for step 0 and step 3. This means that the parameters of step 0 and 3 have to be 
equal for the user to successfully achieve I. 

The Finished Task Model

Recipe for I:
Step 0 � Action a

Step 1 � Action b

Step 2 � Action b (optional)

Step 3 � Action c (optional)

Equality ���� (Step 0, Step 3)

Recipe for H:
Step 0 � Segment I

Step 1 � Action d

Step 2 � Segment J

Recipe for G:
Step 0 � Segment H

Step 1 � Segment H

Recipe for H:
Step 0 � Segment I

Step 1 � Action g

Step 2 � Segment J

Recipe for J:
Step 0 � Action e

Step 1 � Action a (optional)

Step 2 � Action f

Figure 5.8



-35-
Memorandum ID-2002-16

6 User Model

The user model that the I-Advisor maintains is equal to the discourse state used in Collagen. 
The discourse state can used as a user model in AdaptIt, because only the user will perform 
actions in the AdaptIt tool. The I-Advisor will only advise possible actions, it will never 
perform them on its own. This section will discuss the discourse state again, since it is used 
differently in the I-Advisor. 

The focus stack is a stack of goals. The goal on top of the focus stack is the user's current 
purpose or current focus. The focus stack is used to store the non-primitive actions the user 
wants to accomplish with his primitive actions. On the bottom of the stack is the most general 
goal. The current focus on top of the stack is the most specific goal the user is working on at 
that moment. In the example discourse state in figure 6.1 the current purpose is D. The most 
general goal on the focus stack is A. 

The plan tree is used to remember which of the user’s actions contributed to which goals. It 
should be seen as a history explaining the user's previous actions. Figure 6.1 contains an 
example plan tree on the right. A plan tree consists of two columns: a goals column and an 
actions column. For each goal currently on the focus stack there is an element in the goals 
column of the plan tree. These are all the goals the user is currently working on. The list in the 
second column stores all the actions performed by the user that contributed to these goals. For 
instance if one looks up the goal D in the first column, the second column shows that the 
primitive action j contributed to this goal. The goal on the bottom of the stack, i.e. A, has the 

Focus Stack Plan Tree

A

C

D

Current 
Purpose

D   � j

C   � none

A   � B

ActionsGoals

An Example Discourse State

Figure 6.1



-36-
Memorandum ID-2002-16

non-primitive action B which contributed to it. This means that the user achieved the non-
primitive action B earlier with his actions. The example task model in figure 6.2 shows that B is 
a step in achieving A.

Every time the user performs an action, the discourse state is updated to include that action. The 
I-Advisor searches through the recipes in the task model starting at the current focus to discover 
which goals that specific action can contribute to. This is done by looking up the recipe for the 
current focus. The I-Advisor will search through the steps of this recipe to check if the user's 
action is a step in the recipe. The I-Advisor will start searching from the current focus to find 
the user's action, because it has deduced from the user's earlier actions that the user is working 
on that specific goal. That goal is thus the most likely place to find the new action. This narrows 
down the search space, making it easier to find a user's new actions. 

If the current discourse state is the one shown in figure 6.1, the I-Advisor will search for a user's 
new action in the task model starting at D. It will retrieve the recipe for D from the task model.
This recipe, displayed in figure 6.2, consists of the steps j and k. It will start searching at D from 
action j forward, since action j is the last action that contributed to the goal D. This can be 
learned from the plan tree. 

Once the user's action has been found in the task model, the focus stack and plan tree are 
updated to include that action. The following paragraphs describe how the I-Advisor searches 
through the task model for the user's last primitive action and updates the discourse state 
accordingly. This is explained using an example. 

Figure 6.2 shows an example task model. This task model will be used to demonstrate the 
initialisation of the discourse state and how it is updated. The example task model is 
deterministic; there is only one recipe for each non-primitive action. The actual task model used 
in the I-Advisor is not deterministic. For the searching through the task model for actions it does 

An Example TaskModel

Recipes: 
A � B, C

B � g, h

C � D, E

D � j, k

E �  g, i
Figure 6.2

StepsNon-Primitive 

Action



-37-
Memorandum ID-2002-16

not matter whether a task model is deterministic or not. If there are multiple recipes for a non-
primitive action, the I-Advisor will start by searching through the first recipe. When the first 
recipe does not contain the action, the other possible recipes are searched through. 

When the discourse state is initialised, as in figure 6.3, the focus stack has one goal pushed onto 
it and the plan tree has one element corresponding to that goal. This main goal is the root node 
of the whole task model. In our example task model the root node is A. The one element in the 
plan tree for the root node is empty since the user has not performed any actions yet. 

After the discourse state is initialised, the user performs the action g. The I-Advisor searches 
through the task model starting from the focus to find the action g. This search takes place in a 
depth-first fashion. Each time a new non-primitive action is found among the steps, this is 
immediately expanded and searched through. Figure 6.2 shows that the action g can be found in 
two different places in the task model. The primitive action g can be a step in achieving both the 
non-primitive actions B and E. At this moment there is no way to determine which of the two is 
the correct way to explain g. Thus there are two possible discourse states after this update, with 
B and E as the new current focuses, as displayed in figure 6.4. The two possible plan trees show 
that g can contribute to both B as well as E.

Figure 6.3

Initial Discourse State

Focus Stack Plan Tree

A A � none

Discourse State 1: Discourse State 2:

Figure 6.4
Focus Plan Tree

A

E

C

Focus Plan Tree

A

B  �  gB

E  �  g

A  �  none

C  �  none

A  �  none

Possible Discourse States after First Update



-38-
Memorandum ID-2002-16

In order to narrow down the possible discourse states, the I-Advisor will look at the user's next 
actions. This is demonstrated with the user's next action, which in this case is h. The I-Advisor 
will go down the possible discourse states one by one and attempts to find the primitive action h
in each of them. It searches through the task model starting from each current focus, from the 
last action which contributed to the current focus onward. This last action is retrieved from the 
plan tree, by looking which action was last added to the plan tree as contributing to the current 
focus. In the first possible discourse state, the I-Advisor starts searching at the current focus B
from action g onward.

The search in the first possible discourse state is successful; action h is a step in achieving the 
current focus B. Action h is also the last step in achieving B, meaning that the sub goal B has 
been achieved. B can thus be removed from the focus stack. B is removed from the first column 
of the plan tree, since it is not a goal on the stack anymore. It is added to the second column of 
the plan tree, though, because it has been achieved and was a step in achieving the main goal A.  
The updated discourse state is shown in figure 6.5. Every time all the steps of a sub goal have 
been achieved, this sub goal is removed from the focus stack and added to the second column of 
the plan tree. 

The second possible discourse state, with E as the current focus, is unable to find the action h
below the focus. This possible discourse state is thus deleted, since it is not able to describe the 
user's action. A possible discourse state is deleted only if it is not the last possible discourse 
state left, meaning that there is always at least one possible discourse state.

It might happen that you have only one possible discourse state left and that you are unable to 
find the user's last action beneath that discourse state's current focus. This can happen for 
example when a user was distracted. He might then completely forget what he was doing. His 
new action will thus be completely unrelated to his previous actions. In this case the current 
focus is removed from the stack to broaden the search space. If the action is not found either 
then, the current focus at that time is also removed in the same way. This will continue until the 

Figure 6.5

Focus Stack Plan Tree

A  �  BA

Discourse States after Second Update



-39-
Memorandum ID-2002-16

current focus is the main goal of the task model. This means that the whole task model is 
searched through for the action. Assuming that all of the user's possible actions are located in 
the task model, the action will now certainly be found. 

In the example the I-Advisor is able to learn the user's current goal, i.e. B, after the user has 
performed two actions. He however had just achieved B, so the I-Advisor will give him advice 
on B's parent goal, i.e. A. The user will now be working to achieve the goal A, because it is the 
new current focus after B was removed from the focus stack.



-40-
Memorandum ID-2002-16

7 AdaptIt and the I-Advisor

The implementation of a prototype of the I-Advisor for the AdaptIt application can be 
divided into three main steps. First of all we had to decide how to listen to the AdaptIt 
application. It was important to choose which events were used to learn the task model and 
which details of these events were stored. Events are the changes in the AdaptIt tool caused by 
the user's actions. This will be discussed in section 7.1. Section 7.2 will go further into the 
details of the task model. It will show how the task model is learned and explain a part of the 
learned task model. The last section will describe the actual advising of the user. This section 
will try to answer questions such as how to advise the user and when exactly to provide him 
with advice. 

7.1 Listening to AdaptIt

There are several ways to listen to an application and thus keep track of the user's activities. 
You can for instance log every movement of the mouse, or listen to all the input from the 
keyboard. We are however not interested in the exact path of the user's mouse cursor when it 
goes from one menu to another, we are only interested in which menu's the user has clicked on. 
The same goes for the keyboard. The exact text the user types in the text panels is not relevant,
the important thing for the I-Advisor to know is which attribute of an object the user has 
changed by typing this text.

There are examples imaginable where the exact place of the mouse cursor is indeed important 
for an advisor. For instance when a user's mouse cursor has been hovering over a certain object 
for a long time, an advisor might want to give him some advice on that object. However in that 
case you need to regularly check where the mouse is, so that you know when the cursor has 
been standing still for a long time. In other words you get a lot of very detailed events, and in 
only a few cases, such as the one described above, they can help you give useful advice.

7.1.1 Types of Events
The AdaptIt application is programmed in JAVA. This programming language uses the 

Model View Controller structure to handle GUI events. The model includes all the data objects 
which together store the application state. The view consists of all the Graphical User Interface 
(GUI) elements which provide the user with a view of the data objects. The controller translates 
the user's interactions with the view into actions to be performed by the model. 

The AdaptIt application provides a good framework for listening to both the model events and 
the controller events. The model events come in the form of object update events. The object 



-41-
Memorandum ID-2002-16

update events are fired when the user changes an attribute of a data object, for instance by 
giving a data object a new name or adding some text to describe it. These events are handled by 
the Object Update Manager. The controller events which one can listen to are called selection 
events. A selection event is passed whenever the user clicks on a data object in the application. 
These are handled by the Selection Controller. 

Although using this framework makes it easy to implement the listeners, it has one major 
drawback. The view events are ignored by these two listeners. View events are for instance 
selecting a tabbed pane or opening a new menu. These events only change the view, thus no 
object update events or selection events are fired. This is a logical choice the programmers made 
which is a consequence of the Model View Controller structure used in JAVA. The view events 
would have been helpful though to discover what a user wants to do. In order to listen in on 
these events too, a specific listener needed to be written for each different type of GUI event. 
During the project there was not enough time to write all these listeners, therefore only the 
selection events and object updates were used for the I-Advisor. Another reason was that one of 
the requirements (Technical Requirement 7) was that no changes would be made in the AdaptIt 
application. Implementing these listeners and their specific events would have required a lot of 
changes in the application. 

7.1.2 Properties of the Events
The selection events and the object update events have nearly the same form. They both 

consist of three properties which describe the event. The first property is the name of the object 
which is being updated or selected. This object is of a certain class and this is stored as the 
second property. The last property is the only one in which the selection event differs from the 
object updates. For selection events the last property is the editor panel in which the object is 
selected. For object updates this is the source of the update, i.e. the handler which processes the 
object's attribute change. From now on I will refer to this third property, the source of the update 
or the editor panel, as the source, since this is the source of the selection event or object update.

Figure 7.1 and figure 7.2 show an example selection event and an example object update. The 
example selection event in figure 7.1 is fired when the user clicks upon a Skill in the Skill 
Hierarchy Diagram which is called Driving. The name of the object selected in this case is 
Driving and the class of this object is LFSkill. The source is the SkillHierarchy Diagram. The 
example object update in figure 7.2 takes place when the user gives a Skill the new name 
Driving in the BasicAnalysisElementPanel. The BasicAnalysisElementPanel is  the name of the 
text panel where the new name of the Skill is entered. In this case the name of the object 
updated is Driving and the class of this object is once again an LFSkill. The source is the 
BasicAnalysisElementPanel.



-42-
Memorandum ID-2002-16

The figures 7.1 and 7.2 also show at the bottom how the events are stored by the I-Advisor. The 
source and the class of the object are combined into a function name with one parameter. This 
parameter is the name of the object. The function name also has the type of the event, either 
selection (SEL) or object update (OBJ) attached to the front of it, to make it easier for the 
domain expert to determine what kind of event it is. It has no other use, because the sets of the 
selection and object update events are disjoint. The name of the object was chosen as the 
parameter, since it was the only one of the properties which can vary considerably. Both the 

Example Selection Event 

User clicks on a Skill named Driving in the Skill Hierarchy Diagram

Class of Object Selected:

LFSkill

Name of Object Selected:

Driving

Editor Panel:

SkillHierarchyDiagram

Type        Source Class Object   Name Object

Action: SEL-SkillHierarchyDiagram-LFSkill   (Driving)

Function Name Parameter
Figure 7.1

Example Object Update 

      User gives a Skill the name Driving in the BasicAnalysisElementPanel

Class of Object Selected:

LFSkill

Name of Object Selected:

Driving

Source of the Update:

BasicAnalysisElementPanel

Figure 7.2

Type        Source            Class Object    Name Object

Action: OBJ-BasicAnalysisElementPanel-LFSkill (Driving)

Function Name Parameter



-43-
Memorandum ID-2002-16

class of the object and the source do not have enough possible values to be interesting as a 
parameter.

Figure 7.3 shows an example log of a user performing actions within AdaptIt. This log consists 
of four selection events and four object updates. For instance action 5 and 6 indicate that the 
user selected a new skill in the SkillHierarchyDiagram. For action 5 the skill selected is named 
Braking, and for action 6 this skill is called Steering. A log such as this will be used to learn the 
task model in the next section. 

Example Log of the User's Actions

Action 1 Function="SEL-ProjectBrowser-LFTrainingProject" 
Parameter="DrivingLessons" 

Action 2 Function="SEL-SkillHierarchyDiagram-LFSkill" 
Parameter="Shifting Gears" 

Action 3 Function="OBJ-LASkillHierarchyHandler-LFSkillHierarchy" 
Parameter="DrivingHierarchy" 

Action 4 Function="OBJ-LASkillHierarchyHandler-LFSkillHierarchy"
Parameter="DrivingHierarchy"

Action 5 Function="SEL-SkillHierarchyDiagram-LFSkill"
Parameter="Braking" 

Action 6 Function="SEL-SkillHierarchyDiagram-LFSkill"
Parameter="Steering"

Action 7 Function="OBJ-LASkillHierarchyHandler-LFSkillHierarchy"
Parameter="DrivingHierarchy"

Action 8 Function="OBJ-LASkillHierarchyHandler-LFSkillHierarchy" 
Parameter="DrivingHierarchy"

Figure 7.3



-44-
Memorandum ID-2002-16

7.2 Learning the Task Model: Practical Issues

The way the task model is learned was explained extensively in chapter 5. There are a few 
choices still to be made, such as which part of the AdaptIt application to use, what hierarchy is 
used in the task model, and how many actions are used to learn the model. It is also important to 
decide whose actions to learn the task model from. Is it possible to refine a task model with the 
user's actions or is it best to only use a domain expert's actions? These things are all discussed in 
this section. 

First of all a choice had to be made which part of the AdaptIt application would be used to test 
the prototype in. As described in the requirements, the I-Advisor was first built for a small part 
of the tool. If these tests were successful, the I-Advisor's task model could always be expanded 
to include the whole AdaptIt application. The AdaptIt tool is divided up into two possible 
domains, i.e. the skill hierarchy and the blueprint domain. The skill hierarchy domain was 
chosen to start with since this domain had the most clearly defined order in the sub goals. The 
sub goals in the blueprint domain could more easily be changed in order. 

The tests of the prototype in the skill hierarchy were quite successful. Therefore the I-Advisor's 
task model was expanded to include the blueprint domain. Surprisingly the I-Advisor worked 
better in the blueprint domain. This was caused by the diversity of the events fired in each 
domain. The skill hierarchy and the blueprint domain have different object update and selection 
events. The skill hierarchy domain however turned out to have 16 different events, whereas the 
blueprint domain consisted of 29 possible events. This made it easier to learn a task model in 
the blueprint domain. In the skill hierarchy domain some events could be caused by different 
actions performed by the user. For instance if the user clicks on a checkbox called “To Be 
Trained” this will fire exactly the same event as when he clicks on a checkbox called 
“Recurrent”. These two actions are located in two different places in the task model, thus 
making it harder for the I-Advisor to learn what the user's current plan is. 

We also had to decide upon a hierarchy for the task model. This hierarchy is used as a general 
framework to help the domain expert in annotating the logs of the user's actions. In our case it 
was quite easy to decide upon a hierarchy since we want to map the advice from the I-Advisor 
to the pages in the Help System. The Help System already has a certain hierarchy contained in 
its pages, consisting of certain goals which it advises the user to do in a certain order. By giving 
the task model the same hierarchy, the user's goal deduced by the I-Advisor is easily mapped to 
a page in the Help System. The hierarchy was created with the help of Harmen Abma, the 
domain expert who wrote the Advisor pages.



-45-
Memorandum ID-2002-16

Make 
Skill Hierarchy

Analyse

Complex

Skill

Determine

Which Skills

To Train

Specify 

Performance

Objectives

Describe

performance

result

Identify 

Complexity

Factors

Describe

start

situation

Describe

performance 

condition

Classify Skills 

as

(non) recurrent 

Add 

Skill

Name 

skill

Determine 

to train

single skill

Classify 

skill as 

(non) 

recurrent

Identify 

complexity 

factor

Identify 

complexity 

factor 

value

The General Task Model for the Skill Hierarchy Domain

Figure 7.4

Make 
Blueprint

Define

Skill Clusters

Design Task 

Classes

Design 

Learning Tasks

Name 

Supp.

Info

Design

JIT

Information

Add 

Learning 

Task

Design 

Supportive

Information 

Add

Skill 

Clusterr 

Name

JIT 

Info

Name

PTP

The General Task Model for the Blueprint Domain

Figure 7.5

Design

Part-Task

Practice

Name

Task 

Class

Add

PTP

Add

Task 

Class

Add

Task 

Class

To 

Cluster

Name

Skill 

Cluster

Name 

Learning 

Task

Link

PTP



-46-
Memorandum ID-2002-16

Figures 7.4 and 7.5 show the hierarchies we used for our task models. Figure 7.4 displays the 
hierarchy for the Skill Hierarchy domain. At the top of the task model is the main goal the user 
starts with in this domain, which is Make Skill Hierarchy. This goal consists of five different 
sub goals, and these sub goals can be divided into sub goals again. At the lowest level, the level 
of a goal such as Add Skill, the recipe consists solely of primitive actions and cannot be divided 
into sub goals any further. This hierarchy is just a general framework for the task model; no user 
will follow this task model exactly. It might be that a user will decide to jump back to Analyse 
Complex Skills after Specify Performance Objectives. This will result in an extra optional 
Analyse Complex Skills step after Specify Performance Objectives in the learned task model. 
Figure 7.5 displays the hierarchy for the other part of the AdaptIt application, the Blueprint 
domain.

The initial task model will be learned from a domain expert's interactions. This is due to the 
reason mentioned before that a new user will not have enough structure in his actions to infer a 
useful task model from them. A task model should preferably be learned from different domain 
experts. In many applications there are different ways, such as different menus or buttons, to 
accomplish the same task. A domain expert will often have adopted one way to accomplish 
certain goals and will always use that way. When a task model is learned from multiple domain 
experts, it is possible to capture many of the different ways of accomplishing the goals in the 
task model. 

In my case there were only two domain experts available to learn the task model from. This is 
enough to learn a good task model since the AdaptIt tool does not have many different ways to 
do an action. Selecting a Skill for instance can be done in only two ways, in the ProjectBrowser 
and in the Skill Hierarchy Diagram. Also using different menus or buttons in AdaptIt often 
results in the same events, thus we do not have to take that into account when learning the task 
model.

Later on it should be possible to improve the task model with a specific user's actions when the 
user has discovered his own way of successfully using the application. A user might have 
discovered a completely new way to use the application, which the task model learned from the 
domain experts did not include. By also basing the task model on these actions, the I-Advisor 
will become better at following this specific user. The question remains whether a larger and 
more complex task model learned from many different users is more or less suitable for 
following new users with no structure in their actions. I will come back to that question at the 
end of this chapter. 



-47-
Memorandum ID-2002-16

Figure 7.6 shows two example recipes for the non-primitive action Name Skill, which the I-
Advisor has learned. The second step, the actual object update from when the skill's name is 
changed, is included in both recipes. The second and third column contain whether a step 
consists of a primitive action or not and whether the step is optional or not. The second step of 
both recipes is not optional. The first step, the selection of the skill whose name you want to 
change, is optional. It is possible to change the name of a skill already selected, so it is logical 
that this step is optional. The recipes also show that there are two different ways to select the 
skill. In the first recipe the skill is selected in the ProjectBrowser, in the second recipe this is 
done in the SkillHierarchyDiagram.

The finished task model learned by the I-Advisor was based on logs consisting of approximately 
60 actions from two different domain experts. This task model is written away to a file, and will 
not be changed during the actual advising of the user. We don't want to slow down the user 
during his actions in the application, thus all the learning of the task model is done offline 
before the user starts his work in AdaptIt. All of the user's actions in AdaptIt are logged and 
stored to keep the possibility open to use them later on to refine the task model.

7.3 Advising the User

With the help of the task model the I-Advisor will now attempt to deduce the user's goals. 
Chapter 6 explained how the user is followed through the task model and the possible goals he 
could be working on are learned. The I-Advisor will not give the user advice about all the 
different possible goals he could be working on. Too much advice, and especially uncertain 
advice is misleading for a new user. This section explains the form of the advice given by the I-
Advisor in more detail.

Example Recipe for Name Skill

Recipe Goal="NameSkill":
Step 0 Function="SEL-ProjectBrowser-LFSkill" Primitive="true" Optional="true" 

Step 1 Function="OBJ-BasicAnalysisElementPanel-LFSkill" Primitive="true" Optional="false"

Recipe Goal="NameSkill": 
Step 0 Function="SEL-SkillHierarchyDiagram-LFSkill" Primitive="true" Optional="true"

Step 1 Function="OBJ-BasicAnalysisElementPanel-LFSkill" Primitive="true" Optional="false"

Figure 7.6



-48-
Memorandum ID-2002-16

The I-Advisor’s goal is to assist the user in learning to how to use AdaptIt in his own way by 
providing him with links to the help pages that correspond to his current tasks. It is not our 
intention to force the user to do anything, or to perform actions for the user. The I-Advisor is 
merely an advisor and not a wizard or tutor. In its panel the I-Advisor shows the user an 
overview of the general goals AdaptIt consists of. Whenever it has deduced the user's current 
goal, this goal is shown in a bold font. Figure 7.7 depicts the I-Advisor when it has learned that 
the user is currently working on Specify Performance Objectives. The user can ignore the 
advice if he feels that he knows enough about this goal to continue his work. If he gets stuck for 
some reason, he can click on the bold link. The help page corresponding to that goal will then 
be opened.

In some cases the I-Advisor will deduce many different possible goals. This is especially the 
case when a user starts to use the application, and there is no context to help learn the user's 
current goal. For instance selecting a skill is an action which is a part of almost every sub goal. 
A user who selects a skill as his first action can be trying to accomplish many different possible 
goals. In these cases the I-Advisor refrains from giving advice, since wrong advice can be very 
misleading for a new user. 

If you compare figure 7.7 to figure 7.4 you will notice that the goals shown in the I-Advisor's 
panel are not the lowest level goals, but the goals one level higher up. There are three main 
reasons for this. The first reason is that showing these goals to the user gives him a good 
overview of the whole application. If he gets stuck in a detailed sub goal, he can look at this 
overview to regain the overall picture. The second reason is that moving one level higher up 

Make Skill Hierarchy
consisting of:

Analyse the complex skill
Determine which skills should be trained
Specify performance objectives
Classify skills as recurrent or non-recurrent 
Specify complexity factors

Example of the I-Advisor's Advice

Figure 7.7



-49-
Memorandum ID-2002-16

makes it easier to follow the user and provide him with reliable information about his current 
goal. The events received from the AdaptIt tool are not detailed enough to follow the user at a 
lower level. There are too many identical events which can be fired by completely different 
actions performed by the user. The third practical reason for the higher level of advice is that the 
Advisor pages are not that detailed. There are no separate pages for the lower level goals, they 
are all described in one main page for the higher goal. It is thus not possible to provide the user 
with links corresponding to the lower level goals.

7.4 Lessons Learned While Building the I-Advisor

While building the I-Advisor certain advantages and disadvantages of the choices we made 
for its architecture appeared. This section will go over the effects of two choices, discussing 
their advantages as well as their disadvantages. These two choices are about which events the I-
Advisor listens to and which structure is used for the task model.

7.4.1 Events Listened To
The choice of listening to the selection events and object updates was one which had one 

important advantage, it made it easy to implement the listeners. All that had to be done was 
adding two listeners; there was no need to build a lot of listeners for all the different kinds of 
events in the application. The events received from these listeners were all meaningful and a 
reasonable amount to learn a task model from.

However these existing listeners had another disadvantage apart from not reporting the view 
events (see section 7.1.1). The object updates are fired slightly later than they should for the I-
Advisor. In AdaptIt when you type a new text in a text panel, there is no object update until you 
have finished typing the text and selected another object in the application. This makes the I-
Advisor's advice somewhat late at times and advice given at the wrong time can confuse new 
users.

Another effect of the chosen listeners turned out to be an advantage. In every application there 
are many different buttons or menu options to accomplish the same task. Adding a SubSkill for 
instance can be done by pressing the "Add SubSkill" button, or right-clicking in the 
ProjectBrowser and selecting the corresponding menu option, or using the menu at the top, 
etcetera. If GUI events had been used, all these different GUI events would have to be mapped 
to one and the same event. Otherwise there would have been more than four different recipes for 
that simple sub goal. This would have lead to a huge task model, which would have taken a lot 
of time to search through for a user's action. It does not matter for learning the user's current 



-50-
Memorandum ID-2002-16

goal which type of GUI the user prefers to perform his actions. The important part is the effect 
of the GUI action, and this is the only thing reported by the listeners we use. 

The ideal listener for the I-Advisor would have been one which included the GUI events. 
Actions such as selecting a new tabbed pane or opening a menu can give important clues as to 
what the user's current plan is. The listeners should however not fire different events for the 
different types of interfaces used. Adding a skill by clicking on a button should fire the same 
event as adding it by selecting an option in the menu. Also it would be best for the listeners to 
fire events immediately. They should not wait for the next event like the object update events 
do. Last of all, each action in the application should fire a unique event. You do not want to 
have events which can be caused by two different kinds of actions performed by the user. 

7.4.2 Structure of the Task Model
The task model we used did not look at optional steps nor did it look at equality relations 

among the parameters. This choice was made based on a certain aspect of the structure of the 
task model learned by the I-Advisor. 

The learned task model turned out to have two different types of non-primitive actions. The first 
type consisted of the non-primitive actions with recipes which had only primitive actions as 
steps, whereas the other type had recipes with only non-primitive actions as steps. There were 
no non-primitive actions which had both types of actions as steps. The first type of non-
primitive actions, the one having only primitive actions as steps, all had recipes with a small 
number of steps and a lot of them had multiple recipes. The second type always had only one 
recipe, but this recipe was large with a lot of optional steps. If the task model was learned from 
more logs, these recipes became even larger. The other type of non-primitive actions with only 
primitive actions as steps however remained small in number of steps when more logs were 
used, and after a while no new recipes were added for these actions. 

The fact that the recipes with only non-primitive actions as steps became very large with lots of 
optional steps indicated that almost any order of steps was possible to achieve this action. An 
example of this is when you build a skill hierarchy. A skill hierarchy can consist of any number 
of skills, thus the sub goal Add SubSkill can appear an arbitrary amount of times. Also you can 
Rename Skills and Delete Skills as many times as you want, and in any order. Clearly the 
current structure of our task model is not able to describe all ways to successfully build a skill 
hierarchy.

Possible ways to solve this using the current task model structure would be to introduce 
recursive rules, to add an unordered relation or to not make the task model too strict. Recursive 



-51-
Memorandum ID-2002-16

rules can capture things such as doing an action an arbitrary amount of times very well in one 
rule. This would however require changes to the search algorithms, in order to keep these from 
going into an endless loop. An unordered relation between the steps in a recipe signifies that 
these steps can appear in any order. Unordered relations combined with recursive rules could 
probably succeed at describing actions whose steps can appear an arbitrary number of times as 
well as in any order. 

The last option is the one the I-Advisor uses, equality relations and the optional steps were 
dropped to make the task model less strict. By assuming that all steps are optional, which is the 
case when actions can occur in almost any order, you can still follow a user with the current 
type of task model. Otherwise the I-Advisor immediately lost a user when the user failed to 
perform an action which was not optional. It then had to start its search for the user's action 
from the beginning all over again. The equality relations turned out to not be useful in 
narrowing down the number of possible discourse states. The learned equality relations were 
exactly the same for each of the recipes, thus they were useless in discerning one goal from 
another.

There are still quite a few improvements possible on the current structure of the task model. The 
task model was able to follow the user, but at times it took a lot of searching through the 
recipes. Especially in the those recipes where the steps could appear in any arbitrary order the I-
Advisor often lost the user. It then had to start searching for the user’s actions from the top of 
the task model again. The introduction of unordered relations and recursive rules could possibly 
solve this. 

In the case of multiple possible focus stacks, the I-Advisor could do nothing more than give a 
list of the possible goals the user could be working on. This unfortunately happened quite often. 
It would have been better to have some kind of indication which of these possible goals is the 
most likely. You can then show the most likely goal as advice to the user, possibly accompanied 
by the second most likely goal. Chapter 9 explains Hidden Markov Models, a different possible 
architecture for the I-Advisor that can compute which possible goal is the most likely with the 
help of the Collagen-based task model. 



-52-
Memorandum ID-2002-16

8 LVNL Test Results

A prototype of the I-Advisor was tested by a training designer at Air Traffic Control 
Netherlands (LVNL). For a month she used an advanced prototype of the AdaptIt tool that 
contained the I-Advisor to help her design a training. This training was intended for the air 
traffic controllers to teach them how to use a new runway. The test user had no prior knowledge 
of the AdaptIt methodology. We had two meetings of two hours to introduce her to the AdaptIt 
methodology, just as all future users will get an introductory training. The AdaptIt tool was 
completely new to her, she had no prior experience with it.

For testing reasons she was given a prototype of the I-Advisor which only operated in one part 
of the AdaptIt application. The skill hierarchy domain had no I-Advisor support. In the blueprint 
domain the I-Advisor gave support in the way described in chapter 7. The plan behind this was 
that the test user could compare using the AdaptIt tool with the I-Advisor to AdaptIt without the 
I-Advisor's support. The I-Advisor also logged all her actions during the tests, as well as which 
advice the I-Advisor displayed to her. These logs were created primarily to determine how 
many times the I-Advisor was able to give advice. This could then be compared to the number 
of times the I-Advisor had to keep silent because it was not able to deduce the test user’s current 
goal. 

8.1 Results

The test results consisted of an extensive debriefing with the test user. The debriefing was 
based on a questionnaire about all the different parts of AdaptIt, which is included in the 
appendix. The questions were about the methodology, the tool, the Advisor, and the I-Advisor. 
The next section is organised in the same way as the questionnaire was. The methodology and 
the tool were also discussed during the debriefing since the answers to these questions gave an 
indication of how well she understood the AdaptIt tool and the methodology behind it. We 
realize that the weakness of these tests was that there was only one designer involved. 

8.1.1 Methodology
The methodology behind the AdaptIt tool was difficult to understand. The link between the 

skill hierarchy and the blueprint for instance was difficult to grasp. A workshop in advance was 
clearly necessary.



-53-
Memorandum ID-2002-16

8.1.2 Tool
Although the AdaptIt tool is currently still a work in progress, there were few comments on 

the way the tool was constructed. Those comments she had were small bugs the tool designers 
had already detected and were working on. The system help from the Advisor was only needed 
a few times to discover how to accomplish certain goals in the tool. 

8.1.3 Advisor

Before I explain the test results concerning the Advisor, I will first quickly describe all the 
different parts of the Advisor again. The Advisor consists of the parts shown in figure 2.3, a 
graphical overview of the methodology, the actual Advisor page, a table of contents and an 
overview of the phases (see section 2.2). An Advisor page contains text explaining the different 
goals in AdaptIt along with some simple examples in the text. The top of each Advisor consists 
of the links displayed in figure 8.1. These links direct the user to the Advisor pages about the 
previous and next goal in the tool, as well as a link to the index containing an overview of all 
the different goals. A link to a large example is also located at the top of most Advisor pages. If 
the user has trouble finding a certain button in the tool, he can click on the system help link. 

During the debriefing we asked the test user about which parts of the Advisor she had used. The 
graphical overview of the methodology and the description of the phases she had mostly 
ignored. This is logical since she had indicated that she found it hard to understand the 
methodology. As mentioned in the previous section, she also seldom used the system help. The 
tool was built in such a way that it was not hard for her to find the different buttons and menus.

Most of the time she used the regular Advisor pages when she needed extra information about 
the tool. To navigate through these pages she used the previous and next links at the top of the 
pages. These two links, along with the index link gave her a good overview of the different 
goals which needed to be accomplished to design a good training. 

She used two different ways to find the right pages in the Advisor. In the Skill Hierarchy 
domain, without the I-Advisor's support,  she used the regular Advisor link to find the Advisor 
pages. This link leads to the main Advisor page, and from there she clicked on the index to find 

Figure 8.1



-54-
Memorandum ID-2002-16

the page she was looking for. Figure 8.2 shows the path she followed to find the right Advisor 
page. In the Blueprint domain she used the I-Advisor's links to find the right Advisor pages. As 
shown in figure 8.2, this takes her directly to the correct page.

8.1.4 I-Advisor
The main object of interest during all these tests for this research project was the I-Advisor. 

There are three main questions we asked her about the I-Advisor’s performance. First we 
wanted to know what she thought of the interface, i.e. the I-Advisor's panel with the overview of 
the goals. Second, we were curious when she used the links, and if the highlighted link ever led 
her to the wrong page. Last was the important question whether she felt the I-Advisor gave 
enough advice. 

The interface in the I-Advisor's panel was easy to understand. The links and the highlighted link 
explained themselves. The constant updating of the links was not disturbing. The overview of 
the links was detailed enough. The Advisor pages provided her with more detailed information 
when she felt she needed it. However she felt the I-Advisor showed the wrong link. The I-
Advisor shows the goal the user is currently working on. She would much rather have been 
shown the next goal she should work on according to the I-Advisor. 

Whenever she added a new object to the blueprint, she would look at the I-Advisor to check 
which link was highlighted. This was the main way she used I-Advisor's links. The Advisor 
pages provided her with enough information to know what to do with the new object then. She 

Finding the Appropriate Page in the Advisor

* Without the I-Advisor:

* With the I-Advisor:

Advisor

Link

Main 

Advisor

Page

Index

Page

Appropriate 

Advisor

Page

I-Advisor

Link

Appropriate 

Advisor

Page

Figure 8.2



-55-
Memorandum ID-2002-16

was especially focused on the highlighted link, the other links were seldom used. The 
highlighted link almost always led her to the right page. She seldom had the feeling that she was 
working on a different goal than the one that was highlighted. 

The highlighted link might have always led her to the right page, however she felt the I-Advisor 
did not highlight links frequently enough. In too many cases the I-Advisor remained silent. This 
made her feel like she had done something wrong, and that the I-Advisor therefore could not 
deduce what she was doing. She would much rather have seen two or three possible current 
goals instead of the I-Advisor remaining silent.

8.2 Summary

The tests at LVNL had three main conclusions: 

1) The level of support in the AdaptIt tool with the I-Advisor was sufficient to learn how 
to use the tool, but it was not sufficient to understand the methodology behind it. 

2) Whereas the I-Advisor highlighted the user’s current task, the test user wished to see the 
advised next task. 

3) The I-Advisor should give advice more often, even if this advice involves multiple 
possible goals. Remaining silent makes the user think he is doing something wrong. 

The next section will discuss these three conclusions and describe possible solutions.

8.2.1 Understanding the Methodology
The level of support in the AdaptIt tool with the I-Advisor was thus sufficient to learn how to 

use the tool, but not enough to understand the methodology behind it. The workshop normally 
given to new users appears crucial in learning to how to use the methodology. The Advisor was
not able to explain this to her. The test user needed more general feedback information about the 
training she had designed, information she would have received from a domain expert during a 
workshop. 

The question is whether a more active intelligent help system is able to replace a workshop 
given by a domain expert. An elaborate tutorial could come a long way. Building such a tutorial 
presents certain difficulties though. This tutor will have to learn everything about the training 
the user is busy designing. Some of this information can be obtained by listening to the 
application more closely, other information only by asking the user for it. Even then there are 
still certain things only a human domain expert can determine that a user is doing wrong. An 
example of this is when the user is designing a skill hierarchy. A domain expert can easily 



-56-
Memorandum ID-2002-16

determine if the user is giving the skills the wrong names, too general or too specific for 
instance. An intelligent tutor will have a very hard time learning such information from the 
names of the skills.

The test user indicated that she wouldn't mind having a more active Advisor, as long as it would 
have interrupted her only when she indicated that she needed more help. Such a more tutor-like 
I-Advisor will have to gather a lot more information from the AdaptIt application or from the 
user himself. Information one can think of are the number of skills in the Skill Hierarchy or 
maybe the time the user spent designing the training up to the moment of giving advice. This 
will result in a more elaborate user model. With this user model it should be able to give more 
context-sensitive advice to the user.

Unfortunately this will all come at a certain cost. The information I talked about cannot be 
obtained using one listener for one type of events. All these pieces of information will need 
separate listeners and will give different events. The I-Advisor would then need to do a lot more 
computations to maintain this more elaborate user model. This could possibly slow the 
application down, something I want to prevent from happening at all costs. The fact also 
remains that there will still always be certain properties of a training which an intelligent help 
system cannot learn.

8.2.2 Current Task vs. Advised Next Task
Although it is an interesting suggestion to show the advised next task instead of the user’s 

current task, this is not easy to accomplish. The recipes can contain optional steps. In that case 
there are many advised next tasks. If the I-Advisor has also learned multiple possible current 
tasks, the list of advised next tasks becomes even longer. This list will definitely confuse the 
user. If the user wants advice as to what task he should perform next, he can look at the 
overview of the steps in the I-Advisor’s panel. The links below the currently highlighted link 
can give information about the tasks the user can possibly accomplish next. 

8.2.3 I-Advisor Remaining Silent
The I-Advisor did not want to present the user with misleading information and therefore 

remained silent when it had multiple possible solutions. The test user however started to feel 
insecure about her actions when the I-Advisor remained silent. A weakness of the I-Advisor's 
current architecture is that often the I-Advisor learns two or three possible goals and it has no 
indication which of these possible goals is the most likely goal. With the help of Hidden 
Markov Models probabilities can be computed which give an indication of which of these 
possible goals is the most likely. This is described in detail in the next chapter.



-57-
Memorandum ID-2002-16

9 Hidden Markov Model

A Markov Model is a way of describing a process that goes through a series of states. At 
discrete times, the process undergoes a change of state, according to a set of probabilities 
associated with the possible transitions between the states. In Markov Models these transition 
probabilities from any given state to another depend only on the state and not on the previous 
history. This is called the Markov Assumption. 

A Markov Model could for example be used in a system that attempts to predict what the 
weather will be like tomorrow based on a history of earlier observations of the weather (Fosler, 
1998). The system’s possible states are the types of weather, such as sunny, rainy and foggy. 
The system undergoes a change of state each day. A transition probability matrix describes all 
the possible transitions from one day to the next. The example matrix in table 9.1 shows that the 
probability of tomorrow being rainy given that today is sunny, is equal to 0.05.

This model makes use of a first-order Markov assumption, i.e. the transition probability depends 
only on the next state and the current state. In the case of a second-order Markov assumption the 
transition probability would depend on the next state, the current state and the state preceding 
the current state.For the above exanple this would have resulted in a probability matrix with 3 3

probabilities. All the Markov Models in this thesis use the first-order Markov assumption. 

A Hidden Markov Model (HMM) also describes a process that goes through a sequence of 
states. In a Hidden Markov Model, though, the true state of this process is hidden from the 
observer. The only indications we have of this true state are observations. These observations 
are linked to the possible states of the process with a certain probability. In a HMM we can thus 
only compute the probability that the process is in a certain state,  whereas in a normal Markov 
Model one can know for certain what state the process is in. 

Probabilities of Tomorrow’s Weather based on Today’s Weather

Table 9.1 (from Fosler, 1998)

Sunny Rainy Foggy
Sunny 0.8 0.05 0.15

Weather Rainy 0.2 0.6 0.2
Foggy 0.2 0.3 0.5

Today's

Tomorrow's Weather



-58-
Memorandum ID-2002-16

Our weather example is easily changed to a Hidden Markov Model. We add a person who is 
locked in a room and cannot determine what kind of weather it is outside. He does however 
have an indication of the weather outside, namely the observation whether or not a visitor 
coming into the room is carrying an umbrella. This observation is linked to the possible states of 
the system with a certain probability, as is shown in table 9.2. If the visitor is carrying an 
umbrella, it will be more likely that the state of today’s weather is rainy. The probability that the 
visitor is carrying an umbrella given that it is raining outside is thus higher, i.e. 0.8, than the 
probabilities for the other possible states. The person inside the room can never know whether 
or not it is raining outside for sure, the visitor could always still be carrying his umbrella from 
when it was raining the day before. 

Hidden Markov Models are often used to characterize real-world signals in terms of signal 
models. These real-world signals can for instance be speech samples or sensor measurements 
from a mobile robot. In the case of speech samples, HMM's are used for speech recognition 
(Rabiner 1989, Kupiec 1992). The states of the HMM are then the different phonemes the 
speech samples could possibly consist of. If the real-world signal consists of sensor 
measurements, the HMM can be used for robot localisation (Fox et. al. 1999). The different 
states of the HMM are in that case the robot's possible locations. Lately HMM’s are also used 
for user modeling (Orwant 1995, Lane 1999).

In the I-Advisor the real-world process we want to model is the goal the user has inside his head 
while using the AdaptIt tool. This goal is the true state of the process, and unfortunately this 
state is hidden from us. The only indications we have of this state are the actions the user 
performs in the AdaptIt tool. With the help of these actions and a HMM, we can compute the 
probabilities for each of the possible goals the user can have. 

The HMM in the I-Advisor is initialised using the Collagen-based task model described in 
Chapter 5. There were two main reasons to use the task model instead of trying to learn the 
HMM directly from the user’s actions. First, all the information necessary for the initialisation 
of the HMM, such as the number of states and the number of observations, is easily obtained 

Probability of Umbrella
Sunny 0.1
Rainy 0.7
Foggy 0.2

Probabilities of Seeing an Umbrella Based on the Weather

Table 9.2 (from Fosler, 1998)



-59-
Memorandum ID-2002-16

from the task model. Second, in most articles the HMM’s used in user interfaces were also 
initialised manually based on prior knowledge (Orwant 1995, Seymore, McCallum, and 
Rosenfeld 1999). This led me to believe that it would not be an easy task to learn the HMM 
directly from the user’s actions. Since the project’s time was limited, the decision was made to 
use the Collagen-based task model. 

In the following section the initialisation of the HMM using the task model is described in more 
detail. Section 9.2 explains how the probabilities for the possible states of the model are 
computed each time the user performs an action. Section 9.3 concludes with the test results of 
an I-Advisor prototype which makes use of a HMM.

9.1 Initialising the HMM

To initialise the Hidden Markov Model the following elements need to be defined: 

• N , the number of possible states in the model.

The states in the I-Advisor’s HMM are the goals the user has in his mind while performing his 
actions. The state of the model at time t is defined as qt. The observations have to give an 
indication of the hidden state of the model, thus we have to be able to link the observations to 
the states with a certain probability. This means we have to define a probability for a certain 
primitive action (the observation) occurring given a certain non-primitive action or goal (the 
state). The easiest way to do this is by using those non-primitive actions as the states of the 
model whose recipes consist only of primitive actions. Figure 9.1 once again shows the 
hierarchy of the task model for the skill hierarchy domain. All the actions highlighted in bold 
have recipes which only have primitive actions as their steps. These actions are the possible 
states of the model. They are also the lowest possible level of non-primitive actions. By 
comparison, these actions were the most specific goals the user could achieve in AdaptIt and 
they were usually found on top of the focus stack as the current focus.

Using the task model from figure 9.1 N is defined as the total number of non-primitive actions 
highlighted, namely nine. The states S = {S1 , S2 , … , S9 } are in this case:

S = { AddSkill, NameSkill, DetermineToTrainSingleSkill, DescribeStartSituation, 
DescribePerformanceCondition, DescribePerformanceResult, ClassifySkillAs(Non)Recurrent, 

IdentifyComplexityFactor, IdentifyComplexityFactorValue }



-60-
Memorandum ID-2002-16

• M , the number of distinct observation symbols per state.

The observation symbols correspond to the physical output of the model. In our case the output 
of the model consists of the user's primitive actions in the AdaptIt tool. The number of 
observation symbols is the number of possible primitive actions the user can perform in the 
AdaptIt tool. In the skill hierarchy domain a user can do sixteen different primitive actions. M is 
thus defined as sixteen. The individual symbols Y = {y1, y2, … , y16 } are in this case: 

Y = { SEL-ProjectBrowser-LFTrainingProject, SEL-ProjectBrowser-LFSkill,
OBJ-BasicAnalysisElementPanel-LFSkill, … , OBJ-ConditionPanel-LFSkill }

• The state transition probability distribution A = {aij} where:

aij = P [ qt+1 = Sj  | qt = Si ], 1 ≤ i, j ≤ N.

Make 
Skill Hierarchy

Analyse

complex

skill

Determine

which skills

to train

Specify 

performance

objectives

Describe

performance

result

Identify 

complexity

factors

Describe

start

situation

Describe

performance 

condition

Classify skills 

as

(non) recurrent 

Add 

Skill

Name 

skill

Determine 

to train

single skill

Classify 

skill as 

(non) 

recurrent

Identify 

complexity 

factor

Identify 

complexity 

factor 

value

The General Task Model for the Skill Hierarchy Domain

Figure 9.1



-61-
Memorandum ID-2002-16

This distribution defines how likely it is to go from one state to another. For example if the 
current state qt = AddSkill, then it is far more likely that the next state qt+1 = NameSkill occurs  
than qt+1 = IdentifyComplexityFactor. This can be deduced from the structure of the task model,  
as shown in figure 9.1. The state IdentifyComplexityFactor is located at the end of the task 
model, whereas NameSkill is in the beginning just like AddSkill. 

Our HMM is fully-connected, i.e. any state can be reached from any other state in a single step. 
Some transitions are however highly unlikely, such as the one described above: 

P [ qt+1 = IdentifyComplexityFactor | qt = AddSkill]

The model is fully-connected because the user can in fact go from any state to any other state in 
the AdaptIt tool. If the user is distracted, he will make very unlikely transitions. These 
transitions, no matter how unlikely, have to remain possible. Otherwise you cannot successfully 
model the user's behaviour. The initialisation of the state transition probability distribution with 
the help of the task model is discussed in section 9.1.2. 

• The observation symbol probability distribution in state j, B = { bj (k) }, where:

bj (k) = P [ vk at t | qt = Sj ], 1 ≤ j ≤  N
1 ≤ k ≤  M.

This distribution defines how likely it is that a certain observation vk occurs at time t given that 
the current state qt of the model is Sj. In other words this signifies how likely it is that a user 
performs a certain primitive action in the AdaptIt tool when he has a certain goal in mind. We 
can learn these probabilities from the recipes in our task model. Section 9.1.1 describes how this 
is done in more detail. 

• The initial state distribution π = {  πi } where:

πi = P [q1 = Sj ], 1 ≤ i ≤  N

The initial state in the I-Advisor is the main goal the user has in mind when he starts to design a 
training. In the skill hierarchy domain this goal is MakeSkillHierarchy. Thus the probability is:

P [q1 = MakeSkillHierarchy ] = 1



-62-
Memorandum ID-2002-16

For all the other states the initial probability is equal to 0. The action MakeSkillHierarchy is not 
in the lowest level of non-primitive actions contrary to the other actions we chose to use as 
possible states for the model. It has no primitive actions as steps in its recipe. Therefore there 
are no observations linked to this state. Although we do add MakeSkillHierarchy as one of the 
possible states in the model, it is only an initial state. Since all the observation probabilities for 
this state are 0, this state is quickly left once the user starts doing actions and the model will not 
return to it.

9.1.1 Observation Probabilities
The observation probabilities correspond to how likely it is that a user performs a specific 

primitive action in the AdaptIt tool given that he has a certain goal in mind. The user will only 
perform a primitive action while working on a certain goal if he thinks that an action is a step in 
achieving that goal. The information about which actions can contribute to which goals can be 
retrieved from the recipes in the task model.

If we select the state NameSkill for example, we will search through the task model for all the 
recipes describing this specific state. In this case there are two recipes, together containing the 
following three primitive actions as their steps:

{ SEL-ProjectBrowser-LFSkill, SEL-SkillHierarchyDiagram-LFSkill, 
OBJ-BasicAnalysisElementPanel-LFSkill }

The observation probabilities for the state NameSkill are now computed by dividing one by the 
total number of primitive actions that can contribute to this specific state. The sum of all the 
observation probabilities for a certain state has to sum up to one, therefore we divide one by this 
number. In our example the total number of primitive actions that can contribute to the state
NameSkill is three. Thus the probabilities are:

P [SEL-ProjectBrowser-LFSkill at t | qt = NameSkill] = 1 / 3
P [SEL-SkillHierarchyDiagram-LFSkill at t | qt = NameSkill] =  1 / 3

P [OBJ-BasicAnalysisElementPanel-LFSkill at t | qt = NameSkill] = 1 / 3

For all the other observations the probabilities are set to zero. In the same way all the 
observation probabilities for the different states are initialised.



-63-
Memorandum ID-2002-16

9.1.2 Transition Probabilities
The transition probabilities indicate how likely it is that the user will go from one state to 

another. Similar to the observation probabilities, the transition probabilities are initialised with 
the help of the task model. The hierarchical tree-like structure of the task model contains a lot of 
information about which transitions from one state to another are the most likely. The location 
of a state in the hierarchical structure of the task model is characterised by four different 
properties. These properties are: 

1) Is it the first / last state of a higher goal?
2) Which higher goal does it belong to?
3) Which other states were found following this state in the same higher goal?
4) Which higher goal followed this state's higher goal?

For example the state Describe Start Situation from figure 9.1 is described as being the first 
state (Property 1) of the higher goal Specify Performance Objectives (Property 2). The state 
Describe Performance Condition is found following this state in the same higher goal 
(Property 3). The higher goal following this state’s higher goal, i.e. Specify Performance 
Objectives, is called Classify Skills As (non) Recurrent (Property 4).

These properties used by the I-Advisor only remember two levels of a hierarchy. They store the 
details of the level of the states themselves and the level above the states, i.e. the higher goals. 
The task models learned by the I-Advisor, both for the skill hierarchy as well as the blueprint, 
contain three levels. The third level does not contain any extra information though, since in this 
level all the goals belong to one main goal, namely Make Skill Hierarchy or Make BluePrint. 
Thus storing the details of two levels is enough to capture the whole hierarchical structure of the 
I-Advisor’s task models.

With the help of these properties we can define the transition probabilities for each possible pair 
of states. The probability that the model will go from a certain given state to another state is 
defined as:

P [ qt+1 =  NextState | qt = CurrentState]

The I-Advisor will select a certain state as the CurrentState and assign ranks to all possible 
transitions from this state to all possible NextStates. These ranks correspond to how likely this 
transition is and thus how high the probability for this transition should be when compared to 
the other probabilities. The highest rank which is given to the most likely transitions is equal to 
four; the lowest possible rank for the least likely transitions is equal to one. There are four 
different ranks in the I-Advisor because there are four types of transitions in the task model 



-64-
Memorandum ID-2002-16

which differ so much that they need to receive different ranks. It is good to remember that the 
model is fully-connected and all transitions are possible. It is even possible to stay in the same 
state, thus a rank is also given to a reflexive transition. If there are 10 possible states, this means 
you have to give ranks to 10 possible transitions for each state. 

There are two types of states which have to be ranked in a distinctly different way: the last 
states and the first / intermediate states. The last states are all the states which are found as the 
last state of a higher goal in the task model. A state can appear in more than one place in the 
task model. If a state is found once as the last state of a higher goal, it will be ranked as a last 
state. The first / intermediate states are all the states which never appear as the last state of a 
higher goal in the task model. An example of a difference between the rankings for these two 
types is that the last state of a higher goal needs to have higher ranks for all the transitions to the 
first states of the other higher goals. It is very likely that a user will go from a last state of a 
higher goal to the first state of another higher goal. It is however less likely that a user will go 
from a last state of a higher goal to the intermediate or last state of another higher goal, or in 
other words jump right into the middle of another higher goal. There are few differences 
between the types of rankings for first and intermediate states. Therefore they use the same 
ranking system. 

Figures 9.2 through 9.5 show the two ranking systems used to initialise the HMM. Figures 9.2 
and 9.4 display which different ranking categories there are and in which cases they are given. 
The ranks are assigned starting at the highest ranks and moving down to the lower ranks. A 
transition can fit more than one ranking category, for instance if a certain Next State is a first 
and last element of a following higher goal. This can happen if a following higher goal consists 
of only one state. If we assume for instance that the Current State is a last state, we have to use 
the ranking system from figure 9.2. In this case the states of the first category, i.e. the first 
elements of a following higher goal, receive a rank of 4 and the states of the second category, 
i.e. the last elements of a following higher goal, receive a rank of 2. Since the ranks are given 
from high to low, this transition will receive a rank of 4. 

The figures 9.3 and 9.5 both show an example of the ranks given to all the possible Next States 
in case of an example CurrentState. In figure 9.3 the CurrentState is a last state, i.e. Describe 
Performance Result. The example CurrentState chosen in figure 9.5 is a first / intermediate 
state named Describe Start Situation. Below this CurrentState the rank for the following, 
reflexive transition is shown:

P [ qt+1 = Describe Start Situation | qt = Describe Start Situation]



-65-
Memorandum ID-2002-16

The Four Possible Different Ranks for Last States:

( Rank 4 ) The next state is one the following: 
A) A possible following state in the same higher goal.
B) The first element of the following higher goal.
C) The same as the given state.

( Rank 3 ) The next state is the first element of another or the same higher goal.
( Rank 2 ) The next state is one of the following:

A) A intermediate / last element of a following higher goal.
B) A state with the same higher goal.

( Rank 1 ) The next state is none of the above. Figure 9.2 

Make 
Skill Hierarchy

Analyse

complex

skill

Determine

which skills

to train

Specify 

performance

objectives

Describe

performance

result

Identify 

complexity

factors

Describe

start

situation

Describe

performance 

condition

Classify skills 

as

(non) recurrent 

Add 

Skill

Name 

skill

Determine 

to train

single skill

Classify 

skill as 

(non) 

recurrent

Identify 

complexity 

factor

Identify 

complexity 

factor 

value

Example Ranks System for the Last State 
“Describe Performance Result”

Figure 9.3

Current

 State's Higher 

Goal

Following 

Higher Goal

Rank: 

3

Current

State

Rank:

1
Rank: 

3
Rank:

1
Rank:

3

Rank:

4
Rank:

4
Rank:

2
Rank:

3



-66-
Memorandum ID-2002-16

The Four Possible Different Ranks for First / Intermediate States:
( Rank 4 ) The next state is one of the following:

A) A possible following state.
B) The same as the given state.

( Rank 3 ) The next state is one of the following:
A) A state with the same higher goal.
B) The first state of a following higher goal.

( Rank 2 ) The next state is one of the following: 
A) An intermediate / last state of a following higher goal.
B) The first element of another higher goal.

( Rank 1 ) The next state is none of the above. Figure 9.4

Make 
Skill Hierarchy

Analyse

complex

skill

Determine

which skills

to train

Specify 

performance

objectives

Describe

performance

result

Identify 

complexity

factors

Describe

start

situation

Describe

performance 

condition

Classify skills 

as

(non) recurrent 

Add 

Skill

Name 

skill

Determine 

to train

single skill

Classify 

skill as 

(non) 

recurrent

Identify 

complexity 

factor

Identify 

complexity 

factor 

value

Example Ranks System for the First / Intermediate State 
“Describe Start Situation”

Figure 9.5

Current

State's Higher 

Goal

Following 

Higher Goal

Rank: 

2

Current

State

Rank:

1
Rank: 

2
Rank:

1
Rank:

2

Rank:

3
Rank:

3
Rank:

4
Rank:

4



-67-
Memorandum ID-2002-16

The rank for this transition is four. This transition has the highest possible rank, since it is very 
likely that user will stay in the same state for a while. He will tend to keep a goal in mind until 
he has performed all the primitive actions in the AdaptIt tool necessary to accomplish that goal.

Once all the ranks have been given to all the possible NextStates for a certain Current state, they 
are stored along with the sum of all the ranks learned for this Current state. This sum is used to 
normalize the probabilities so that together they sum up to one. We define this normalisation 
factor as being b: 

∑
=

NextState

te)CurrentSta,(NextStaterank 
1b

If we sum up all the example ranks given in figure 9.5, we get a sum of 22. We compute the 
separate transition probabilities in the following way: 

te)CurrentSta,(NextStaterank b]teCurrentStaq|NextStateP[q t1t ⋅===+

For example the reflexive transition from the CurrentState DescribeStartSituation to the 
NextState DescribeStartSituation has a rank of four and will thus receive the following 
probability: 

22
4]Situation Start Describeq|Situation Start DescribeP[q t1t ===+

In the same way all the probabilities are computed for all the possible transitions between the 
states based on the structure of the task model.

9.2 Computing the Probabilities of Each State

After each action performed by the user the I-Advisor uses the Hidden Markov Model to 
compute which states are the most likely. The I-Advisor will compute the probability for a state 
q at time t based on a sequence of observations y0 , … yt, namely:

P ( qt | y0 , … , yt) (equation 9.1)

We do not want to wait for future actions, we want to compute the probability immediately at 
time t. This problem is called the filtering problem. This name stems from the frequency 
domain. The observations y0 , … , yt are viewed in this domain as being noisy information about 



-68-
Memorandum ID-2002-16

the underlying signal qt. By computing the probability P ( qt | y0 , … , yt) you can "filter" the 
noise from the observations.

In the I-Advisor we move through the observations, i.e. the user’s actions, one by one. Thus 
equation 9.1 is reduced to P ( qt | yt). Using Bayes’ rule we can reverse the terms qt and yt:

)P(y
)(qP)q|(yP)y|(qP

t

ttt
tt

⋅
=       (equation 9.2)

We are going to define a new variable c which is the normalisation factor:

)P(y
1c

t

=  (equation 9.3)

To ensure that the probabilities for all the possible different states for the I-Advisor sum to one 
we use the following normalisation constant: 

∑ ⋅=
tq

tttt )P(q)q|P(y)P(y (equation 9.4)

Using the total probability theorem for P ( qt ) and the fact that the probabilities for the possible 
states are conditioned upon the observations, we can rewrite equation 9.2 as: 

)y|P(q)q|P(q)q|P(yc)y|(qP 1-t1-t1-t
q

ttttt
1-t

⋅⋅⋅= ∑                (equation 9.5)

This recursive formula can be used to compute the filtering posterior probabilities P (qt | yt ) for 
all states q t and all time steps t of the HMM. The probability P (yt | qt ) is the observation 
probability which we computed in section 9.1.1. The transition probabilities, i.e. P (qt | qt-1), 
were learned from the structure of the task model in section 9.1.2. The quantity c is the 
normalisation factor which makes certain that all the probabilities over all the possible states 
sum to 1. Finally the probabilities P (q t-1 |  y t-1 ) are the posterior probabilities for the different 
states from the previous time step, namely step t-1.

9.3 HMM and the I-Advisor

The I-Advisor uses two separate Hidden Markov Models for the Skill Hierarchy and the 
Blueprint domain due to the fact that the I-Advisor has two separate task models for these 
domains. The Blueprint HMM is initialised using the Blueprint task model, and has the goal 



-69- 
Memorandum ID-2002-16

MakeBluePrint as its initial state. In the same way the Skill Hierarchy task model serves to 
initialise the Skill Hierarchy HMM with the initial state Make Skill Hierarchy. Since the 
collection of possible actions in these two domains is disjoint, the I-Advisor can easily 
determine in which of the two domains of the AdaptIt tool the user is working. Whenever the 
user switches to a different domain, the I-Advisor switches to the corresponding HMM.
In the next paragraphs a few example situations will be shown to illustrate how the Hidden 
Markov Model is used in the I-Advisor. These examples show the probabilities for all the states 
which are not equal to 0 and the entropy. The entropy is used to measure the peakness of the 
probability distribution. The entropy of a distribution P( S ) is computed using the following 
formula: 

∑ ⋅−=
i

ii )(SPlog)P(SE

This formula is used with the convention that 0 log 0 = 0. If the entropy is high, the probabilities 
are distributed evenly among the possible states of the model. In this situation it is difficult to 
determine which is the most likely state. The HMM can thus not give more information about 
the user’s possible goal than the Collagen-based approach. If the entropy is low, the probability 
of one state is clearly higher than that of the others. The I-Advisor can then show this most 
likely goal to the user. 

The example situation from figure 9.6 shows the initial state of the model and one following 
state. The user is working in the Skill Hierarchy domain. The HMM is thus initialised to be in 
the initial state MakeSkillHierarchy. The entropy is equal to 0 since the probability is equal to 1 
for one single state. The user’s next action changed the state to NameTrainingProject. The I-
Advisor is certain that the user is in this state, the probability is once again 1 for a single state. 
Clearly the action the user performed could only contribute to this one goal.

Example Situation 1 

---- The current probabilities are: ----
* MakeSkillHierarchy = 1.0

The entropy is: 0.0

---- The current probabilities are: ----
* NameTrainingProject = 1.0

The entropy is: 0.0 Figure 9.6



-70-
Memorandum ID-2002-16

Figure 9.7 shows two example situations where it is less clear which goal the user has in mind. 
In the first situation three possible states are almost equally likely, leading to a very high 
entropy. However, the I-Advisor gives his advice about the goals one level higher up. The two 
possible states with the highest probabilities, NameSkill and AddSubSkill, belong to the same 
higher goal, i.e. Analyse Complex Skill. The I-Advisor can thus safely conclude that the most 
likely state is Analyse Complex Skill. 

The second situation from figure 9.7 is a clear case where the HMM can give no extra 
information about the user’s most likely goal. The entropy is high and the probabilities are 
spread equally among the possible states. If we look at the higher goals, they are still spread 
equally. The possible states are almost all from different higher goals. 

As can be concluded from the examples, the HMM cannot always give extra information about 
the user’s possible goals. In some cases different goals are simply equally likely, and the I-
Advisor can do nothing more than highlight the links to all these goals. If there are states that 
are clearly more likely, the I-Advisor can highlight the most likely state with another colour 

Example Situation 2 

---- The current probabilities are: ----
* NameSkill = 0.281

* AddSubSkill = 0.327

* DetermineSingleSkillToBeTrained = 0.210

* DescribeStartSituation = 0.089

* MakeSkillRecurrent = 0.093

The entropy is: 1.486

---- The current probabilities are: ----
* NameSkill = 0.152

* AddSubSkill = 0.118

* DetermineSingleSkillToBeTrained = 0.269

* DescribeStartSituation = 0.228

* MakeSkillRecurrent = 0.233

The entropy is: 1.569 Figure 9.7



-71-
Memorandum ID-2002-16

than the other states. The I-Advisor can even use a different colour for the most likely state after 
that, and so on. 

This added information could be very helpful for a new user. Our test user’s main complaint 
was that the I-Advisor remained silent in too many situations. This can be solved by 
highlighting multiple goals, and colour–highlighting the most likely goals. If a user is lost and 
has no idea what goal he should accomplish at that moment, he can turn to the I-Advisor for 
help. The I-Advisor shows the links to the goals experienced users would have been trying to 
accomplish at that point. The lost user can read about these goals in the Advisor pages. With 
this extra information he will hopefully regain understanding of his actions in the AdaptIt 
application. 

The Hidden Markov Model currently used by the I-Advisor is initialised using the Collagen task 
model. Although this task model was easy to use to initialise the HMM, certain changes to the 
model would make it even more suitable to initialise HMM’s. Currently the Collagen task 
model only remembers if a step in a recipe is optional or not optional. For the HMM it would be 
interesting to know how optional a step is. If a step appears in only one of the five segments for 
this recipe, it should get a lower observation probability for this recipe than if it had appeared in 
four of the five segments. Especially if a lot of logs of experienced users are used to learn the 
task model, this can give a lot of extra information for the observation probabilities. In the same 
way the transition probabilities can use this added information. Non-primitive actions can also 
be optional, and transitions to optional states are less likely than transitions to states that are not 
optional. One of the added advantages of remembering how optional steps are, is that the 
influence of “purpose-less” steps is filtered out. Even experienced users will sometimes make a 
misclick. These actions will not occur often and will thus become very optional. The task model 
will remember that these actions are very optional and thus their influence in the HMM is 
significantly reduced.



-72-
Memorandum ID-2002-16

10       Conclusion

This thesis described two possible architectures for an intelligent help system for the AdaptIt 
application. The first architecture was based on Collagen and the second made use of Hidden 
Markov Models. Both of these architectures were implemented in a prototype. The Collagen-
based prototype was tested by a possible future user of the AdaptIt tool, i.e. a training designer 
at LVNL. The prototype of the I-Advisor using Hidden Markov Models was not extensively 
tested. This chapter will evaluate both of these I-Advisor architectures by quickly passing over 
all the requirements we set up in chapter 4 and describing whether or not they have been 
satisfied. This is followed by some final remarks and several ideas for future research.

10.1 Requirements

The main requirement for the I-Advisor was that it should be able to provide a user of the 
AdaptIt tool with context-sensitive support. Users of the AdaptIt tool had trouble learning how 
to use the tool. They felt they did not have a good overview of the whole process of designing a 
training. The I-Advisor provided the user with links to the pages in the help system based on the 
user’s current task context. These Advisor pages then contained more detailed information 
about the user’s current task, as well as worked-out examples and system help.

Tests with a prototype using the Collagen-based architecture were successful. They were even 
so successful that a prototype of the I-Advisor has been added to the AdaptIt application. The I-
Advisor made it easy for users to access the information in the help system and it gave the user 
a good idea of where he was. The test user did however complain that although the I-Advisor 
nearly always gave the correct advice, it did not give advice often enough. In many cases the I-
Advisor remained silent when it had deduced multiple possible tasks the user could be working 
on. Therefore a prototype was built using Hidden Markov Models. This prototype was able to 
distinguish which task was the most likely in the case that the I-Advisor had deduced multiple 
possible goals the user could be working on. 

10.1.1 Functional Requirements
The I-Advisor showed his context-sensitive support in the form of an overview of the 

different tasks involved in designing a whole training. All the different tasks in this overview 
were displayed as links to the corresponding pages in the help system. The link to the user’s 
current task was highlighted. This way the overview gave the user an idea of the context of his 
current task, and the opportunity to easily access more information about these surrounding 
tasks.



-73-
Memorandum ID-2002-16

The I-Advisor deduced the user’s current task with the help of a user model and a previously 
learned task model. The user model explained the user's actions in AdaptIt and was updated 
every time the user performed a new action. The task model was learned offline from the 
actions of experienced AdaptIt users. The primary difference between the two architectures 
discussed in this thesis is the type of user model they contained. Both architectures did however 
use the same Collagen-based task model. The following two paragraphs will describe the two 
different user models. 

The first architecture discussed in this thesis used the discourse state from Collagen to model 
the user’s actions. This discourse state consisted of a focus stack and a plan tree. The focus 
stack was used to store all the goals the user was trying to accomplish at that moment. The most 
general goal was on the bottom of the stack; the most specific one was located on the top of the 
stack. The plan tree was used to store what goals the user’s previous actions contributed to. 

The second architecture contained Hidden Markov Models. Each time the user performed a new 
action this I-Advisor computed probabilities for all the different possible goals the user could be 
working on. The goal with the highest probability could then be shown to the user. 

The I-Advisor contained two task models which together described the whole AdaptIt 
application. Both these task models were learned from two logs of approximately 60 actions 
performed by a domain expert in the AdaptIt application. These logs were annotated by the 
same domain expert. This annotating consisted of the domain expert adding to the actions the 
tasks he was trying to accomplish with these actions. The logs of actions were XML files which 
could easily be viewed and edited by the domain expert.

10.1.2 Technical Requirements
The prototype of the I-Advisor was implemented in Java, just like the rest of the AdaptIt 

tool. The files used by the I-Advisor, which stored such things as the task models and the logs 
of the user’s actions, were written in XML. The I-Advisor’s prototypes all operated successfully 
within the whole AdaptIt application.

The requirement that no changes shall be made to the AdaptIt application to make interaction 
between AdaptIt and the I-Advisor possible had a lot of consequences. The I-Advisor could 
easily operate without any changes to the AdaptIt application, but there were quite a few 
changes possible in AdaptIt which would probably have improved the I-Advisor’s performance 
considerably. Both the prototypes now made use of the existing listeners in AdaptIt to discover 
which actions the user had performed. These existing listeners made it very easy to connect the 



-74-
Memorandum ID-2002-16

I-Advisor prototypes to the AdaptIt application. They however had two properties which at 
times made it difficult for the I-Advisor to follow the user successfully. 

The first property was that the view events were ignored by these two listeners. View events 
consist of the changes to the GUI elements which provide the user with a view of the data 
objects in the application. Examples of view events are selecting a tabbed pane and opening a 
new menu. Both events contain important information about the user’s intentions, but were 
unfortunately not reported by the listeners in AdaptIt. 

The second property consisted of the fact that two different actions performed in AdaptIt by the 
user could lead to the same event being received by the I-Advisor. The I-Advisor had no way of 
determining which of the two actions the user had actually performed, thus it would constantly 
deduce multiple possible current tasks. In some situations the I-Advisor could use the context of 
the user’s action to discover which of the two actions the user had performed. In other situations 
the contexts of both possible actions were almost the same and it was thus not possible to 
discern one from the other. This property of the listeners became apparent during tests in the 
two different domains in AdaptIt. While operating in the Blueprint domain, the I-Advisor was 
able to provide the user with a lot more advice than in the Skill Hierarchy domain. The Skill 
Hierarchy domain turned out to have a lot more situations where different actions led to the 
same event than the Blueprint domain. 

The I-Advisor interacted with the AdaptIt application in the same way as the Q-Advisor. The I-
Advisor displayed its advice in the panel which was previously used by the Q-Advisor. It also 
displayed the same kind of links to the Advisor pages as the Q-Advisor did. 

10.2 Final Remarks

In a lot of applications it is often difficult to find the help pages you are looking for. You 
have to know the right name for the task you want help information on, as well as have an idea 
of how the help pages are organised. The information you are looking for is nearly always 
located in the help system, only the hard part is discovering where it is located exactly. 

Intelligent help systems such as the I-Advisor can make finding the right help pages a lot easier 
for users. They merely look over the shoulder of the user, and attempt to deduce what task the 
user is working on. If they are successful, they can provide the user with an easy, instant access 
to the corresponding help pages. They never disturb the user while he is performing his actions, 
the user will not even notice he is being watched. 



-75-
Memorandum ID-2002-16

Both the Collagen and the Hidden Markov Model architectures were appropriate for such an 
advisory, passive intelligent help system. The Collagen task model combined with the HMM 
user model was the most successful at providing the users with advice. In most situations it 
could compute a most likely goal the user was working on. This approach could probably 
become even more successful with the help of more logs from test users and with certain 
changes to the Collagen-based task model to make it more suitable for initialising the HMM. 

There was one aspect of the AdaptIt application which at times made it difficult to discover the 
user’s current task. This was the fact that the user had a large amount of freedom in the AdaptIt 
tool. The different tasks in AdaptIt could often be achieved in almost any order. In most cases it 
was possible to switch tasks around, or perform a certain task an arbitrary amount of times. This 
amount of freedom the user had made it difficult for the I-Advisor to capture all the different 
ways AdaptIt users could behave in its task model. In general intelligent help systems will be 
more successful in providing users with advice in applications that have a more clearly-defined 
order in the separate tasks they consist of.

In the Collagen-based task model the recipes which attempted to explain this freedom became 
large with lots of often optional steps. This had different effects on the two architectures 
discussed in this thesis. The Collagen-based architecture searches through the recipes in the task 
model to find the user’s last actions. Using more logs of test users’ actions to learn the task 
model made this architecture slower and led to it coming up with multiple possible current tasks 
more often. The Hidden Markov Model only used the task model to initialise all its 
probabilities. A larger task model thus did not slow it down, it only led to the initial 
probabilities becoming more clearly-defined. Basing the task model on more test logs thus 
slowed down the first Collagen-based architecture, whereas it made the Hidden Markov Models 
more effective in giving advice.

10.3 Future Work

This research project could easily have been twice or three times as long. During my 
research many interesting topics for future work appeared which I could not research further due 
to the limited time of my project. This section will quickly pass over some of these research 
topics.

The most interesting topic for further research is whether or not it is possible to create an 
intelligent help system which can automatically learn its task model with the help of statistical 
learning methods. Is it possible for example to let the I-Advisor generate its Hidden Markov 
Models based solely on the user’s actions? Large amounts of test data will certainly be 



-76-
Memorandum ID-2002-16

necessary to test this. Even then it will still not be easy to learn task models automatically 
without any added domain  knowledge.

It would also be interesting to test the current I-Advisor with more test data. This test data can 
consist of logs from more different test users, or of more different kinds of actions from the 
AdaptIt application. One could think of including all the view events in the learning of the task 
model, or all the separate mouse clicks. This however would require making quite a few 
changes to the AdaptIt application.

The current structure of the task model also has room for further research. It would for instance 
be interesting to determine if any improvements to the current task model structure are possible 
which would make it more suitable to explain the degree of freedom users have in the AdaptIt 
application. One could think of adding recursive rules or unordered relations to the recipes. 
Both of these suggestions would require changes to the search algorithms currently used by the 
I-Advisor. Another interesting direction for research is whether the task model structure can be 
changed to make it more suitable for initialising the Hidden Markov Models. A possible change 
to the task model could be for instance storing in its recipes how often a certain action appeared 
in the logs of previous users. 

Finally, it would very interesting to see the I-Advisor’s architecture tested in other applications. 
Certain properties of the AdaptIt application, such as the structure of the listeners and degree of 
freedom for the user, had a great deal of effect on the performance of the I-Advisor. Different 
kinds of applications might require other types of help systems. For the AdaptIt application we 
decided to build a passive advisor. In other applications more active intelligent help systems 
might very well be more successful in helping users.



-77-
Memorandum ID-2002-16

Appendix A Glossary

action there are two kinds of actions, primitive and non-primitive. Primitive 
actions can be executed directly within an application. Non-primitive
actions are achieved indirectly by achieving other actions.

adaptable interface an interface that lets the user choose how the system should adapt.

AI stands for Artificial Intelligence. Artificial Intelligence is a branch of 
science where they try to model the way a human thinks in order to 
create a computer system that can do intelligent actions.

alignment phase the first of the two phases of task model learning. In the alignment 
phase the actions are mapped to a task model, which only contains 
recipes with required steps and non-primitive actions without 
parameters. 

annotate (verb) to indicate in a list of primitive actions which subsets of the actions 
contribute to the same subtask, along with possible other annotations 
such as marking an action as optional or which actions could have 
occurred in another order.

annotated examples a log of primitive actions that has been annotated by a domain expert.

collaboration a process in which two or more participants coordinate their actions in 
order to achieve shared goals. 

collaborative 
interface agent

a software agent that collaborates with the human user of a (often 
complex) computer interface. 

current (discourse) 
purpose

the shared goal two (or more) participants in a collaboration are 
working on. Represented by the goal on top of the focus stack, also 
known as the focus of attention.

discourse the communication between two or more participants involved in a 
collaboration. 

discourse 
interpretation

the process of considering how the latest communication or observed 
action can be viewed as contributing to the current discourse purpose. 



-78-
Memorandum ID-2002-16

discourse state a mental model of the status of the collaborative tasks and the 
conversation about them. The discourse state consists of a focus stack 
and a plan tree.

event an utterance or primitive application action performed by a user or an 
agent.

focus of attention goal on top of the focus stack, also known as current (discourse) 
purpose.

focus stack a stack of goals, which is part of the discourse state. The goal on top 
of the focus stack is the current purpose or focus of attention of the 
discourse.

HCI stands for Human-Computer Interaction. Human-computer interaction 
is a discipline concerned with the design, evaluation and 
implementation of interactive computing systems for human use and 
with the study of major phenomena surrounding them.

induction phase the second of the two phases of task model learning. In the induction 
phase the task model from the alignment phase is generalized to be 
consistent with all the input examples. This is done by inducing the 
optional steps of the recipes, the ordering constraints between the 
steps and the propagators.

information 
filtering

aims to find a structure in the massive amounts of information 
available today that can be used to aid users in finding the information 
that is useful for them. 

intelligent help 
system

Program that assists a user in completing a certain task. A help system 
lets the user plot his own course through an application. From the 
user’s interactions with the application the help system gathers 
enough information to aid the user.

intelligent tutor Program that teaches a user how complete a certain task, this is done 
by inferring the user’s understanding of an application from his 
performance on specific subtasks.

IUI stands for Intelligent User Interface. IUI’s are human-machine 
interfaces that aim to improve the efficiency, effectiveness and 
naturalness of human-machine interaction by representing, reasoning 
and acting on models of the user, domain, task, discourse or media.



-79-
Memorandum ID-2002-16

Markov 
Assumption

this assumption holds if the transition probabilities from any given 
state depend only on the state and not on the previous history.

Markov Model a way of describing a process that goes through a series of states. At 
discrete times, the model undergoes a change of state, according to a 
set of probabilities associated with the possible transitions between 
the states. The Markov assumption holds for these transition 
probabities. 

Hidden Markov 
Model

a way of describing a process that goes through a sequence of states, 
just like a Markov Model. Only the true state of the process is hidden
from the observer and the only indications we have of this true state 
are observations. These observations are linked to the possible states 
of the model with a certain probability.

multimodal 
interaction

interaction between the user and the interface along different 
modalities, i.e. ways of communicating such as natural language, 
video, etcetera.

non-primitive 
action

actions that are achieved indirectly by achieving other actions, also 
known as abstract or composite actions or intermediate goals. 

observation 
probability 

probability that a Hidden Markov Model gives a certain observation 
as output given that the model is in a certain state.

plan recognition the process of inferring intentions from actions. 

plan tree an encoding of a partial SharedPlan between a user and an agent 
participating in a collaboration. 

primitive action actions that can be executed directly within a program.

rank numbers assigned to all the possible transitions in the Hidden Markov 
Model that correspond to how likely this transition is and thus how 
high the probability for this transition should be when compared to 
the other transition probabilities.

recipe describes a set of steps that can be performed to achieve a non-
primitive action. Recipes can contains constraints on the temporal 
ordering of the steps, as well as other logical relations among the 
parameters of the steps.

segment (noun) a sequence of actions that serve the same purpose, also known as non-
primitive actions. Open segments are segments on the focus stack, 
closed are ones popped off the focus stack.



-80-
Memorandum ID-2002-16

segment (verb) the process of indicating in a log of actions which subsets of actions 
contribute to the same purpose, same as annotating.

self-adaptive 
interface

an interface that adapts to the users autonomously.

SharedPlan the formal representation of the mutual beliefs about the goals and 
actions to be performed and the capabilities, commitments and 
intentions of the participants involved in a collaboration, based on 
work by Grosz and Sidner.

steps elements a recipe is made up of. Steps are (non-) primitive actions.

task model a library of recipes that specifies the typical steps and constraints for 
achieving non-primitive actions. 

transition 
probability 

probability which defines how likely it is to go from one state to 
another in a (Hidden) Markov Model. 

type each action has a certain type associated with a set of parameters

user adaptation techniques that allow the user-computer interaction to be adapted to 
different users and different usage situations. 

user modeling techniques that allow a system to maintain knowledge about a user. 



-81-
Memorandum ID-2002-16

Appendix B References

de Croock, M. ; van der Pal, J. ; Abma, H. ; van Merrienboer, J. ; Paas, F. and Eseryel, D.  D3.2 
Design of the ADAPT Method: ADAPT Methodology  Prepared for the European Commission, 
DGXIII under Contract No. IST-1999-11740 as a deliverable from WP 3, activity 3.2, Date of 
issue: 23 April 2002

Fosler-Lussier, E. Markov Models and Hidden Markov Models: A Brief Tutorial ICSI Technical 
Report TR-98-041, December 1998. 

Fox, D. ; Burgard, W. and Thrun, S. Markov Localization for Mobile Robots in Dynamic 
Environments Journal of Artificial Intelligence Research Vol. 11 (1999), pages 391-427

Garland, Andrew and Lesh, Neal Learning Hierarchical Task Models By Demonstration
(Submitted to 17th Int. Joint Conf. on Artificial Intelligence, Seattle, WA, August 2001) 

Grosz, B.J., and Sidner, C.L., Attention, Intentions, and the Structure of Discourse,
Computational Linguistics, 12:3 (1986)

Hearst, M., Allen, J. F., Guinn, C. I., Horvitz, E. Mixed-Initiative Interaction IEEE Intelligent 
Systems, Trends & Controversies feature, 14 (5), September-October 1999. 

Horvitz, E. , J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The Lumiere Project: 
Bayesian User Modeling for Inferring the Goals and Needs of Software. Users Proceedings of 
the Fourteenth Conference on Uncertainty in Artificial Intelligence, July 1998. 

Kupiec, J. 1992 Robust Part-of-Speech Tagging Using a Hidden Markov Model. Computer 
Speech and Language, 6:225-242.

Lane, T. Hidden Markov Models for Human/Computer Interface Modeling Proceedings of the 
IJCAI-99 Workshop on Learning about Users, pp 35-44. 1999.

Lesh, N. , Rich, C. and Sidner, C. L. Using Plan Recognition in Human-Computer 
Collaboration (7th Int. Conf. on User Modeling, Banff, Canada, July 1999, pp. 23-32)

Lieberman, Henry. Introduction to Intelligent Interfaces. 1997 WWW:
http://lieber.www.media.mit.edu/people/lieber/Teaching/Int-Int/Int-Int-Intro.html)



-82-
Memorandum ID-2002-16

Lochbaum, Karen E. A Collaborative Planning Model of Intentional Structure. Computational 
Linguistics 24 (4): 525-572 (1998)

Maybury, M. T. and Wahlster, W. Intelligent User Interfaces: An Introduction. Readings in 
Intelligent User Interfaces. 1998. pp 1-14. Morgan Kaufmann Press. ISBN: 1-55860-444-8.

Orwant, J Heterogeneous Learning in the Doppelgänger User Modeling System. User Moedling 
and User-Adapted Interaction, 4 (2): 107-130, 1995.

Rabiner, L.R. A Tutorial on Hidden Markov Models and Selected Applications in Speech 
Recognition, in Proceedings of the IEEE, vol. 77, no. 2, February 1989, pp. 257-286.

Rich, C. and Sidner, C. L. COLLAGEN: A Collaboration Manager for Software Interface 
Agents (User Modeling and User-Adapted Interaction, Vol. 8, No. 3/4, 1998, pp. 315-350) 

Rich, C., Sidner, C.L. and Lesh, N.B., Collagen: Applying Collaborative Discourse Theory to 
Human-Computer Interaction, Artificial Intelligence Magazine, 2001

Russel, Stuart and Norvig, Peter Artificial Intelligence: a Modern Approach Prentice Hall; 
ISBN: 0131038052; 1st edition (January 15, 1995)

Seymore, Kristie, McCallum, Andrew,  and Rosenfeld, Ronald Learning Hidden Markov Model 
Structure for Information Extraction AAAI 99 Workshop on Machine Learning for Information 
Extraction, 1999.

Annika Wærn, What is an Intelligent Interface? Notes from an introduction seminar, March 
1997. WWW:  http://www.sics.se/%7Eannika/papers/intint.html

Annika Wærn, What is an Intelligent Interface? Slides. 1999. WWW: 
http://www.sics.se/~jarmo/kurser/iuiuu99/slides/introduktion/index.htm

Annika Wærn. Recognising Human Plans: Issues for Plan Recognition in Human - Computer 
Interaction. Ph. D. Thesis. 1996.



-83-
Memorandum ID-2002-16

Appendix C Questionnaire 

This questionnaire was used for the debriefing of the test user at Air Traffic Control Netherlands 
(LVNL).

A. The Methodology

1. What did you think of the methodology?
• Was it (too) complex or easy to understand?
• Was the way it was built logical?
• Did it work well in practice?
• How hard / easy was it to learn to work with?
• What did you think of the order of the steps in the methodology?

B. The AdaptIt Tool

2. What did you think of the tool itself?
• Was it hard / easy to use?
• Did the tool correspond to the methodology?
• Were there things you would have liked to see differently in the tool?

C. The Advisor

3. What did you think of the help (the Advisor) in AdaptIt?
• What did you think of the normal Advisor pages?
• And the worked-out examples?
• And the system help?
• And the graphical overview of the methodology at the top of the page?

D. The I-Advisor

4. What did you think of the contents of the I-Advisor panel? 
• Was this clear / easy to use?
• Did the overview of the steps help you or would you rather have had more detailed 

information?



-84-
Memorandum ID-2002-16

5. What did you think of the links in the I-Advisor?
• Did you find the answers to your questions in the pages the I-Advisor linked to?
• Which links did you use the most? (the highlighted link or the other links?)
• In what situations did you use the links? (to prepare yourself for a next step or only when 

you did not know what to do anymore)
• Were there times when clicking on the highlighted link gave you information which did 

not help you?
• Did the I-Advisor display any strange behaviour, which you did not expect?
• Would you mind if the I-Advisor bothered you with questions to improve its advice?

E. Miscellaneous Comments 

6. For example suggestions or remarks about:
• The tool
• The Advisor
• The I-Advisor



-85-
Memorandum ID-2002-16

Appendix D Traceability of the Requirements

Functional Requirements

(1) The support given by the I-Advisor shall consist of links to the pages in the help 
system corresponding to the user's current task context.

The support given by the I-Advisor consists of a list of links to the Advisor 
pages, with the user's current task context highlighted in bold (described in 
section 7.3).

(2) This support given by the I-Advisor shall be based on: 
• the user's actions within AdaptIt.
• task model

The I-Advisor's support is based on a user model learned from the user's actions 
within AdaptIt, as well as a task model. The user model is based on the discourse 
state from Collagen (described in chapter 6). The task model is also based on 
Collagen (described in chapter 5).

(3) The I-Advisor shall contain a task model, which describes a part of the AdaptIt 
application.

The I-Advisor contains two task models, one for the skill hierarchy domain and 
one for the blueprint domain of the AdaptIt tool. Together they describe the 
whole AdaptIt application (described in section 7.2). 

(4) A domain expert shall be able to view and annotate the logs of previous users, in 
order to aid the learning of the task model.

The logs of previous users are written to a XML file. This file can be viewed and 
edited by a domain expert to add the annotations. The file with the annotations is 
then read in by the I-Advisor and used to learn the task model (described in the 
Appendix, the Implementation section).



-86-
Memorandum ID-2002-16

Technical Requirements

(5) The I-Advisor shall be implemented in Java just like the AdaptIt tool.

The I-Advisor is implemented in Java.

(6) The I-Advisor shall operate within a small part of the AdaptIt application.

The I-Advisor operates successfully in the whole AdaptIt application (described 
in section 7.2). The tests at LVNL were done with a prototype, which only 
operated in the blueprint domain of the AdaptIt tool (described in chapter 8). 

(7) No changes within the original AdaptIt application shall be necessary to link the 
I-Advisor to the AdaptIt application.

No changes were made to the AdaptIt application, the I-Advisor listens to the 
existing ObjectUpdateManager and SelectionController to obtain the user's 
actions (described in section 7.1). The I-Advisor shows its advice in an already 
existing panel, which was previously used by the Q-Advisor (described in section 
2.3 and 7.3).

(8) The I-Advisor shall interact with the AdaptIt application in the same way as the 
Q-Advisor and the Advisor.

The I-Advisor replaces the Q-Advisor in the AdaptIt application and interacts 
with the application in exactly the same way. It uses the same panel in the bottom 
left corner to display its advice (described in section 2.3), and its advice consists 
of the same kinds of links to the Advisor pages as the Q-Advisor (described in 
section 7.3).



-87-
Memorandum ID-2002-16

Appendix E Implementation

The I-Advisor's main objective is to provide a user of the AdaptIt tool with advice based on 
his current task context. The I-Advisor can also be used in two other ways, namely to create 
logs of a user's actions and to learn a new task model based on these logs. The I-Advisor's 
behaviour is set with the help of four booleans, which can be found in the IAdaptIt and 
IAdvisor classes. The next three sections describe each of these three types of behaviour 
generally. In the last section the organisation of my code, as well as all the different classes in 
the I-Advisor are explained in more detail.  

• Creating Logs 

When the I-Advisor is set to write logs, it will store all of the user's actions and write them to a 
file (shown in figure A 1.1). Each time the user performs an action in the AdaptIt tool, that 
action is stored in a PrimitiveAction object. All the user's primitive actions are stored together 
in a Vector. When the AdaptIt tool is closed, all of the user's actions are written to a XML file in 
the form of a DOM Tree.  

Four properties of a user's action are stored in the XML log file: 
(1) Index = an unique index which can range from 0 up to the total number of actions - 1
(2) Function = the type of action the user did
(3) Parameter = the object upon which the user did an action 
(4) Time = time of the action 

More information on user's actions and the way they are stored is found in section 7.1.

I-Advisor

AdaptIt  Application  

XML File

User's Actions

Logs of the User's Actions

Figure  A 1.1

Creating Logs



-88-
Memorandum ID-2002-16

• Learning Task Models

The general behaviour of learning a task model is displayed in figure A 1.2. The I-Advisor first 
reads in all the XML files containing the logs of previous users, along with a domain expert's 
annotations. These annotations are crucial for learning a new task model, without them it is not 
possible to learn a new task model! The new task model is learned from these logs and the 
annotations and subsequently written to a XML file. The class that does this is called 
PreTaskModel. More information on the learning of the task model is found in the description 
of this class, below the annotating of the logs by the domain expert is explained

The annotating of the logs of the user's actions has to be done manually by a domain expert or 
an experienced AdaptIt user. Annotating is the process of indicating which segments of actions 
contribute to the same purpose. A more detailed description of why this is necessary is found in 
sections 5.2 and 7.2. Practically annotating consists of adding Segments to the SegmentsList in 
the log file. An example Segment could be: 

<Segment Index="3" Name="NameSkill" Start="2" End="4" />

This Segment indicates that all the actions from Start index 2 up to End index 4 (please note that 
the action with index 4 is not part of the segment) contribute to the same purpose, namely
“NameSkill”. This means the following two actions stored in the list of the user's actions, i.e.  
the ActionsList, contribute to this purpose: 

<Action Index="2" Function="SEL-SkillHierarchyDiagram-LFSkill" Parameter="Skill" />

<Action Index="3" Function="OBJ-BasicAnalysisElementPanel-LFSkill" Parameter="Rijden" />

Learning the Task Model

I-Advisor

XML File 

XML File

Logs of Actions with 

Annotations

Task Model

Figure  A 1.2

XML File XML File 



-89-
Memorandum ID-2002-16

All of the actions in the ActionsList have to be given a purpose. The number of layers in the 
hierarchy can differ, some actions will not have a very specific purpose. They will only 
contribute to the main goal, which in AdaptIt is either Make Skill Hierarchy or Make Blue Print, 
depending on which part of AdaptIt the user is in. Figure A1.3 shows part of the example 
annotations used for the learning of the task model, which is currently used by the I-Advisor. 

More information on the annotating of the logs and the learning of the task model can be found 
in chapter 5.

• Providing the User with Advice

I-Advisor

AdaptIt  Application  

XML File

User's Actions

The Task Model

Starting the I-Advisor

Figure  A 1.4

Layout for the I-Advisor Panel

<SegmentsList> 

<Segment Index="0" Name="MakeSkillHierarchy" Start="0" End="65" /> 

<Segment Index="1" Name="AnalyseComplexSkills" Start="1" End="9" /> 

<Segment Index="2" Name="NameSkill" Start="1" End="3" /> 

<Segment Index="3" Name="NameSkill" Start="3" End="4" /> 

<Segment Index="4" Name="AddSubSkill" Start="4" End="7" /> 

<Segment Index="5" Name="NameSkill" Start="7" End="9" /> 

<Segment Index="6" Name="DetermineSkillsToBeTrained" Start="9" End="14" /> 

<Segment Index="7" Name="DetermineSingleSkillToBeTrained" Start="9" End="11" /> 

<Segment Index="8" Name="DetermineSingleSkillToBeTrained" Start="11" End="13" /> 

<Segment Index="9" Name="DetermineSingleSkillToBeTrained" Start="13" End="14" /> 

<Segment Index="10" Name="SpecifyPerformanceObjective" Start="14" End="21" /> 

Figure A 1.3



-90-
Memorandum ID-2002-16

The I-Advisor main behaviour consists of looking at the user's actions and providing him with 
advice based on these actions. Figure A 1.4 displays this behaviour. The I-Advisor receives one 
of the user's actions from the AdaptIt application. It will update its user model, i.e. a 
DiscourseState object, based on this action and the task model, which is stored in a TaskModel
object. If the I-Advisor successfully learns the user's current goal, he will update the I-Advisor's 
panel in the AdaptIt tool. This is done by sending a new HTML layout to the AdaptIt tool. 

Description of the Code

My code is located in three different places:  in nlr.iadvisor, com.adaptit.components.advisor 
and in the folder for the property files.

• The following classes are contained in nlr.iadvisor:

• The following classes are found in com.adaptit.components.advisor:

IAdvice.java
Layout.java
HelpMapping.java

• The following XML files are found in the property files folder: 
(obtained by ApplicationManager.getApplicationManager().getPropertiesDirectory() )

bluePrint.xml
skillHierarchy.xml
layoutblue.xml
layoutskill.xml
AdaptitEditorPreferences.xml

PreTaskModel.java
PrimitiveAction.java
Recipe.java
Segment.java
SegmentElement.java
SegmentSet.java
Step.java
TaskModel.java
TaskModelLearner.java

AnnotatedExample.java
DiscourseState.java
DOMSerializer.java
DOMTreeReader.java
DOMTreeWriter.java
IAdaptIt.java
IAdvisor.java
Plan.java
PreRecipe.java



-91-
Memorandum ID-2002-16

Description of the Classes

This section will give a brief description of what all the different classes do. 

Classes in nlr.iadvisor

• AnnotatedExample.java (design described in section 5.2)

An object of this class stores an annotated example, which consists of:

(a) A vector with the primitive actions (objects of the PrimitiveAction class) 
performed by a user in AdaptIt.

(b) A vector with the segments (objects of the Segment class) added by the domain expert 
to a user's primitive actions.

• DiscourseState.java (design described in chapter 6)

The DiscourseState class initialises a new discourse state and updates it every time the user 
performs an action in AdaptIt. It performs the following steps:

(1) Reading in the task model 
Both the task model XML files contained within the PropertiesDirectory are read in using 
an object of the DOMTreeReader class. The I-Advisor uses separate task models for the 
skill hierarchy (skillHierarchy.xml) and for the blueprint (bluePrint.xml) domain. The 
task models contained in these files are stored in an object of the TaskModel class. 

(2) Initialising the DiscourseState
This is achieved by creating a new focus stack and a new plan tree. The new focus stack 
has only the main goal pushed on it, which is either MakeSkillHierarchy for the skill 
hierarchy domain, or MakeBluePrint for the blueprint domain. The plan tree, an object of 
the Plan class, consists of a Hashtable.

(3) Updating the DiscourseState 
The discourse state is updated every time the user performs an action in AdaptIt. This 
consists of the I-Advisor expanding the focus stack and plan tree so that they explain the 
user's action, with the help of the task model. 

(4) Updating the I-Advisor slide



-92-
Memorandum ID-2002-16

All the possible goals the user could be working on are retrieved from the discourse state 
and sent on to the active instance of the IAdvice class in the AdaptIt application. This 
panel can then be updated accordingly. 

• DOMSerializer.java 

This class serializes a Document Object Model (DOM) and writes it to a file. It is used by the 
DOMTreeWriter class.

• DOMTreeReader.java

This class reads in an XML file containing a DOM Tree and stores all the strings from the tree 
in a data structure. Currently it can read in three types of files: 

(a) The logs of previous user's actions with the domain expert's annotations (log.xml).
� Stored in an object of the AnnotatedExample class

(b) The task models for the skill hierarchy (skillHierarchy.xml) and the blueprint domain 
(bluePrint.xml).
� Stored in an object of the TaskModel class.

(c) The layouts for the I-Advisor panel in the AdaptIt tool, one for the skill hierarchy 
domain (layoutskill.xml) and one for the blueprint domain (layoutblue.xml).
� Stored in an object of the Layout class.

• DOMTreeWriter.java

This class takes a certain data object as input, and returns a XML file containing that data object 
in a DOM tree. The two data objects the I-Advisor can write away are: 

(a) Objects of the TaskModelLearner class which contain a learned task model.
� Written away to a taskmodel.xml file 

(b) Logs of previous user's actions, consisting of vectors containing all the actions the 
user performed in AdaptIt, as well as all the I-Advisor links the user clicked upon. 
� Written away to a log#.xml file, where # signifies the how many-th log it is in the 
logs directory. 



-93-
Memorandum ID-2002-16

• IAdaptIt.java

The IAdaptIt class contains two booleans, which determine the general behaviour of the I-
Advisor:  

(a) LearnTaskModel (design described in chapter 5)
If LearnTaskModel is set to true, then the I-Advisor will learn a new task model based on 
the logs of previous users' actions. This is done by creating an object of the 
PreTaskModel class. 

(b) StartIAdvisor (design described in chapter 7)
If StartIAdvisor is set to true, the I-Advisor will add listeners to the AdaptIt application 
and follow the user by maintaining a discourse state. This is done by creating an object of 
the IAdvisor class.

• IAdvisor.java

The IAdvisor class is the part of the I-Advisor, which listens to all of the user's actions in 
AdaptIt and updates the discourse state based on these actions. 

It contains two booleans, which describe its behaviour: 
(a) writeLog (design described in section 7.1)

If writeLog is set to true, then the I-Advisor will write away all the user's actions to a log 
file when the user closes the AdaptIt tool. This log file is a XML file and is written in the 
logs directory.

(b) updateDiscourseState (design described in chapter 6 and section 7.2)
If updateDiscourseState is set to true, then the I-Advisor will update the discourse state 
each time the user does an action. If you are interested in only logging a user's actions and 
not in advising the user, then this boolean is useful. 

An object of the IAdvisor class will perform the following steps:

(1) Add listeners to the SelectionController and ObjectUpdateManager.
(2) An object of the DiscourseState class is instantiated.
(3) Each time an event is received from the listeners, two things happen: 

(a) The event is stored in an object of the PrimitiveAction class. 
(b) The object of the DiscourseState class is updated based on this event.



-94-
Memorandum ID-2002-16

• Plan.java (design described in chapter 6)

The Plan is part of the discourse state, and consists solely of a Hashtable. This Hashtable stores 
which of the user's actions contributed to which goals. The goals are the keys of the Hashtable, 
the user's actions are stored in Vectors in the Hashtable. An object of the Plan class can be 
viewed as some form of history of the user's previous actions and goals. 

• PreRecipe.java (design described in chapter 5)

The objects of the PreRecipe class are only used during the learning of the task model to store 
the learned recipes. Whereas objects of the Recipe class consists solely of the goal and a vector 
containing the steps which have performed to accomplish that goal, the PreRecipe class contains 
a lot extra methods which are used to learn recipes.

These methods are used to accomplish the following:

(a) Create the steps of new recipe
The steps of a new recipe are learned from the user's actions and the segments added by 
the domain expert.

(b) Learn optional steps
It is learned which steps are optional, and which are not. 

(c) Learn the equality relations (also called propagators)
The equality relations define which parameters of the user's actions have to equal for a 
goal to be achieved successfully. 

• PreTaskModel.java (design described in chapter 5)

The PreTaskModel class learns a new task model. This consists of 3 steps:

(1) Reading in all the XML log files 
All the XML log files contained within the logs directory are read in using an object of 
the DOMTreeReader class. The users' actions and the domain expert's annotations of 
these actions contained in these files are stored in an object of the AnnotatedExample
class. 



-95-
Memorandum ID-2002-16

(2) Learning a new task model based on these logs 
This is done by creating an object of the TaskModelLearner class.

(3) Writing the learned task model away to a XML file
The file is written away using an object of the DOMTreeWriter class.

• PrimitiveAction.java (design described in section 5.1)

The objects of the PrimitiveAction class store the actions performed by the user in AdaptIt.  
They store these events received from the SelectionController and ObjectUpdateManager using 
the following two variables: 

(a)The name of the function 
This name is a combination of the properties of the event received, namely the type of the 
object (Object Update or Selection Event), the class of the Object updated or selected and 
the updating Object or Component. 

(b) The parameter
This is the name of the object, which was selected or updated. 

• Recipe.java (design described in section 5.1)

The objects of the Recipe class are used to store the recipes which together form the task model. 
They consist mainly of three parts: 

(a) The name of the goal that this recipe describes. 
(b) A Vector containing objects of the Step class which have to performed to accomplish 

the goal.
(c) A Vector containing the other possible recipes that also describe this goal.

• Segment.java (design described in section 5.2)

A Segment is a sequence of actions or other segments, which together accomplish the same 
goal. An object of this class stores: 

(a) The SegmentType (the name of the goal)
(b) A Vector containing all the SegmentElements (the actions or other segments, which 

together accomplish the goal). 



-96-
Memorandum ID-2002-16

• SegmentElement.java (design described in section 5.2)

The SegmentElement object is an element of an object of the Segment class. A 
SegmentElement can either be a primitive action or a segment itself. It stores the class of the 
element (either primitiveAction or Segment), the type of the element (the function in case of a 
primitiveAction, segmentType in case of a Segment), and a mapping from the element to a 
step in the corresponding PreRecipe.

• SegmentSet.java (design described in section 5.3)

A SegmentSet consist of set of segments of the same type. It is used in one of the first steps of 
the learning of a task model, called alignment. 

• Step.java (design described in section 5.1)

A Step is an element of a Recipe and describes an action, which has to be performed before a 
goal can be accomplished. A step can be either a primitive action, which can be accomplished 
directly in the AdaptIt tool, or a non-primitive action, in which case a recipe describes how to 
accomplish that non-primitive action. 

A Step consists of three parts: 
(a) A String named type containing the type of the step
(b) A boolean named primitive signifying whether or not this step is a primitive action.
(c) A boolean named optional signifying whether or not this step is optional.

• TaskModel.java (design described in chapter 5)

A TaskModel consists of two parts: 

(a) A Hashtable containing the recipes (objects of the Recipe class). 
These recipes are stored in the Hashtable using their goals as keys.

(b) A Hashtable containing the primitive actions (objects of the Primitive Action  class)
This Hashtable contains all the primitive actions a user can do within a certain part of 
the AdaptIt tool.

• TaskModelLearner.java (design described in chapter 5)



-97-
Memorandum ID-2002-16

The TaskModelLearner class learns a new task model from input annotated examples 
(objects of the AnnotatedExample class) . The learned task model consists of recipes (objects 
of the PreRecipe class). The learning of the task model consists of the following phases:

(1)Alignment Step 1:
The segments from the annotated examples are sorted into sets of segments, which are 
of the same segmentType and in which each segment is a subset of the other segments 
in the set. 

(2)Alignment Step 2:
The steps of the preRecipes are created for each set of segments.

(3) Induction of the Optional Steps: 
The optional steps of the PreRecipes are learned.

(4) Induction of the Equality Relations:
 The equality relations between the parameters of the steps in the PreRecipes are 
learned. 

Classes in com.adaptit.components.advisor

• IAdvice.java (design described in chapter 7.3)

This class initialises and updates the I-Advisor's panel in the AdaptIt tool. When a new or 
existing project in AdaptIt is opened an object of this class is created and the I-Advisor is started 
up by creating an object of the IAdaptIt class. Each time the user does an action in AdaptIt, the 
panel is updated based on the possible goals the I-Advisor has learned the user could be 
working on.

The contents of the I-Advisor's panel are links to the pages in the full Advisor. The layout for 
the panel, including descriptions of the different links, is contained in two XML files found in 
the PropertiesDirectory. The first XML file, layoutblue.xml, is for the bluePrint domain, the 
other one, layoutskill.xml is for the skill hierarchy domain. 

If the I-Advisor has deduced the goal the user is working on, the link to the Advisor page 
corresponding to this goal is highlighted. If there is more than one possible goal, then the panel 



-98-
Memorandum ID-2002-16

will only show an overview of links corresponding to the different steps in the domain the user 
is working in. 

• Layout.java

A Layout object stores the HTML layout of the I-Advisor's panel. It consists mainly of 
descriptions of the links to the full Advisor pages in the form of objects of the HelpMapping
class.

• HelpMapping.java

A HelpMapping describes a link to a full Advisor page, which is to be displayed in the I-
Advisor's panel. It consists of three parts:

(a) The name of the goal, for example "AnalyseComplexSkills"
(b) The text to be displayed in the panel, for example "Analysing Complex Skills"
(c) The link to the page in the Advisor corresponding to the goal, for example 

"[a2]Analyse_the_complex_skill".

Files in the PropertiesDirectory

• bluePrint.xml

This XML file contains a DOM tree with the task model for the bluePrint part of AdaptIt.

• skillHierarchy.xml

This XML file contains a DOM tree with the task model for the skillHierarchy part of AdaptIt.

• layoutblue.xml

This XML file contains a DOM tree with the HTML layout for the I-Advisor's panel in case the 
user is working in the blueprint part of AdaptIt. 

• layoutskill.xml



-99-
Memorandum ID-2002-16

This XML file contains a DOM tree with the HTML layout for the I-Advisor's panel in case the 
user is working in the skillHierarchy part of AdaptIt.

• AdaptitEditorPreferences.xml

I only changed two lines in this file to start up the I-Advisor instead of the Q-Advisor, and to 
make the I-Advisor the first of the tabbed panes in the bottom-left corner.

Traceability of the Requirements on the Implementation

The Requirements: Satisfied in:

Functional Requirements

(1) The support given by the I-Advisor shall 
consist of links to the pages in the help system 
corresponding to the user's current task context.

Classes used to design the support:
IAdvice.java, Layout.java, 
HelpMapping.java

(2) This support given by the I-Advisor shall be 
based on: 

• the user's actions within AdaptIt

• task model

Class used to listen to user's actions:
IAdvisor.java
Class used to store user's actions:
PrimitiveAction.java

See functional requirement 3.

(3) The I-Advisor shall contain a task model, 
which describes a small part of the AdaptIt 
application.

Actual task models:
bluePrint.xml, skillHierarchy.xml
Classes used to store task model:
TaskModel.java, Recipe.java, Step.java,
PrimitiveAction.java
Classes used to learn task model:
TaskModelLearner.java, PreRecipe.java, 
PreTaskModel.java, 
AnnotatedExample.java, Segment.java, 
SegmentSet.java, SegmentElement.java



-100-
Memorandum ID-2002-16

(4) A domain expert shall be able to view and 
annotate the logs of previous users, in order to 
aid the learning of the task model.

Classes used to write the logs:
IAdvisor.java, DOMSerializer.java, 
DOMTreeWriter.java,  
PrimitiveAction.java
Classes used to read in and store the 
logs with the domain expert's 
annotations: 
DOMTreeReader.java, 
AnnotatedExample.java, Segment.java, 
PrimitiveAction.java

Technical Requirements

(5) The I-Advisor shall be implemented in Java 
just like the AdaptIt tool.

All classes are implemented in JAVA.

(6) The I-Advisor shall operate within a small 
part of the AdaptIt application

The I-Advisor operates within both the 
Skill Hierarchy and the Blueprint domains 
of Adapt-It. It contains task models for 
both domains, as well as layout for the 
support given in the I-Advisr's panel.

The task models for both domains:
skillHierarchy.xml, bluePrint.xml
The support layouts for both domains:
layoutblue.xml, layoutskill.xml

(7) No changes within the AdaptIt application 
shall be made to make interaction between the 
AdaptIt application and the I-Advisor possible.

No changes were made in the AdaptIt 
application.

(8) The I-Advisor shall interact with the AdaptIt 
application in the same way as the Q-Advisor.

In the AdaptitEditorPreferences.xml the 
Q-Advisor is replaced by the I-Advisor, 
and they interact with AdaptIt in the same 
way.


