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Chapter 1

Introduction

1.1 Mobile Service Robots

Mobile robots have a wide applicability and they are gradually making their way into
our daily lives. Autonomous floor cleaning robots are already employed in shopping cen-
ters, airports, factories and other large buildings to perform a tedious cleaning task at
nighttime. The “ST82 R” robot, produced by Hefter Cleantech, currently cleans floors
in five Dutch supermarkets. Mobile robots perform security and surveillance tasks such
as fire detection and intruder detection. The operational “MOSRO 1” surveillance robot,
developed by Robowatch Technologies, uses a radar system that can identify contours of
intruders even through walls. Mobile delivery robots, developed by Helpmate Robotics
Inc., distribute medicines in over 100 American hospitals. Experience with this “Help-
mate” robot shows that the robot performs the distribution tasks faster and more reliably
than humans do. The above examples illustrate that mobile service robots can save both
time and money, can perform tasks that humans consider dangerous or tedious, and may
(unintentionally) entertain us in the process.

In order for a mobile service robot to perform its navigational tasks, it should be able
to determine where it is. This localization problem, determining the pose (position and
orientation) with respect to a global map of the workspace, has occasionally been referred
to as “the most fundamental problem to providing a mobile robot with autonomous
capabilities”[9].

Today’s commercial service robots often rely on an a priori provided map of their workspace.
Such a map contains the locations of easily recognizable artificial landmarks, which have
been mounted at strategically chosen locations. Localization is such a scenario may be
considered a solved problem. Ideally, a mobile robot should be capable of learning and
maintaining a map of its workspace while it performs its tasks. It should be able to do
so without relying on the presence of artificial landmarks. The problem of mapping, cre-
ating a map for localization from sensor data collected during navigation in an initially
unknown environment, is currently an active research topic.
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1.2 Vision for Mobile Robots

Humans have evolved to rely primarily on vision for localization and navigation tasks
(and many other tasks as well). Although we certainly use our other senses as well,
these provide less informative clues as to where we are. Similarly, in robotics certain
external sensors — sensors that measure aspects of the external world — may yield more
informative clues than others may.

Early mobile robots were usually equipped with a ring of ultrasonic range sensors from
which rough estimates of distances to surrounding objects can be derived. Nowadays,
robots can be equipped with laser range finders providing precise distance information.
Laser range finders can be used to construct accurate 2-D (or even 3-D) geometric maps
of a robot’s workspace. Still, range information, however accurate it may be, may not
be very informative for localization because many distinct places in a robot’s workspace
can have a similar geometric structure. Moreover, today’s laser range finders are very
expensive.

Vision sensors (i.e. cameras), on the other hand are cheap nowadays. A camera image
provides abundant information about a scene observed and may thus yield stronger clues
for localization. Employing a mobile robot with a camera furthermore opens up the
possibility to perform a wide range of visual tasks, such as recognizing objects to grasp
and recognizing people to interact with.

In spite of these advantages, range sensors are still very popular and commonly employed
in studies concerning mapping and localization. This is likely because a range sensor
provides both distance and bearing information, whereas a camera measures intensity of
light reflected by objects and bearing only. The fundamental data association problem of
establishing matches between a local sensor measurement and a (partially build) map is
more complicated for a bearing only sensor because a match already established constrains
other potential matches to a lesser extend. Furthermore, distance information — which
is required for the construction of a metric map of the workspace — can only be recovered
indirectly via triangulation of established point matches between at least two images.

In light of the above challenges, the large scope of potential applications and its cost
effectiveness, in this thesis we explore the possibility of using a vision sensor for robot
map building and localization.

1.3 Panoramic Vision using Mirrors

Conventional cameras have a relatively narrow field of view. In order to get an overall
impression of its surrounding environment, a robot equipped with such a camera should
actively look around. It could for instance use a pan-tilt-zoom mechanism to aim the
camera in different directions, or it could rotate its body. It would be more practical if the
robot were equipped with a panoramic vision sensor that provides a 360◦ impression of
the surrounding environment instantaneously. One approach to achieve such panoramic
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Figure 1.1: Our experimental platform. The robot is a Nomad Super Scout II, manufactured by
Nomadic Technologies Inc. The panoramic vision sensor, manufactured by Accowle Inc., is situated
on top of the robot.

sight is to observe the world via a curved mirror. Vision sensors that combine mirrors
and lenses are called catadioptric vision sensors. Dioptrics is the science of refracting
elements. Catoptrics is the science of reflecting surfaces, or mirrors. Their combination
is therefore called catadioptrics.

Mirrors, lenses and their useful properties have long been known to mankind. The earliest
known mirrors were made out of polished volcanic glass and date back to c. 7000 BC.
Lenses made out of crystal rock, dating back to c. 900 – 700 BC have been found at
sites in Assyria. According to the Greek writer and philosopher Plutarchus (46 – 120
AD), the famous Greek mathematician Archimedes (287 – 212 BC) constructed concave
mirrors during the siege of Syracuse by the Romans (214-212 AD). Supposedly, the
mirrors were used to burn down Roman ships with reflected sunlight. Although this
particular story remains unsubstantiated, ancient concave burning-mirrors made from
polished metal have been found at sites in Egypt, China and Greece. One of the earliest
known mathematical studies concerning the properties of mirrors and lenses was done by
the Arabic mathematician, physicist and astronomer known as Alhazen (c. 965 – 1039
AD). He described results of experiments with spherical and parabolic mirrors (and many
other optical phenomena) in his treatise “Kitab al-manazir”. In 1270, an influential Latin
translation known as “Opticae thesaurus” was published in Europe. The burning mirrors
from ancient times found a new application in astronomy. In 1672, Sir Isaac Newton
presented his reflective telescope, featuring a concave parabolic mirror. His revolutionary
design paved the way to magnification of object far beyond what could ever be obtained
with a lens.

Nowadays, the use of curved mirrors to enable panoramic sight for mobile robots is
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quickly gaining popularity. Although there exist alternative methods to obtain instanta-
neous panoramic vision (the interested reader is referred to the book edited by Benosman
and Kang [2] and the proceedings of the workshops on omnidirectional vision [74, 75]),
catadioptric systems appear particularly well suited for mobile robot applications. They
are compact, relatively cheap, and have no moving parts so that they suffer little from
wear and tear and consume little power. In this thesis, we present methods for robot
mapping and localization in which we seek to take advantage of the large field of view
offered by a catadioptric panoramic vision sensor. An image of our experimental plat-
form, a Nomad Scout robot, with its catadioptric panoramic vision sensor is displayed in
figure 1.1.

1.4 Original Contributions

In this thesis, we describe our research on visual mapping and localization. We have
contributions in the areas of vision sensor design and calibration, robot localization,
panoramic stereo vision and estimation of robot poses from images acquired during nav-
igating in a previously unknown environment.

• We derive the parameters of a hyperboloid mirror so that the resulting catadioptric
panoramic vision sensor meets a given view angle specification. We propose a simple
method to calibrate the vision sensor. We show how various virtual cameras can be
constructed. A virtual camera re-projects the catadioptric image onto a different
surface. Throughout the thesis, we argue and demonstrate that images obtained by
such virtual cameras are better suited for certain tasks than the panoramic images
from which they are derived.

• We present a novel appearance-based model for probabilistic robot localization.

• We analyze the epipolar geometry for cylindrical panoramic images and propose a
novel parameterization of (sinusoidal) epipolar curves that enables efficient stereo
matching across multiple images obtained at (non co-linear) camera poses.

• We present a novel method to estimate a camera trajectory from a sequence of cata-
dioptric images. Unlike many approaches presented in literature, our approach does
not require many feature correspondences across many images. Instead, our method
estimates the relative pose relationship between pairs of (catadioptric) images. For
each pair, feature correspondences between two (virtual) cylindrical panoramic im-
ages are used to estimate the rotation and direction of translation. The length of the
translation is subsequently estimated by registering two (virtual) planar perspective
images of the ground plane.
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1.5 Thesis Overview

Each of the contributions described in the previous section are presented in a separate
chapter of this thesis.

Chapter 2 is not directly related to the problems of mapping and localization. It intro-
duces the field of panoramic vision with a particular emphasis on vision sensor designs
involving a curved mirror to obtain a panoramic field of view. We discuss the geometric
properties of our particular sensor, present a calibration scheme, and show how the image
obtained by the sensor can be mapped to into other valid perspective image representa-
tions.

Chapter 3 addresses the problem of mapping and localization based on images. We
describe our approach, which models the relation between robot poses and the appear-
ance of observed images directly. Modeling is done based on a set of images collected
at known poses throughout the robot’s workspace. Such “appearance-based modeling”
was first proposed in the field of object recognition. Since then, it has appeared in a
variety of contexts, including robot mapping and localization. An important feature of
our method is that it builds on a probabilistic framework for robot localization. Proba-
bilistic approaches are generally less brittle than approaches that maintain a single pose
estimate because uncertainty is explicitly represented and reasoned with. Appearance-
based approaches require many training images to learn the map. In the resulting map,
the concept of free versus occupied space is not explicitly represented. Collision free
navigation can thus not solely be based on the appearance-based model.

Chapter 4 addresses both these issues. We present an efficient method to estimate depth
from multiple panoramic images obtained at different poses. We show how the estimated
depth information can be used to predict the appearance of images obtained at nearby
poses. In principle, the methods discussed can be used to generate training images for
the method presented in chapter 3. In order to estimate depth from images, the relative
poses at which the images are acquired have to be known. In the chapter we derive the
required pose information from wheel odometry and refine the pose information using
vision.

Chapter 5 we present a method to estimate relative camera poses using visual information
only. We apply our method to reconstruct a robot trajectory from consecutive images
acquired during navigation in a previously unknown workspace. Like wheel odometry,
small errors accumulate so that the estimated end pose in a trajectory may be far from
the true end pose. Unlike wheel odometry, visual odometry is not “blind”. A previously
visited place can be recognized. This provides a handle to correct the estimated past
trajectory. The methods presented in chapter 3 and in chapter 4 require that the poses
at which input images are obtained are known. The method presented in this chapter
could be used to estimate the required pose information automatically.

Each chapter in this thesis has a section dedicated to discussion and conclusions. Chapter
6 draws general conclusions and indicates possible directions for future research.





Chapter 2

Panoramic Vision

Conventional perspective cameras (film, digital or video) have a relatively narrow field
of view (typically 30◦ – 60◦). In contrast, biological eyes often have a much larger field
of view. A pair of human eyes, for instance, cover a field of view of 120◦ in horizontal
direction, and 135◦ in vertical direction. There even exist species — diurnal insects,
nocturnal insects and some crustaceans — which have compound eyes enabling them to
see all around. Panoramic vision sensors, replicating such biological panoramic vision,
can be exploited in a variety of mobile robotics tasks.

A panoramic image can be a robust indicator of the robot pose and can be used for
vision based robot localization [42, 26]. In many mobile robot applications images arrive
sequentially as the robot moves around in its workspace. Panoramic images that are
acquired at consecutive poses have almost complete visual overlap. This simplifies the
matching of salient image features. Mobile robot applications that depend critically on
establishing reliable feature correspondences include navigation [111, 112, 35, 26] and
camera motion estimation [86, 28, 50, 113]. Furthermore, the computation of camera
motion from panoramic images is more stable because small camera displacements give
rise to image motion patterns distinctly different from image motion patterns caused by
small rotations [19]. Finally, a 3-D scene reconstruction can be obtained from just a few
images [13].

In this chapter we introduce our panoramic vision sensor, which consists of a conven-
tional camera and a convex hyperboloid mirror mounted in front of the camera lens. In
section 2.1 we review different mechanisms to acquire panoramic images. In section 2.2
we present the geometric image formation of our panoramic vision sensor. The design of
the mirror and the calibration of the sensor are discussed in section 2.3. It is possible to
map the images acquired by the sensor to other surfaces. This property can be used to
construct virtual cameras. In section 2.4 we show how a spherical image, a cylindrical
image and a planar perspective image can be derived from a panoramic image captured
by the mirror based sensor. Such images can be regarded as though they are acquired by
cameras with different projection surfaces. Conclusions are presented in section 2.5.
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(a) directional (b) panoramic (c) omni-directional

Figure 2.1: The view sphere and camera classes. (a) The field of view of directional cameras is a
subset of a hemisphere of the view sphere. (b) The field of view of a panoramic camera covers at
least one great circle on the view sphere. (c) Omnidirectional cameras can see in all directions.

2.1 Panoramic Vision Sensors

Conventional perspective cameras measure the intensity of rays that all pass through a
single point in space. This point is known as the effective pinhole, or the viewpoint of the
camera. A camera that measures irradiance from a single viewpoint is called a central
camera. The geometric image formation of a conventional camera can be described by the
pinhole and by the plane onto which the scene is projected. The field of view of a camera
can be characterized by the area that is covered on the surface of a sphere centered at the
viewpoint. This sphere is called the view-sphere. Figure 2.1a displays the view-sphere
and the field of view of a conventional camera. The field of view of a conventional camera
is always less than a hemisphere (half the view sphere). Conventional cameras are called
directional because they face a particular direction, which is described by the normal to
the plane onto which the environment is projected. It is possible to construct (virtual)
cameras that perform a projection onto a surface other than a plane. When the field of
view of such a camera covers at least one great circle1 on the view sphere, the camera
is called panoramic. Panoramic cameras provide a 360◦ field of view in one direction,
whereas in other directions their field of view is limited. An illustration of the field of
view covered by a panoramic camera is shown in figure 2.1b. When a camera can see in
all directions it is called omnidirectional. The field of view covered by an omnidirectional
camera covers the entire view sphere, which is illustrated in figure 2.1c.

Rotating cameras. The first approaches to obtaining panoramic images were software
based. In 1988 Zheng and Tsuji [115] were the first to construct a digital panoramic
image. In their approach, a sequence of images was acquired by panning a camera. Their
panorama was constructed by taking a single column from each successive image and

1A great circle on a sphere is a circle that has the same radius as the sphere.
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concatenating them. This approach is known as the slit camera approach. Later, it
was realized that perspective images obtained by a camera rotating about its center of
projection are related by a parametric model (planar homography, see chapter 5). As
a result the images can be registered by fitting a small number of unknown parameter
values, and composed into a panoramic image [87]. A similar method can be applied
when the scene observed is known to be planar. In recent years there has been a growing
interest in registering images acquired by a freely moving camera [81].

Dedicated hardware. Software based approaches using a rotating camera can produce
high resolution panoramic images. The main disadvantage is that it is time consuming
to acquire a panoramic image. The use of these methods is limited to static scenes. To-
day, there exist a wide range of vision sensors that are specifically designed to capture a
panoramic image instantaneously. Sensors consisting of multiple synchronized directional
cameras, each of them facing a distinct direction, can deliver high resolution omnidirec-
tional or panoramic images in real-time. In [11] a design involving 5 cameras attached on
a disc is presented that captures panoramic images in real-time. Immersive Media [59]
produces a panoramic vision sensor consisting of a cluster of video sensors arranged in
a compact dodecahedral framework. Viewplus [101] produces an omnidirectional vision
sensor that combines twenty stereo vision units arranged on the faces of a icosahedron.
The panoramic vision system produced by Fullview [24] uses four cameras, each observing
a planar mirror. The mirrors are arranged in an inverted pyramid.

Cameras and curved mirrors. It is well known that curved mirrors can be used to
increase an otherwise limited field of view. In what follows, we will focus on catadioptric
sensors combining a single lens with a single curved mirror. To obtain a wide field of
view, one generally uses a mirror whose shape is a convex surface of revolution of a
curve describing the mirror profile. The mirror surface is thus determined by the profile
curve. The shape of the mirror determines the direction in which rays originating in the
camera pinhole are reflected. In [34] a family of curved mirror shapes is derived that
reflect a world plane below the mirror in such a way that the image of the plane appears
undistorted in the catadioptric image. A planar mirror could be used for this purpose, but
planar mirrors do not increase the field of view. Using their curved mirror, an extremely
wide field of view can be obtained. In [6] a family of mirror shapes is studied that yield a
linear relationship between the angle under which a ray enters the mirror and the angle
of reflection onto the camera.

We are particularly interested in mirror shapes that can be used to construct panoramic
vision sensors that capture light rays that would meet at a single point in space had
they not been reflected by the mirror. The point where the rays would meet is called
the effective viewpoint of the vision sensor. Figure 2.2 shows a diagram of a catadioptric
vision sensor with a single effective viewpoint.

Catadioptric systems that have a single effective viewpoint have two attractive properties.
First, because the sensor measures intensity of rays originating from a single point in
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PSfrag replacements

F

F ′

projection
plane

Figure 2.2: A central catadioptric systems. Rays that would have passed through the focal point of
the mirror F are reflected in such a way that they pass through the focal point F ′ of the camera. As
a result, the camera measures intensity of rays originating in F . Therefore, F is called the effective
viewpoint of the camera.

space, it is possible to produce other types of geometrically correct perspective images.
In section 2.4 we describe in detail how virtual central spherical, planar and cylindrical
cameras can be implemented. These virtual cameras have a pinhole that coincides with
the effective viewpoint of the catadioptric system. Only the surface onto which the
environment is projected (a sphere, a plane and a cylinder respectively) is different.
Secondly, images acquired by such a sensor from different positions can be related via
the epipolar geometry. Each point in an image defines a ray. The epipolar geometry
expresses the fact that the rays for corresponding points in two images meet at a single
point in space. The epipolar geometry can be established for all cameras that perform
a central projection. It can be used to find matching image features in two views, to
estimate relative camera poses, and for 3-D reconstruction. The epipolar geometry and
its applications are discussed in detail in chapter 4.

For catadioptric systems that do not have a single effective viewpoint, or non-central
cameras, the generation of geometrically correct perspective images is not possible. To
illustrate this, consider the sketch in figure 2.3. The figure displays the combination of a
conical mirror mounted in front of a perspective camera. The rays that are reflected by the
mirror do not intersect at a single point in space if they had not been reflected. Suppose
we wish to re-project the points u1, u2 and u3, which are the respective projections of
scene points X1, X2 and X3 onto a sphere centered at an effective viewpoint. Let us
require that the result of the re-projection is equivalent to a central projection onto a
sphere from a desired effective viewpoint. For the sake of argument, let us choose v23 as
the desired effective viewpoint. The dotted circle centered at v23 in the figure represents
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Figure 2.3: A conical mirror in front of a conventional camera does not yield a single effective
viewpoint. The reflection rays from u2 and u3 intersect at v23. Point v23 is however not a single
effective viewpoint of the catadioptric system; in general, the effective viewpoint for another pair of
rays intersect at a different point. For example, the reflection rays for u1 and u2 intersect at v12.
Hence, it is not possible to re-map the catadioptric image to a perspectively correct image formed
at, say, the sphere centered at viewpoint v23. A correct re-projection of u1 is only possible when
the distance to X1 is known.

the sphere onto which we wish to re-project. The mapping from points on the surface of
the mirror to pixels is an invertible mapping. A pixel coordinate thus uniquely defines a
point on the mirror surface and vice versa. Given u1, u2 and u3, their respective mirror
surface points X̃1, X̃2 and X̃3 can be derived. Because X2, X̃2 and v23 are co-linear,
the central projection of X2 onto the sphere is the same as that of X̃2. Similarly, the
geometrically correct projection of X3 onto the sphere is uniquely determined by X̃3.
Points X1, X̃1 and v23 are, however, not co-linear. In order to correctly re-project u1,
the position of X1 along the ray passing through X1 and X̃1 has to be known. Because
from u1 only X̃1 can be derived we can only guess where point X1 would project.

In [63] the family of mirror shapes whose members can — theoretically — all be used
to construct central catadioptric vision systems is derived. If z(r) is the profile of the
mirror shape, where z denotes the height and r =

√

x2 + y2 is the radius, the complete
family of mirror shaped is given by

(

z − c

2

)2

− r2

(

t

2
− 1

)

=
c2

4

(

t− 2

t

)

(t ≥ 2) (2.1)

(

z − c

2

)2

+ r2

(

1 +
c2

2t

)

=

(

2t+ c2

4

)

(0 < t < 2), (2.2)

where c denotes the distance between the pinhole of the camera and the effective view-
point, and t is a constant of integration. These equations reveal that the mirror profiles
form a 2-parameter (c and t) family of conic sections. Particular choices of the parame-
ters yield different types of mirror shapes. However, some choices describe mirror shapes
that cannot be used in practice to construct a central catadioptric panoramic camera.



12 Panoramic Vision

For t > 2 and c > 0 a hyperboloid is obtained. A hyperboloid is defined by the locus
of points for which the distance between two fixed points, called the foci F and F ′, is
constant. When a hyperboloid is used to construct a catadioptric vision system, focus F
lies inside the mirror. Rays that would have passed through F are reflected in such a way
that they pass through the other focus F ′. When it is ensured, by careful alignment of
the camera and the mirror, that the pinhole R of the camera coincides with focal point
F ′, an omnidirectional vision sensor with a single effective viewpoint at F is obtained.
Figure 2.2 displays the hyperboloid mirror and its properties. Rees [76] was the first to
realize a central catadioptric vision system based on a standard perspective camera and
a hyperboloid mirror.

When t→∞, c→∞ and c/t = h is constant, equation 2.1 describes a paraboloid. Rays
passing through the focus of the paraboloid are reflected in a direction parallel to the
mirror axis of symmetry. The paraboloid can be used to construct a central catadioptric
system if the projection of the mirror into the image can be modeled by an orthographic,
instead of a perspective, projection. This can be achieved using a telecentric lens, which
can be regarded as a lens whose focal point lies at infinity. The paraboloid based system
has several advantages over a hyperboloid based system. First, because the projection is
orthogonal, the distance between the mirror and the lens is allowed to vary. Secondly, no
internal reflections are caused by a transparent cylinder supporting the mirror because
the reflected rays are all parallel to the cylinder axis of symmetry [38]. Finally, the system
is easier to calibrate [27, 16, 46]. The major disadvantage is that telecentric lenses are
expensive and relatively large.

Other solutions of equation 2.1 describe a plane, a sphere, a cone and an ellipse. If
t = 2 and c > 0, equation 2.1 reduces to the equation of a plane. Planar mirrors do not
increase the field of view; they only change the effective viewpoint. If c = 0 and t > 0,
equation 2.1 describes a spherical mirror, and for c = 0 and t ≥ 2 it describes a conical
mirror. These mirror shapes cannot be used to construct a catadioptric system with a
single effective viewpoint in practice because when c = 0 the effective pinhole and the
effective viewpoint coincide. For the cone, this means that the pinhole is placed at the
apex of the cone. The only rays that enter the effective pinhole from the mirror are the
ones that graze the cone. In the spherical case, the effective viewpoint lies at the center of
the sphere. The observer would therefore only observe itself and nothing else. Although
the cone and the sphere cannot be used to construct a central catadioptric system, these
mirror shapes have been employed in a wide range of mobile robot applications that do
not critically depend on the single effective viewpoint property. Conic mirrors have been
used in [111, 112, 113, 4]. Spherical mirrors have been used in [35, 108]. If t > 0 and
c > 0, a concave ellipsoidal mirror is described. The maximum field of view covered by
such a system is only half hemisphere because of self-occlusion. This is probably the
reason that ellipsoid mirror based systems are hardly encountered in literature.
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2.2 Geometric Image Formation

Our robot is equipped with a central catadioptric vision sensor consisting of a conven-
tional camera and a hyperboloid mirror. In this section we describe its geometric image
formation, which can be expressed as a sequence of coordinate transformations and cen-
tral projections.

2.2.1 Notation and definitions

Points in 3-D space are represented by upper case letters, such as X. An upper case
bold symbol, such as X refers to a Cartesian or homogeneous coordinate vector of
X. The Cartesian vector is of the form [X1, X2, X3]

T . The homogeneous vector is of
the form [X4X1, X4X2, X4X3, X4]

T , where X4 is an arbitrary non-zero scalar. When
X4 = 1, the homogeneous vector is said to be normalized. A normalized homogeneous
vector is obtained by dividing a homogeneous vector by its 4th component. For con-
venience, we define the operator N that performs the division, i.e. [X1, X2, X3, 1]

T =
N [X4X1, X4X2, X4X3, X4]

T . Several Cartesian coordinate frames will be defined to de-
scribe the geometric image formation. A coordinate frame (position and orientation)
whose origin coincides with a point Q will be referred to as Q. Vectors with a subscript,
such as XQ, represent vectors measured in coordinate frame Q. A pure translation is
represented as 4× 4 matrix T of the form

T =

[

I3 t
0T 1

]

, (2.3)

where I3 denotes the 3× 3 identity matrix, 0 denotes the 3× 1 null vector, and t denotes
a 3× 1 translation vector. A pure rotation is represented as a 4× 4 matrix R of the form

R =

[

R3 0
0T 1

]

, (2.4)

where R3 is a 3 × 3 rotation matrix. A rigid transformation is represented by a 4 × 4
matrix M = TR. Subscripts, such as in MQR, are used to denote a change in coordinate
frames XQ =MQRXR.

The upper case letter X is reserved to denote scene points. An upper case bold X refers
to its coordinates. We use X̃ to refer to the coordinates of the projection of X onto the
mirror. A lower case x refers to the projection of X (via the mirror) to the normalized
image plane of the perspective camera. Finally, a lower case u refers to pixel coordinates
of a projected scene point X.

We define two important coordinate frames: the mirror coordinate frame M and the
camera coordinate frame R. The mirror coordinate frame is centered at F , the focal point
inside the mirror, and we assume its Z-axis coincides with the mirror axis of symmetry.
The camera coordinate frame R is centered at F ′, the other focus of the hyperboloid.
The coordinate frames and their relationships are illustrated in figure 2.4.
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Figure 2.4: Coordinate frames and their relationships. The mirror coordinate frame is centered at
F , the focal point in the mirror. The pinhole of the perspective camera coincides with the origin of
the camera coordinate frame, which is centered at the other focal point F ′.

2.2.2 Hyperboloid image formation

A hyperboloid mirror is defined in the mirror coordinate frame M centered at the mirror
focus F by the equation

(z + e)2

a2
− x2 + y2

b2
= 1, (2.5)

where a and b are parameters whose ratio governs the shape of the mirror, and e =√
a2 + b2 is the eccentricity of the mirror. The focal points F and F ′ are separated by a

distance 2e. See figure 2.5.

The central projection of point X onto point X̃ on the surface of the mirror is as follows.
Let XM = [X1, X2, X3]

T denote the coordinate of point X specified in mirror coordinate
frame M . The ray from F to X can be specified by λXM . We seek λ such that λXM =
X̃M . Substituting the ray equation λXM into equation 2.5 gives

(λX3 + e)2

a2
− (λX1)

2 + (λX2)
2

b2
= 1. (2.6)

Expressed in quadratic form, the above reads

λ2(b2X2
3 − a2X2

1 − a2X2
2 ) + λ(b22eX3) + b4 = 0. (2.7)

Solving for λ results in two solutions for λ,

λ1, λ2 =
b2(−eX3 ± a ‖X‖)
b2X2

3 − a2(X2
1 +X2

2 )
. (2.8)
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Figure 2.5: The hyperboloid and its parameters. In order to obtain a single effective viewpoint, the
distance between the focal point F inside the mirror and the focal point F ′ of the camera should
equal a constant value 2e (which follows from the mirror shape). The finite height h limits the
maximum vertical viewing angle α that can be obtained.

Figure 2.6 graphically displays three possible combinations of the signs of λ1 and λ2.
If a point X is located in the area marked by ++, the line passing through F and X
intersects both the actual mirror, and a “virtual mirror”, which is centered at F ′. This
“virtual mirror” corresponds to the other sheet of the hyperboloid defined by equation 2.5.
The intersection closest to F is the intersection with the actual mirror, i.e. we pick
λ = min(λ1, λ2). When the signs of λ1 and λ2 are different, the positive solution describes
the intersection between F and X. The negative solution describes the intersection with
the other sheet. In this case, we pick λ = max(λ1, λ2). Finally, when both λ1 and λ2 are
negative, the point lies inside the mirror and thus cannot be observed. The selection of
the correct value of λ can be expressed more formally as

λ =











min(λ1, λ2) if λ1 > 0 and λ2 > 0

max(λ1, λ2) if sign(λ1) 6= sign(λ2)

no intersection otherwise

. (2.9)

We define an operator PM that performs the central projection of a point onto the
hyperboloid as

PMXM =









X4 0 0 0
0 X4 0 0
0 0 X4 0
0 0 0 r

















X1

X2

X3

X4









, (2.10)

where r = 1/λ, and λ is obtained from the vector [X1, X2, X3] using equations 2.8 and 2.9.
Given a point X, we can derive its central projection X̃ onto the mirror surface.
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Figure 2.6 : Intersections of a ray with the mirror.

A second central projection describes the mapping from points on the mirror surface into
the image. The mapping from mirror coordinates X̃M = PMXM to homogeneous pixel
coordinates uR in the image involves several coordinate transformations and a projection.
First, points expressed in the mirror coordinate frame are rotated and translated into the
camera coordinate frame. Then, the points are projected onto the normalized image
plane of the pinhole camera. Finally, an affine mapping brings the normalized image
coordinates into pixel coordinates. This sequence can be expressed as

uC = KRPPMRMXM , (2.11)

where KR is a 3 × 3 upper triangular camera calibration matrix that maps coordinates
on the normalized image plane to pixel coordinates, PP = [I3 0] is the perspective
projection matrix that projects points onto the plane Z = 1, and MRM is the rigid
transformation (rotation and translation) relating the mirror frame M and the camera
frame C. For details on the camera model, the reader is referred to [17]. The single
effective viewpoint property of the catadioptric system is preserved under rotation of the
camera or the mirror about their respective focal points because these keep the distance
separating the camera pinhole and the effective viewpoint constant. It is however a
common practice to align the mirror axis of symmetry with the camera Z-axis. In this
way, the maximal elevation viewing angle (with respect to the camera frame) is the same
for all points on the mirror edge.

We have shown how points expressed in the mirror coordinate frame can be transformed
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Figure 2.7: A black needle coinciding with the axis of symmetry of the glass cylinder supporting
the mirror prevents internal reflections. A capped cone on top of the mirror obstructs the view of
anything above the camera that is outside the field of view covered by the mirror. The capped cone
reduces the effects of automatic gain correction.

to points expressed in the pixel coordinate frame. Introducing a global world coordinate
frame W , the projection of a point X represented by XW to point u represented by
the normalized homogeneous vector uR in the omni-directional image can concisely be
written as

uC = KRPPMRMPMMMWXW . (2.12)

We have seen that the image formation of our catadioptric vision sensor can be described
as a composition of two central projections and a number of coordinate transformations.
The first central projection maps a point in the world to a point on the surface of the
mirror. The second central projection maps a point on the surface of the mirror to a
point in the image.

2.3 Design and Calibration

2.3.1 Our mirror

Our hyperbolic mirror is manufactured by Accowle [1]. The mirror is made from alu-
minium and is supported by a glass hollow cylinder. A black needle extends from the
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mirror. The needle coincides with the main axis of the glass cylinder. Light that re-
flects on the internal surface of the cylinder and then passes through the camera center
of projection crosses the main axis of the cylinder. The needle eliminates such internal
reflections. A diagram of the sensor is shown in figure 2.7.

Because our camera performs automatic gain correction to prevent clipping of intensities,
drastic changes in the overall image intensity occur when lights mounted in the ceiling
enter or leave the field of view. As a simple but effective solution, we placed a capped
cone on top of the omnidirectional vision system. The cone remains just outside the
field of view of the mirror and is large enough to occupy the entire field of view of the
perspective camera. As a result, light from above is blocked by the cone.

2.3.2 Design of the mirror

Several considerations guide the design of a practical mirror; its dimensions and weight,
its coverage of the view sphere and the height at which the mirror has to be mounted
with respect to the focal point of the camera.

In this section we explain how a mirror can be designed that meets a set of user specified
requirements. A first requirement is that the projection of the mirror should occupy
the whole image. In our derivation, we take the view that the mirror is to be used
in conjunction with a camera, which has a known focal length. Given a user specified
mirror radius, this assumption results in a constraint on the height of the mirror. A user
specified maximal elevation angle then suffices to derive the mirror parameters a and b.
The reader should note that a similar derivation can be performed when taking the view
that the height and the mirror radius are specified by the user. These choices then result
in a constraint on the focal length of the lens.

To simplify the equations in our derivation, we suppose that the camera has no skew
and unit aspect ratio. Under this assumption, the mirror edge projects to a circle in
the image with pixel radius rpix. The desired pixel radius is chosen close the half the
number of rows in the image in order to achieve the maximal resolution. Given a choice
of the mirror rim radius r, the height of the mirror rim above the effective pinhole can
be derived using similarity of triangles as

h = f
r

rpix

, (2.13)

where f is the known focal length in pixels.

The next step is to choose a desired maximal elevation angle α (see figure 2.5 for an
illustration). The maximal elevation angle is attained for rays intersecting the mirror
rim. The height of the mirror rim, expressed with respect to the focal point F can then
be derived as

z = r tanα. (2.14)
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Because the distance separating the two focal points of the hyperboloid is 2e, the value
of e can be derived from the known height of the mirror rim h and z as

e =
h− z

2
. (2.15)

The mirror parameters a and b can now be derived. The parameters a and b are related
by a single parameter t, which can be derived from equation 2.1 as

a = e

√

t− 2

t
, b = e

√

2

t
, (2.16)

where we have substituted e = c/2. If we substitute s = 2/t in the previous equation,
and substitute the coordinates (z, r) = (h − 2e, r) of a point on the mirror edge in the
mirror equation, the mirror equation reads

(h− e)2

e2(1− s)
− r2

e2s
= 1, (2.17)

which can be expressed in quadratic form as

s2e2 + s(h2 − 2eh+ r2)− r2 = 0. (2.18)

The solutions for s are given by

s =
−(h2 − 2eh+ r2)±

√

(h2 − 2eh+ r2)2 + 4e2r2

2e2
. (2.19)

Finally, the parameters a and b are determined by plugging in the value t = 2/s in
equation 2.16.

2.3.3 Calibration of the vision sensor

Camera calibration is the process of determining the internal camera geometric and opti-
cal characteristics (intrinsic parameters) and the 3-dimensional position and orientation of
the camera frame relative to a certain frame of reference (extrinsic parameters). Calibra-
tion of the omni-directional vision sensor can be done in two steps. First, the perspective
camera can be calibrated by a conventional camera calibration method. Next, the camera
is positioned with respect to the mirror in such a way that the single effective viewpoint
property is obtained.

To calibrate the camera, 3-dimensional coordinates of reference control points on a cali-
bration target and corresponding 2-D coordinates of the image observation are required.
We use a checker-board patterned calibration target. The corners of the squares act as
control points. They can be detected accurately with little user interaction. Camera
calibration involves minimizing the error between measured positions of control points
and the positions of the control points as predicted by the camera model as a function of
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the camera model parameters. Various calibration methods have been presented in liter-
ature. Linear camera calibration methods assume a linear camera model (i.e. the pinhole
model). While calibration is fast (no iterations are required) the accuracy is often poor
because the model is too simplistic. The best known linear camera calibration method is
due to Tsai [97, 98, 107]. More realistic camera models include non-linear terms account-
ing for lens distortion. We adopt the camera model presented in [33], which includes
lens distortion. This model requires a non-linear optimization. The optimization routine
may get trapped in a local minimum of the error function. To decrease the probability
of getting trapped in a local minima, a good initial estimate of the model parameters is
needed. The risk of getting trapped is reduced by first using a linear technique to provide
an initial estimate of the model parameters. This estimate is subsequently refined using
non-linear optimization of all parameters.

The next step involves positioning the camera with respect to the mirror in such a
way that the single effective viewpoint property is obtained. Svoboda [84] proposes the
following method. It is assumed that the mirror parameters are accurately known from
manufacturing, and that the intrinsic camera parameters have been estimated reliably. By
design, the desired height and the radius of the mirror rim are known. The perspective
camera model can then be used to predict the image of the mirror edge as it should
be observed when the camera is positioned correctly with respect to the mirror. By
overlaying the prediction in a live video window, the camera position can be adjusted
manually so as to obtain an accurate registration of the observed and the predicted mirror
rim. We employed this strategy when we worked with a prototype of an omnidirectional
vision sensor we designed and manufactured ourselves.

The support for the mirror produced by Accowle [1] is screwed directly on the C-mount
of the CCD camera. This leaves no degrees of freedom in positioning the mirror with
respect to the camera. However, our camera does not have a fixed focus lens but is
capable of zooming. The zoom setting (focal length) of the camera is motor controlled.
It is initialized to a default setting on camera power up. The focal length of the camera
may therefore vary slightly from session to session. Furthermore, the principal point
(projection of the camera frame Z-axis into the image) is known to be difficult to estimate
reliably. Performing a full fledged camera calibration each session is a time consuming
and cumbersome process. Instead, we adopt the following simple calibration scheme that
re-estimates only the focal length and the principal point of the camera.

A full camera calibration returns (amongst other parameters) a camera calibration matrix
of the form

K =





fu γfu cu
0 fv cv
0 0 1



 , (2.20)

where fu and fv encode the focal lengths (a unique value in meters) expressed in units
of horizontal and vertical pixels, γ encodes skew between the sensor axes, and (cu, cv)
encodes the principal point location. If we let β = fv/fu denote the aspect ratio, then
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the calibration matrix may be decomposed as

K = SA =





fu 0 cu
0 fu cv
0 0 1









1 γ 0
0 β 0
0 0 1



 , (2.21)

where S is a similarity transformation, and A is an affine transformation. We re-estimate
the coefficients in S, while fixing the ones contained in A to their estimates obtained from
the full camera calibration. In particular, a set of K points uk lying on the mirror rim
are manually selected in an omnidirectional image using the mouse pointer. The inverse
of the affine transformation A is applied to undo the skew and non-uniform scaling. This
gives a new set of points u′

k = A−1uk. A circle of the form (u′ − cu)
2 + (v′ − cv) = r2,

where (cu, cv) denotes the center of the circle and r its radius, can then be fitted to the
points. The center of the circle is used as an estimate of the principal point. Its radius
can be used to derive an estimate of the focal length of the camera.

The parameters of the circle can be estimated linearly from the points u′
k by solving the

following linear system of equations










u1 v1 1
u2 v2 1
...

...
...

uk vk 1















a
b
c



 =











−u2
1 − v2

1

−u2
2 − v2

2
...

...
...

−u2
k − v2

k











, (2.22)

where a = −2cu, b = −2cv and c = c2u + c2v − r2. The center of the fitted circle,
corresponding to the re-estimated principal point location, is derived from the estimated
parameters as (cu, cv) = (−a/2,−b/2). Its radius can be calculated as r =

√

c2u + c2v − c.
Using similarity of triangles, the focal length fu can be re-calculated as fu = rhrim/rrim,
where r is the circle measured circle radius, hrim is the height of the mirror rim and rrim
is the radius of the mirror rim.

2.4 Virtual Cameras

In this section we introduce several virtual cameras. The virtual cameras are obtained by
re-projecting the catadioptric image onto different surfaces. A virtual spherical camera,
a virtual cylindrical camera and a virtual planar camera are developed. The spherical
camera implements a re-projection of the catadioptric image onto a unit sphere centered
at the effective pinhole. The cylindrical camera re-projects onto a cylinder. The planar
camera re-projects onto a plane. The primary reason for developing these virtual cameras
is that certain tasks become easier. For example, lines in the world project to lines in
a planar perspective image, to sinusoids in a cylindrical panoramic image, whereas they
project to general conics in the catadioptric image.

Each virtual camera has its own coordinate frame; C denotes the coordinate frame asso-
ciated with a virtual cylindrical camera, P is used for a virtual planar perspective camera
and S is associated with a spherical camera. All virtual cameras share the same focal
point, which coincides with F . However, they may differ in orientation.
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Figure 2.8: A virtual spherical panoramic camera is defined by a sphere centered at the effective
viewpoint F . The mirror coordinate frame and the spherical panoramic camera coordinate frame
are related by a rotation.

2.4.1 Virtual spherical camera

A spherical perspective image is obtained by projecting the environment onto a sphere
and unfolding the sphere to a rectangular grid of pixels. The equation of a unit sphere
centered at the origin is given by

x2 + y2 + z2 = 1. (2.23)

The central projection of X onto a point X ′ on the surface of the unit sphere can be
described as follows. Let XS = [X1, X2, X3]

T denote the coordinate of point X specified
in coordinate system S. The ray from F through X is specified by λX. We seek λ such
that λX = X̃, where X̃ is a point on the surface of the sphere. The λ for which the ray
intersects the sphere is found by solving the quadratic equation

λ2(X2
1 +X2

2 +X2
3 )− 1 = 0, (2.24)

which is obtained by substituting λX into 2.23. Solving for λ gives two solutions:

λ1,2 = ± 1
√

X2
1 +X2

2 +X2
3

. (2.25)

The solution describing the point of intersection between F and X is given by

λ = max(λ1, λ2). (2.26)

We define an operator PS such that X̃ = PSX that performs the central projection of a
point onto the sphere,

PSX =









X4 0 0 0
0 X4 0 0
0 0 X4 0
0 0 0 r

















X1

X2

X3

X4









, (2.27)
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where r = 1/λ is obtained from equations 2.25 and 2.26.

The coordinates of X̃ can be expressed in a spherical coordinate representation x =
[ϕ, θ, 1], where ϕ denotes the angular elevation, θ denotes the angular azimuth, and 1
denotes the unit radius. We define an operator S that transforms a normalized homoge-
neous vector X representing a point on the unit sphere to x,

SX =





arctan2(X2, X1)

arctan2(X3,
√

X2
1 +X2

2 +X2
3 )

1



 . (2.28)

The inverse S−1 is given by

P−1
S [ϕ, θ, 1]T =









cos θ cosϕ
cos θ sinϕ

sin θ
1









. (2.29)

Normalized homogeneous spherical image pixel coordinates uS are related to XS by

uS = KSSNPSXS, (2.30)

whereKS is a 3×3 upper triangular calibration matrix, which maps spherical coordinates
to pixel coordinates.

The calibration matrix implements a scaling and a translation of coordinates and can be
derived as follows. Let a be in an interval [amin, amax]. Let b be in an interval [bmin, bmax].
Let ∆a = amax− amin and ∆b = bmax− bmin. The conversion of a coordinate va expressed
in a units to a coordinate vb expressed in b units can be written as

vb = (va − amin)
∆b

∆a
+ bmin

= va
∆b

∆a
+ bmin − amin

∆b

∆a
.

(2.31)

We now derive the calibration matrix for a spherical camera whose field of view covers
the azimuth range φ ∈ [−π, π], and whose elevation is in the range θ ∈ [−α, α], where α
denotes the maximal elevation angle of the hyperbolic mirror. The rows in a spherical
image correspond to the elevation θ. The columns correspond to the azimuth ϕ. Let
Nc and Nr denote the number of columns and rows in the spherical image. Given the
specified number columns, we calculate the number of rows required to get approximately
square pixels from the following ratio:

απ

π
=
Nr

Nc

. (2.32)

Using these ratios, the number of rows Nr is calculated as

Nr = round(Ncα). (2.33)
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Figure 2.9: A virtual cylindrical panoramic camera is defined by a cylinder centered at the effective
viewpoint F . The mirror coordinate frame and the cylindrical panoramic camera coordinate frame
are related by a rotation.

The camera calibration can then be derived as





fu 0 uc
0 fv vc
0 0 1



 , (2.34)

where fu = Nr/2π, fv = Nc/2α, uc = πNr/2π and uv = αNc/2α, which can be derived
using equation 2.31.

The mapping from pixel coordinates to points on the sphere is given by

xS = S−1K−1
S uS. (2.35)

Generating an image obtained by a virtual spherical camera involves mapping pixel co-
ordinates uS in the spherical image to pixel coordinates in uR the image acquired by the
real camera. The mapping can be expressed as

uR = KRPPMRMPMRMSS−1K−1
S uS. (2.36)

2.4.2 Virtual cylindrical camera

A cylindrical image can be obtained by projecting the environment onto a cylinder and
unfolding the cylinder to a rectangular grid of pixels.
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The equation of a cylinder with unit radius whose axis of symmetry coincides with the
z-axis is given by

x2 + y2 = 1. (2.37)

The central projection of X onto a point X ′ on the surface of the cylinder can be de-
scribed as follows. Let XC = [X1, X2, X3]

T denote the coordinate of point X specified in
coordinate system C. The ray from F through X is specified by λX. We seek λ such
that λX = X̃, where X̃ denotes a point on the surface of the cylinder. The λ for which
the ray intersects the sphere is found by solving the quadratic equation

λ2(X2
1 +X2

2 )− 1 = 0, (2.38)

which is obtained by substituting λX into 2.37. Solving for λ gives two solutions:

λ1,2 = ± 1
√

X2
1 +X2

2

. (2.39)

The solution that describes the point of intersection between F and X is given by

λ = max(λ1, λ2). (2.40)

We define an operator PC that performs the central projection of a point onto the cylinder,

PCX =









X4 0 0 0
0 X4 0 0
0 0 X4 0
0 0 0 r

















X1

X2

X3

X4









, (2.41)

where r = 1/λ is obtained from equations 2.39 and 2.40.

The coordinates of X̃ can be expressed in a cylindrical coordinate representation x =
[z, θ, 1], where z denotes the elevation, θ denotes the angular azimuth, and 1 denotes the
unit radius. We define an operator C that transforms a normalized homogeneous vector
X̃ representing a point on the unit sphere to x,

CX =







arctan2(X2, X1)
X3√
X2

1
+X2

2

1






. (2.42)

The inverse C−1 is given by

C−1[ϕ, θ, 1]T =









cos θ
sin θ
z
1









. (2.43)

Normalized homogeneous cylindrical pixel coordinates uC can be related to XC via

uC = KCCNPCXC . (2.44)
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Figure 2.10: A virtual planar perspective camera is defined by a plane at unit distance from the
effective viewpoint F . The mirror coordinate frame and the virtual planar perspective camera
coordinate frame are related by a rotation.

where K is a 3× 3 upper triangular calibration matrix that maps cylindrical coordinates
to pixel coordinates. The form of the calibration matrix can be derived as explained in
the previous paragraph.

The rows in a panoramic image correspond to the elevation z. The columns correspond
to the azimuth ϕ. Let Nc and Nr denote the number of columns and the number of rows
in a panoramic image. From the specified number of columns, we calculate the number
of rows required to get approximately square pixels from the following ratio,

h− 2e

πrrim

=
Nr

Nc

, (2.45)

which is based on the ratio of the height of the mirror rim with respect to the focal point
inside the mirror and half the edge of the mirror rim. Using the ratio, the number of
rows Nr is calculated as

Nr = Nc
πrrim

h− 2e
. (2.46)

The mapping from pixel coordinates to points on the cylinder is given by

xC = C−1K−1
C uC . (2.47)

Generating an image obtained by a virtual cylindrical camera involves mapping cylindri-
cal pixel coordinates uS to pixel coordinates uR in the image acquired by the real camera.
The mapping can be expressed as

uR = KRPPMRMPMRMCC−1K−1
C uC . (2.48)

2.4.3 Virtual planar perspective camera

Pixel coordinates u and coordinates on the normalized image plane x are related via

uP = KPxP . (2.49)
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A virtual perspective camera can be specified by its calibration matrix, KP . The cali-
bration matrix for an Nr × Nc image obtained by a camera with zero skew and square
pixels, covering a field of view of γ degrees, can be expressed as:

K =





Nc/2 cot(γ/2) 0 Nc/2
0 Nc cot(γ/2) Nr/2
0 0 1



 . (2.50)

The mapping from virtual planar perspective image pixel coordinates to pixel coordinates
in the image acquired by the camera can be expressed as

uR = KRPPRRPP−1
P K−1

P uP , (2.51)

where P−1
P extends the vector with a homogeneous component whose value equals 1.

2.4.4 Re-sampling issues

In the previous paragraphs we have shown how the coordinates of pixels in a virtual
image are mapped to pixel coordinates in a catadioptric image. The presented mappings
specify the locations where the input image is to be re-sampled. Generating an output
image can be done in a straightforward manner; each pixel in the output image is mapped
to a point in the input image (catadioptric image). The intensity value at the mapped
point is then assigned to the respective output pixel. There is one issue however; the
re-sampling grid does not coincide with the input sampling grid, which is taken to be the
integer lattice. What value should be assigned to input coordinates that lie in-between
pixels? The solution is to convert the discrete input image into a continuous surface, a
process known as reconstruction or interpolation. Once the input image is reconstructed
it can be sampled at any position.

In our re-sampling implementation we use bi-linear interpolation to reconstruct the
catadioptric input image. The bi-linear interpolation method is as follows. Suppose
u = (u, v), where u and v are integer coordinates, map to uR = (uR, vR) in the catadiop-
tric image. Bi-linear interpolation uses the image intensities at the four pixels (uR0, vR0),
(uR1, vR0) (uR0, vR1), (uR1, vR1) which are closest to (uR, vR) in the catadioptric image:

uR0 = floor(uR), uR1 = uR0 + 1, vR0 = floor(vR), vR1 = vR0 + 1. (2.52)

The intensity values are interpolated along the u-axis to produce two intermediate results
I0 and I1,

I0 = IR(uR, vR0) = IR(uR0, vR0)(uR1 − uR) + IR(uR1, vR0)(uR − uR0), (2.53)

I1 = I(uR, vR1) = IR(uR0, vR1)(uR1 − uR) + IR(uR1, vR1)(uR − uR0), (2.54)

where I(u, v) denotes the intensity at pixel (u, v) in the catadioptric image. Then, the
intensity I(uR, vR) is computed by interpolating the intermediate values I0 and I1 along
the v-axis:

I(u, v) = I0(vR1 − vR) + I1(vR − vR0). (2.55)
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(a) cylindrical re-sampling grid (b) perspective re-sampling grid

(c) (d)

Figure 2.11: Course re-sampling grids and re-sampled images. a) re-sampling grid for forming a
cylindrical panoramic image, b) re-sampling grid for forming a perspective image, c) cylindrical
panoramic image, d) perspective image. The re-sampling grids illustrate that proper re-sampling
requires smoothing with space-variant filtering kernels to prevent aliasing.

The advantage of bi-linear interpolation over other interpolation methods is that it is
computationally inexpensive. A disadvantage of the method is that at places where the
input image is under-sampled, aliasing occurs. Aliasing results in spurious resolution; the
output image has high-frequency components that are not present in the input image.

To overcome this issue one can either increase the sampling rate, or bandlimit the input
image [110]. The first solution is ideal but costly. The second solution forces the input
image to conform to the low sampling rate by attenuating the high frequency components
that give rise to aliasing artifacts. The suppression of high-frequency components can
be done by filtering the input image with a low-pass filter such as a Gaussian kernel.
Figure 2.11a displays a course re-sampling grid used to transform the catadioptric image
into the cylindrical panoramic image shown in figure 2.11c. We see that the sampling
rate decreases as we get further from the image center. Figure 2.11b displays a course
re-sampling grid used to transform the catadioptric image into a perspective image shown
in figure 2.11d. In this case, the re-sampling rate increases as we get further from the
image center. Both cases illustrate that a proper re-sampling of catadioptric images into
other perspective image representations requires smoothing of the input image with a
kernel whose shape and size varies with position (space-variant filtering).
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2.5 Conclusions

In this chapter we have discussed a central panoramic catadioptric vision sensor. We have
reviewed various methods and sensor designs aimed toward acquiring panoramic imagery.
Roughly, approaches can be categorized as image mosaicing (using images acquired by a
single rotating camera), dedicated hardware (often employing multiple cameras arranged
in a compact framework), and catadioptric vision sensors.

Catadioptric vision sensors employ a curved mirror that is mounted in front of a camera
lens. Such sensors are particularly well suited for mobile robot applications because they
instantly provide a panoramic image, are compact, relatively cheap, consume little power,
and suffer little from wear-and-tear because they have no moving parts. Of particular
interest are catadioptric systems that respect the single effective viewpoint constraint.
The single effective viewpoint constraint expresses the fact that the radiance is measured
from a single point in space. The single effective viewpoint property enables camera
motion and scene structure estimation. Furthermore, images acquired by the sensor
can be re-sampled to form other perspective image representations, which may be more
suitable for certain tasks such as feature tracking or visualization.

The re-sampling into other perspective image representations requires that the sensor has
a single effective viewpoint and that the intrinsic parameters of the sensor are known.
Our sensor is based on a hyperboloid mirror to obtain panoramic vision. The alignment
of the mirror with respect to the lens is critical to obtain a single effective viewpoint. We
have described simple calibration schemes to correctly align the mirror and the lens, and
to estimate the intrinsic parameters of the camera. Re-sampling furthermore requires a
form of intensity interpolation. In the applications in forthcoming chapters we use the
bi-linear interpolation method that may lead to aliasing in case the catadioptric image is
under-sampled. A form of space variant filtering is required to resolve this issue. The issue
has received little attention in panoramic vision literature and could be an interesting
direction for future research.





Chapter 3

Appearance-based Robot Localization

3.1 Introduction

A mobile robot needs an internal representation of its workspace in order to localize itself.
Localization is a prerequisite for optimal goal directed navigation in a large workspace.
Internal sensors, such as shaft encoders, which measure the revolutions of the wheels,
are useful to track the pose (location and orientation) of a robot as it moves. However,
errors caused by wheel slippage accumulate. Therefore, the positional uncertainty can
grow without bound when relying only on such “dead reckoning” for navigation. To
counteract this effect, the robot has to observe the workspace with its external sensors
(e.g. camera, laser range finder) and use a map in order to localize itself. The map
specifies the relation between poses in the workspace and observations. Each observation
provides (partial) evidence as to where the robot is located in the map. Localization now
involves determining poses that “explain” the observation given the map.

Traditionally, mobile robots are equipped with an array of ultrasonic or infrared sensors
that measure the distance to the nearest object in the workspace. The low-dimensional
measurement vector obtained from such an array often carries little clues as to where
a robot is located because the same sensor measurement profile may be obtained from
many distinct poses in the workspace. Modern sensors, such as cameras, provide high-
dimensional measurements that may yield more informative clues. Extracting relevant
features from an image based on which different locations in the workspace can be dis-
tinguished is a crucial issue for fast global localization.

Many approaches have been proposed to extract a low dimensional feature vectors from
high dimensional sensor data. The type of features that are extracted are related to the
way in which the workspace is internally represented. Traditionally, range sensors are
used and the map is typically represented as a 2-D or 3-D geometric map. Such maps
range from relatively simple maps containing just the 2-D positions of (artificial or nat-
ural) landmarks to detailed 3-D CAD models. In landmark-based approaches, artificial
or natural landmarks extracted from a novel sensor measurement are compared against
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those present in the map in order to infer the location. In model matching approaches,
a local geometric model is extracted from a novel sensor measurement, which is sub-
sequently matched against a global model to infer the location. Both model matching
and landmark-based approaches rely crucially on the accurate and reliable extraction of
salient features from the raw sensor data. A robot may be given a map of its workspace
a priori, but a truly autonomous mobile robot should be capable of learning a map from
sensor data acquired in the workspace. When the robot is equipped with a single vision
sensor only, automatic learning of a 3-D geometric model for localization is complex. It
requires reliable extraction of landmarks from images that can robustly be identified from
various viewpoints. Part of the complexity arises due to the fact that the appearance
of landmarks depends on the viewpoint from which they are perceived. Furthermore, in
order to build such a map, the 3-D positions of the landmarks need to be known. The
required 3-D information is not directly available, but rather needs to be inferred by
triangulation of the landmark bearings as observed from different camera viewpoints.

As an alternative to learning a geometric map, one can attempt to model the relationship
between images and poses directly. Appearance modeling, introduced by [61] in the con-
text of object recognition, learns a model that relates poses to images observed at those
poses from a set of training images that are labeled by their associated poses. Modeling
in the high-dimensional space in which the images live is generally infeasible. Therefore,
prior to modeling the dimensionality of images is reduced. Typically this is done by
Principal Component Analysis (PCA). PCA finds a linear sub-space of the image space
that preserves the directions in which the training images vary most. In order to per-
form localization on the basis of a novel image, an attempt is made to invert the learned
relationship.

Appearance modeling has been adopted for robot localization by several researchers [26,
71, 42, 43, 41, 55]. A shortcoming in their localization approaches is that they ignore
the fact that sensor measurements are inherently noisy so that at best a probabilistic
estimate of the robot pose can be obtained. Furthermore, any prior belief that the
robot already has about its pose is not incorporated in obtaining a pose estimate. These
shortcomings can be overcome by explicitly representing and reasoning with uncertainty.
In a probabilistic approach towards robot localization, a robot maintains a belief function
(probability density function) over permissible poses in the workspace. Both sensing and
acting affect the belief. A motion model predicts the uncertain result of an action and is
used to update the belief accordingly. A probabilistic observation model relates poses to
observations and is used to update the belief after obtaining a new observation.

In this chapter we present a method to learn an appearance-based observation model for
probabilistic robot localization from a set of supervised training images. We propose a
kernel density estimator (Parzen estimator) to represent the observation model. Similar
to other works on appearance-based robot localization, we use PCA to reduce the di-
mensionality of images. PCA comes with a ranking of its features according to an image
reconstruction criterion. We are however not interested in image reconstruction, but in
robot localization. The ranking of individual PCA features according to a criterion re-
lated to the task of robot localization may be different. Such a criterion to characterize
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the performance of an observation model was recently proposed in [90]. We adopt this
criterion to investigate whether the ranking of features that comes with PCA is also the
best ranking for the task of robot localization.

This chapter is organized as follows. In section 3.2 we review related work on appearance-
based robot localization and identify their limitations. Section 3.3 outlines a probabilis-
tic framework for robot localization that we adopt to overcome these limitations. In
section 3.4 we present our method to learn an appearance-based observation model for
probabilistic localization. The model is experimentally evaluated in section 3.5. We con-
centrate on the problem of globally localizing a robot on the basis of a single observation
assuming a uniform prior. We study how the performance depends on the parameters in
our observation model. We investigate the number of PCA features needed for reliable
localization, and we investigate whether the ranking of PCA features that comes with
PCA is also optimal for robot localization. Finally, a discussion and conclusions are
presented in section 3.6.

3.2 Appearance Modeling

Recently appearance-based approaches towards robot localization have been proposed.
These approaches avoid the need to extract and match abstract features such as land-
marks from high-dimensional sensor data. Instead, they attempt to model the sensor
measurements as a function of the robot pose directly. Throughout our discussion we
assume that sensor measurements are images, but the discussion is equally valid for other
sensors such as laser range finders.

An image can be regarded as a vector in a high-dimensional space spanned by individual
pixels. Typically, the set of images that are obtained in a particular environment form a
subset of all possible images. For example, given that the robot’s workspace is an office
environment, it will be extremely unlikely that the robot perceives an image displaying a
rock concert. Moreover, images acquired at nearby positions are often highly correlated.
This suggests that the images that can be obtained in a particular environment live on
a low-dimensional, but potentially highly curved and possibly self-intersecting manifold.
Appearance-based modeling approaches aim to learn a representation of the manifold
from a set of training images, where each training image is labeled by its associated pose.

Modeling the manifold in the high-dimensional image space is impractical because it re-
quires a huge amount of training samples. Prior to modeling, appearance-based modeling
approaches therefore first reduce the dimensionality of the images. An effective way to re-
duce the dimensionality of images, while preserving the directions in which the data varies
most is Principal Component Analysis (PCA). PCA has been used for vision based robot
localization [55, 71], visual servoing [12] and image synthesis of moving robot manipula-
tors [39]. For dense range sensor scans PCA has been used to decrease the dimensionality
of the data. [10, 104]. PCA calculates the eigenvectors of the covariance matrix of the
set of training images. The eigenvectors with the largest corresponding eigenvalues are
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used to span an orthonormal basis of a low-dimensional subspace called the eigenspace.
By projecting images into the eigenspace the major appearance characteristics, gener-
ally corresponding to low frequency signals present in the images, are retained. From a
recognition point of view, the eigenspace has the attractive property that the distance
between two points in eigenspace (projected images) is a least squares approximation to
the correlation between the images from which the points are computed [62]. Correlation
is a well established similarity measure. Several methods to calculate the eigenspace from
a set of images are outlined in appendix A.

The projected training images yield a discrete sample of points on the appearance mani-
fold. Several researchers fit an interpolating function through the training points in order
to obtain a continuous representation of the appearance manifold that can be used for
localization. In [71], multiple manifolds (each of which is indexed by the robot orienta-
tion) are modeled. A continuous representation of each manifold is obtained by linearly
interpolating between training points. In their approach, localization on the basis of a
novel image is done by first determining which of the manifolds is closest in order to
estimate the robot orientation. Subsequently, the position of the robot is estimated by
determining the pose associated with the closest point lying on the nearest manifold.
In [41] cubic spline interpolation is used to obtain a continuous representation of the
appearance manifold from cylindrical panoramic images, all of which are acquired under
the same orientation. They also perform localization on the basis of a novel image by
projecting the image onto the nearest point on the manifold. In [55] a nearest neighbor
method is used for localization on the basis of a novel image.

A limitation shared by these approaches is that they give a single pose estimate. The
estimate is based solely on the basis of a single observation. But what good is this
estimate when we have no idea about its accuracy and reliability? Sensor measurements
are inherently noisy, which implies that at best a probabilistic estimate of the robot pose
can be obtained [91]. Furthermore, if a robot already roughly knows where it is, it would
be preferable to utilize new observations to refine this knowledge, rather than to replace
it. A robot localization framework that explicitly represents and reasons with uncertainty
is discussed in the next section.

3.3 Probabilistic Robot Localization

In this section we outline a probabilistic framework for robot localization. In a probabilis-
tic approach to robot localization the robot maintains a belief as to where it is located.
Let xt denote a random variable representing the state of the robot at time t. For lo-
calization, it is sufficient to characterize the state by the position and orientation with
respect to a global frame of reference. Let us assume that at time t the robot obtains a
sensor reading zt from which it extracts a vector of features yt, which we will refer to as
the observation at time t. At time t the robot executes an action at that terminates at
time t + 1. The state of the robot xt at time t cannot be observed directly, but rather
has to be inferred from the sequence of past observations and actions.
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Initially, at time t = 0 the robot has a prior belief as to where it is located. This belief
is represented by a probability distribution p(x0) that reflects the initial uncertainty.
Observations and measurements change the robot’s belief. Actions can be used to predict
the next state. The robots belief after executing the (t− 1)-th action will be denoted by
bt−1(xt) = p(xt|y1, a1, . . . ,yt−1, at−1). Observations can be used to correct an estimate of
the current state. The robots belief after obtaining the (t)-th observation will be denoted
by bt(xt) = p(xt|y1, a1, . . . ,yt−1, at−1,yt). We will treat these cases separately.

Correction. By application of the Bayes theorem

bt(xt) = p(xt|y1, a1, . . . ,yt−1, at−1,yt) (3.1)

= αt p(yt|y1, a1, . . . ,yt−1, at−1,xt)p(xt|y1, a1, . . . ,yt−1, at−1), (3.2)

where αt = 1/p(yt|y1, a1, . . . ,yt−1, at−1) is a normalizing constant that does not depend
on the state. The Markov assumption states that sensor readings are conditionally inde-
pendent of previous actions and observations given the current state;

p(yt|y1, a1, . . . ,yt−1, at−1,xt) = p(yt|xt). (3.3)

By application of the Markov assumption, equation 3.1 reduces to

bt(xt) = αtp(yt|xt)bt−1(xt). (3.4)

We see that the most recently available estimate of the robot pose, bt−1(xt) is corrected
by the probability density function p(yt|xt) of the expected observation from a given
location by Bayesian inversion. The density p(yt|xt) is called the observation model.
The observation model relates sensor measurements to locations of the environment and
can thus be regarded as a map of the environment. Different kinds of maps have been
proposed in literature. The map may describe explicit properties of the environment
such as the positions of such as positions of landmarks [92] or occupancy values [48].
Alternatively, the map may be an implicit model directly relating sensor patterns and
robot poses such as neural networks [66], radial basis functions [103] or look-up tables
[10].

Prediction. The effect of actions is that they change the pose of the robot and thus
its belief. Using the theorem of total probability

bt−1(xt) = p(xt|y1, a1, . . . ,yt−1, at−1) (3.5)

=

∫

p(xt|y1, a1, . . . ,yt−1, at−1,xt−1)p(xt−1|y1, a1, . . . ,yt−1, at−1)dxt−1. (3.6)

The state xt−1 does not depend on the action at−1 executed from there. Furthermore,
exploiting the Markov assumption again, the state xt only depends on the state xt−1 and
the action at−1. Equation 3.5 then reduces to:

bt−1(xt) =

∫

p(xt|at−1,xt−1)bt−1(xt−1)dxt−1. (3.7)
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We see that the prediction phase involves a convolution of the belief bt−1(xt−1) with the
density p(xt|at−1,xt−1), which is referred to as the motion model. The motion model
describes the effect that a motion command a has on the location of the robot and can
be seen as a generalization of mobile robot kinematics.

In literature on Markov localization, often simple kinematic models are used and Gaussian
noise is added to the prediction to account for model limitations and wheel slippage.
These simple approaches tend to give an overly pessimistic estimate of the uncertainty
region resulting from a motion command. If odometry would be the only source of
information a robot could rely on for localization, it would certainly pay off to use an
accurate, calibrated model of odometry and its error propagation instead. The main
practical motivation for using simple models is that pose estimates will be corrected by
external sensing in any case.

By combining equations 3.4 and 3.7 we arrive at the following recursive for probabilistic
robot localization:

bt(xt) = αtp(yt|xt)
∫

p(xt|at−1,xt−1)bt−1(xt−1)dxt−1. (3.8)

In order to implement equation 3.8 we need to specify a motion model, an observation
model, and a representation of the belief function that can accurately and efficiently be
maintained over time. Inventing a motion model is relatively easy as it follows from
the robot kinematic model. Various well established belief function representations and
methods to maintain them have been described in literature. They are briefly outlined
in appendix B. In this chapter, we focus on the observation model. The availability of a
good observation model is crucial for fast global localization. We address the problem of
learning an appearance-based observation model from images labeled by their respective
pose. This problem has received little attention in robotics literature.

3.4 Our Observation Model

In this section we present our method to learn an appearance-based observation model
p(y|x) for probabilistic robot localization from a set of N training samples

{(z1,x1), (z2,x2), . . . , (zN ,xN)},
where zi is a sensor measurement and xi is the pose at which the measurement was taken.
In our specific application, the sensor measurements z are cylindrical panoramic images,
and we use PCA to extract observations y from the images. Note however that our
approach is not restricted to these specific types of sensor measurements and features.

3.4.1 Model representation

We propose to model p(y|x) by a kernel density estimator, also known as the Parzen
estimator [70]. The Parzen estimator approximates the density by a normalized sum of
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Figure 3.1: Illustration of Parzen density estimation. A set of 500 samples are drawn from the true
distribution (dotted curve). The plots show the effect on the Parzen density estimate (solid curve)
of varying kernel widths. a) a too small kernel width (h = 0.001) results in an over-fitted estimate,
b) a reasonable approximation (h = 0.04), c) a too large kernel width (h = 1) results in an overly
smooth estimate.

identically shaped kernel functions centered at the training samples. Let v1, . . . ,vN be
a set of N d-dimensional training samples. The Parzen density estimate at a point v is
given by:

p(v) =
1

N

N
∑

n=1

K(
v − vi
h

), (3.9)

where K is an arbitrary bounded probability density and h is the width of the kernel,
which controls the smoothness of the density estimate.

The Parzen estimator is illustrated in figure 3.1. The dotted function represents an un-
derlying 1-D distribution from which samples were drawn. The solid functions represent
the Parzen density estimates for various kernel widths. In figure 3.1a the kernel width
is chosen to be very small, resulting in a wildly fluctuating approximation of the true
underlying density. In figure 3.1b an appropriate kernel width was used and the Parzen
estimate gives a reasonably close approximation of the underlying density. Finally, fig-
ure 3.1c shows what happens when the kernel width is chosen to large. In this case,
the density estimate is too smooth and resembles a single Gaussian with a large variance
centered at the data mean.

The designer of the Parzen estimator has the freedom to choose the kernel shape and has
to determine the kernel width h. In this work we use Gaussian kernels. A multivariate
d-dimensional Gaussian kernel with width h and centered at a point µ is given by

g(v − µ) = 1

(2π)d/2hd|Σ|1/2 exp[−
1

2h2
(v − µ)TΣ−1(v − µ)]. (3.10)

In order to construct a kernel density estimator for the observation model p(y|x) (see
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equation 3.4), we first express it as

p(y|x) = p(y,x)

p(x)
. (3.11)

Both the joint density p(y,x) and the density p(x) are then modeled by a Parzen density
estimator. In order to model the joint density p(y,x) we assume that x and y are locally
independent. That is, we assume that x and y are independent around the training
samples. We express p(x|y) as

p(x,y) =
1

N

N
∑

n=1

gy(y − yn)gx(x− xn), (3.12)

where gy() and gx() represent univariate kernels. Similarly, we model p(x) as

p(x) =
1

N

N
∑

n=1

gx(x− xn). (3.13)

The set of samples from which the observation model is estimated consists of feature
vectors y and their associated poses. In our data set, the training poses are points on a
two-dimensional grid in world space where the size of a grid cell is c × c. We therefore
choose to use a univariate Gaussian for the x-kernels. We fix the kernel width of the
x-kernels at hx = c/2, i.e. half the separating distance between two neighboring points
on the grid. We have no a priori knowledge about the density of the feature vectors in
the q-dimensional feature space. In lack of such knowledge, we assume that the features
are uncorrelated, so that the covariance matrix in equation 3.10 becomes diagonal. Each
y-kernel is thus represented by a univariate q-dimensional Gaussian. What is left to
estimate is the optimal kernel width of the y-kernels. In order to quantify what optimal
is, we need a criterion to characterize the performance of our observation model. We
address the issue of estimating the optimal kernel width in section 3.4.3. Before we do
so, we first derive an evaluation criterion in the following section.

3.4.2 Model evaluation

An obvious measure to characterize the performance of an observation model is the
expected deviation between estimated and true locations, as was recently proposed in [89].
Let x∗ denote the true pose of the robot, and let L(x∗,x) denote a loss function measuring
the error between the true pose x∗ and an arbitrary other pose x. After observing y∗, the
Bayesian localization error at x∗ is obtained by integrating the error L over all possible
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poses x weighted by the likelihood p(x|y∗) that the robot assigns to them, giving

ε(x∗,y∗) =

∫

x

L(x∗,x)p(x|y∗)dx (3.14)

=

∫

x

L(x∗,x)
p(y∗|x)p(x)

p(y∗)
dx (3.15)

=

∫

x

L(x∗,x)
p(y∗|x)p(x)

∫

x
p(y∗|x)p(x)dxdx. (3.16)

Thus far, the error ε corresponds to a single pose and observation only. By averaging
over all possible observation y∗ obtained from x∗ and all possible poses x∗, weighted by
the likelihood of occurrence p(x∗,y∗), the average Bayesian localization error is derived
as

E =

∫

x∗

∫

y∗
ε(x∗,y∗)p(y∗,x∗)dy∗dx∗ (3.17)

=

∫

x∗

∫

y∗
ε(x∗,y∗)p(y∗|x∗)p(x∗)dy∗dx∗ (3.18)

=

∫

x∗

∫

x

L(x∗,x)p(x∗)p(x)

∫

y∗

p(y∗|x∗)p(y∗|x)
∫

x
p(y∗|x)p(x)dxdy

∗dxdx∗. (3.19)

Equation 3.17 measures the true average Bayesian localization error. Assuming that the
training data were sampled from uniform priors p(x) and p(x∗), the empirical average
Bayesian localization error can be approximated by Monte Carlo estimation as

E ≈ 1

N

N
∑

i=1

N
∑

j=1

L(xi,xj)
N
∑

k=1

p(yk|xi)p(yk|xj)
∑N

l=1 p(yk|xl)
. (3.20)

The above empirical error measure converges to the true error measure as the size of
the data set grows to infinity. Although in practice the size of the training set is always
limited, the empirical error measure allows us to evaluate and compare the performance
of different observation models p(y|x). The smaller the value of E is, the more reliable
the global localization is.

3.4.3 Model estimation

The average Bayesian localization error presented in the previous section provides us a
handle to determine the optimal kernel width for our observation model; the optimal ker-
nel width is the one that minimizes the average Bayesian localization error. It is obvious
that the optimal kernel width for the set of training samples is zero. An evident drawback
of zero kernel width is that the resulting observation model lacks any generalizing capa-
bilities. To overcome this undesirable situation one can use a cross-validation method to
estimate the kernel width from the training data only [15]. In cross-validation, for each
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i ∈ 1, . . . , N a leave-one-out estimate is formed by omitting the contribution of the i-th
sample in the estimation of the density at that point and determine the optimal kernel
width by minimizing the Bayesian localization error at the i-th datum as a function of
the kernel width h. Doing so for every sample in the training set, an estimate of h may
be formed by taking the average over all estimate kernel widths. Excluding the sample
causes a bias towards larger kernel widths because neighboring points have to account
for the density at the point. Alternatively, the optimal kernel width can be found by
minimizing the Bayesian localization error on an independent test set as a function of
the kernel width. We adopt the latter approach.

The Bayesian localization error is minimized using Golden section search with Brent’s
parabolic interpolation [73]. Golden section search is a general method for 1-D function
minimization. A minimum of an arbitrary 1-D function is said to be bracketed by a
triplet of points (a, b, c), where a < b < c, such that f(b) < f(a) and f(b) < f(c). In
order to hunt down the minimum given a bracketing triplet, a new point x that lies either
in the interval (a, b) or in the interval (b, c) can be chosen. Suppose that a < x < b is
chosen. If f(x) > f(b), a new bracketing triplet can be formed as (x, b, c). If f(x) < f(b),
a new bracketing triplet can be formed as (a, x, b). In any case, the middle point of the
new bracketing triplet always corresponds to the lowest function value found so far. The
procedure can be repeated using the new triplet until convergence. Golden section search
gives the optimal recipe for choosing the next point x to be tried. It turns out that, for
arbitrary 1-D functions, the best strategy is to choose the next point x a fixed fraction
(originating from a so-called golden section) into the larger of the two intervals. Brent’s
method speeds up the convergence by switching to parabolic interpolation if the function
to be minimized has a parabolic shape in the vicinity of its minimum.

3.5 Experiments

We have described a method to learn an appearance-based observation model for prob-
abilistic robot localization. In a series of experiments we investigate 1) how the perfor-
mance of the model depends on the model parameters, 2) how many features are needed
for global localization, and 3) which PCA features yield the best performance. We con-
sider a scenario in which the robot has to localize itself globally on the basis of a single
observation where a uniform prior is assumed.

3.5.1 Data-sets and pre-processing

We evaluate our observation model on real image data obtained by a catadioptric vision
sensor mounted on top of a mobile robot. The image data was kindly provided by
Tsukuba Research Center (Japan), Real World Computing Program, in the form of the
MEMORABLE robot database. The database contains sensor data (laser range scan,
infrared sensors, bumpers and catadioptric vision) obtained at more than 8000 poses
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Figure 3.2 : A catadioptric image from the TRC Database.

Figure 3.3: A cylindrical panoramic image derived from the catadioptric image displayed in figure 3.2.

in a 17 × 17 m office environment. The data was obtained by accurately positioning a
Nomad 200 robot at discrete coordinates on a virtual sampling grid over the workspace.
Each cell of the virtual grid is 10 × 10 cm. A 2-D map of the workspace is displayed in
figure 3.4. The head of the Nomad 200 always faces the same direction so that the pose
of the robot may be characterized by the position only. Figure 3.2 displays an image from
the database. We transform the catadioptric images in the database to 720× 200 pixels
cylindrical panoramic images using the methods presented in chapter 2. The cylindrical
panoramic images are smoothed by a Gaussian function and subsequently sub-sampled
to a resolution of 64 × 256 pixels to reduce the dimensionality. An example is shown in
figure 3.3. The resulting images are then normalized so that the sum of their squared pixel
intensity values equals one. This simple normalization renders the image representation
less sensitive to global intensity changes. A set of 2000 images was randomly selected
from the database to derive the eigenvectors and associated eigenvalues. The first 5
eigenvectors of the database are displayed in figure 3.5.

3.5.2 Estimation of the kernel width

Estimation of the parameters of our observation model requires a set of training samples.
The MEMORABLE database contains over 8000 samples, which in principle can all be
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Figure 3.4: The environment from which the images were taken. Positions marked by a + indicate
where images that were used to estimate our observation model were obtained. Position marked by
a · indicate positions that were used to evaluate the performance of our observation model. The
units of the axes are 10−1 m.
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Figure 3.5 : The five most prominent eigenvectors.

used to construct the observation model. However, in the operational localization stage
distances from all possible poses and their associated feature vectors (either represented
by discrete cells as in grid-based methods or by particles as in particle-based methods) to
the novel observation have to be calculated. Distance computations are computationally
demanding.

We therefore limit the number of training samples, and use a subset of 303 samples as
training samples. The training samples are obtained at discrete positions of a grid, each
cell of which is 50×50 cm. Another (non-overlapping) subset of 400 samples is uniformly
drawn from the poses present in the database for estimating the optimal kernel width.

We wish to investigate the performance of the observation model for different individual
PCA features and for PCA feature vectors of increasing dimensionality. In our experi-
ments we use the first 25 most prominent eigenvectors as features. We instantiated 50
observation models, each of which uses a different subset of PCA features. The first 25
models use a single PCA feature. The other 25 use PCA feature vectors of increasing
dimensionality, i.e. the first model uses the first PCA feature, the second model uses the
first and second PCA feature etc. For each model we estimate the optimal kernel width.
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Figure 3.6: The average Bayesian localization error (in 10−1 m) plotted as a function of the kernel
width h for individual features. The optimal kernel width for each model found by the minimization
procedure is marked by a ◦.
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Figure 3.7: The average Bayesian localization error (in 10−1 m) plotted as a function of the kernel
width h for feature vectors of increasing dimensionality.The optimal kernel width for each model
found by the minimization procedure is marked by a ◦.
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The resulting optimal kernel width for the different models are displayed in figures 3.6
and 3.7. Figure 3.6 displays the average Bayesian localization error evaluated on the
training set for the models using a single PCA feature as a function of the kernel width
h. The optimal kernel width for each model as found by the minimization procedure is
marked by a ◦. The numbers below the marks identify the model. The n-th model is
uses the n-th PCA feature according to the ranking that comes with PCA. Figure 3.7
displays a similar plot for the models trained on vectors of PCA features. In this plot,
the n-th curve corresponds to the model trained on the first n PCA features according to
the ranking of features that comes with PCA. Note that the all curves start at a kernel
width larger than zero. The reason is that if the kernel width is chosen to tight, the
Parzen density estimate becomes zero at points other than the training samples.

We observe that for the single feature models a rather well defined minimum exists
for the first few PCA features. For PCA features with a larger index, the minimum
is less well defined. This could be expected, as the features with a lower index are
least sensitive to noise in the original images. For the models using feature vectors of
increasing dimensionality, we observe that a rather well defined minimum exists for low
dimensional feature vectors (up to 3 components). For higher dimensional feature vectors
the minimum is less well defined. This implies that performance of the observation model
is less sensitive to the choice of kernel width. The plot also shows that the optimal kernel
width increases with increasing feature vector dimensionality. This may be explained by
the fact that data tends to become sparse in high-dimensional spaces and is related to
the distribution of the data. Finally, we note that the average Bayesian localization error
on the training data decreases when more PCA features are taken into account.

3.5.3 Performance of the observation models

The performance of each observation model is evaluated on a validation set. The valida-
tion contains samples uniformly drawn from the admissible poses. The validation set is
disjoint from the set of samples used to estimate the observation model (both training
samples, as well as the samples used to estimate the kernel width). Figure 3.4 displays
the training points (marked by squares) and the validation points (marked by dots).

Performance of single feature models. In this experiment we investigate whether
the ranking of features that comes with PCA is also optimal for robot localization. In
order to do so we evaluate the performance of the models trained on single features on the
independent validation set. Figure 3.8 displays the results. The plot shows the average
Bayesian localization error (in 10−1 m) as a function of the PCA feature index. The
general trend of the curve indicates that performance decreases with increasing PCA
feature index, as we also saw during training. This indicates that the features most
important for reconstruction are also the ones most important for global localization.
Note that an upper bound on the localization error exists due to a finite size of the
workspace represented by the training samples.
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Figure 3.8: The average Bayesian localization error (in 10−1 m) obtained on a test set for single
PCA features.
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Figure 3.9: The average Bayesian localization error (in 10−1 m) on a test set for feature vectors of
increasing dimensionality.
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Performance of multiple feature models. The previous experiment showed that
PCA features with lower indices generally yield a better performance than PCA features
with higher indices. Still, individual features have relatively little explanatory power. By
combining individual features into feature vectors we expect that a better performance
can be achieved. In the current experiment we use the ranking of features that comes
with PCA and investigate the number of PCA features needed for localization. In order
to do so, we evaluate the performance of the observation models using feature vectors of
increasing dimensionality on the independent evaluation set. The results are displayed in
figure 3.9. The plot displays the average Bayesian localization error as a function of the
PCA feature vector dimensionality. We see that by using more features the localization
error decreases. The increase of performance is most significant for up to 10-dimensional
feature vectors. For 10 and more dimensions, little is gained. Faced with the tradeoff
between computational demands and accuracy, we would use about 10 features to perform
localization, giving an estimated average Bayesian localization error of about 0.7m in an
workspace of about 17m× 17m.

In order to achieve a better performance, the number of training samples used to repre-
sent the observation model could be increased. Unfortunately, this results in much higher
computational demands. The localization procedure spends most of its computation time
in calculating distances. Localization requires calculation of distances between each pos-
sible pose and each training pose (KN distances in a 2-D or 3-D space), and calculation
of distances between an observation and the observations associated with each training
pose (K distances in the feature space).

3.5.4 A concrete localization example

The average Bayesian localization error may give a slightly pessimistic view of the accu-
racy of localization because it may be affected strongly by a few outliers. Some regions
in the workspace may appear very similar (particularly when low-dimensional feature
vectors are used). An example is shown in figure 3.10. The top image corresponds
to the image obtained at position (5,180). Its 20-D projection (back-projected to the
image domain) is shown in the middle. The maximum a posteriori position estimate ob-
tained using the observation model and the 20-D feature vector corresponds to location
(116,116). The image obtained at (116,116) is shown at the bottom.

In the process of experimenting with the observation models, we observed that the
Bayesian localization error for a single observation is often far below the reported best
average of 0.7 m. For illustration, we display the a posteriori position estimates obtained
for a 1-,2-,4- and 7-dimensional feature vector from an image obtained at position (69,51).
Figure 3.11 displays the posterior density obtained using the first PCA feature only. The
figure displays the posterior density over the allowable poses in the workspace (i.e. those
present in the database). The density is estimated at the training samples (marked by
dots). Linear interpolation was used to approximate the density estimates at all allow-
able poses in the workspace (i.e. those present in the whole database). The likelihood at
each allowable pose is represented by a gray value. The gray values are scaled from zero
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True Robot location (5,180)

Reconstructed image from 20 dimensional vector

Estimated Robot Location (116,116)

Figure 3.10: top) image at test location, middle) its representation in feature space, bottom) image
from maximum likelihood posterior estimate

likelihood (black) to maximum likelihood (white). The true pose is marked by a star.
The maximum likelihood posterior pose estimate is marked by a circle. For the single
PCA feature, the density is multi-modal. The 2-D feature vector results in a uni-modal
estimate, which is peaked at the wrong location. The peak remains at the same location
up to a 4-D feature vector. The 4-D feature vector results in another uni-modal distribu-
tion, albeit again at an incorrect position. Extending the feature vector dimensionality,
we observe that if the dimensionality exceeds 7, the distribution is uni-modal and peaked
at the true robot location.

3.6 Discussion and Conclusions

Appearance modeling is an attractive method to construct a model for robot localization
because of its simplicity; no reliable landmark extraction and identification is needed. The
primary contribution of this chapter are the development and evaluation of a probabilistic
appearance-based observation model for global localization.
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Figure 3.11: Posterior distributions. Figure a) displays the posterior distribution after obtaining a 1-
D PCA feature from the test position marked by the star. The small white dots indicate the training
poses. The distribution is displayed as a gray map, where black corresponds to zero likelihood and
white corresponds to the maximal likelihood. The maximum likelihood pose estimate is indicated
by a circle. The other plots shown have a similar interpretation but differ in the number of features
used to localize, b) 2 features, c) 4 features, and d) 7 features.
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We have presented a method to estimate an appearance-based observation model from
a set of training images, which are labeled by their respective poses. The performance
of our observation model was optimized by minimizing the average Bayesian localization
error [89]. We applied the same criterion for model selection purposes.

Our experimental study is limited to the problem of globally localizing the robot on the
basis of a single observation, assuming an uninformed prior over the admissible poses in
the workspace. We showed that our appearance-based observation model can be used
to localize a mobile robot in an office environment of about 17 × 17 m. Localization
accuracy improves if the number of PCA features used increases. On our database we
established an average Bayesian localization error of 0.7 m when using 16 PCA features
and construct the observation model from 300 training samples.

A disadvantage of our appearance-based method is that the method is sensitive to illu-
mination changes and occlusions. In principle, illumination changes and occlusions can
be accounted for by simply incorporating such circumstances in the set of training data
used to represent the observation model. In practice, gathering images under all possible
circumstances is impossible. Furthermore, the huge resulting observation model hampers
real-time localization. A more pragmatic approach to deal with illumination changes
could involve illumination invariant image representations (such as hue- or edge density
images) instead of intensity images used in this work. Occlusions could be dealt with
by robust PCA methods [51, 42] or by using sub-images taken from the panoramic view
and combining pose estimates obtained on the basis of each sub-image in a principled
manner [69].

We have experimentally investigated whether the ranking of individual PCA features
— which is optimal for reconstruction of the images from which they are derived — is
also optimal for localization. On our database this indeed is the case under the global
localization scenario; the eigenvectors with the largest corresponding eigenvalues are most
important for global localization. In situations where the robot’s belief is peaked at
multiple distinct poses (because the images that can be observed from those poses have a
similar global appearance), other PCA features may become more important in order to
disambiguate the belief. It would be interesting to investigate feature selection for such
“situated” scenarios.

The average Bayesian localization may be strongly be influenced by a few images in the
test set whose appearance is very similar, but whose associated poses are separated by a
large distance. Although we consider the criterion to be useful for model estimation and
model selection purposes, it gives a bit of a pessimistic view of the achievable localization
accuracy. During experimentation, we have found that when the posterior belief is uni-
modal, it is usually peaked close to the true robot pose (provided a sufficient number of
PCA features are used). Such quick localization is a prerequisite for optimal goal directed
navigation.



Chapter 4

Panoramic Stereo Vision

4.1 Introduction

The ability to acquire knowledge about the 3-D structure of a workspace has many
applications in mobile robotics. Such knowledge could for instance be used to construct
a metric map of the environment or to avoid collisions with objects in the workspace.
While range sensors such as ultrasonic and laser range finders provide depth information
directly, it is also possible to estimate depth from images obtained from different nearby
viewpoints. A traditional approach to obtain a 3-D reconstruction of a scene from images
is stereo vision [17]. Stereo vision is the process of recovering depth information from
two (or more) images obtained by a calibrated camera placed at different but known
poses. The fundamental problem in stereo vision is establishing correspondences between
points in the images that are the projections of the same physical point. This problem
is known as the correspondence problem. Once the correspondences are known, the 3-D
coordinates of the point relative to a chosen frame of reference can be reconstructed using
triangulation. This is known as the reconstruction problem.

The key assumption in the correspondence problem is that the projection of a local neigh-
borhood in the world gives rise to similar intensity patterns in images obtained at different
camera poses. Given a window centered at a point in one image, a correspondence can
be found by scanning the other image(s) with a search window to find the position of
the search window that yields the maximal similarity. The problem is that similar local
intensity patterns can occur at many places. One method to reduce the matching ambi-
guity is to use more than two images in order to establish correspondences [64, 60, 79].
Such methods are called multi-baseline stereo vision methods.

Stereo vision methods generally exploit the geometric relationship that exist between
the 2-D projections of a 3-D point in different images to aid the correspondence search.
Each point in an image defines a ray, which at some unknown distance intersects the
object being imaged. The projection of such a ray onto the retinal surface of another
camera constrains the locations where the imaged object may be found in the other image.
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The search space for an image correspondence is therefore reduced from 2-D (the whole
image) to 1-D (the projection of the ray into the image). This constraint is known as
the epipolar constraint [32, 17]. Exploiting the epipolar constraint dramatically reduces
the computational demands of the correspondence problem and diminishes the risk of
establishing erroneous correspondences.

Most of the existing work on stereo vision is concerned with conventional perspective
cameras. Conventional cameras have a narrow field of view, implying that in order
to obtain a reconstruction of the surrounding environment many images are needed.
When using panoramic images, fewer images are needed due to their 360◦ field of view.
The use of panoramic images does however has some specific aspects. For conventional
perspective cameras, the search for correspondences can be done along an epipolar line
in the image. Panoramic cameras perform a non-linear projection which, generally, does
not preserve straight lines. As a result, a ray projects to an epipolar curve rather than
an epipolar line. An important issue in panoramic stereo vision is the parameterization
of the epipolar curves in a way that permits efficient traversal in order to establish image
correspondences.

In this chapter we present methods to obtain a 3-D scene reconstruction from two and
more cylindrical panoramic images. In our application images are acquired by a single
panoramic camera mounted on top of a mobile robot that moves around. The chapter is
organized as follows. In section 4.2, we present a panoramic stereo vision algorithm for
a pair of cylindrical panoramic images. We present a parameterization of the epipolar
curve that can be used to guide the search for image correspondences and show how a
3-D reconstruction can subsequently be obtained using triangulation. In section 4.3, we
present a multi-baseline stereo vision algorithm that uses more than two images. We
derive a parameterization of the epipolar curve in terms of inverse depth. Using this
parameterization the search for 2-D image correspondences across multiple images and
the 3-D reconstruction can be performed efficiently. In our application, we use images
acquired by a single moving camera. We therefore need a method to estimate the camera
poses. A simple technique utilizing robot odometry and tracked image correspondences
is presented in section 4.4. Experimental results obtained using our stereo methods are
presented in section 4.5. A discussion and conclusions are presented in section 4.6.

4.2 Panoramic Stereo Vision

4.2.1 Epipolar geometry

Any pair of images obtained by a central projection are related by the epipolar geometry
that depends only on the relative pose and internal parameters of the camera(s) by
which the images were acquired. The epipolar geometry reduces the search space for
image correspondences from 2-D to 1-D and can be formalized as follows.

Let C0 and C1 denote relative camera poses at which two images I0 and I1 are acquired
by a central projection. Let Xi = [X,Y, Z]Ti denote the coordinates of scene point X
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expressed in the i-th (i ∈ {0, 1}) camera pose and let xi = [x, y, z]i denote its projection
onto the retinal surface. We designate C0 as a reference camera pose, i.e. the coordinate
system in which vectors are measured and we refer to I0 as the reference image. Let t1
be the translation vector between C0 and C1 and let R1 be a rotation matrix that aligns
the two coordinate frames. Then point X can be represented as

X0 = t1 +R1X1. (4.1)

In practice, X0 and X1 are unknown. All that is available are their respective projections
into the images x0 and x1. The projections are related to equation 4.1 by

r0x0 = t1 + r1R1xi, (4.2)

where r0 and r1 are unknown scalars whose values are to be recovered by stereo triangu-
lation.

The epipolar geometry expresses the fact that the rays spanned by x0 and x1 meet at the
single point X in space. Put differently, x0, x1 and t1 are co-planar. The plane spanned
by x0 and t1 and defined by its normal n0 = t1 × x0 is called the epipolar plane. In the
C1 coordinate frame, the plane normal n1 = [nx, ny, nz]

T
1 is derived as

n1 = RT
1 (t1 × x0). (4.3)

The epipolar constraint is now established by the co-planarity condition

n1 · x1 = 0. (4.4)

Figure 4.1 illustrates that, for a conventional perspective camera, an epipolar line is
formed by intersecting the epipolar plane, spanned by x0 and t1, with the retinal plane.
Equivalently, the epipolar line is the image in one camera of a ray from the effective
pinhole of the other camera and passing through an image point in the other camera.
As the position of the 3-D point being projected varies, the epipolar plane appears to
rotate about the baseline. The family of planes induced is called an epipolar pencil.
Consequently, all epipolar lines meet at a single point called the epipole. The epipole is
the point of intersection of the line joining the effective pinholes of the cameras — the
translation vector t, referred to as the baseline in stereo literature — with the retinal
plane. Equivalently, the epipole is the image in one camera of the effective pinhole of the
other camera. Notice that in the epipole direction depth cannot be estimated.

Figure 4.1 illustrates the epipolar geometry for a popular camera configuration involving
two camera whose retinal planes are related by a horizontal displacement only. This
configuration is known as the parallel camera configuration. In this configuration stereo
matching is greatly simplified because all epipolar lines are parallel and horizontal. As
a consequence, no explicit parameterization of epipolar lines is required; in order to
establish a correspondence, matching can be performed along a single row of pixels and
a depth measure can easily be derived from the disparity measured in pixels [17]. The
resulting stereo algorithms typically achieve real time performance nowadays [45, 100, 57].
If two cameras are approximately in a parallel configuration, an exact parallel camera
configuration can be achieved in software by re-projecting the images obtained from both
cameras onto a common plane [17].
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4.2.2 Epipolar curves

The geometric image formation performed by a panoramic camera generally does not
preserve straight lines. Therefore, epipolar curves are obtained rather than epipolar
lines. This raises the questions how these curves look like and how they can best be
parameterized.

Svoboda [85] studies the epipolar geometry for a catadioptric vision sensor based on a
hyperboloid mirror. The theory starts from the observation that the catadioptric vision
sensor measures intensity from the effective viewpoint located inside the mirror, as dis-
cussed in chapter 2. Epipolar planes are therefore spanned by the baseline relating the
effective viewpoints — the focus inside the mirror — and a point on the surface of the
mirror. The epipolar plane intersects the mirror. Correspondences can thus be sought
in the catadioptric image along the projection of the intersection into the image. It is
shown that the resulting epipolar curves are general conics (ellipses, circles, hyperbolas
and parabolas). In [82] a parameterization for each type of conic, and a selection mech-
anism to determine the type of conic, are proposed. Although not explicitly described,
the proposed parameterizations can be used to sample points (search window centers)
along the curve for the purpose of stereo matching.

Wei [106] proposes to re-project a catadioptric image onto a virtual paraboloid, then
followed by an orthographic projection onto a virtual image plane. When using two such
re-projected images obtained at different viewpoints, the epipolar curves become circles,
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albeit of different radii. The advantage of the re-projection step is that it obviates the
need to determine the type of conic.

Ollis [65] presents two catadioptric stereo head camera configurations that yield a simple
epipolar geometry. They describe a setup where two catadioptric cameras are stacked
vertically such that the mirror axis of symmetry of the two mirrors coincide. They also
describe a setup using two mirrors (a larger mirror above a smaller one) and a single
camera. In these co-axis mirror configurations the epipolar curves reduce to straight
lines emitting radially from the image center. In [29] a similar co-axis mirror pair with
two cameras is used to obtain real-time panoramic stereo vision. They also perform a
cylindrical re-projection of the catadioptric images, thus obtaining cylindrical panoramic
images. In these cylindrical panoramic images, the radial epipolar lines are transformed
to parallel vertical lines. The resulting stereo algorithms are very efficient because they
do not require active correlation windows to perform stereo matching.

In our application we have a single catadioptric vision sensor mounted vertically on
top of our mobile robot. Stereo vision thus has to be performed on images obtained at
different robot poses. The robot operates in an indoor environment, hence its motion (and
consequently that of the camera) is restricted to a horizontal displacement and rotation.
Instead of using the catadioptric images for stereo matching directly, we propose to re-
project the catadioptric images onto a virtual cylinder, thus obtaining virtual cylindrical
panoramic images. Whereas a rotation of the robot causes a rotation in the catadioptric
image domain, it causes a shift in the cylindrical panoramic image. The advantage of
using the re-projection step is that stereo matching can be done without requiring rotating
correlation windows (as proposed in e.g. [83]). The computational costs of performing
a re-projection of the images is low compared to the costs of using rotating correlation
windows for stereo matching. Moreover, off-the-shelf feature trackers (such as KLT [3]),
originally developed for conventional perspective images, can be employed to obtain an
initial set of image correspondences required to estimate the relative camera positions.
A further advantage is that only a single type of epipolar curve (a sinusoid, as we will
show in the next section) results.

4.2.3 Panoramic Stereo from a Pair of Images

Parameterization of the epipolar curve. In chapter 2 we defined a virtual cylin-
drical panoramic camera. The virtual camera is constructed by specifying a unit radius
virtual cylinder in the mirror frame. Once a cylindrical panoramic image is created from
the catadioptric image, we can proceed as if we truly have a cylindrical panoramic vision
sensor instead of a catadioptric sensor. Let X0 and X1 denote the coordinates of a scene
point X in the cylindrical camera coordinate frames. Let x0 and x1 denote the projec-
tion of X into images I0 and I1 respectively. Let y denote the cylindrical coordinate
representation of the projection of X given by equation 2.42. Let x denote the Cartesian
coordinates of y, which can be derived using equation 2.43.

In the cylindrical panoramic image domain epipolar curves are sinusoids. This can be
understood by expanding equation 4.4 and expressing x1 as x1 = [cosφ1, sinφ1, z1] giving



58 Panoramic Stereo Vision

PSfrag replacements

n0

n1

epipolar

epipolar

curve

plane

X

X

Y

Y

Z

Z

X

C0

C1

φ0

z0

x0

t1

z1(φ1)

X

Figure 4.2 : Epipolar geometry for a pair of cylindrical panoramic images.

0 = n1 · x1 = [nx, ny, nz][cosφ1, sinφ1, z1]
T

= nx cos(φ1) + ny sin(φ1) + nzz1.
(4.5)

The elevation z1 can be expressed as a function of the angle φ1 as

z1(φ1) = −
nx cos(φ1) + ny sin(φ1)

nz
. (4.6)

Figure 4.2 displays the epipolar geometry for cylindrical panoramic images.

Using this parameterization a 1-D correspondence search along the epipolar curve can be
performed. Using the known camera rotation and translation, a given image coordinate
y0 = [φ0, z0]

T defines the epipolar plane normal n1. Candidate correspondences y1 =
[φ1, z(φ1)]

T living on the epipolar curve can then be generated using equation 4.6. The
image similarity between local neighborhoods around y0 and each generated y1 can be
used to select the best candidate. In the next section we review some common approaches
and describe the matching method we adopt.

Establishing correspondences. Matching in stereo vision involves comparison of lo-
cal image regions (or intrinsic local characteristics, i.e. , features) and determining which
regions are most similar according to some matching criterion. Matching methods can be
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categorized as local or global. Local matching methods match each point in the reference
image independently (see e.g. [47]). Global matching methods consider points at once.
Each point in an image gives rise to an epipolar curve in the other image and vice versa.
Global matching schemes consider all windows along such conjugate epipolar curves at
once and seek a set of matches that optimizes some global constraints. Examples of
such global constraints are uniqueness (there exists a one-to-one correspondence between
points along conjugate epipolar curves), surface continuity (the disparity measure along
conjugate epipolar curves is smooth) and ordering (features appear in the same order
when traversing conjugate epipolar curves) [17, 57, 116]. These prior assumptions, al-
though not always correct, can help to resolve local ambiguities. The drawback of global
methods is that they are computationally more expensive than local methods because
they consider a harder optimization problem.

A further distinction between matching methods is whether they compare image features
or correlate small image windows. Image features, such as corners, are usually chosen to
be insensitive to viewpoint and illumination changes. Due to the sparseness of salient
features in images, Feature based matching methods generally produce sparse depth esti-
mates. Correlation based matching methods produce dense depth estimates. Correlation
based methods implicitly assume that the disparity is similar for each pixel in the window
under consideration. This assumption is violated for large windows. Furthermore, using
larger windows increases the computational cost. Small windows, on the other hand,
have a lower signal-to-noise ratio and are more easily confused.

Our stereo algorithm uses correlation based matching, thus giving dense depth estimates.
It aims to find a matching window for each pixel independently. Matching is done as
follows. For a given point (φ0, z0) in the reference image, we first establish a search
interval [φ1,dmin

, φ1,dmax
], where dmin corresponds to a minimal distance of a scene point

from C0 and dmax corresponds to a scene point at some maximal distance. We thus limit
the space of interest; for far away objects a reliable depth estimate cannot be obtained
because of triangulation uncertainty, and (very) nearby objects are unexpected. A set of
points is sampled along the epipolar curve {(φi, z(φi)) : φi = φdmin

+ i∆φ ∈ [φdmin
, φdmax

]}
where ∆φ is a chosen angular resolution. The best match is found by computing the
correlation values for each point and selecting the one that matches best. We choose
the sum of absolute intensity differences (SAD) as a similarity criterion. Others, such as
the sum of squared intensity differences (SSD) or normalized cross correlation could also
have been used. The difference in performance is generally marginal [56].

Window based matching is a relatively expensive operation. In order to avoid unnecessary
correlation computations, a correspondence search is only initiated when the part of the
curve in the interval [φi,dmin

, φi,dmax
] is contained entirely within the image domain (which

is given by −π ≤ φ < π, zmin ≤ z ≤ zmax). This ensures that corresponding points, unless
occluded by other objects, are guaranteed to be visible from both viewpoints so that a
correct match can (in principle) be found. This visibility condition can be verified by first
checking the if the end-points of the search interval (φdmin

, z(φdmin
)) and (φdmax

, z(φdmax
))

reside in the image domain. Next, we check if the epipolar curve has an extremum in the
search interval and, if it does, whether the extremum falls within the image domain.
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Obtaining a reconstruction. Suppose a corresponding pair of image coordinates x0

and x1 is available. The distances between C0 and X, and C1 and X (see figure 4.2)
can be estimated from the angular difference under which point X is perceived from
these poses. The cosine rule can be applied to compute the angle between the x0 and
translation vector t1

θ0 = arccos(
x0 · t1
‖x0‖‖t1‖

). (4.7)

Similarly, the angle between x1 and the rotated translation vector R1t1 is computed as

θ1 = arccos(
x1 ·R1t1
‖x1‖‖t‖

). (4.8)

Finally, d0 and d1, corresponding to the distance to point X measured from poses C0 and
C1 respectively, can be computed by application of the sine rule

d0 = sin θ1
sin(θ1−θ0)

‖t‖, (4.9)

d1 = sin θ0
sin(θ1−θ0)

‖t‖. (4.10)

The 3-D coordinates of point X can be reconstructed using the relationship

Xi = di
xi
‖xi‖

where i ∈ {0, 1}. (4.11)

Note that distance di is related to depth ri from equation 4.2 as

ri =
di
‖xi‖

where i ∈ {0, 1}. (4.12)

Sensitivity and accuracy. Sensitivity with respect to errors in viewing angles and
norm of the translation vector can be investigated by examining equation 4.9 (or 4.10).

Differentiating 4.9 with respect to with respect to ‖t‖ (known as the baseline length in
stereo) gives

∂d0

∂‖t‖ =
sin θ1

sin(θ1 − θ0)
=

d0

‖t‖ . (4.13)

This shows that an error in ‖t‖ causes an error in the depth estimate that is proportional
to the depth and inverse proportional to the baseline length.

Differentiating 4.9 with respect to θ1 gives

∂d0

∂θ1

= d0

(

cos θ1

sin θ1

− cos(θ1 − θ0)

sin(θ1 − θ0)

)

. (4.14)

This expression readily shows that if a scene point lies far away or in the direction of
one of the epipoles, so that the difference between θ0 and θ1 is small, the resulting depth
estimate is unreliable.
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Figure 4.3: Sum of absolute difference (SAD) values obtained along the epipolar curve sampled at
φ1 and the fitted parabola.

Combining equations 4.13 and 4.14, a first order approximation of the depth error ∆d0

is obtained as

∆d0 =
d0

‖t‖∆‖t‖+ d0

(

cos θ1

sin θ1

− cos(θ1 − θ0)

sin(θ1 − θ0)

)

∆θ1, (4.15)

where ∆‖t‖ is the error in the baseline length and ∆θ1 is the angular disparity error.

Consider the following typical situation. The camera has an exact translation of 0.5m
so that ‖t‖ = 0.5 and ‖∆t‖ = 0. The distance to some object is exactly 3 m. An
error of ∆θ1 = 1◦ in the estimation of the disparity then results in an depth error ∆d0

of about 0.3 m. The error can be reduced by extending the baseline. However, for a
larger translation (baseline length) between viewpoints, matching is more difficult due
to perspective deformation and occlusions. The above analysis shows that the disparity
needs to be computed with high accuracy.

In finding the best match, there are two sources of error in the matching scheme we
employ. First, correlation values are computed at nearest discrete pixel positions, not at
the continuous point on the epipolar curve under investigation. A solution to this problem
is to use some kind of interpolation. However, this would increase the computational
demands considerably. A second error source is that the epipolar curve is only sampled at
a finite number of points, i.e. the angular resolution is limited. One solution would be to
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Figure 4.4: a) The parameterization of epipolar curves as z(φ) is not a convenient one when more
than two images are used. The problem is that the sampling that is implicitly performed along a
ray from the reference viewpoint depends on the direction of the ray and the relative camera pose.
As a result, it is not trivial to combine information obtained from different pairs of images. b)
multi-baseline stereo overcomes this issue by projecting points along the ray to the images.

sample the epipolar curve more densely. However, without interpolation this would result
in the same match value for multiple points along the epipolar line. With interpolation,
denser sampling of the epipolar curve would increase the computational demands even
further.

Our solution to these problems is to interpolate between match values along the epipolar
curve by fitting a polynomial of degree 2 to the SAD values in a least-squares sense. In the
fitting procedure, only neighboring points of the sample point that has the best match at
discrete resolution contribute. By setting the derivatives of the polynomial with respect
to φ1 to zero, a new minimum for φ1 can be computed. Via application of the epipolar
curve equation this gives rise to a new point on the epipolar curve from which range
can be estimated using the theory of the previous section. The computational overhead
introduced by this refinement step yields a tiny fraction of the total computation time,
which is dominated by the calculation of SAD values.

Figure 4.3 shows the correlation values as a function of φ1 and a fitted parabola. Three
neighbors around the minimum on both sides contribute to the estimated coefficients.
Notice that the peakedness of the fitted parabola could be used to obtain an estimate of
the (local) uncertainty of the estimated disparity [57].

4.3 Multi-baseline Panoramic Stereo Vision

The correspondence problem is a locally ambiguous problem because distinct regions in
the scene can have a similar appearance in the images. Errors in the reconstruction of
points obtained from stereo based on a single pair of images are therefore likely to be
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present. Furthermore, the reconstruction of points near the epipoles, which are always
visible in the cylindrical panoramic images, is inaccurate due to large triangulation un-
certainty. These limitations can be overcome by using more than two images to obtain a
reconstruction. In this section, we present a new multi-baseline panoramic stereo method
that reconstructs the environment from a set of K panoramic images.

One approach to incorporate more than two images is to apply the two view technique
described in the previous section on the reference image I0 and the K − 1 other images.
If each image pair provides a single depth estimate for each pixel in the reference image,
combining the depth estimates is not trivial. There may be inconsistencies between the
depth estimates resulting from different pairs. Furthermore the proposed parameteriza-
tion of the epipolar curves used to govern the search for correspondences results in a
different implicit sampling of points along the ray spanned by a x0 in the reference image
for each alternative image. The problem is illustrated in figure 4.4(a).

Several methods have been proposed in literature to address these issues. The methods
share in that they partition the 3-D space into discrete cells. For each cell a measure
of consistency, reflecting the likelihood that the cell is occupied by an object, is then
evaluated. We categorize these methods as 2D-3D, 3D-2D or 2D-2D methods.

2D-3D methods. 2D-3D methods start from image correspondences and use trian-
gulation to reconstruct 3-D scene points. The scene space is partitioned into cells, and
he number of points contained in a cell serves as evidence that the cell is occupied or
empty. Triangulation uncertainty can be incorporated so that a reconstructed point does
not only contribute evidence to the bin in which it is contained, but also to neighboring
cells [60].

3D-2D methods. 3D-2D methods start from the 3-D cells and project the cells to the
different images. Seitz and Dyer [79] formulate the scene reconstruction problem as a
“voxel coloring” problem. Their method attempts to assign a unique color to each cell
that is consistent with all input images. The underlying assumption in their approach
is that when pixels are back-projected to the same bin, their color values should agree.
A statistical measure of pixel color consistency is used to determine the occupancy state
and color of the bin. By visiting the cells in depth order, occlusion is handled correctly.
Cells can be ordered with respect to depth by assuming that no object lies within the
convex hull of camera viewpoints. The method requires precise camera calibration and
the accuracy and run-time are dependent on the cell resolution. Effects of quantization
and calibration are most profound in regions with high spatial frequency. The “voxel
coloring” algorithm reconstructs one particular scene consistent with the set of input
images, namely the one closest to the camera convex hull is reconstructed.

2D-2D methods. 2D-2D methods exploit projective geometry in such a way that
explicit 3-D reconstruction of points via triangulation or explicit projection of 3-D cells is
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circumvented. An example is Collins’ “space sweep” approach [8]. The method is based
on the premise that areas of space where several image feature viewing rays (nearly)
intersect are likely to be the 3-D locations of observed scene features. A single plane
partitioned into cells is swept through the volume of space along a line perpendicular to
a chosen plane. At each position of the plane along the sweeping path, the number of rays
that intersect each cell are counted. The back-projection of point features from each image
onto the sweeping plane is done efficiently by exploiting projective geometry relating
central projections of points on planes (planar homography). A statistical measure is used
to determine the likelihood that the cell is occupied by an object. The method proposed
is restricted to image features such as corners and thus yields a sparse reconstruction.

Another example of a 2D-2D method is the multi-baseline stereo approach presented
by Okutomi and Kanade [64]. The key benefits of their approach over 2D-3D and 3D-
2D approaches are that the search for image correspondences across multiple images is
performed efficiently and that depth estimates are obtained without explicit stereoscopic
triangulation. The principle of multi-baseline stereo vision is illustrated in figure 4.4(b).
In the next section we discuss their approach in more detail. Our approach can be
regarded as an extension of their multi-baseline method to cylindrical panoramic images.
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4.3.1 Okutomi and Kanade’s
multi-baseline stereo method

Okutomi and Kanade [64] present an efficient multi-baseline stereo method for multiple
planar perspective cameras in a parallel camera configuration. The method exploits a
projective invariant called the inverse depth. This scalar quantity expresses depth to a
scene point as a fraction of the baseline length and is invariant under changes of the
baseline length. As a result, depth estimates obtained using different baseline lengths
can be combined.

Figure 4.5 sketches a top view of the parallel camera configuration. The disparity measure
∆x = xi−x0 between the projection of a scene point X in the reference image (x0, y0, f)
and the projection in the i-th image (xi, yi, f). The disparity measure ∆x is related to
the depth measure z to the scene point by

∆x = ‖t‖ f 1
z
, (4.16)

where ‖ti‖ is the baseline length and f is the focal length. From equation 4.16 we see
that the baseline length acts as a magnification factor in measuring disparity ∆x in order
to obtain z. The multi-baseline stereo method exploits the fact that if both sides of 4.16
are divided by ‖t‖ we obtain

∆x

‖t‖ = f
1

z
= λ, (4.17)

where λ is a constant called the inverse depth. This means that for a particular point in
the reference image, the disparity divided by the baseline length is constant because there
is only one depth z for that point. Therefore, if search window similarity is represented
with respect to λ, it should consistently yield good matching values at the correct value
of λ independent of the baseline. Similarity measures obtained from different baselines
can therefore be combined, and it can be expected that a unique match position results.

4.3.2 Panoramic multi-baseline stereo
with different baseline directions

In this section we present a multi-baseline stereo vision method for cylindrical panoramic
images. It is based on the multi-baseline stereo method summarized in the previous
section. Our method extends the multi-baseline stereo method [64] in that we allow the
baseline directions to vary. This is an essential prerequisite in order to cope with the
uncertainty in depth estimates obtained in epipole directions. If all camera poses are
co-linear (as in the parallel camera configuration), all images share the same epipoles so
that reliable depth information cannot be obtained in the epipole directions, regardless of
the number of images used. We derive a parameterization of the epipolar curve obtained
in cylindrical panoramic images in terms of inverse depth. Using this parameterization,
the search for image correspondences across multiple images can be performed efficiently
and depth estimates are obtained without explicit stereoscopic triangulation.
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The first step in our algorithm involves rotating virtual cylindrical panoramic cameras
such that they all have the same orientation. After this rectification, the camera poses
are related by translations only.

Using equations 2.43 and 4.1 the 3-D location of a point can be expressed as

r0C−1(y0)− ti = riC−1(yi), (4.18)

where y0 = [θ0, z0]
T and yi = [θi, zi]

T are the cylindrical coordinates of points x0 and xi
on the surface of the unit radius cylinders centered at C0 and Ci, and r0 and ri encode
the depth to the projected scene point.

Dividing both sides of equation 4.18 by r0 and applying the function C (equation 2.42)
that transforms rays to cylinder coordinates to both sides gives

C(C−1y0 −
1

r0

t1) = C(
ri
r0

C−1yi) = yi. (4.19)

Note that C(·) eliminates the quantity ri/r0 from the right hand side of equation 4.19.
Equation 4.19 shows that the projection of a point on the cylindrical imaging surface at
pose Ci is a function of y0, the translation vector ti = [tx, ty, tz]

T and the fraction 1/r0.
The fraction 1/r is called the inverse depth, λ. The above equation can be expressed in
vector form as





arctan
(

sinφ0−λty
cosφ0−λtx

)

z0−λtz√
(cosφ0−λtx)2+(sinφ0−λty)2



 =

[

φi
zi

]

= yi. (4.20)

Equation 4.20 parameterizes the sinusoidal epipolar curve in terms of inverse depth and
can be used to govern the search for image correspondences across multiple images. Given
an image coordinate y0 = [φ0, z0]

T , the known translation vector ti and a chosen value
for λ, equation 4.20 yields the image coordinate yi in the i-th image corresponding to a
scene point at depth 1/λ from the reference pose.

In our multi-baseline stereo algorithm, for each pixel y0 from the reference image, equa-
tion 4.20 is used to generate a set of image coordinates yi by plugging in multiple values
for λ. Subsequently, image similarity is evaluated by computing the sum of squared
differences (SSD) between windows centered at y0 and yi respectively. The SSD values
obtained from different images for the same y0 and λ are combined by adding them. The
underlying assumption is that when an object is present at some depth r = 1/λ from the
reference pose, the window contents will have a roughly similar appearance in all images,
consistently giving rise to small SSD values. Finally, the most likely inverse depth value
λ? for y0 is found by examining the summed SSD values obtained for each λ and selecting
the one yielding the smallest value.

The complete multi-baseline stereo algorithm for K cylindrical panoramic images can be
summarized as follows. Let Y denote the set of pixel coordinates in the reference image.
Let Λ denote a set of inverse depth values whose values are determined to cover a minimal
and maximal expected scene depth.
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for all y0 ∈ Y do
λ? = λ1

for all λ ∈ Λ do
M(y0, λ) = 0
for i = 1 to K do

compute yi(y0,Ri, ti) using equation 4.20
M(y0, λ)←M(y0, λ) + SSD(W (y0),W (yi))

end for
if M(y0, λ) <M(y0, λ

?) then
λ? = λ

end if
end for

end for

where SSD(W0(y0),Wi(yi)) computes the sum of squared differences between image win-
dows W0 and Wi centered at y0 and yi respectively. The map M contains all summed
SSD values. If desired, it is possible to perform some kind of regularization ofM.

4.4 Camera Pose Estimation

A prerequisite of (multi-baseline) stereo vision is that the camera poses at which images
are acquired are known. Although our robot is equipped with fairly accurate odometry,
the pose estimates provided by odometry are not accurate enough to fix the epipolar
constraint. Due to small errors in the robot orientation estimates, epipolar curves may
not pass through corresponding points. Therefore the relative camera poses need to be
corrected. In this section we describe how we correct the relative camera pose estimates
using corresponding image features.

4.4.1 Tracking features

An initial set of corresponding features is obtained by tracking salient image features
through a sequence of images acquired by the robot during navigation. Tracking is
performed using KLT [3], a C implementation of the feature tracker described by Shi
and Tomasi [80], based on early work of Kanade and Lucas [54]. In their approach,
salient image points are detected by examining the minimum eigenvalue of local intensity
gradient matrices. Tracking is done using a Newton-Raphson method (see [73] for details),
which minimizes the intensity discrepancy between an image window centered at a salient
image point in the previous image and the current image. In spite of the multi-resolution
approach implemented by KLT to allow for larger image displacements, the tracker fails
when the overall image displacement is very large. Large displacements occur when the
robot makes a sharp turn. Currently, we use wheel odometry measurements to counter-
rotate the virtual cylindrical panoramic camera so that the overall image displacement
is roughly compensated.
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4.4.2 Estimation of the essential matrix

The relative camera pose relating an image Ik with the reference image I0 can be recovered
via their epipolar geometry. The epipolar geometry can be estimated from the set of T
salient points that were successfully tracked between I0 and Ik. Any true correspondence
x0 ↔ xk should satisfy the epipolar constraint from equation 4.4, which can be written
as

xTkR(t× x0) = 0, (4.21)

where R is the rotation matrix and t is the translation vector relating the two camera
poses. This can be expressed in matrix form as

xTkRSx0 = xTkEx0 = 0, (4.22)

where S denotes the (3× 3) skew symmetric matrix for which Sx0 = t× x0. The matrix
E = RS is called the essential matrix [17].

8-point algorithm. In practice, correspondences x0,i ↔ xk,i obtained by the feature
tracker are noisy. As a result, each correspondence satisfies the co-planarity condition
expressed by equation 4.22 only approximately. Let us rewrite equation 4.22 as

xTk,iEx0,i =
[

xk yk zk
]

i





e1 e2 e3

e4 e5 e6

e7 e8 e9









x0

y0

z0





i

≈ 0. (4.23)

Let us write the entries of the essential matrix as a vector e = [e1, . . . , e9]
T . Equation 4.22

can then be rewritten as
[

xkx0 xky0 xkz0 ykx0 yky0 ykz0 zkx0 zky0 zkz0

]

i
.e = Die ≈ 0. (4.24)

Each correspondence thus provides one constraint on E. Using T correspondences, equa-
tion 4.22 can be expressed as a linearly as De = 0, where D is a (T × 9) design matrix
constructed by stacking the T Di vectors from equation 4.24.

A solution for e, and thus to E, can be found linearly by solving

min
e
‖De‖2 subject to ‖e‖ = 1. (4.25)

The constraint ‖e‖ = 1 is incorporated to fix the scale of E which removes one degree
of freedom from E and a solution can be obtained when at least 8 correspondences are
available. The minimum of e in equation 4.25 is the eigenvector of the moment matrix
M = DTD associated with the smallest eigenvalue and can be found by using a singular
value decomposition (SVD) of M. This algorithm is known as the 8-point algorithm [31].

An essential matrix has two equal eigenvalues and has rank two [17]. The linear 8-point
algorithm does not enforce these properties on the recovered matrix E. Let us express
that the recovered matrix is not a true essential matrix by writing it as Ẽ. The nearest
true essential matrix, which we now express as E, can be found via the singular value
decomposition (SVD) of Ẽ as follows. Let the SVD decomposition of Ẽ be UΣVT ,
where Σ = diag(σ1, σ2, σ3). The nearest true essential matrix E can the be found as
E = UΣ′VT , where Σ′ = diag((σ1 + σ2)/2, (σ1 + σ2)/2, 0).
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Robust estimation. The 8-point algorithm presented in the previous paragraph is
very sensitive to noise in the image coordinates. In [31] a point normalization method is
proposed for homogeneous image coordinates which is shown to decrease the sensitivity.
We cannot apply the normalization scheme because we do not have homogeneous image
coordinates but “real” 3-D vectors whose tip touches the cylindrical projection surface.
As a normalization step, we normalize the vectors by dividing them by their length, which
has been shown to decrease the noise sensitivity [68].

In the set of tracked points, there are bound to be erroneous correspondences (outliers).
These outliers can be identified and discarded using robust estimation techniques. We use
the Least of Median Squares (LMedS) method [78] to obtain a initial estimate of the essen-
tial matrix that is compatible with the majority of correspondences. The correspondences
compatible with the initial estimate are subsequently used by an M-estimator [94, 114].
The M-estimator is implemented as an iteratively re-weighted variant of the 8-point al-
gorithm. It identifies the small fraction of outliers that may have survived the LMedS
step and assigns them low weights so that they their contribution to the final estimate
of the essential matrix is reduced.

4.4.3 Recovering the camera motion

The rotation matrix R and S matrix can be determined from the singular value decom-
position E = UΣ′VT as follows [30].

R = UYVT or UYTVT (4.26)

S = VZVT or VZTVT , (4.27)

where

Y =





0 −1 0
1 0 0
0 0 1



 and Z =





0 −1 0
1 0 0
0 0 0



 . (4.28)

There are thus four possible pairings of R and S matrices that are compatible with
the essential matrix. In order to select the correct pair, i.e. the actual rotation and
translation, the geometric interpretation of each pairing must be investigated. This
can be done by computing the depth to a tracked point in two images according to
the relative poses implied by each pair using (for instance) the triangulation method
presented in section 4.2.3. For noise free image correspondences, the correct pair should
give a positive depth from both poses for any selected point. In practice, correspondences
are noisy. We therefore compute the depth for all correspondences and adopt a majority
scheme that selects the rotation and translation pair yielding the most positive depths
from both camera viewpoints.

The estimated essential matrix is only defined up to an arbitrary scale factor. As a con-
sequence, the length of the translation vector relating two images cannot be determined
from an estimated essential matrix. Currently, we use wheel odometry to provide the
length of the translation vector.
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(a) the virtual environment (b) catadioptric image

(c) cylindrical panoramic image

Figure 4.6: The virtual environment and various representations of an image acquired in the envi-
ronment.

4.5 Experiments

4.5.1 Stereo experiment

We have tested the stereo technique presented in section 4.2 on synthetic, but realistic,
image data. The POV-Ray ray tracer [72] was used to render images obtained by an
catadioptric vision sensor in a virtual environment. The virtual environment has the
shape of a cube (6000×6000×6000 in size) and has textured sides and bottom. Figure 4.6
displays an overview of the virtual environment and the different representations of an
image acquired in the environment.

Depth is estimated from the cylindrical panoramic images (720×200 pixels) derived from
catadioptric images (640× 480 pixels) acquired at locations [0, 0, 1000] and [500, 0, 1000].
Figure 4.7 shows the depth estimates obtained for a single row of pixels taken from the
cylindrical panoramic image obtained at [0, 0, 1000] (results for other rows give similar
depth estimates). Figure 4.7(a) shows the range profile estimated at pixel resolution.
Depth in directions perpendicular to the camera motion is estimated reliable with good
accuracy. In the motion direction, the depth estimates are unreliable due to triangulation
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(a) Depth estimated at pixel resolution
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(b) Depth estimated at sub-pixel resolution

Figure 4.7: Depth estimation results for a single scan-line. (a) without interpolation, (b) with
interpolation. The reference pose (0,0) and the other camera pose (0,500) are marked by ◦ symbols.

uncertainty. We have verified that the discontinuities in the range profile are caused by
discretization. Figure 4.7(b) shows the improved estimate obtained using our sub-pixel
method.

4.5.2 Multi-Baseline stereo experiments

We applied our multi-baseline stereo method both on rendered images and on real images
acquired during robot navigation.

Simulation experiments. For the simulation experiments, we used the same envi-
ronment as described in section 4.5.1, but scaled the cube to 3 × 3 × 3 units. Depth is
computed from the cylindrical panoramic images (720 × 200 pixels) derived from cata-
dioptric images (600× 450 pixels) acquired at locations [0, 0, 0.8], [0, 0.2, 0.8], [0.2, 0, 0.8]
and [0.2, 0.2, 0.8] (all under the same orientation). The image obtained at pose [0, 0, 0] is
used as a reference view.

The results of our multi-baseline stereo method are shown in figures 4.8(a)–4.8(d). The
figures present a top-view of depth estimates obtained for viewing directions parallel to
the floor (results for other rows give similar depth estimates). For visualization, for every
pixel in the reference image, only the point for which the sum of SSD values found is
minimal is displayed. Note that a depth estimate is provided for every viewing direction;
no reliability measure has been used to reject unreliable depth estimates. Also notice the
noisy depth estimates in the direction of the epipoles in figures 4.8(a)–4.8(c). The map
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Figure 4.8 : Reconstruction of a virtual environment using our multi-baseline approach.

obtained after combining the maps is shown in figure 4.8(d). The resulting map is clearly
better than any of the individual maps.

Reconstruction of a hallway. We tested our method at the end of a hallway in
our building. A layout of the hallway is shown in figure 4.9. The positions where the
images were acquired are indicated by circles. This simple environment lacks large depth
discontinuities and occluding objects. Five cylindrical panoramic images were acquired
by the robot. The catadioptric images (600×450 pixels) obtained by the vision sensor are
transformed into cylindrical panoramic images (720 × 120 pixels). The motion relating
the images to the reference one was estimated using the method presented in section 4.4.

A set of 25 inverse depth values was used in the stereo search. The set is obtained via
an exponential sampling of depths r in the range 0.5m–20m. By performing exponential
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Figure 4.9: Layout of the hallway. Five image were acquired at the positions marked by the small
circles. The central (arced) circle denotes the location of the reference image.

sampling, the resulting sampling of points along an epipolar curve is almost uniformly
spaced. In the experiment we used 11 × 11 pixel correlation windows centered at the
resulting nearest pixel coordinates to evaluate the sum of squared differences between
image windows. Using this correlation window size gave a good tradeoff between accuracy
and smoothness of the resulting depth maps.

Figure 4.10 displays the depth map computed from the reference image and the 4 other
images. In the map, nearby objects appear brighter than objects further away from the
reference pose. The depth map evidently shows that the overall geometry of the hallway
is captured well. The far end of the hallway can be recognized near the sides of the depth
map. The corners of the hallway at the near end appear slightly darker than the sections
of the walls closer to the reference pose. The heating surface is not reconstructed well due
to its repeating texture. Furthermore, specular reflections on the posters are not handled
well; they appear as large depth discontinuities in the depth map. Due to the lack of
texture, only some of the structure of the fire hose is visible in the combined depth map.

reconstruction of a laboratory. A similar experiment was performed using images
acquired in a laboratory with large depth discontinuities and occlusions. A set of 22
images was acquired while the robot traversed a circular trajectory with radius of 1.3m.
The first image was designated as the reference image. Figure 4.11 shows the reference
image. A rectified image, obtained at pose (−1.21m,1.70m,102.0◦) with respect to the
reference pose, is shown in figure 4.11. The depth map computed from these images is
shown in figure 4.12. As can be observed, the depth map contains many errors (arising
due to occlusions, lack of texture, repeating texture, specular reflections etc). Such noisy
depth maps are typically obtained from cylindrical panoramic image pairs. Application
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Figure 4.10: (top) The reference image. (bottom) The depth map computed from the reference
image and 4 other images.

Figure 4.11: (top) The reference image. (bottom) A rectified image acquired at relative pose
(−1.21m,1.70m,102.0◦) from the reference pose.

of our multi-baseline stereo technique improves the estimated depth maps. In figure 4.12,
the depth map computed from the reference image and all other image is shown. Overall,
the geometry of the environment is captured well but some gross errors remain. These
errors occur mainly at large depth discontinuities, due to occlusions (such as the chair
on the left side in the images), and due to lack of texture (such as on the floor).

Equation 4.20 can also be used to warp the reference image to a target image that
would be obtained at a nearby target position. We adopt the method presented in [58].
The mapping from the reference image to the target image is potentially one-to-many
and visibility has to be considered. The principle of the warping method is similar in
spirit to the painters algorithm [20] and handles occlusion without resorting to explicit
3-D computations. Briefly, a natural back to front ordering can be established. The
warping procedure exploits the ordering by ensuring that far away objects are warped
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Figure 4.12: (top) The depth map estimated from the reference image and the rectified image
shown in figure 4.11. (bottom) The depth map estimated from the reference image and 21 other
images.

Figure 4.13: (top) Image obtained by warping the reference image to the pose associated with
a target image (both images are shown in figure 4.11) using a depth map. The depth map was
estimated from 21 image pairs and is shown in figure 4.12. (bottom) The target image from
figure 4.11 duplicated for comparison.

first and allowing nearer objects to be “painted” over the further objects already drawn.
In figure 4.13 we show the reference image warped to the pose associated with time image
shown in figure 4.11. The depth map used in the warping was estimated from all 21 image
pairs. We used a forward mapping scheme to warp the reference image. The forward
mapping leaves holes in the warped image. In order the render a visually more appealing
image, the holes were filled by interpolating gray values from neighboring pixels. If we
compare the images shown in figures 4.11 and 4.13, we see that the warped image gives
a reasonable prediction of the appearance of the scene as it would be observed from the
target pose.
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4.6 Discussion and Conclusions

In this chapter we have presented methods to obtain a 3-D scene reconstruction from
cylindrical panoramic images obtained by a single moving catadioptric vision sensor. We
have analyzed the epipolar geometry for cylindrical panoramic images and have shown
that it gives rise to sinusoidal epipolar curves. We have presented two stereo vision algo-
rithms that use a different parameterization of these epipolar curves. The first algorithm
uses an angular parameterization and is suitable to obtain a 3-D reconstruction from a
pair of images. We have shown how the accuracy of depth estimates can be improved
with little computational overhead using a sub-pixel technique. A depth map estimated
from a pair of images is noisy. Moreover, reliable depth estimates cannot be obtained
in the direction of motion. The second algorithm addresses these issues by using more
than two images to obtain a reconstruction. Our approach is based on the multi-baseline
stereo method [64] for planar perspective cameras in a parallel camera configuration. We
generalize their multi-baseline stereo method so that cylindrical panoramic images with
different baseline directions to be used. The core of our algorithm is a novel parame-
terization of epipolar curves in terms of inverse depth. Using this parameterization the
search for 2-D image correspondences and the 3-D reconstruction from multiple images
can be performed efficiently.

Depth maps estimated by our multi-baseline stereo method are less noisy than those
estimated from a just a pair of images for several reasons. Finding the correct match
for a window containing an intensity pattern that is encountered many times along an
epipolar curve in another image is difficult. Multi-baseline stereo often implicitly handles
this situation because it selects the depth for which good matching value are found in
all images. In practice, good matching values are obtained for depths corresponding to
actual objects in the scene. The approach cannot handle homogeneous intensity patterns
properly though. It is also impossible to obtain reliable depth estimates in the camera
motion direction. Scene points along this direction all project to a tiny section of the
epipolar curve. As a result, the image similarity values for points along the section of the
epipolar curve will all be roughly similar. Our multi-baseline method implicitly handles
this issue by using different baseline directions. The improvement that can be achieved
using multi-baseline stereo with respect to stereo from a single pair of images has been
demonstrated by experimental results.

In our current implementation, a fixed set of 25 inverse depths is used to compute depth
maps. Because all image similarity values for all depths are maintained, it should be
possible to improve the final depth map by regularization. The current (un-optimized)
implementation of the multi-baseline method required about 20 seconds on a Pentium
II at 233 MHz per depth map. In order to achieve real-time performance, a multi-
scale approach involving an image pyramid could be used. Matches found at a course
resolution level can then be refined at a higher resolution level. It would also be interesting
to extend the method in such a way that for each pixel in the reference image, only a
small set of inverse depth values, likely to correspond to an object, is maintained. Using
gradient information, refinements of inverse depth can be obtained by the method of
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differences [54]. Such an approach resembles conditional density propagation by particle
filtering, which has been successfully applied in the field of visual object tracking [37]
and mobile robot localization [22, 105].

We have demonstrated that the estimated depth map can be used to predict the ap-
pearance of an image that would be observed at a pose close to the reference pose using
image-based warping. An interesting application of this technique would be to use it in
the context of appearance modeling for robot localization. A drawback of appearance-
based modeling is that many training images are needed to estimate the model. In [10],
many synthetic range profiles are generated by warping a few measured range profiles. In
a similar manner, image-based warping could be used to generate many synthetic images
from a few measured images and the estimated depth maps.





Chapter 5

Visual Odometry from a

Catadioptric Vision Sensor

5.1 Introduction

In previous chapters we have presented methods to learn an appearance model for robot
localization (chapter 3) and to obtain a 3-D scene reconstruction (chapter 4). Both
methods require a collection of camera images obtained at known poses. In this chapter
we describe a method to estimate the camera poses automatically from a sequence of
images acquired during robot navigation in an initially unknown environment, without
requiring wheel odometry or manual measurement of the poses.

Several techniques have been described in literature that aim to recover both the camera
poses and the structure of the scene from corresponding features across a set of images
(see [32] for an overview). This (structure-from-motion) problem is intrinsically difficult.
In order to estimate the structure of the scene, the camera poses have to be known. Con-
trary, in order to estimate the camera poses, the structure of the scene has to be known.
Techniques proposed in literature therefore typically interleave estimation of the scene
structure and estimation of the camera poses. They involve solving a nonlinear optimiza-
tion problem in many parameters, which is computationally expensive. Furthermore,
in order not to get stuck in a local minimum they require a reasonable initial estimate
of both the camera poses and the scene structure. From a practical point of view, the
main difficulty in applying these techniques lies in establishing a reliable set of feature
correspondences across the images.

One option to obtain a reliable set of correspondences is by manually registering many
features across the images, but this is a tedious process. Another option is to try and
establish correspondences automatically using correlation techniques. Such unguided
matching may yield many erroneous correspondences. If images arrive sequentially, a
third option is to track salient features through the image sequence. Feature tracking
can be based solely on image correlation techniques. It can be made more robust if an
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initial estimate of the relative camera poses and the scene structure are available because
these would constrain the positions of tracked features in a subsequent frame. Then the
features tracked into subsequent images can be used to expand and refine the model
containing the 3-D positions of the features and the past camera poses.

A drawback of such a sequential approach is that errors accumulate so that the model
may eventually become inconsistent. One particularly prominent issue if a single moving
camera is used, is that the scale of the reconstruction and camera pose estimates are
subject to drift. The reason is that without knowledge about the lengths of the baselines
that relate pairs of images, the reconstruction and camera pose estimates are subject to
an arbitrary scaling.

In this chapter we present a method to estimate the rotation and translation between
two subsequent camera poses from a pair of images. Our method assumes that the height
of the camera with respect to a plane, i.e. the ground plane, is fixed. This situation is
typical for a camera mounted on top of a moving mobile robot. By virtue of the fixed
height assumption, the scale of baseline between the two camera poses can be related to
the constant (albeit unknown) height. Estimating relative camera poses then boils down
to finding an estimate of the parameters of a model that registers projections of points
coming from the ground plane in the two images.

We propose a two-stage procedure to estimate the relative camera poses that takes advan-
tage of the 360◦ field of view offered by a panoramic catadioptric vision system. The first
stage estimates the relative rotation and baseline direction from cylindrical panoramic
images, that are derived from the catadioptric images. Unguided tracking of image fea-
tures between such panoramic images is relatively easy and robust. Furthermore, it has
been shown in literature that a robust estimate of the rotation and direction of translation
can be achieved from omnidirectional vision [19]. Once the relative rotation and baseline
direction are known, only the scale of the baseline remains to be estimated. The second
stage of our algorithm determines the baseline scale by registering planar perspective
images of the ground plane, that are also derived from the catadioptric images.

This chapter is organized as follows. Section 5.2 reviews the geometric relationship be-
tween 3-D scene points and their projections in two images. In section 5.3 we present
our two-stage approach. The first stage estimates the relative pose relationship from cor-
responding points in two cylindrical panoramic images via the epipolar geometry. The
second stage estimates the baseline scale via the homography between planar perspective
images of the ground plane. Experiments are presented in section 5.4. A simulation
experiments provides insight in the sensitivity of the estimated baseline scale (stage two)
with in the presence of objects extruding from the ground plane and specular reflections.
We also apply our method on images acquired by our robot to obtain visual odometry.
Unlike wheel odometry, visual odometry can be corrected upon recognizing a previously
visited place. Conclusions and a discussion are presented in section 5.5.
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5.2 Relative Camera Pose Estimation from a Pair of

Images

This section aims to give the reader insight in the geometric relationship that exists
between corresponding projections of 3-D scene points in two images. The projection of a
scene point into an image depends on the type of camera used, its intrinsic parameters and
the pose of the camera. We consider the situation where a single camera is positioned at
two different poses. We assume that the camera performs a central projection (such as the
cameras described in chapter 2) and that it is calibrated. The camera has an associated
camera coordinate frame whose origin coincides with its center of projection. A point on
the retinal surface of the camera can thus be characterized by a 3-D Euclidean vector x
expressed in the camera coordinate frame and a ray in Euclidean space is characterized
by rx(r > 0).

Let C and C ′ denote the Cartesian coordinate frames associated with two camera poses.
The image obtained at C is denoted by I. Let X denote the 3-D Cartesian representa-
tion of scene point X expressed in coordinate frame C. The projection of X onto the
retinal surface of the camera at pose C is denoted as x. For some particular value of
r, which encodes depth, it holds that rx = X. Similarly, X′ denotes the 3-D Cartesian
representation of X expressed in the C ′ coordinate frame, x′ denotes its projection, and
r′ denotes the depth. The Euclidean transformation between the two coordinate frames
is given by

X′ = RX+ t, (5.1)

where R is a 3× 3 rotation matrix and t is a 3× 1 translation vector.

Let b = t/b, where b = ‖t‖, denote the unit length baseline relating the two coordinate
frames. We refer to b as the baseline scale. In terms of the projections x and x′ of X,
equation 5.1 can be expressed as

r′x′ = rRx+ bb, (5.2)

where r and r′ are the depths and b is the baseline scale. When both sides of the
equation 5.2 are divided by b, the coupling of the baseline scale b and the depth is
evident; in the absence of metric knowledge about r, r′ or b, a reconstruction can only
be obtained up to an arbitrary scale factor.

Co-planar scene points. Many indoor environments consist of locally planar struc-
tures. Let us assume that the camera undergoes a general motion (rotation and trans-
lation) and that the scene points observed come from a single plane in the world. The
central projections of the co-planar scene points are related by a planar transformation,
which can represented by a 3 × 3 homogeneous homography matrix H. Let Π denote a
world plane specified in coordinate frame C. The plane is characterized by a unit normal
vector n and distance d. For a scene point X on the plane, the following relationship
holds

n ·X = −d. (5.3)
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In terms of the projection x, equation 5.3 can be written as

r(n · x) = −d. (5.4)

So we have r = −d/nTx. If we divide both sides of equation 5.2 by r we obtain

x′ ' (R− b

d
bnT )x = Hx, (5.5)

where ' denotes similarity up to scale and H is the homography matrix.

A general homography can be estimated if at least 4 correspondences are known, because
each correspondence provides two constraints on the entries of H. Notice that if the
camera does not undergo a translation, i.e. b = 0, the homography in equation 5.5 reduces
to a rotation matrix. The plane from which a scene point comes is then inconsequential
and may be arbitrary.

Arbitrary scene points. If the 3-D scene points observed are in arbitrary positions
(i.e. they are scattered in space), and the camera undergoes a general motion, the
projections of the scene points are related via the epipolar geometry, which we discussed
in chapter 4. The epipolar geometry expresses the fact that for some r and r′, the
rays, spanned by two corresponding feature points x ↔ x′ originating from C and C ′

respectively, meet at point X in space. The fact that the rays x and x′ and the baseline
b are co-planar can be expressed as

x′ · (b× (Rx)) = x′TSRx = x′TEx = 0, (5.6)

where × denotes the vector outer product, S denotes the 3 × 3 skew symmetric matrix
such that Sx = b × v for any v, and E = SR is the essential matrix. The essential
matrix can be estimated using a linear method if at least 8 correspondences are available.

Notice that the essential matrix is degenerate when there is no translation between view-
points, because then S becomes a null matrix. A degeneracy also occurs when all corre-
spondence come from a single world plane. In this case, the correspondences are related
by an homography, which is uniquely determined by four correspondences. Additional
correspondences from the plane do not provide additional constraints on the entries of
the essential matrix. In [93] a method is proposed to detect these degeneracies and han-
dle them by switching to homography estimation. In our application we assume that
the camera poses associated with any pair of images are always related by a non-zero
translation.

Both the homography and the essential matrix encode information about the relative
camera poses at which two images are acquired. Several methods exist to recover the
motion parameters from an essential matrix [30, 96, 36]. These decompositions yield
four possible rotation/translation pairs. The correct decomposition can be selected by
reconstructing the 3-D points from the image correspondences according to each pair.
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The problem is revisited and explained in more depth in section 5.3.1. The problem
of recovering the relative camera poses and plane parameters from a homography is
discussed in detail in [18]. In the most general case, eight different sets of solutions
exist. However, only two of these are feasible if the world plane is considered to be
non-transparent. A method to find these solutions via the SVD decomposition of the
homography is presented in [95]. From an estimated homography, the rotation and the
product (b/d)bnT are recoverable. If b and n are both set to unit length, only the ratio
of the actual baseline scale b and the plane distance d can be recovered.

Assuming a general camera motion, we have seen that a reconstruction of the relative
camera poses and the structure of the scene can be obtained up to an arbitrary scale
factor from both an estimated essential matrix and an estimated homography. From an
estimated homography, the ratio of the baseline scale and the plane distance can also be
recovered. Suppose now that we have a set of images of a single plane obtained by a
camera that moves parallel to the plane, so that the height d of the camera above the
plane is fixed. We can then set the plane distance to unit length d = 1, so that the baseline
scale can be expressed in “camera height units”. Provided that the homography relating
projections of points on the plane in pairs of images can be estimated, a consistent baseline
scale over all input images can then be obtained for each image pair independently. These
observations provide the basis on which we build our approach to relative camera pose
estimation.

5.3 Two-stage Relative Pose Estimation

Our robot is equipped with a catadioptric vision system, which is mounted vertically on
top of the robot. An image acquired by the sensor is shown in figure 5.1a. Because the
robot moves in an indoor office environment, it is reasonable to assume that the camera
undergoes a planar motion parallel to the ground plane. The height of the camera
viewpoint remains fixed and the ground plane is always visible. The fixed height can be
used to serve as a yardstick; the baseline scale can be expressed in “camera height” units.
The homography relating two images of the ground plane therefore appears to be an ideal
candidate to recover relative camera pose from a pair of images. The central issue now
becomes how to estimate the homography given a pair of catadioptric images. There
are essentially two ways to estimate an homography; one can estimate the homography
from feature correspondences, or one can directly register two images by minimizing their
intensity discrepancy as a function of the homography parameters.

Evidently, estimation of the homography from image correspondences requires that the
correspondences come from the ground plane. In [21] two methods are presented to detect
a dominant plane on the basis of feature points extracted in two images. The first method
assumes that a set of image correspondences, possibly contaminated by outliers (erro-
neously matched points), is available a priori. A robust estimator is then used to find the
homography consistent with the largest subset of correspondences. The second method
does not assume that correspondences are known a priori. Instead, correspondences and
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(a) catadioptric image (b) ground plane

(c) cylindrical panoramic image

Figure 5.1: Various image representations. a) catadioptric image, b) ground plane image obtained
by re-projecting the catadioptric image onto a plane parallel to the floor, c) cylindrical panoramic
image obtained by re-projecting the catadioptric image onto a cylinder.

the homography are solved simultaneously by a robust estimator. The estimator selects
four feature points in the first image at random. For each selected feature point in the
first image, a feature point in the second image is selected as a potential correspon-
dence. The selection criterion is based on image similarity between windows centered
at the feature point in the first image and windows centered at the feature points in
the second image. The four points in the first image and the four points in the second
image uniquely determine an homography. The “generated” homography is evaluated
by warping the feature points in the first image to the second image and calculating
an evaluation measure as follows. For each warped feature point, the nearest feature
point in the second image is considered to be the corresponding feature. The evaluation
measure combines the distances to the corresponding features and the image similarity
between corresponding features. The procedure is performed many times while storing
the homographies and their respective evaluation. Finally, the homography yielding the
best evaluation is considered to be the homography describing the dominant plane in the
scene.

In [52] a two stage procedure is presented to detect a dominant plane on the basis of
feature correspondences across two un-calibrated perspective images. The first stage
estimates the epipolar geometry relating the two images using a robust estimator. The
estimator used is the Least of Median Squares (LMedS)estimator [78]. LMedS aims at
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estimating the a set of model parameters that fit the majority of the measurements using
a Monte-Carlo technique. The idea is to repeatedly draw random subsets from the set
of measurements, each subset being just large enough to calculate the model parameters.
The model consistent with the majority of the measurements is retained as the solution.
The estimated epipolar geometry, which is assumed to be accurate, provides six linear
constraints on any homography. Thus, two pairs of corresponding points from a single
plane suffice to derive the homography. In order to find the dominant plane, again an
LMedS based procedure is used.

The approaches described above assume that a large set of correspondences (which may
be contaminated by outliers) is available. From images of the ground plane, a large set
of point correspondences may be hard to obtain for various reasons. First, the ground
plane itself may contain few easily identifiable feature points (such as corners). Second,
a rotation invariant descriptor of feature points should be used because a rotation of the
robot causes a rotation of the image. Such invariance is important to establish corre-
spondences, but always comes at the price of less discriminative power. It is therefore
questionable that the ground plane will be identifiable as the dominant plane using the
above methods. We propose a different approach in which we take advantage of our cata-
dioptric vision sensor. Similar to [52] our approach is a two-stage estimation procedure
in which we first estimate the epipolar geometry relating a pair of images and then use
the resulting estimate to constrain the homography relating ground plane images.

In the first stage, we estimate the essential matrix from point correspondences estab-
lished between cylindrical panoramic images such as shown in figure 5.1c. The cylindrical
panoramic image is obtained by re-projecting the catadioptric image shown in figure 5.1a
onto a virtual cylinder. Corresponding feature points established in cylindrical panoramic
images are likely to come from scene points in arbitrary positions, a prerequisite to esti-
mate the essential matrix. Due to the panoramic field of view of the images, many easily
identifiable features can be found. Furthermore, features remain visible after rotation and
after relatively large camera displacements (unless they get occluded by other objects).
When cylindrical panoramic images are used, off-the-shelf tracking techniques (e.g. [3]),
originally developed for conventional camera’s, can be employed to reliably establish fea-
ture correspondences. The relatively few tracking errors that occur are easily dealt with
by robust statistical techniques. It has been shown in several works [86, 50, 28] that,
in spite of the relatively low resolution, catadioptric panoramic vision can produce more
accurate camera motion estimates than those obtained from conventional cameras. In
particular, small rotations of the sensor can better be distinguished from small transla-
tions. From the estimated essential matrix we derive an estimate of the relative rotation
R and baseline direction b.

In the second stage, we use the estimated rotation and baseline direction to constrain
the homography relating the ground plane in two ground plane images. A ground plane
image, as shown in figure 5.1b, is obtained from the catadioptric image, as shown in
figure 5.1a, by re-projecting the catadioptric image onto a virtual plane parallel to the
ground plane. The single parameter left to relate the ground plane images is related to
the baseline scale b. As explained before, extraction of reliable feature correspondences
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coming from the ground plane may be difficult. Therefore, instead of pursuing a feature
correspondence based approach, we attempt to register the ground plane images as a
function of the baseline scale b by minimizing the intensity discrepancy between two
images.

5.3.1 Estimating the rotation and baseline direction

In this section we describe a method to recover the relative rotation and direction of
translation from a pair of cylindrical panoramic images. We adopt a commonly used
approach in which the relative camera poses are derived via decomposition of an estimated
essential matrix. The essential matrix is estimated using a robust linear estimator.

We exploit prior knowledge that the motion of the camera is parallel to the ground
plane. If the camera is mounted vertically on top of the robot, the camera is restricted
to a translation parallel to the camera X-Y -plane, and a rotation of the camera is about
an axis parallel to the camera Z-axis. A novelty in our method is that we explicitly
incorporate this prior knowledge in the parameterization of the essential matrix.

Parameterization of the essential matrix. We set the baseline to unit length, such
that it can be specified by b = [cosφ, sinφ, 0]T . The rotation is a rotation through an
angle θ about the Z-axis. The essential matrix then has the following form:

E = SR (5.7)

=





0 0 sinφ
0 0 − cosφ

− sinφ cosφ 0









cos θ − sin θ 0
sin θ cos θ 0
0 0 1





=





0 0 sinφ
0 0 − cosφ

sin(θ − φ) cos(θ − φ) 0



 .

We refer to essential matrices of this form as specialized essential matrices.

Estimation of the specialized essential matrix. We adopt a robust linear esti-
mation method to estimate the essential matrix. If we rewrite the specialized essential
matrix as a general essential matrix, we obtain

E =





0 0 e3

0 0 e6

e7 e8 0



 . (5.8)

The essential matrix can be estimated from a set of N correspondences xi ↔ x′i (i ∈
{1, . . . , N}) as follows. If the non-zero entries of the specialized essential matrix are
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expressed as a vector e = [e3, e6, e7, e8]
T , the N constraints obtained from N correspon-

dences can be expressed linearly as De = 0, where D is the (N × 4) design matrix. Each
row Di of D has the form:

Di =
[

x′i(1)xi(3) x′i(2)xi(3) x′i(3)xi(1) x′i(3)xi(2)
]

. (5.9)

A solution for e can be found linearly by solving

min
e
‖De‖2 subject to ‖e‖ = 1. (5.10)

The constraint ‖e‖ = 1 is incorporated to fix the scale of E. The solution to this
problem is the eigenvector of the moment matrixM = DTD associated with the smallest
eigenvalue and can be found by using a singular value decomposition (SVD) of D. This
algorithm is known as the 8-point algorithm [31].

An essential matrix has two equal eigenvalues and has rank two. The linear 8-point
algorithm does not enforce these properties on the recovered E matrix. The nearest
essential matrix (Frobenius norm) can be found as follows. Let Ê denote the matrix
found by the 8-point algorithm. Let its SVD decomposition be Ê = USVT where
S = diag(σ1, σ2, σ3). The nearest essential matrix E can the be found as E = US′VT ,
where S′ = diag((σ1 + σ2)/2, (σ1 + σ2)/2, 0).

Image correspondences xi ↔ x′i are typically established by image based matching and
are inherently noisy. Furthermore, erroneous associations between image features may
be present in the set of correspondences. Erroneous associations act as outliers that
do not adhere to the relationship implied by the essential matrix. The linear 8-point
algorithm is sensitive to noise and cannot cope with outliers [94]. Robust statistical
estimation techniques can be employed to identify and discard such outliers from the set
of correspondences. We first use a Least of Median Squares (LMedS) estimator [78] to
obtain an initial estimate of the essential matrix.

Because the solution is based on a minimal number of measurements, it can be improved
by re-estimating the model from the set of measurements consistent with the proposed
solution. This set may still contain a number of outliers. In order to identify and discard
the remaining outliers, we apply an M-estimator. An M-estimator assigns low weights
to outlying measurements so that their influence is reduced [114]. We implemented the
M-estimator as an iteratively re-weighted least squares variant of the linear least squares
method implied by the 8-point algorithm [94].

Recovering the relative camera poses. Estimation of the specialized matrix is a
means to an end. We are not interested in the entries of the estimated essential matrix
per se, but in the relative poses characterized by the baseline direction b (parameterized
by φ) and the rotation R (parameterized by θ). Many decomposition techniques exist to
recover the rotation and baseline direction from an essential matrix. We propose a new
method tailored to the specialized essential matrix to recover φ and θ directly.
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The baseline direction φ can be obtained as

φ = arctan2

(

sinφ

cosφ

)

= arctan2

(

e3

−e6

)

, (5.11)

where arctan2(y/x) is the four quadrant arctangent of x and y so that−π ≤ arctan2(y/x) ≤
π.

Because of sign ambiguity, there are two possible solutions for the baseline:

b = [cosφ, sinφ, 0]T , (5.12)

bπ = [cos(φ+ π), sin(φ+ π), 0]T . (5.13)

The camera rotation angle θ can be recovered from the last row of E as

θ == (θ − φ) + φ = arctan2

(

e7

e8

)

+ arctan2

(

e3

−e6

)

. (5.14)

The rotation matrix, R, associated with baseline direction b is then given by

R =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 . (5.15)

The rotation matrix, Rπ, associated with baseline direction bπ is related to R by a
rotation π about an axis parallel to b. We derive Rπ using Rodrigues formula for rota-
tions [23]:

R(v, α) = cosα





1 0 0
0 1 0
0 0 1



+ sinα





0 −v(3) v(2)
v(3) 0 −v(1)
−v(2) v(1) 0



+ (1− cosα)vvT , (5.16)

which gives the rotation matrix corresponding to a rotation α about a unit norm vector
n. For a rotation π about b = [cosφ, sinφ, 0]T equation 5.16 gives

R(b, π) =





2 cos2 φ− 1 2 cosφ sinφ 0
2 cosφ sinφ 2 sin2 φ− 1 0

0 0 −1



 . (5.17)

The rotation matrix Rπ is then given by:

Rπ = RR(b, π). (5.18)

The co-planarity constraint implemented by a given essential matrix holds for any non-
zero scalar multiple of that matrix. In particular, if E is a solution, so is −E. Matrix −E
has two decompositions that are related to those already found: bπ with orientation R
and b with orientationRπ. Thus, there are four possible pairs of rotation and translation,
each resulting in an essential matrix consistent with the set of feature correspondences.
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Selection of rotation and translation. To resolve the ambiguity one can go back to
the 3-D space and determine the point where two corresponding rays meet. Figure 5.2
displays top views of cylindrical camera pairs and illustrates the geometric interpretation
of the four possible combinations of rotation and translation. A + symbol indicates a pos-
itive depth and a − symbol indicates a negative depth. The correct rotation/translation
pair ideally holds positive depths from both viewpoints for all corresponding features
used to estimate the essential matrix.

If we divide both sides of equation 5.2 by r and rearrange the terms then for any corre-
spondence x↔ x′ we have

(r′/r)x′ − (1/r)b = Rx. (5.19)

In order to recover r and r′, a least squares problem of the formAp = c can be formulated
as

[

x′ −b
]

[

r′/r
1/r

]

=
[

Rx
]

. (5.20)

A solution can be obtained using the pseudo inverse technique [73]:

p = (ATA)−1ATc. (5.21)

We call the solution positive when both p(1) > 0 and p(2) > 0. Otherwise, a solution is
called negative. In practice, correspondences are noisy. As a result, even if the correct
rotation/translation pair is selected, not every solution is positive. In particular, rays
nearly parallel to the baseline may yield a negative solution due to small errors in the
estimated baseline direction. Furthermore, distant 3-D points give rise to nearly parallel
rays from both viewpoints. The intersection of the back-projected image coordinates x
and x′ is ill determined (can be +far or -far). In order to cope with these issues, we
adopt a majority voting scheme. For each of the four possible rotation/translation pairs
we count the number of positive solutions and select the pair yielding the highest number
of positive solutions.

5.3.2 Estimating the baseline scale

Assuming that R and b have been recovered from the essential matrix, we estimate the
baseline scale b as follows. The catadioptric image is re-projected onto a plane parallel to
the floor. The planar perspective projections of points on the ground plane are related by
a homography. We assume that the ground plane normal n is parallel to the camera Z-
axis, which coincides with the axis of camera rotation, and that the camera translation is
in the cameraX−Y plane. The homography (whose general form is given in equation 5.5),
then takes the form of a 2-D rigid transformation:

H =





cos θ − sin θ −(b/d) cosφ
sin θ cos θ −(b/d) sinφ
0 0 1



 , (5.22)
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Figure 5.2: Top view of the four possible combinations of rotation and translation that can be derived
from an essential matrix. The ambiguity can be resolved by considering visibility of the feature
correspondences from which the essential matrix was estimated. The correct rotation/translation
pair yields a positive depth (marked by +’s) from viewpoints I and I ′ for most of the features that
were used to estimate the essential matrix.
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where θ and φ describe the rotation and baseline direction recovered from the previously
estimated essential matrix. We set d = 1, leaving the baseline scale b (which is expressed
in “camera height” units) as the only free parameter to register projections of points on
the ground plane.

In order to estimate b, we register the ground plane images by minimizing the squared
intensity difference between the two images as a function of b. The camera calibration
matrix K of the virtual perspective camera is known. Pixel coordinates u = Kx and
u′ = Kx′ in two images are then related via the homography

u′ = KHK−1u. (5.23)

We then minimize the following error function

E2 =
∑

i

[I ′(u′
i))− I(ui)]

2
=
∑

i

e2
i , (5.24)

where i is a pixel index, I and I ′ are images and u′
i = KH(R,n, d,b, b)K−1ui. The

error function is minimized as a function of b (the other parameters are kept fixed) by
iteratively updating the estimate of b as follows. Given a current estimate of b, the error
function is linearized as

E ≈
∑

i

[

ei(b) +
∂ei
∂b

∆b

]2

. (5.25)

We explain how we obtain ∂ei/∂b later. For now, assume that the partial derivatives are
available. Gradient descend of the error function with respect to ∆b can be performed
by setting

0 =
∂E

∂∆b
≈ ∂

∂∆b

∑

i

[

ei(b) +
∂ei
∂b

∆b

]2

= 2
∑

i

[

(

∂ei
∂b

)2

∆b+

(

∂ei
∂b

)

ei

]

.

(5.26)

This can be rewritten as an equation of the form a∆b = c, where

a =
∑

i

(

∂ei
∂b

)2

and c = −
∑

i

ei

(

∂ei
∂b

)

. (5.27)

The solution for ∆b is then given by ∆b = c/a. The model parameter b can now be
updated as b ← b + ∆b. These steps can be repeated until the error stabilizes or until
a maximum number of iterations is reached. Instead of straightforward gradient, we use
the more efficient Levenberg-Marquardt (LMQ) method [73]. 1

1The Levenberg-Marquard method solves the equation (a+ σ)∆b = c, where σ is a time varying
stabilizing parameter. The value of σ is initialized to a small value. At the end of each iteration, if the
update ∆b found reduces the error, the update is accepted and σ is decremented. On the other hand,
if the update leads to error increase, σ is incremented and the equation is solved for again. This step is
then repeated until an update is obtained that reduces the error, which is bound to happen because for
large σ the method approaches a steepest descent.
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At each iteration an estimate of the gradient of the error function with respect to b is
required. By application of the chain rule, the gradient can be calculated as

∂ei
∂b

=
∂I ′(u′

i)

∂u′
i

∂u′
i

∂h
K
∂H

∂b
K−1, (5.28)

where h is a 9×1 vector containing the elements of the current estimate of KHK−1. We
obtain the partial derivatives of I ′ with respect to the image coordinates u′ a regularized
image gradient operator [77]. The image coordinates u′ generally do not correspond to
discrete pixel coordinates and a form of interpolation is required to perform a re-sampling
of image I ′. We use bi-linear interpolation. The partial derivatives of u′ with respect to
h are given by

∂u′

∂h
=

[

u(1)D u(2)D 1 0 0 0
0 0 0 u(1)D u(2)D 1

−u(1)u′(1)D −u(2)u′(1)D −u′(1)D
−u(1)u′(2)D −u(2)u′(2)D −u′(2)D

]

, (5.29)

where D = 1/(h(7)u(1) + h(8)u(2) + h(9)). Finally, referring to the definition of H in
equation 5.22, ∂H/∂b is given by

∂H

∂b
=





0 0 − cos θ
0 0 − sin θ
0 0 0



 . (5.30)

As any non-linear optimization technique, the LMQ method may get stuck in a local
minimum of the error function. To diminish the risk of getting stuck, the error function
can be smoothed by computing image gradients at a large scale. A drawback of this
approach is that the minimum can be located less accurately. Instead, we precede the
LMQ method by generating a small set of proposal baseline lengths. Each proposed
b yields an homography that is used to calculate the corresponding value of the error
function E. Subsequently, the proposed b yielding the smallest error is used as a starting
point for the LMQ minimization.

The intensity error minimization procedure minimizes the total intensity error over all
overlapping pixels in the two images that are registered. Ideally however, only “floor pix-
els” (projection of points on the ground plane) should participate in the minimization.
The reason is that the method assumes that the motion of all points in the image can be
described by a single homography. For non-floor points (like extruding objects and spec-
ular reflections) an additional image motion component is induced by a camera motion
that depends on their height above the plane. Automatically deciding which pixels are
“floor” and which are “non-floor” is a non-trivial issue. If the homography were known,
pixels may be classified as “floor” or “non-floor” pixels on the basis of the intensity differ-
ence between the target image I(u) and the warped source image I(u′). This approach is
commonly used to detect obstacles on a ground plane [25, 52]. However, we initially have
a rough estimate of the homography. Because the images are not registered accurately,
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it makes little sense to employing such a classification scheme. Typically, intensity based
error minimization ignores the issue and implicitly assumes that all pixels come from the
same, non-specular, world plane. We are willing to adopt the same approach, but only
after verifying experimentally that the baseline length estimate is not affected much by
extruding objects and specular reflections.

5.4 Experiments

Ground plane images that are used to estimate the baseline length may display objects
extruding from the floor. Furthermore, the floor may give rise to specular reflections.
Allowing objects other than the floor and specular reflections to contribute in the esti-
mation of the ground plane homography may affect the estimated baseline length. In
section 5.4.1 we investigate experimentally how the baseline length estimate is affected
by extruding objects and illumination effects. In section 5.4.2 we use our technique to
estimate relative camera poses on images acquired by a real robot. We choose to apply
our technique to subsequent image pairs, taken from a sequence of images acquired during
robot navigation. The relative pose estimates obtained are composed to reconstruct the
trajectory traversed by the robot. Applied in this fashion, our approach yields a form of
visual odometry.

5.4.1 Simulation experiments

In a series of simulation experiments we investigated the sensitivity of stage two of our
approach (estimation of the baseline scale) with respect to objects extruding from the
ground plane and specular reflections on the ground plane.

Data and method. We designed a virtual environment covering an area of 4×4 units
(think of units as meters). A rendered birds-eye view and the 2-D map of the environment
are show in figures 5.3a and b. The 2-D map shows the location of walls, doors, light
sources and a simulated camera trajectory through the environment. Images are rendered
by a ray-tracer that simulates a camera aimed straight at the ground plane at 98 camera
poses along the trajectory. The height of the camera remains fixed at 0.6 units above the
ground plane. Each image is 200 × 200 pixels and covers a field of view of 120◦ both in
horizontal and vertical direction.

Two sets of images were rendered:

“nolights”. Images in this set display only the intrinsic color of observed objects in the
environment. The images are unaffected by illumination conditions. An example
image is shown in figure 5.3c.
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Figure 5.3: Simulation data. a) A rendered birds-eye overview of the virtual environment. b) A 2-D
map of the virtual environment. The asterisks indicate the positions of lights, which are mounted
in the ceiling. The curve represents the trajectory travelled by a virtual robot, and the dots on the
curve mark the positions where images are obtained. c) An image from the set “nolights”, which
is unaffected by illumination effects. d) The corresponding image from the set “lights”. Notice the
presence of specular reflections and shadows. e) The corresponding binary mask image indicating
which pixels come from extruding objects (black) and from the floor (white).
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“lights”. Images in this set were rendered using a more realistic illumination model
(adopted from [20]). They display both specular reflections and shadows. An
example image is shown in figure 5.3d.

For each image, we also rendered a binary mask image, such as shown in figure 5.3e.
Pixels in a mask image are white if they come from the floor, and black if they come
from to an extruding object such as a wall or door.

The baseline length between pairs of consecutive images in the sequence is 0.25 units.
The i-th pair consists of image Ii (source image) and Ii+1 (target image) (1 ≤ i < 97).
Because we used a simulation environment, the homography relating any pair of images
is known exactly. In order to quantify the fraction of non-floor pixels in a pair of images,
we warped the source image to the target image according to the exact homography. The
warped source image partially overlaps the target image. The fraction of non-floor pixels
is now defined as the number of non-floor pixels in the warped source image divided by
the total number of pixels in the overlapping part. The largest fraction of non-floor pixels
is 57.3%. The smallest fraction of non-floor pixels is 3.4%. On average 26.7% of the all
pixels in the sequence are non-floor pixels with a standard deviation of 14.7%.

In order to investigate the influence of extruding objects and specular reflections we
devised the following experiment. Given a pair of images, let the true homography
relating the images be denoted by H∗(K,R,n, d,b, b∗). We generate an homography
corresponding to an error ∆b in the baseline scale H(K,R,n, d,b, b), where b = b∗ +∆b.
In our experiments, ∆b was drawn randomly from a uniform distribution in the range
[−0.2, 0.2]. The resulting homography is used as a starting point for the intensity based
error minimization. After convergence, the minimization yields an estimated homogra-
phy H(K,R,n, d,b, b̂). The error e = b∗ − b̂ between the true baseline length and the
estimated baseline length, is used as a measure to characterize the accuracy of the esti-
mated baseline length. We repeated this experiment 25 times for each of the 97 image
pairs, using a different initial homography in each experiment.

Using the binary mask images to prohibit pixels coming from extruding objects from
contributing in the intensity error minimization, the following experiments were done
and the obtained results are compared.

Experiment 1 (“nolights”, “mask”). Images from the set “nolights” were used. Pix-
els coming from objects extruding from the floor were prohibited from participating
in the intensity error minimization.

Experiment 2 (“nolights”, “nomask”). Images from the set “nolights” were used.
All pixels participated in the intensity error minimization.

Experiment 3 (“lights”, “mask”). Images from the set “lights” were used. Pixels
coming from objects extruding from the floor were prohibited from participating in
the intensity error minimization.
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nomask mask
nolights 0.0025 0.0027
lights 0.0035 0.0045

Table 5.1: Median of absolute baseline length errors over all image pairs for each data set after
optimization. The average baseline length between subsequent poses in the data set 0.25 units.

Experiment 4 (“lights”, “nomask”). Images from the set “lights” were used. All
pixels participated in the intensity error minimization.

The influence of extruding objects was investigated by comparing the accuracy of the
baseline estimation obtained in experiment 1 and experiment 2. Observed differences in
results from the two experiments (if any) can primarily be contributed to the non-floor
pixels.

Images in the “lights” exhibit specular reflections on the ground plane. Such reflection
appear to be moving along with the observer, and therefore do not adhere to the ho-
mography relating points on the ground plane. The influence of specular reflections was
investigated by comparing the accuracy of the baseline estimation obtained in experiment
1 and experiment 3, and by comparing the results from experiment 2 and experiment
4. Observed differences in results (if any) can primarily be contributed primarily to the
presence of specular reflections.

Results. The results of the four experiments are summarized in table 5.1, which presents
the median of the absolute baseline length errors for all four conditions. The median was
used instead of the mean because the non-linear method used to estimate the baseline
length did not always converge to a minimum close to the true baseline length (which is
0.25 units in our experimental setup).

We first observe that the influence of shadows and specular reflections is more notable
than the influence of extruding objects. The expected baseline length error increases
when realistic illumination conditions are simulated.

This could be expected because specular reflections are typically seen as bright spots on
the plane. These spots yield a strong image gradient, which has a large influence on the
intensity minimization.

It is interesting to note that it appears to be better not mask out non-floor pixels, particu-
larly under realistic illumination conditions (“lights” data set). An plausible explanation
is that the gradient information at the boundaries between floor and extruding objects
contributes to finding a good solution. Gradient information from objects extruding from
the floor is not available when the binary mask images are used. The influence of specular
reflections may even be compensated for by this gradient information.

In a way, this is good news because it implies that we do not need to worry about
extruding objects when estimating the baseline scale. It may be argued that images
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Figure 5.4: Trajectory as measured by the robot’s wheel encoders. The closed-loop trajectory starts
at (0,0). At the end of the trajectory, the robot arrived exactly at the start pose, but wheel odometry
shows a slight mismatch between the start pose and end pose.

should have been used that contain an even larger fraction of non-floor pixels (than
the 57.3% in our data sets). We believe however that the camera trajectory is fairly
representative for a trajectory real mobile robot could traverse.

5.4.2 Visual odometry experiments

If a sequence of images 0I, . . . , NI is available, each image jI (1 < j ≤ N) can be related
to the first image in the sequence (which serves as a reference frame) by multiplying
homographies relating consecutive images:

0x =

(

j
∏

i=1

i−1
i H

)

jx, (5.31)

resulting in a form of visual odometry. In this section we apply such visual odometry to
reconstruct the trajectory traversed by our robot while capturing images.

Experimental setup. A sequence of catadioptric images was acquired while manually
guiding our robot through our building. The trajectory described a closed loop where the
robot’s initial pose and the pose at the end of the trajectory are identical. The trajectory
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Figure 5.5: Correspondences obtained by feature tracking and subsequent robust estimation of the
essential matrix. Boxes represent correspondences obtained by the feature tracker. Boxes with a
× symbol represent correspondences that are compatible with an estimate of the essential matrix
obtained by a Least of Median Squares estimator. Boxes with a × and a + denote correspondences
compatible with an estimate of the essential matrix obtained by an M-estimator.

as measured by the robot’s wheel encoders is displayed in figure 5.4. Over the relatively
short trajectory, without any sudden sharp turns or bumps, odometry was quite accurate.
A total of 81 600× 450 pixel catadioptric images were captured during navigation. The
derived cylindrical panoramic images are 720 × 120 pixels. The derived ground plane
images are 200× 200 pixels. The virtual perspective camera observing the ground plane
was given a field of view of 140◦.

Estimation of the essential matrix. The Kanade-Lucas-Tomasi feature tracker [45,
3] (KLT) was used to track a set of at most 200 salient image features from frame to
frame. Lost features are replaced immediately by new salient features. Features tracked
successfully between two frames are used to estimate the essential matrix relating the
two frames. First, the Least of Median Squares (LMedS) method [78] is used to identify
and discard gross outliers. Subsequently, an M-estimator [94, 114] is used to refine the
estimate.

Figure 5.5 shows an example of the results of tracking and essential matrix estimation.
Boxes indicate points that were marked as successfully tracked by KLT. Boxes with a ×
indicate correspondences classified as inliers after LMedS. Boxes with both a × and a
+ indicate surviving points after applying LMedS followed by the M-estimator. Notice
that most erroneously tracked points are correctly identified by the estimation procedure.
Also notice that only a very small fraction of salient points lie on the ground plane.

Estimation of the baseline scale. The robot is always visible in the ground plane
images. Prior to intensity minimization, it was masked out so that the image of the robot
does not contribute in the estimation of the scale. In this experiment, the scale at which
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Figure 5.6 : A random selection of ground plane images from the sequence.

image gradients were computed were set to 1 pixel. The initial sampling of b values was
done in the range [0, 1.2]. The limits were chosen because negative b values corresponds
to a baseline in the opposite direction and for b > 1.2 there was no overlap between a
warped source and target image. A random selection of ground plane images used in the
experiment is shown in figure 5.6.

Visual odometry results. Figure 5.4 displays the trajectory as measured by the robot
wheel encoders. Some reconstructed trajectories obtained using our vision based method
are shown in figure 5.7. Slightly different reconstructions of the trajectory are obtained
due to the stochastic nature of the LMedS algorithm used to estimate the essential matrix.
Although locally the visually estimated displacements are correct we see that the global
estimate is not that accurate; the estimated endpoint of the trajectory is quite far from
the actual endpoint.

Correcting visual odometry. The results shown in the previous section showed that
the pose at the end of the trajectory is quite far from the true end pose due to accu-
mulation of small errors. Wheel odometry suffers from the same phenomenon. Unlike
wheel odometry, visual odometry offers the appealing possibility of recognizing a previ-
ously visited place on the basis of visual comparison. Although we applied our method
to estimate the displacement only between subsequent images in the sequence, the visual
method can be used to estimate the motion between any pair of images provided that
there is sufficient visual overlap between the ground plane images and sufficient corre-
spondences can be found in the panoramic images. The advantage of the visual method
now becomes obvious. If we also estimate the motion between the last pose and the
initial pose by means of our method, the trajectory can be “corrected”.

As a demonstration, we used our relative pose estimation method to estimate the dis-
placement between the last but one and the first image. We then get an estimate of
the last pose, say C∗

N , which is linked directly to the initial pose. We also obtained an
estimated of the last pose, say CN , by composing the relative pose relationships leading
up to the last pose. A simple method to correct the trajectory is to back-propagate the
difference between the two estimates of the final pose proportionally as

Ci ← Ci −
(

1− N − i

N

)

(C∗
N − CN), (5.32)
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Figure 5.7: Four examples of visually estimated trajectories. The start position (0,0) is marked by
a black dot. The true trajectory is a closed-loop trajectory that ends exactly at the initial position.
The small differences in the shown estimated trajectories are due to the stochastic nature of the
Least of Median Squares estimator used to estimate the essential matrix relating subsequent images.

where Ci denotes the i-th pose and (C∗
N − CN) is the error at the last pose. The results

of this simple correction technique are shown in figure 5.8b. The improvement is evident;
although still not perfect, the trajectory resembles the trajectory measured by the wheel
encoders closely.

Comparing the trajectory measured by the wheel encoders in figure 5.8a and the visually
estimated trajectory shown in figure 5.8b shows that baseline lengths between the 7-th
up to the 12-th image (in the area 1 < x < 3,−1 < y < 0) are often underestimated.
The corresponding images are shown in figure 5.9. These images contain relatively little
texture so that the registration of these images as a function of the baseline scale is
uncertain.

Further improvements of the estimated trajectory are possible if the uncertainty associ-
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Figure 5.8: a) Path traversed by the robot according to wheel odometry. b) Path traversed by the
robot according to visual odometry. The path was corrected by also estimating the pose estimate
relating the last but one and the first image, and back-propagating the error.

Figure 5.9: Image 7 through image 12. For these images, the baseline length is consistently underes-
timated. This is likely to be caused by excessive specular reflections and the absence of distinguishing
texture on the ground plane.

ated with each relative pose estimate would be taken into account. For instance, instead
of a simple proportional back-propagation of the error at the end-pose, a more principled
Kalman-smoothing procedure as proposed in [88] could be used. The trajectory could
even further be improved by estimating displacements and associated uncertainty for all
image pairs. A globally consistent pose estimation technique, such as presented in [53]
could then be applied.

5.5 Discussion and Conclusion

In this chapter we presented a method for estimating the translation and rotation between
two subsequent poses of a moving robot from images taken with a panoramic catadioptric
vision system. We have applied our method to obtain a form of visual odometry and have
shown how a reconstruction of the past trajectory can be obtained. Our method operates
in two stages and uses two different image representations derived from catadioptric
images. In the first stage, point correspondences between cylindrical panoramic images
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are used to estimate the relative rotation and direction of translation between two camera
viewpoints. In the second stage, perspective images of the ground plane are used to
estimate the scale of the baseline by minimizing their intensity discrepancy as a function
of the baseline length.

An issue of concern raised during experimentation was the extend to which “non-floor”
pixels contribute to the error in the obtained baseline estimate. From our simulation
experiments we conclude that the estimator is insensitive up to (at least) 57% “non-
floor” pixels. Our visual odometry experiments suggest that the presence of sufficient
texture on the ground plane appears to be the dominating factor.

Another issue of concern in using a two-stage procedure as we proposed is that the
second stage relies on the accuracy of the first stage. If the rotation and direction of
translation estimated in the first stage are wrong, the estimated baseline scale is also
likely to be wrong. The visual odometry experiments we presented show that the rotation
and direction of translation are accurately estimated in many cases. This positive result is
in accordance with both theory [19] and experimental findings in other works employing
omnidirectional or panoramic vision [28, 50, 68].

Although the visually estimated displacements are correct locally, when using visual
odometry the estimated final pose can be far from the true final pose (which in our
experiment is identical to the initial pose) due to error accumulation. Unlike wheel
odometry, visual odometry is not “blind” in the sense that the return at a previously
visited place can be detected. This opens up the opportunity to correct the past trajec-
tory. We have used a simple method, which back-propagates the detected error over the
past trajectory, to illustrate the principle. Our experimental results demonstrate that
our two-stage pose estimation method can be used to obtain a good estimate of a past
trajectory using visual information only.



Chapter 6

Summary, Conclusions and Future Work

This thesis discusses methods and techniques for map building and localization based on
panoramic images captured during navigation in an indoor environment. In this chapter,
we present general conclusions and indicate possible directions for future research.

Chapter 2. Chapter 2 introduces a vision sensor that observes the world through a
hyperboloid shaped mirror. The vision sensor provides a panoramic field of view. We
have presented a method to derive a mirror shape, height and size so that the resulting
assembled vision sensor covers a specified vertical field of view. We presented a quick-
and-easy calibration procedure, which estimates the camera focal length and the principal
point. The calibration procedure assumes that other camera parameters are known, and
that the mirror is positioned correctly with respect to the camera. The vision sensor
measures light from a single point in space (the single effective viewpoint). As a result,
images acquired by the sensor can be re-mapped to another surface. We have shown how
a virtual cylindrical, spherical and planar perspective camera can be constructed. The
usefulness of these virtual cameras is illustrated in subsequent chapters.

Chapter 3. Chapter 3 focuses on the problem of mapping and localization from panoramic
images. The observation model — which can be regarded as a map — used for local-
ization is estimated from a set of images labeled by their respective poses. We adopt
an appearance-based approach that models the relation between images and robot poses
directly. The advantage of such an approach over landmark-based approaches is that it
does not rely on the extraction and matching of landmarks from images. Disadvantages
of such an approach are that it may be sensitive to illumination changes and dynamic
objects. We adopt a probabilistic approach for robot localization in which the robot
maintains a belief function over the permissible poses in the workspace. The map for
localization is represented by an observation model, a probability density function giving
the likelihood of obtaining an observation given a robot pose. Prior to modeling, the
dimensionality of the images is reduced by Principal Component Analysis (PCA). The
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observation model is then constructed from the resulting low-dimensional image repre-
sentations, or PCA features, using a Parzen density estimator. We chose the Parzen
model over alternative (parametric) models because it requires only estimation of a sin-
gle parameter, the kernel bandwidth. We experimentally compared the performance of
observation models instantiated using different PCA features. The performance of each
model is optimized by minimizing the expected Bayesian localization error criterion [89].
We apply the same criterion for model selection. The performance of our observation
model is evaluated under a situation in which the robot has to localize itself globally
based on a single observation. Our experimental results show that the ordering of indi-
vidual (1-D) PCA features according to an image reconstruction criterion is also optimal
for localization. A tradeoff exists between localization accuracy and computational costs.
Localization is generally more accurate if more features are used but is computationally
more expensive if more features are used because localization involves computing dis-
tances in higher-dimensional spaces. Our experimental results show that an expected
Bayesian localization error of 0.7 meters in an office environment of 17 × 17 meters can
be achieved if the observation model is estimated from 300 training images, which are
compressed to 15-D PCA features. Localization using such low-dimensional PCA features
can be performed in real-time using current hardware technology.

Future directions. Although our experiments show that PCA yields good features
for visual localization, better (linear) features may exist. Projection pursuit methods
could be employed to search for features that optimize the expected Bayesian localiza-
tion error. It can be expected that accurate localization then becomes possible using
from very low-dimensional features. Recent work into this direction is presented in [102].
A drawback of PCA features is that they are affected by local occlusions in the image
from which they are derived. Such occlusions frequently occur if a robot is operating in
a dynamic environment where objects and people move around. A robust occlusion han-
dling method is called for. Recent work addressing this issue is presented in [51]. Their
method is based on the observation that the projection of an image into the PCA feature
space can be regarded as an over-determined linear least squares system, which can be
solved in a robust manner. In [42] the method is applied in a robot localization context.
Occlusions often affect only a small part of a panoramic image. Based on this observa-
tion, [69] proposes a robust localization method in which cylindrical panoramic images
are partitioned into overlapping image windows and localization is done on the basis of
these “sub-views”. Another localization approach based on image windows is presented
in [109]. They propose an attention mechanism that automatically selects discriminat-
ing image windows, thereby gaining computational efficiency over other window-based
approaches. Another issue that calls for a solution is the problem of orientation. The
robot used in the experiments presented in chapter 3 maintains a constant orientation.
One method to incorporate orientation in our localization method is to simply extend the
database with rotated instantiations of the training images. A drawback of this method
is that the number of training images required to represent the observation model ex-
pands substantially. Intuition tells us that we may do better; a rotated instantiation of
an image does not contain information other than the information present in the original
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image. One approach that aims to address the issue is presented in [67]. They propose
to shift cylindrical panoramic images so that their first harmonic in the Discrete Fourier
Transform has a phase equal to zero. The transformation produces a single represen-
tative image for rotated instantiations of the same image. An issue of concern is the
stability of such a method under varying illumination conditions and under small camera
displacements.

Chapter 4. Chapter 4 focuses on the estimation of the 3-D structure from 2-D panoramic
images acquired at known poses. We formalized the epipolar geometry for cylindrical
panoramic cameras and show that epipolar curves for such cameras are sinusoids. We
presented two methods to obtain a dense 3-D reconstruction from images. The first
method uses an angular parameterization of epipolar curves in order to guide the search
for image correspondences between a pair of images. We have shown that accurate re-
construction requires disparity estimates at sub-pixel precision. Our experimental results
show that a depth map (and consequently the estimate of the 3-D structure) estimated
from a single pair of images is noisy due to erroneous correspondences. Furthermore,
depth in the direction of camera motion cannot be estimated accurately due to triangu-
lation uncertainty. In order to address these issues we present a second method to obtain
a 3-D reconstruction from multiple cylindrical panoramic images. We derived a param-
eterization of epipolar curves in terms of inverse depth, a quantity directly related to
depth. This parameterization enables efficient search for correspondences across multiple
images. Our experimental results demonstrate that depth maps of good quality can be
obtained using our multi-image method.

Future directions. Depth maps estimated by the methods presented in chapter 4
contain erroneous depth values resulting from matching errors. An obvious extension that
could handle such erroneous depth estimates, would be to employ a form of regularization
as a post-processing step. We have shown how the estimated depth maps can be used
to generate images that would be obtained from nearby camera poses. Using such image
based warping in principle enables the generation of a large database of training images
required by the appearance-based map building approach presented in chapter 3. Related
work into this direction has been presented in [10] for range profiles.

Chapter 5. Chapter 5 focuses on the estimation of a trajectory from a sequence of cam-
era images captured during navigation without using robot odometry. Batch methods
proposed in literature require reliable a set of image correspondences across all images.
Obtaining such a set of correspondences automatically is a fundamental problem in com-
puter vision (correspondence problem). Sequential methods assume that images arrive
sequentially so that tracking techniques can be employed to establish correspondences.
Most existing sequential approaches attempt to integrate points tracked into a new image
into a sparse 3-D model containing the 3-D positions of tracked features and previous
camera poses. A drawback of such sequential approaches is that because of error accumu-
lation the model may eventually become inconsistent. An issue particularly prominent



106 Summary, Conclusions and Future Work

if a single camera is used (instead of a stereo head) is that the scale of the 3-D model
is subject to drift. We present a two-stage method that overcomes these issues by prob-
lem by exploiting prior knowledge that the camera undergoes a 2-D motion parallel to
a planar floor. First, the relative pose between a pair of cylindrical panoramic images is
estimated via the epipolar geometry, which can be estimated independently of the scene
structure. Subsequently, the length of the baseline relating the two camera poses is ob-
tained by minimizing the intensity discrepancy between two planar perspective images of
the ground plane as a function of the baseline length. The cylindrical panoramic images
and the planar perspective images of the ground plane are derived from the images ac-
quired by the panoramic vision sensor described in chapter 2. Our experimental results
show that the rotation and baseline direction relating consecutive cylindrical panoramic
images can be estimated robustly from (noisy) tracked image features. The method used
to estimate the baseline length from images of the ground plane implicitly assumes that
only floor, and no extruding objects or specular reflections, are visible in the images.
Simulation experiments show that the proposed method is robust against mild violations
of this assumption. Good estimates of the baseline length can be achieved if up to 57%
pixels in the images come from objects extruding from the ground plane provided that
the plane is sufficiently textured. Simulation experiments furthermore indicate that in-
clusion of pixels coming from extruding object may provide some robustness against the
corruption of the baseline length estimate caused by specular reflections. We attribute
this phenomenon to the (often large) image gradient information present at the bound-
aries between floor and extruding objects which would otherwise have been ignored; the
method used to minimize the intensity discrepancy between two images of the ground
plane crucially relies on the presence of image gradient information. An estimate of the
trajectory can be obtained by concatenating the relative pose estimates relating consec-
utive images. Like wheel odometry, such visual odometry suffers from the accumulation
of errors. We have demonstrated that the estimated trajectory can be corrected consid-
erably if we also estimate the relative pose relation between the first and the last image
in the sequence (which are obtained at nearby poses in our experiment) using our visual
method and back-propagate the error at the last pose.

Future directions. In chapter 5, we have based the estimate of the trajectory on visual
estimates of relative pose relationships between consecutive images only. Using only
consecutive images enables visual tracking of salient image features. Corresponding image
features are required in order to infer a relative pose relationship between two images.
The trajectory estimate could be improved if the uncertainty of each estimated relative
pose relationship would also be estimated and taken into account in reconstructing the
trajectory. Further improvements of the trajectory estimate are possible if the relative
pose relationship between every possible pair of images would be estimated using our
visual method. Globally consistent alignment methods [53], which aim to find a set
of poses consistent with all relative pose estimates, can then be employed. The main
challenge of such an extension would be establishing correspondences between pairs of
images automatically because simple feature tracking techniques can no longer be used.
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Concluding remarks. Current generation mobile service robots are not truly au-
tonomous. In order to perform their navigational tasks, they have to be equipped with
a pre-specified map of their workspace and they often rely on the presence of uniquely
identifiable artificial landmarks. In this thesis, we have presented visual methods for
mapping and localization, 3-D structure estimation and trajectory estimation from a
panoramic vision sensor. The research presented in this thesis is a modest contribution
to a next generation of mobile service robots; affordable seeing mobile robots which are
capable of building and maintaining their own maps while performing their service tasks
in everyday indoor environments.





Appendix A

Principal Component Analysis

If images are regarded asD-dimensional vectors, Principal Component Analysis calculates
the eigenvectors and their associated eigenvalues of the covariance matrix of a set of
images. The eigenvectors span a newD-dimensional orthogonal basis in which images can
be represented. By using only a few K ¿ D eigenvectors with the largest corresponding
eigenvalues, the dimensionality of the images is reduced with minimal loss of variance
present in the original images. The K-dimensional subspace in called the eigenspace.
Although perfect reconstruction of an image from its eigenspace representation generally
requires that K = D, low-dimensional eigenspace image representations suffice for visual
recognition [61].

Let z denote a D dimensional column vector which is formed by a chosen ordering of the
pixels in an image. If a set {z1, . . . , zL} of images is available, we first subtract the mean
image from each image in the set. The mean image is calculated as

z̄ =
1

L

L
∑

i=1

zi. (A.1)

The mean subtracted images are subsequently stacked to form a D × L image matrix

Z = [z1 − z̄, . . . , z− z̄]. (A.2)

Subtraction of the mean ensures that the eigenvector with the largest eigenvalue repre-
sents the dimension in eigenspace for which the variance of the images is maximal. The
D ×D covariance matrix Σ of Z is defined as

Σ = ZZT . (A.3)

The Eigenvectors bi and corresponding eigenvalues λi of Σ are determined by solving the
well-known eigenstructure decomposition problem

λibi = Σbi, (A.4)
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which can be expressed in matrix form as

Λ = ΦTΣΦ, (A.5)

where Λ is a D × D diagonal matrix containing the eigenvalues λi and Φ is a D × D
matrix whose columns constitute the Eigenvectors bi. After sorting the Eigenvectors in
descending order of corresponding eigenvalues, the first K ¿ D Eigenvectors are used to
project an image vector z into the K-dimensional eigenspace

y = ΦT
K [z− z̄]. (A.6)

The calculation of the Eigenvectors of a large matrix is computationally expensive. Sev-
eral methods have been developed to compute the Eigenvectors efficiently. Singular value
decomposition (SVD) [73] is numerically the most accurate way to compute the Eigenvec-
tors. Singular value decomposition can be directly applied to decompose the covariance
matrix Σ as Σ = UΛVT , where V is a D×D orthonormal matrix whose columns are the
Eigenvectors bi. Using SVD, Λ contains the eigenvalues λi in increasing order. Often,
the number of training vectors is much smaller than the dimensionality of the training
vectors, i.e. L ¿ D. In [49] it is shown that the Eigenvectors and eigenvalues of Σ
can also be derived via an SVD decomposition of the implicit covariance matrix defined
by Σ̃ = ZTZ. If L < D the implicit covariance matrix is smaller than the covariance
matrix and hence its SVD decomposition can be calculated faster. The Eigenvectors and
eigenvalues of the covariance matrix can be derived as

λi = λ̃i (A.7)

ei = λ̃
−1/2
i Zẽi,

where λi and ei denote the i-th eigenvalue and eigenvector of Σ, and λ̃i and ẽi denote
the corresponding eigenvalue and eigenvector of Σ̃. We adopt this method.

We would like to inform the reader that more efficient methods have been devised for
sets of images which are in-plane rotated realizations of the same image. Such in-plane
rotated realizations of a same image can be obtained by our catadioptric vision system is
rotated about the mirror axis of symmetry. In [99] it is shown that the Eigenvectors of a
set of such rotated images which are obtained from a single image are the basis vectors
for the discrete cosine transform of the original image in polar coordinates. As a result,
the Eigenvectors of the rotated images can be obtained efficiently. A similar method
is developed in [7]. In [44] these methods are extended to the case of rotated images
obtained from multiple viewpoints.



Appendix B

Belief Function Representations

The key technical difficulty in implementing the recursive localization approach presented
in section 3.3 is to maintain an accurate representation of the belief function and to do so
efficiently. In this section we outline some important approaches that have been proposed
in literature.

Kalman filtering. A traditional approach to recursive state estimation is Kalman fil-
tering. The Kalman filter represents posteriors by a Gaussian distributions. A Gaussian
distribution is completely characterized by its mean and covariance matrix. The Gaus-
sian distribution is closed under linear transformations. In a Kalman filter this property
is exploited to derive a posterior analytically under this assumption. The Gaussian dis-
tribution is however not closed under convolution with an arbitrary motion model or
multiplication with an arbitrary observation model. These happen to be the main steps
in probabilistic robot localization. This means that even if at some point in time the
belief is Gaussian, the posterior derived from a new measurement will generally not be
Gaussian. This problem can be overcome partially if the sensor model and motion model
are linearized (extended Kalman filtering, unscented Kalman filtering). The extended
Kalman filter maintains a Gaussian belief which approximates the true posterior. The
quality of the approximation depends on the uncertainty of the current state estimate.
Poor approximations generally result when the true posterior is multi-modal. This typ-
ically occurs when the robot is very uncertain about its pose. In this case, only one of
these peaks will be retained by the Kalman filter. The use of Kalman filtering is therefore
restricted to pose tracking, where the robot initially knows its location. As a straightfor-
ward extension of the Kalman filter, multi-hypothesis Kalman filtering has been proposed,
which use a mixture of Gaussians to represent multiple hypotheses concerning the robot
pose [40].

Grid-based methods. A popular alternative are grid-based methods. In grid based
methods, densities are modeled as piece-wise constant functions (histograms). The
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workspace of the robot is discretized into cells. The value of each cell reflects the like-
lihood that the robot is located somewhere in the area covered by the cell. Grid based
methods can accurately represent multi-modal distributions. The localization accuracy
that can be obtained is limited by the grid resolution. Another problem of the naive
grid based method is that the memory and computation requirements grow proportional
in the number of cells. To overcome these issues, several enhancements such as octree
decompositions and geometric hashing methods have been proposed in literature [5].

Particle-based methods. Particle-based methods are quickly gaining popularity (see [14]
for an overview of the state of the art). Particle based methods approximate posterior
densities by a weighted set of m samples (called particles). The weights are called im-
portance factors. The basic algorithm is as follows. The initial density is represented by
a uniform sample of fixed size. When the robot has moved, a new set of m samples is
drawn according to the importance factors. Samples with a larger importance factor are
thus more likely to be drawn. For each such drawn sample, a successor location is guessed
according to the motion model. If a new observation arrives, a new importance factor is
calculated for each sample according to the observation model. Finally, the importance
factors are normalized such that their sum equals unity.

The particle based algorithms are popular because they are relatively easy to implement,
yet can faithfully represent arbitrary densities provided that enough particles are used.
There are many variants of the basic algorithm. Modifications have been proposed to
adapt the size of the sample set dynamically. The rationale is that fewer particles are
needed to accurately approximate a density which has a few narrow peaks. One problem
of the basic algorithm is that particles are drawn from the prior p(x). This may fail to
produce enough particles in the overlapping region between the prior and the likelihood
p(o|x). This may cause the posterior may be poorly represented. As a result, a robot
that is well localized may get lost because the posterior is poorly represented. One way to
recover from such situations is to insert some random samples. More advanced methods
have been proposed which do not just sample from the prior, but instead aim to optimally
sample from the posterior [105]. These methods have been shown to be able to recover
from situations where a prior is peaked at the wrong location (the so-called kidnapped
robot problem).
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Summary

This thesis presents and discusses methods and algorithms that enable a mobile robot to
learn an internal representation of its workspace. An internal representation is required
to correct a pose estimate, which grows more uncertain when the robot navigates, based
on new observations. We consider an application in which the robot is equipped with a
panoramic vision sensor providing a 360◦ field of view.

First, we describe the panoramic vision sensor. The sensor consists of a conventional
camera, which is aimed at a convex mirror. Although the camera is mounted below the
mirror, the image observed by the camera can be regarded as though it is obtained from
a single, fixed viewpoint residing inside the mirror. We use this property to construct
virtual cameras. These virtual cameras share the same viewpoint, but yield a projec-
tion onto a different surface (for instance a cylinder). Throughout the thesis we show
that images from such virtual cameras lend themselves better for certain tasks than the
panoramic images from which they are derived. We also propose a quick and simple
calibration method for the panoramic vision sensor.

Next, we discuss a method to estimate an internal model for localization (pose estimation)
from a set of training samples (images and their associated pose). Our approach fits
within a Bayesian framework for localization (Markov localization) where the estimate
of the robot’s pose at any time is represented as a probability density function. In order
to adopt the Bayesian approach it is essential that low-dimensional features be extracted
from the images. In our application, we use global features obtained by performing a
principal component analysis (PCA) on the set of training images (appearance-based
approach). We maximize the performance of the model by minimizing the expected
Bayesian localization error. The same criterion is applied to determine which and how
many PCA features are needed for global localization from a single observation.

Next, we focus on the problem of obtaining a 3-D reconstruction from a collection of
images using stereo vision. We show that for (virtual) cylindrical panoramic images, the
epipolar curves (along which image correspondences must be sought) are sinusoids. The
first stereo vision method we present uses an angular parameterization of these epipolar
curves. The chosen parameterization is suitable to obtain a reconstruction from a pair of
images. A disadvantage when only using a pair of images is that the resulting depth image
contains many errors. Furthermore, it is impossible to obtain reliable depth estimates in
the direction of camera displacement. We propose a second method that addresses these



124 Summary

issues. We derive a parameterization of epipolar curves in terms of a quantity directly
related to depth. This parameterization enables us to combine depth estimates obtained
from different image pairs yielding a more reliable depth estimate.

The previously discussed methods assume that the input images are obtained at known
camera poses. As a final contribution, we present a two-stage method to automatically
estimate relative camera poses from pairs of images. Our method assumes that the cam-
era motion is parallel to the ground plane. In the first stage, the relative orientation and
direction of translation are estimated from image correspondences (established across
virtual cylindrical panoramic images). In the second stage, the length of the translation
vector is estimated based on images of the ground plane (obtained by a virtual planar
perspective camera aimed straight at the ground plane). In practice, the first stage
yields a robust estimate of the relative orientation and direction of translation. Simu-
lation experiments show that the second stage gives a robust estimate of the length of
the translation vector in the presence of specular reflections and objects extruding from
the ground plane. We apply the proposed method to reconstruct a past trajectory from
a sequence of images acquired during navigation. The relative pose estimates from suc-
cessive images (neighboring in time) can be combined in a simple manner to obtain a
reconstruction of the past trajectory. Applied in this fashion, a form of visual odometry is
obtained. Like wheel odometry, this approach is subject to accumulation of (estimation)
errors. We demonstrate that the effects of error propagation can be compensated for by
considering images that are neighboring in space, but not necessarily in time.

The value of the methods and algorithms proposed in this thesis are endorsed by exper-
iments performed on real-world images.



Samenvatting∗

Dit proefschrift behandelt en bediscussieert methoden en algoritmen welke een mobiele
robot in staat stellen om op basis van camera waarnemingen een interne representatie
van zijn omgeving te vormen. Een interne representatie is nodig om een schatting van
de pose van de robot, die onzekerder wanneer de robot rondrijdt, te kunnen corrigeren
op basis van nieuwe waarnemingen. We beschouwen een robot die is uitgerust met een
panoramisch camera systeem waarmee 360 graden rondom waargenomen wordt.

Eerst volgt een beschrijving van het panoramische camera systeem. Het systeem bestaat
uit een gangbare camera die op een gebolde spiegel is gericht. Hoewel de camera onder de
spiegel is gemonteerd, kan een beeld dat door de camera is vergaard beschouwd worden
alsof het is waargenomen vanuit een vastliggend punt in de spiegel. We maken van deze
eigenschap gebruik om virtuele camera’s te construeren. Deze virtuele camera’s geven
een projectie op een ander oppervlak (bijvoorbeeld een cilinder). In de loop van het
proefschrift laten we zien dat beelden van dergelijke virtuele camera’s zich voor bepaalde
taken beter lenen dan de panoramische beelden waarvan zij zijn afgeleid. We stellen
tevens een kalibratie methode voor waarmee het panoramische camera systeem snel en
eenvoudig gekalibreerd kan worden.

Vervolgens behandelen we een methode welke op basis van een set leervoorbeelden (be-
staande uit beelden en hun geassocieerde camera pose) een intern model van de omgeving
schat dat gebruikt kan worden voor lokalisatie (pose schatten). De gekozen benadering
past binnen een Bayesiaans raamwerk voor lokalisatie (Markov lokalisatie) waarin de
schatting van de pose van de robot op ieder moment wordt gerepresenteerd door een
kansdichtheidsfunctie. Om de Bayesiaanse benadering te kunnen volgen is het essentieel
dat laagdimensionale kenmerken uit de beelden worden geëxtraheerd. In onze toepassing
kiezen we daarbij voor globale beeldkenmerken welke middels Principale Componenten
Analyse (PCA) worden verkregen uit de set van leerbeelden (appearance-based aanpak).
De prestatie van het model maximaliseren we door de verwachte lokalisatiefout te mi-
nimaliseren. Datzelfde criterium gebruiken we om te bepalen welke en hoeveel PCA
kenmerken nodig zijn voor globale lokalisatie op basis van één observatie.

Daarna richten we ons op het reconstrueren van de 3-D omgeving uit een set van beelden
middels stereovisie. We laten zien dat in het geval van (virtuele) cilindrische panorama

∗Summary in Dutch.
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camera’s de epipolaire lijnen (waarlangs naar puntcorrespondenties gezocht moet wor-
den) de vorm hebben van sinusoiden. De eerste stereovisie methode die we presenteren
parameteriseert de epipolaire curve in termen van een hoek. De gekozen parameterisatie
leent zich voor het verkrijgen van diepteschattingen uit een tweetal beelden. Een na-
deel bij gebruik van slechts twee beelden is dat het resulterende geschatte dieptebeeld
veel fouten bevat. Daarnaast is het onmogelijk om betrouwbare diepteschattingen in
de verplaatsingsrichting tussen de twee camera poses te verkrijgen. Om deze beperkin-
gen te het hoofd te bieden stellen we een tweede stereovisie methode voor. We leiden
een parameterisatie van epipolaire curven af in termen van een grootheid welke direct
is gerelateerd aan diepte. Deze parameterisatie maakt het mogelijk om op eenvoudige
wijze diepteschattingen verkregen uit meerde beeldparen met elkaar te verenigen tot een
betrouwbaardere diepteschatting.

De reeds besproken methoden veronderstellen dat de gebruikte beelden verkregen zijn op
bekende camera poses. We presenteren een twee-staps methode om automatisch relatieve
camera poses uit een beeldpaar te schatten. De voorkennis die we daarbij veronderstellen
is dat de camera zich parallel aan een (grond)vlak beweegt. In de eerste stap worden de
relatieve oriëntatie en richting van verplaatsing geschat uit puntcorrespondenties (waarbij
we gebruik maken van een virtuele cilindrische camera). In de tweede stap wordt de lengte
van verplaatsing geschat op basis van beelden van het grondvlak (waarbij we gebruik
maken van een virtuele gangbare die loodrecht op het grondvlak kijkt). De eerste stap
resulteert in praktijk in robuuste schattingen van de relatieve oriëntatie en richting van
verplaatsing tussen twee camera poses. De tweede stap, het schatten van de lengte van de
verplaatsing, blijkt in simulatie robuust onder aanwezigheid van speculaire reflecties en
objecten welke uit het grondvlak steken. We passen de voorgestelde methode toe om een
afgelegd traject te reconstrueren uit een sequentie van beelden welke tijdens navigatie zijn
vergaard. De relatieve pose schattingen uit (in tijd) opeenvolgende beelden kunnen op
eenvoudige wijze worden gecombineerd tot een reconstructie van het afgelegde traject. Op
deze manier wordt een vorm van visuele odometrie verkregen. Evenals wiel odometrie, is
deze vorm van visuele odometrie onderhevig aan accumulatie van (schattings)fouten. We
laten zien dat het effect van de propagatie van schattingsfouten tegengegaan kan worden
door tevens beelden te gebruiken die naburig zijn in ruimte, maar niet noodzakelijk in
tijd.

De waarde van de in dit proefschrift gepresenteerde methoden en algoritmen wordt ge-
toetst aan de praktijk, en wordt onderschreven door experimenten die zijn uitgevoerd op
in praktijk vergaarde camera beelden.
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