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This paper describes the implementation of a scoring policy that was used by the

agents of the UvA Trilearn 2001 soccer simulation team during the RoboCup-2001

robotic soccer world championship. In a given situation this policy enables agents

to determine the best shooting point in the goal, together with an associated

probability of scoring when the ball is shot to this point. It turns out that this

probability depends both on the position and the angle of the ball with respect

to the goal, and also the position of the goalkeeper relative to the striker. We

describe the underlying statistical framework for computing these probabilities,

show results, and briefly discuss possible extensions.
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1 Introduction

The Robot World Cup (RoboCup) Initiative is an attempt to foster AI and intelligent robotics
research by providing a standard problem where a wide range of technologies can be integrated
and examined [2]. The goal of RoboCup is to have a team of fully autonomous humanoid
robot players, which by 2050 can win a soccer game against the winner of the most recent
world cup for human players. In order to achieve this goal, the RoboCup organization has
introduced several leagues which each focus on different abstraction levels of the problem. One
of these leagues is the RoboCup Simulation League. This league is based on a soccer simulation
system called the RoboCup Soccer Server [1]. The soccer server provides a realistic multi-
agent environment in which everything happens in real time. Various forms of uncertainty
have been added into the simulation such as sensor and actuator noise, limited perception and
noise in object movement. One of the advantages of the soccer server is the abstraction made,
which relieves researchers from having to handle robot problems such as object recognition and
movement. This abstraction makes it possible to focus on higher level concepts such as learning,
opponent modelling and strategic reasoning.

Since the main purpose of a soccer game is to score goals, it is important for a robotic soccer
agent to have a clear policy about whether he should attempt to score in a given situation, and
if so, which point in the goal he should aim for. In the remainder of this paper we describe
the implementation of a scoring policy that was used by the agents of the UvA Trilearn 2001

soccer simulation team during the RoboCup-2001 robotic soccer world championship. In a given
situation this policy enables agents to determine the best shooting point in the goal together
with an associated probability of scoring when the ball is shot to this point. This scoring policy
was one of the aspects of our team, which reached fourth place at the RoboCup-2001 world cup.

2 The Optimal Scoring Problem

The optimal scoring problem can be stated as follows: find the point in the goal where the
probability of scoring is the highest when the ball is shot to this point in a given situation.
This is not a straightforward problem. The reason for this is that the total number of possible
situations is extremely large and that different variables can be decisive for different situations.
Furthermore, the problem depends on many uncertain factors. For example, the noise in the
ball motion can never be exactly predicted and will be different for different distances that the
ball travels. For finding the optimal scoring point by iterating over all possible points in the
goal, one will thus have to take many different functions into account, since the distance from
the shooting position to the scoring point will be different for each point in the goal. On top
of this, the behavior of the opponent goalkeeper cannot be easily predicted but is an important
factor for solving the problem. As a result, no simple analytical solution to the problem exists
and one has to look for different methods.

A key observation for finding the solution to the optimal scoring problem is that it can be
decomposed into two independent subproblems:

1. Determine the probability that the ball will enter the goal when shot to a specific point in
the goal from a given position.

2. Determine the probability of passing the goalkeeper in a given situation.

Since the two subproblems are independent, the probability of scoring when shooting at a certain
point in the goal is equal to the product of these two probabilities. To find the solution to the
scoring problem, we thus have to find the solutions to these two subproblems and combine them.
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Before discussing the two subproblems, we mention a number of simplifying assumptions
that we have made in our solution to the scoring problem. Firstly, we assume that the ball is
always shot with maximum power giving it an initial velocity of 2.7 (distance units per simulator
cycle), which is the common case in practice. Secondly, we have chosen to neglect the possibility
that other players besides the goalkeeper are blocking the path to the goal. We have done this
because the goalkeeper’s superior interceptive capabilities make passing him the main objective.
Finally, in our experiments the ball was always shot from distances smaller than 32 from the
target point in the goal (approximately 1/3 of the total field length). Since the distance that
the ball will travel when it is shot with maximum power equals 45 (neglecting the movement
noise), it will never be the case that the ball comes to a halt before it has reached the goal. It
is fairly straightforward to relax these assumptions and extend the method appropriately.

2.1 Subproblem 1: Probability that the Ball Enters the Goal

If there were no noise in the movement of the ball, it would always enter the goal when shot to
a point in the goal from a given position. However, due to the limited goal width and the noise
introduced by the server, the ball may miss the goal. We will show how one can determine the
probability that the ball will end up somewhere inside the goal when shot at a specific point.

First we need to compute the deviation of the ball from the aiming point. This deviation
is caused by the noise which is added to the velocity vector of the ball in each simulation
cycle. Although the underlying noise statistics are known from the server implementation,1 an
analytical computation of the cumulative noise is not trivial: the ball motion can be regarded
as a nonstationary Markov process whose statistics can be computed by solving a corresponding
Fokker-Planck equation [3]. The complication arises from the fact that the added noise in each
cycle depends on the speed of the ball in the previous cycle, making the noise non-white.

A simple alternative, which also allows also for easy adaptation when the server noise pa-
rameters change, is to estimate the cumulative noise directly from experiments. To this end, we
computed the deviation of the ball perpendicular to the shooting direction as a function of the
travelled distance. This function was learned by repeating an experiment in which a player was
placed at even distances between 0 and 32 in front of the center of the goal (zero y-coordinate)
and shot the ball 1000 times from each distance perpendicularly to the goal line. For each
instance we recorded the y-coordinate of the point on the goal line where the ball entered the
goal. From these values we computed the sample standard deviation of the ball.2

As expected, we saw that the deviation σ of the ball was different for each distance d. We
empirically found that, to a good approximation, the standard deviation of the ball perpendicular
to the shooting direction was a monotone increasing function

σ(d) = −1.88 ∗ ln(1− d/45) (1)

for distance values d between 0 and 32 and where ln(·) is the natural logarithm. This function,
together with the recorded deviation values, is plotted in Figure 1. The surprisingly simple
formula of σ as a function of d implies that the deviation of the process increases linearly with
time.3 This contrasts with most Brownian motion problems where σ(t) = O(

√
t). This difference

can mainly be attributed to the non-white motion noise.

The next step is to compute the distribution of the ball when it reaches the goal line. We note
that the deviation of the ball is caused by noise that is added in each cycle. Under conditions,

1The ball velocity vector (vt+1
x , vt+1

y ) in cycle t + 1 is equal to 0.94 ∗ (vt
x, v

t
y) + (r̃1, r̃2) where r̃1 and r̃2 are

random numbers uniformly distributed in [-rmax, rmax], with rmax = 0.05 ∗ ||(vt
x, v

t
y)||.

2The sample standard deviation for n zero-mean points xi is σ = ( 1

n

∑n

i=1
x2

i )
1/2.

3This can be easily seen by solving the differential equation of the forward motion of the ball (ignoring the
noise) and expressing time as a function of travelled distance.



Section 2 The Optimal Scoring Problem 3

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

travelled distance (d)

st
an

da
rd

 d
ev

ia
tio

n 
(σ

)

measured standard deviation σ
modelled σ: −1.88*ln(1.0−d/45.0)

Figure 1: The standard deviation of the ball vs. the travelled distance.

the Central Limit Theorem guarantees that the cumulative noise will be approximately Gaussian
[3]. Moreover, this Gaussian must have zero mean and standard deviation σ = σ(d) from (1)

g(y;σ) =
1

σ
√
2π

exp

(

− y2

2σ2

)

(2)

Having such a model, we can compute the probability that the ball will end up inside
the goal when shot from an arbitrary position on the field perpendicularly to the goal line.
This probability equals the area that lies under the respective Gaussian density function and
in between the two goalposts (see Figure 2(a)). When the y-coordinates of the goalposts are
denoted by y1 and y2 with y1 < y2, this can be computed as

P{goal} =

∫ y2

y1

g(y;σ) dy =

∫ y2

−∞

g(y;σ) dy −
∫ y1

−∞

g(y;σ) dy = G(y2;σ)−G(y1;σ) (3)

where G(y;σ) is the cumulative distribution function of the Gaussian g(y;σ).
Finally, we have to compute the probability that the ball enters the goal when shot at an

angle to the goal line (see Figure 2(b)). This case is more involved than the previous one,
because the ball can travel different distances before it reaches the goal. Since different travelled
distances imply different deviations according to (1), the ball distribution along the goal line is
no longer Gaussian. This makes an exact calculation of the total probability difficult.4

The key observation however, is that we want to compute probability masses and for equal
masses, the particular shape of the distribution that produces these masses is irrelevant. This
observation directly motivates our solution to the problem: instead of computing the distribution
of the ball along the goal line analytically and then integrating to find its probability mass
between the two goalposts, we compute the probability mass from the identity

P{goal} = 1− P{not goal} (4)

where P{not goal} denotes the probability that the ball will miss the goal, going out from the
left or the right goalpost. This probability mass is easier to compute, to a good approximation,
from the tails of the Gaussian distributions corresponding to the two goalposts.

This is shown in Figure 2(b): when the ball reaches the left goal post, it has effectively
travelled distance ll and its corresponding distribution perpendicular to the shooting line is

4A detailed analysis would involve bounding the corresponding diffusion process appropriately. Computing
statistics for such a process is, however, a formidable task.
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Figure 2: Two situations of shooting to the goal (light gray) together with the associated prob-
ability distributions. (a) Shooting perpendicularly. (b) Shooting at an angle.

Gaussian with deviation σ(ll) from (1). The probability that the ball will go out from the left
goalpost is approximately5 equal to the shaded area on the left. Thus

P{out from left} ≈
∫

−dl

−∞

g(y;σ(ll)) dy (5)

where the integration runs up to −dl, the (negative) shortest distance from the left goalpost to
the shooting line.

The situation that the ball will go out from the right post is analogous. The only difference
is that the ball will have to travel a larger distance, thus its deviation will be larger, and the
corresponding Gaussian will be flatter. The respective probability is approximately equal to the
shaded area on the right. Thus

P{out from right} ≈ 1−
∫ dr

−∞

g(y;σ(lr)) dy (6)

where the integration now runs up to dr, the shortest distance from the right goalpost to the
shooting line, and the corresponding Gaussian has deviation σ(lr) which is computed for travelled
distance lr from (1).

Concluding, the probability that the ball ends up inside the goal becomes

P{goal} = 1− P{not goal}
= 1− P{out from left} − P{out from right} (7)

which can be computed directly using (5) and (6).

2.2 Subproblem 2: Probability of Passing the Goalkeeper

The second problem can be stated as follows: given a shooting point in the goal, determine
the probability that the goalkeeper intercepts the ball before it reaches the goal line. Clearly,

5There is a probability (albeit small) that the ball will end up to the right of the left goalpost, after having
travelled an ‘illegal’ trajectory outside the field.
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this problem depends heavily on the opponent goalkeeper and, unless a provably optimal goal-
keeper behavior has been implemented6, the experiments have to be based on existing goalkeeper
implementations. In our experiments we used the goalkeeper of the Robocup-2000 winner, FC-
Portugal2000, since it appeared to be one of the best available goalkeepers.

To cast the problem into a proper mathematical framework, we note that ball interception can
be regarded as a two-class classification problem: given the player and the goalkeeper positions
(input feature vector), predict which class (intercepting or not) is most probable. Moreover, we
are interested in the posterior probability associated with the prediction of each class.

To this end, we performed an experiment in which a player repeatedly shot the ball from
a fixed position straight to the goal, while the goalkeeper was placed randomly in different
positions relative to the player. A data set was formed by recording 10.000 situations, together
with a boolean indicating whether the goalkeeper had intercepted the ball or not. Through
experiments, the relevant features for classification turned out to be7 (i) the absolute angle a
between the goalkeeper and the shooting point in the goal as seen by the player, and (ii) the
distance b between the player and the goalkeeper. These two values form a two-dimensional
feature vector on which the classification has been based.

The recorded data set is shown in Figure 3(a) where we note that there is an almost linear
discriminant function between the two classes. We determined this discriminant via regression
on the class indicator boolean variable, a procedure which is known to give the optimal Fisher’s
linear discriminant. For details we refer the reader to [4, Ch. 3.2]. This function is characterized
by the equation

u = (a− 26.1) ∗ 0.043 + (b− 9.0) ∗ 0.09− 0.2 (8)

for distance values b between 3 and 15. This equation can be interpreted as follows: for a new
angle-distance pair (a, b), the sample mean (26.1, 9.0) is first subtracted from it, and then the
inner product (projection) with the vector (0.043, 0.09) is carried out; this vector is perpendicular
to the discriminant boundary. The offset 0.2 shifts the boundary appropriately. The pairs for
which (8) equals zero form the discriminant boundary between the two classes. This is plotted
by a dotted line in Figure 3(a).

Projecting all (ai, bi) pairs perpendicularly to the discriminant line via (8), we get a set of one-
dimensional points ui that describe, to a good approximation, the two classes. The histogram
class distributions of these points are plotted in Figure 3(b): the upper one corresponds to the
situations where the goalkeeper did not succeed in intercepting the ball and the lower one to
situations where the goalkeeper did intercept the ball. Instead of trying to model these two
distributions parametrically, we note that the relevant range for classification is only where the
two histograms overlap, i.e., the interval [−0.5..0.5]. It is easy to see that the non-interception
posterior probability will be zero for approximately u < 0.5, will be one for u > 0.5 and will
increase smoothly from zero to one in the interval in between.

Thus, we fit two univariate Gaussian functions on these two classes in the overlapping region,
as shown in Figure 3(c). Having a Gaussian model for the class-conditional density function
p(u|C) for a class C, we can easily compute the posterior probability for this class using the
Bayes rule8

P(C|u) = p(u|C)p(C)

p(u|C)p(C) + p(u|C̄)p(C̄)
(9)

which is a sigmoid-like function. Since this is a simple two-class problem, C̄ refers to the ‘other’
class, while the prior probability p(C) of a class C is computed by the proportion of points ui in

6We are currently working in this direction.
7There are principled methods for automatic feature extraction, see [4].
8A more principled way would be to use logistic discrimination [4, Ch. 3.5] and fit directly a posterior sigmoid

from the data with maximum likelihood. However, the low dimensionality of the problem allows for the proposed
simpler solution.
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Figure 3: (a) Data set and discriminant function. (b) 1-d class histograms. (c) Gaussian ap-
proximations near discriminant. (d) Estimated posterior probability of non-interception.

the data set belonging to C (this is reflected through the height of the corresponding Gaussians
in Figure 3(c)). In Figure 3(d) we plotted the posterior probability for the non-intercepting class
as given from the Bayes rule above, together with the sigmoid approximation

P(pass goalkeeper |u) = 1

1 + exp(−9.5u) (10)

which allows for an easy implementation.

2.3 Determining the Best Scoring Point

Having computed the probability that the ball will end up in the goal (7) and the probability
that the goalkeeper will not intercept it (10), the assumption of independence gives the total
probability as the product of these two values. In order to determine the best shooting point
in the goal, we discretize the goal interval [−7.01..7.01] and compute the total probability that
the ball will end up in each discretized bin. This total probability is a bell-shaped function,
representing the probability that the ball will enter the goal, with a valley around the position
of the goalkeeper (see Figure 4). The global maximum of this curve determines the best shooting
point. The curve will have only two local maxima, corresponding to the left and the right starting



Section 3 Results 7

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y−coordinate of shooting point

pr
ob

ab
ili

ty

prob. to pass goalkeeper
prob. ball enters goal
prob. for scoring

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y−coordinate of shooting point

pr
ob

ab
ili

ty

prob. to pass goalkeeper
prob. ball enters goal
prob. for scoring

(a) (b)

Figure 4: Scoring probability curves. (a) Player is shooting from the right while the goalkeeper
covers his goal well. (b) Player is shooting from straight in front of the goal while the goalkeeper
is slightly off to the right.

point of the valley, which can be located with a simple hill-climbing algorithm. The maximum
of these two is selected as the best shooting point. In practice, this point is selected only if the
respective single probability that the ball will enter the goal is larger than a specified threshold.9

This ensures that, independent of the particular goalkeeper behavior, the probability that the
ball will end up inside the goal is high enough.

3 Results

We have implemented this scoring policy in our team UvA Trilearn 2001 [5] as follows. When
the agent has control of the ball, the first test in the decision procedure is to check whether the
total scoring probability is higher than a specified threshold.10 When this is the case, the agent
tries to score. Otherwise he tries different alternative options, like passing or dribbling, which
are performed when the predicted success rate is high enough. When all alternatives fail and
the agent is at a close distance to the goal, he shoots to the best scoring point anyhow.

A simple example is depicted in Figure 4. The horizontal axis represents the y-coordinate
on the goal line, where the left and right post are located at y-coordinates −7.01 and 7.01,
respectively. In the left figure, the agent is shooting the ball from the right side of the field,
while the opponent goalkeeper is covering his goal well. The total probability value is almost
zero for all shooting points. The agent thus decides not to shoot but to pass to a teammate
that is standing free in front of the goal. When this teammate receives the ball, the opponent
goalkeeper still stands slightly off to the right. The scoring probability curves for this agent
are shown in the right figure. The left slope of the total scoring probability (the solid line) is
bounded by the probability that the ball enters the goal, while the right slope is bounded by the
probability that the goalkeeper intercepts the ball. For the point around −3.8 the total scoring
probability is almost one and the agent decides to shoot there and scores.

We have participated at RoboCup-2001 in Seattle and reached fourth place in this com-
petition. We have gathered statistics concerning the percentage of successful scoring attempts
during the second group stage and knock-out stage of RoboCup-2001. Table 1 shows these per-

965% in our current implementation
1090% in our current implementation.
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centages for the top four teams in the competition.11 This shows that the success rate for UvA
Trilearn is higher than for the other teams.

Team Percentage Team Percentage

Tsinghuaeolus 80.0% (56 of 70) FC Portugal 77.41% (72 of 93)

Brainstormers 58.97% (23 of 39) UvA Trilearn 80.95% (34 of 42)

Table 1: Percentage of scoring attempts that resulted in a goal.

4 Conclusions and Future Work

We have described a methodology that allows a simulated soccer agent to determine the scoring
probability when he shoots the ball to a specific point in the goal. The single probability that
the ball enters the goal depends on various server parameters that control the movement noise
of the ball, the shooting power, the size of the goal, etc. Our approach is general because it can
‘learn’ this probability even when these parameters change, e.g. in a future server version.

However, the probability of passing the goalkeeper depends on the particular goalkeeper and
different opponent goalkeepers exhibit different behaviors. In our current implementation we
based the probability of passing the goalkeeper on the goalkeeper of FCPortugal 2000. Since
this is a good goalkeeper, our method is useful against other goalkeepers as well. Nevertheless,
the probability of passing the goalkeeper should be adaptive and the model should incorporate
information about the current opponent goalkeeper instead of using that of a particular team.
The desired case would be to let the model adapt itself during the game, using little prior
information about the current goalkeeper. This is a difficult problem because learning must
be based on only a few scoring attempts during the game. It is therefore important to extract
the most relevant features and parametrize an opponent goalkeeper’s intercepting behavior in
a compact manner that permits on-line learning. This is one line of research we are currently
pursuing, through the use of statistics collected by the coach.
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