
DAMAS-Rescue Description Paper

Sébastien Paquet, Nicolas Bernier, and Brahim Chaib-draa

DAMAS laboratory, Laval University, Canada
{spaquet;bernier;chaib}@damas.ift.ulaval.ca

Abstract. In this paper, we describe DAMAS-Rescue, a team of agents
participating in the RoboCupRescue simulation competition. In the fol-
lowing, we explain the strategies of all our agents that will be used at the
world competition in 2004 at Lisbon in Portugal. In short, FireBrigade
agents are choosing the best fire to extinguish based on the knowledge
they have learned with a selective perception learning method. Ambu-
lanceTeams are always rescuing the same civilian based on the messages
received by the AmbulanceCenter. This center chooses the civilian that
maximize the number of civilians that could be saved afterwards. Police-
Forces have a sector assigned to them at the beginning of the simulation
and they are responsible to clear all roads in this sector.

1 Introduction

It is not an easy task to develop a multiagent system to act in the RoboCupRes-
cue environment, since it is a complex environment with a lot of challenges. To
share our work on this project, we explain in this article how the DAMAS-
Rescue [1] team works by describing the strategies that we have implemented
for the 2004 world competition.

The main part of our work has been the conception of a selective perception
learning method to enable the FireBrigade agents to learn their effectiveness
when they are extinguishing fire. By evaluating their capacity and the utility to
extinguish a fire they are able to coordinate their fire choices on the most impor-
tant fires to extinguish. In section 3, we describe in more details the approach
we have used for the FireBrigade and the FireStation agents.

In this paper, we also describe the strategies used by the other agents. For
instance, the AmbulanceTeam agents are rescuing the civilian that should give
them the time to save the most civilians afterwards. The PoliceForce agents
receive a sector at the beginning of the simulation for which they are responsible
to clear all the roads. For example, if an agent asks for a road to be cleared,
the assignment of a police force agent to clear the road is automatic, it is the
PoliceForce responsible for the sector in which the road is.

Additionally, we would like to mentioned that all our agents have been devel-
oped with the JACK Intelligent AgentTM programming language [2]. This agent
oriented programming language enabled us to write in a convenient way all the
plans an agent needs to encounter every possible situations.

Even though we consider that most readers of this article already know about
the RoboCupRescue Simulation environment, we describe it very briefly in the
next section to enable all people to understand it. Afterwards, we describe the
strategies that we intent to use at the 2004 RoboCupRescue world competi-
tion. We begin by describing the FireStation and the FireBrigades, then the
AmbulanceTeams and AmbulanceCenter and finally, the PoliceForces and the
PoliceOffice.

2 The RoboCupRescue Environment

The goal of the RoboCupRescue simulation project aims to simulate rescue
teams acting in large urban disasters [3, 4]. Precisely, this project takes the form
of an annual competition in which participants are designing rescue agents try-
ing to minimize damages, caused by a big earthquake, such as civilians buried,
buildings on fire and blocked roads. In the simulation, participants have approx-
imately 30 to 40 agents of six different types to manage:

FireBrigade There are 10 to 15 agents of this type. Their task is to extinguish
fires. Each FireBrigade agent is in contact by radio with all other FireBrigade
agents as well as with the FireStation.

PoliceForce There are 10 to 15 agents of this type. Their task is to clear roads
to enable agents to circulate. Each PoliceForce agent is in contact by radio
with all other PoliceForce agents as well as with the PoliceOffice.

AmbulanceTeam There are 5 to 8 agents of this type. Their task is to search
in shattered buildings for buried civilians and to transport injured agents to
hospitals. Each AmbulanceTeam agent is in contact by radio with all other
AmbulanceTeam agents as well as with the AmbulanceCenter.

Center agents There are three types of center agents: FireStation, PoliceOffice
and AmbulanceCenter. These agents can only send and receive messages.
They are in contact by radio with all their mobile agents as well as with the
other center agents. A center agent can read more messages than a mobile
agent, so center agents can serve as information centers and coordinators for
their mobile agents.

In the simulation, each individual agent receives visual information of only
the region surrounding it. Thus, no agent has a complete knowledge of the global
state of the environment. This uncertainty complicates the problem greatly be-
cause agents have to explore the environment and they also have to communicate
to help each other to have a better knowledge of the situation.

3 FireBrigade and FireStation Agents

In this section, we focus on the FireBrigade and the FireStation agents. As
mentioned before, the task of those agents is to extinguish fires. Therefore, at
each time step, each FireBrigade agent has to choose which building on fire

to extinguish. Furthermore, in order to be effective, they have to coordinate
themselves on the same buildings on fire, because more than one agent is often
needed to extinguish a building on fire.

A FireBrigade agent is faced with the problem of choosing a fire to extinguish
between a list of buildings on fire. Since there could be a lot of fires, agents do not
consider all fires at once. They separately choose which fire zone to extinguish
and which specific building in the chosen fire zone to extinguish. Fire zones are
simply groupings of near buildings on fire.

To stop a zone from spreading, the FireBrigade agents have to extinguish all
fires at the border of the zone. It is pointless to constantly change from one fire
zone to another, because by doing so, all zones would spread. A better strategy
is to choose a zone and stop the spreading or really slow it down, before choosing
another zone. Therefore, when an agent has to choose a building to extinguish,
it firstly has to choose the fire zone. In other words, agents are using a two level
decision making process. First, they look at the global view of the situation, i.e.
groups of buildings on fire. Afterwards, they use more detailed information to
choose which specific building to extinguish in the chosen fire zone.

Since each mobile agent has only a local view of the situation, it is often hard
for a FireBrigade agent to have a good view of the global situation. Therefore,
it is difficult for FireBrigade agents to choose between the fire zones since they
don’t have a good knowledge of the fire zones that are far from them. To solve
this problem, we have moved the task of choosing a fire zone from the FireBri-
gade agents to the FireStation agent. Since the center agent can receive more
messages, it normally has a better knowledge of the global situation compared
to the FireBrigade agents. Therefore, it is the responsibility of the FireStation
agent to allocate fire zones to FireBrigade agents. After they have received their
fire zone, FireBrigade agents have the possibility to learn how to coordinate
their efforts to extinguish the more important fires in a given fire zone. Notice
that a building is important to extinguish if it puts civilians or other buildings
in danger.

When an agent wants to choose a building on fire to extinguish, it goes
through the list of all buildings on fire, it evaluates them independently by cal-
culating the utility and the expected reward of each. The utility is an estimation
of the importance to extinguish a given building, calculated by considering the
number of civilians and buildings on danger. The expected reward, learned with
the algorithm presented in section 3.1, can be seen as an estimate of the capacity
to extinguish a given fire.

3.1 Selective Perception

To learn the expected reward of extinguishing one building on fire or one fire
zone, we have used a selective perception technique [5], because the description of
our states is too big. More precisely, both the FireStation agent and the FireBri-
gade agents use this algorithm to learn the expected reward of their respective
tasks. With this technique, an agent learns by itself to reduce the number of
possible states. The algorithm uses a tree structure similar to a decision tree. At

the beginning all states are considered to be the same, so there is only the root
of the tree. After some experiences, the agent tests if it would be interesting to
divide the different states, represented as the leaves of the tree. By doing so,
the agent creates new states, by expanding a leaf of the tree, and thus it refines
the view it has about the state space. An advantage of this algorithm is that
it distinguishes only states that really need to be distinguished. This has the
effect of reducing the state space of the reinforcement learning algorithm and
thus facilitating the learning process.

Recording of the Agent’s Experiences At each time step t, the agent
records its experience captured as an ”instance” that contains the observation
it perceives (ot) and the reward it obtains (rt). Each instance also has a link
to the preceding instance and the next one, thus making a chain of instances.
Consequently, an instance at time t is defined as:

it = 〈it−1, ot, rt, it+1〉 (1)

In our case, we have one chain for each building that an agent chooses to
extinguish. A chain contains all instances from the time an agent chooses to
extinguish a building until it opts for another building. An agent opts for another
task if the building is extinguished or this agent finds a ”better task” to pursue,
due to some changes in the environment. Therefore, during the simulation, the
agent records many instances organized in many instance chains. It keeps all
those instances until the end of the simulation.

There is no learning taking place during the simulation since it would take
too much time. Agents are evolving in a real-time environment and they cannot
afford to take time to learn during the simulation. Thus, the learning process
takes place after the simulation, when the agents have time to learn. At this
time, the agents regroup all their experiences together, the tree is updated with
all those new instances and the resulting tree is returned to each agent. By
regrouping their experiences, agents can accelerate the learning process.

Tree Structure To learn how to classify instances, we use a tree structure
similar to a decision tree. The tree divides the instances in clusters depending
on their expected reward. The objective here is to regroup all instances having
similar expected rewards. If two instances have similar rewards, it means that
the agent does not have to distinguish between those two situations, since it
should act the same way in both situations.

The algorithm presented here is an instance-based algorithm in which a tree
is used to store all instances which are kept in the leaves of the tree. The other
nodes of the tree, called center nodes, are used to divide the instances with a test
on a specific attribute. To find the leaf to which an instance belongs, we simply
start at the root of the tree and head down the tree choosing at each center node
the branch indicated by the result of the test on the instance’s attribute value.
Each leaf of the tree also contains a Q-value indicating the expected reward if

a fire that belongs to this leaf is chosen. In our approach, a leaf l of the tree is
considered to be a state for the reinforcement learning algorithm.

Distance

Fire
intensity

Number of
agents

LN Building
size

LN

LN LN LN LN LN

LN LN

Very near
near far

Very far

weak small
moderate medium

strong big

 t > t

Fig. 1. Structure of a tree.

An example of a tree is shown in Figure 1. Each rectangular node represents
a test on the specified attribute. The words on the links represent possible values
for discrete variables. For example, the root of the tree is a center node containing
a test on the ”distance” attribute. This is a discrete attribute that can take the
values very near, near, far and very far. Therefore, this node has four children
nodes, one for each possible value. The tree also contains a center node testing on
a continuous attribute, the ”number of agents”. A test on a continuous attribute
has always two possible results, it is either less or equal to the threshold or greater
than the threshold. It is why the center node with the test on the ”number of
agents” attribute has two children: one if the number of agents is less or equal
to the threshold t and another if it is greater than t. The oval nodes (LN) are
the leaf nodes of the tree where the instances and the Q-values are stored.

Update of the Tree After a simulation, all agents put their new expe-
riences together. This set of new experiences is then used to update the tree.
The algorithm adds all recorded instances to the tree and afterwards, it tries to
expand the tree. Therefore, the first step is simply to add all instances to the
leafs they belong to. We found the leaf of an instance by starting at the root and
heading down the tree choosing at each center node the branch indicated by the
result of the test on the instance.

The second step updates the Q-values of each leaf node to take into consid-
eration the new instances which were just added. The updates are done with the
following equation:

Q(l)← R(l) + γ
∑

l′

Pr(l′|l)Q(l′) (2)

where Q(l) is the expected reward if the agent tries to extinguish a building
belonging to the leaf l, R(l) is the estimated immediate reward if a fire that
belongs to the leaf l is chosen, Pr(l′|l) is the estimated probability that the next
instance would be stored in leaf l′ given that the current instance is stored in
leaf l. Those values are calculated directly from the recorded instances. R(l) is
the average reward obtained when a fire belonging to this leaf was chosen and
Pr(l′|l) is the proportion of next instances that are in leaf l′:

R(l) =

∑
it∈Il

rt+1

|Il|
(3)

Pr(l′|l) =
|{∀it ∈ Il|L(it+1) = l′}|

|Il|
(4)

where L(i) is a function returning the leaf l of an instance i, Il represents
the set of all instances stored in leaf l, |Il| is the number of instances in leaf l
and rt+1 is the reward obtained after the instance it was chosen.

After the Q-values have been updated, the third step checks all leaf nodes to
see if it would be useful to expand a leaf and replace it with a new center node
containing a new test, thus dividing the instances more finely.

To find the best test to divide the instances, we try all possible tests, i.e. we
try to divide the instances according to each attribute describing an observation.
After all attributes have been tested, we choose the attribute that maximizes the
error reduction as shown in equation 5 [6]. In fact, the test is chosen only if the
expected error reduction is greater than a certain threshold, if not, it means that
the test does not add enough distinction, so the leaf is not expanded. The error
measure considered is the standard deviation (sd(Il)) on the instances’ expected
rewards. The expected error reduction obtained when dividing the instances Il

of leaf l is calculated using the following equation where Id denotes the subset
of instances in Il that have the dth outcome for the potential test:

∆error = sd(Il)−
∑

d

|Id|

|Il|
× sd(Id) (5)

The standard deviation is calculated on the expected reward of each instance
which is defined as:

QI(it) = rt + γPr(L(it+1)|L(it))×Q(L(it+1)) (6)

where Pr(L(it+1)|L(it)) is calculated using equation 4 and Q(L(it+1)) is the
value returned by equation 2.

As mentioned earlier, one test is tried for each possible instance’s attribute.
For a discrete attribute, we divide the instances according to their value for this
attribute and for a continuous attribute, we test different thresholds to find the
best one. Finally, after the tree has been updated, we update the Q-values again
to take into consideration the new state space.

3.2 Agents Coordination

During the simulation, the agents use the tree created offline to choose the
best fire zone and the best building on fire to extinguish. Since the FireStation
agent has a better global view of the situation, it is its responsibility to suggest
fire zones to FireBrigade agents. Those agents have however a better local view,
so they can choose which particular building on fire to extinguish in the given
zone. In short, both agents are using a reinforcement learning algorithm with
selective perception, but for different tasks at different perception level. By doing
so, we can take advantage of the better global view of the FireStation agent and
the better local view of the FireBrigade agent at the same time.

Fire Zones Allocation To allocate the fire zones, the FireStation agent
has a list of all fire zones. For each fire zone, it retrieves from the tree all the
expected rewards for all possible number of agents. More precisely, it finds the
leaf for the first fire zone with one agent and it records the expected reward.
Then, it tries with two agents for the same fire zone and it continues like this
until the expected reward is greater than a specified threshold. If this happens
it means that considering past experiences, the FireStation agent expects the
chosen number of agents to be enough to extinguish the zone. The FireStation
agent does this with all fire zones, ending up with an expected reward and a
number of agents for each zone. Then, it chooses between all zones with an
expected reward greater than the threshold the one that uses the least agents.
Afterwards, it removes this zone and the assigned agents from its lists and con-
tinues the process with the remaining agents and the remaining fire zones. It
continues until there is no agent or fire zone left. When a zone is chosen, the
assigned agents are those that are closer to this zone. At the end, the FireStation
agent sends to each FireBrigade agent their assigned fire zones.

Choice of Buildings on Fire When choosing a building to extinguish, a
FireBrigade agent has a list of buildings on fire it knows about in the speci-
fied fire zone. For each building in this list, the agent calculates the utility of
extinguishing this building. The utility is calculated by considering the area in
danger and the number of civilians in danger. The area in danger is composed
of all intact buildings near the building on fire. The civilians in danger are the
civilians trapped in those buildings.

Afterward, the agent sorts those buildings according to their utility. Each
agent assigned to a specific fire zone has its own list, but since they have, most
of the time, the same observations about the zone, their lists are normally similar.
This similarity in the situation evaluation enables them to coordinate themselves
without any communication. To do so, each agent is considering the buildings
in the order of their utility. Therefore, the building with the highest utility is
considered first. Precisely, each agent uses a tree, learned with the algorithm pre-
sented in section 3.1, to evaluate the number of FireBrigade agents that should
be needed to extinguish the building. The tree returns an expected reinforce-
ment considering the number of agents, the building area, the composition of

the building and the fire intensity. For a given building at a certain time, the last
three characteristics are fixed. To evaluate the number of agents needed to ex-
tinguish the building, each agent calculates the expected reinforcement for each
possible number of agents. It begins by calculating the expected reinforcement
with one agent, than with two agents, than with three agents, and so on until
the expected reinforcement exceeds a certain threshold. When the expected re-
inforcement reaches the threshold, it means that the agents should be able to
extinguish the building quite fast.

After an agent has found the number of agents needed for the first building,
it ”virtually” assigns to it the agents following a prefixed order. For example, if
there are 5 agents and 4 buildings on fire. If an agent thinks that three agents are
required to extinguish the more useful building, than the first three agents will be
assigned to this building. Afterwards, the other two agents could be assigned to
the second building by doing the same process. We say that they are ”virtually”
assigned because no agent really assigns buildings to other agents. Each agent
assigns a building to itself, but it considers that the other agents are choosing
their building according to the same information. If they actually have the same
information, they should be well coordinated on the most important buildings
to extinguish.

3.3 Other Strategies

At any moment, if the agent’s tank is empty, it will go refill it at the closest
refuge. The agent waits at the refuge until its tank is full. Also, if there is no
building in fire, the agent will go refill its tank to be ready if a new fire is found.
Finally, if there is no fire and its tank is full, the agent will search for civilians
by visiting every buildings.

4 AmbulanceTeam and AmbulanceCenter Agents

In this section, we present the AmbulanceTeam and the AmbulanceCenter
agents. In their case, the center has a lot of responsibilities, since it is the one
making all the decisions about which civilians to rescue and in which order. We
first explain how the center makes its decisions and then we explain how the
AmbulanceTeams act based on those decisions.

4.1 AmbulanceCenter

The AmbulanceCenter agent has an important role since it chooses which
civilians to rescue and in which order. At each turn, it sends the ordered list
of civilians to rescue at the AmbulanceTeams. Those agents are described later,
but for now it is worth mentioning that every AmbulanceTeams are rescuing the
same agent to reduce the rescuing time.

The decision process has been centralized in order to reduce the amount of
messages. When a building contains many buried civilians, the messages con-
cerning the civilians are big. This increases the chances of those messages to be

lost. In the centralized decision process, if the center loses a message, the only
consequence is that the civilians would not be taken into account immediately.
However, in the decentralized way, each AmbulanceTeam may have different be-
liefs about civilians, so they could choose different civilians to rescue. Since all
the reasoning is done with the hypothesis that all AmbulanceTeams are rescuing
the same civilian, the reasoning process becomes invalid.

Now we will explain how the center chooses the agent to rescue. First of
all, the center sends to the ambulances the order to save the other agents of
the securing team (i.e. FireBrigades, PoliceOffices or other AmbulanceTeams),
if there are some that are buried. It is really important to rescue our agents
rapidly to enable them to do their tasks.

When all our agents have been saved, the center agent calculates which civil-
ians to save and in which order. To do that, it uses a greedy planning algorithm
to try to maximize the number of civilians that could be saved. Each task corre-
sponding at saving a civilian has a time length giving the necessary time to save
the civilian, taking into account the travel time to go to the civilian location,
the rescuing time and the time to transport it to the refuge. Each task also has
a deadline representing the expected death time of the civilian.

The Algorithm 1 presents how the first civilian is chosen. The chosen civilian
is the one that maximizes the number of civilians that could be chosen after this
one (cpt in the algorithm). When the first civilian has been chosen, it is removed
from the list of civilians to rescue and the algorithm is called again to find the
second one. Those two best civilians to rescue are sent to each AmbulanceTeam
at each turn.

4.2 AmbulanceTeam

As we have said before, AmbulanceTeams are rescuing civilians according to
the order given by the AmbulanceCenter. In each message from the center, the
ambulances receive two civilians to rescue. Since all AmbulanceTeam is receiving
the same messages, they are always rescuing the same agent. This reduces the
time necessary to rescue an agent.

When a civilian has been rescued, i.e. that it is not buried anymore, only one
ambulance will load the civilian and transport it to the hospital. The chosen am-
bulance is the AmbulanceTeam with the smaller identification number, identified
as the team leader. It is the same ambulance that will send a message to the
center to inform it that the civilian has been rescued. All other AmbulanceTeams
begin to work on the next civilian immediately.

When there are no civilians to rescue, AmbulanceTeams search to find buried
civilians. They begin by creating a list of buildings based on the scream for help
heard. Each building in a perimeter of 30 meters from the point where the mes-
sage was heard are added to the list. Agents are then visiting all buildings in the
list. If they found some buried civilians, they send a message to the Ambulance-
Center indicating the position and the healthiness of each civilian. After that, it
is possible that some civilians were not heard by the AmbulanceTeams, so they
visit all unexplored buildings to try to find buried civilians.

Function FOUND-BEST-CIVILIAN(Civilians) return firstCivilian

Inputs: Civilians: all known civilians.
Return: firstCivilian: the first civilian to rescue.

firstCivilian ← null
maxCpt ← 0
for all x in Civilians do

cpt← 0
for all y in (Civilians− {x}) do

if x.time + y.time + CURRENT-TIME ≤ y.deadline then

cpt← cpt + 1
end if

end for

if cpt > maxCpt then

maxcpt← cpt

firstCivilian← x

end if

end for

Return firstCivilian

Algorithm 1: Algorithm used to calculate the first civilian to rescue. time is
the rescuing time for this civilian and deadline is its expected death time.

5 PoliceForce and PoliceOffice Agents

Polices are playing a key role in the rescue operation by clearing the roads,
thus enabling all agents to circulate. Without them, some actions would be
impossible because agents would be indefinitely blocked by roads’ blockades.
Therefore, it is really important for them to be fast an efficient.

An important aspect of our strategies is that we have divided the map in
nine regions. So, at the beginning of the simulation, when the agent receives the
information on the map, it begins by dividing the map in nine homogeneous
regions and sends its position to the PoliceOffice. When the PoliceOffice has
received all the positions of the PoliceForce agents, it assigns a sector to the
nine agents that are closer to the center of a sector. Thus, there is one an only
one PoliceForce affected to a sector and this agent has the responsibility of this
sector. By doing so, we have divided our PoliceForces in two groups: those with
a sector and those without a sector.

In the next subsections, we describe in details all the strategies, but to give
an overview, here is a list of the strategies in their priority order:

1. Unblock other agents in the sector (with sector).
2. Clear roads between fires and refuges in the sector (with sector).
3. Clear roads around refuges in the sector (with sector).
4. Clear all the roads of the sector (with sector).
5. Search for civilian based on help calls in the sector (with sector).

6. Search for civilian in all unexplored buildings of the sector (with sector).
7. Clear roads between fires and refuges (without sector).
8. Search for civilian in all unexplored buildings (without sector).

5.1 PoliceForce With a Sector

First of all, the highest priority task of a PoliceForce agent with a sector is to
help the other agents in its sector. This is very important, because FireBrigades
and AmbulanceTeams would not be able to do their tasks if they are blocked.
Therefore, when an agent is blocked it will send a message to the PoliceForces
indicating its position. When it receives the message, the PoliceForce responsible
of this sector will add it to the list of roads to clear. In this list, it will choose
the closer road and will go to clear it.

When the preceding list is empty, the PoliceForce agents with a sector work
to open the roads for the FireBrigade agents by clearing all roads between a fire
in the sector and the closest refuge. The refuge can be in the sector or not. This
is a proactive action to help the FireBrigades, because there is a good chance
that those agents would ask for a road clearing. FireBrigades have a good chance
to use those roads because they have to refill their tank at the refuge, so they are
often going from a fire to a refuge and in the other direction too. This strategy
helps to reduce the communications and the agent movements.

Afterwards, PoliceForce agents are clearing roads around refuges. They will
clear all roads in a perimeter of 40 meters around the refuge, if it is in their
sector. This is also a proactive action, because refuges are intensively used by
the FireBrigade and the AmbulanceTeam agents.

When the three preceding tasks have been done, PoliceForces clear all the
roads in their sector. They first calculate the best path to visit all the roads
in their sector. After this, they will follow this path and clear all block roads
on their path. At the end of this task, not only all roads are cleared, but the
PoliceForce agents have had the chance to hear buried civilians scream for help.
It is in fact the next task of the agent: search for buried civilians. If they found
some buried civilians, they send a message to the AmbulanceCenter indicating
the position and the healthiness of each civilian.

To summarize, after all the strategies have been done by the PoliceForces
with a sector, all the roads are cleared and the AmbulanceCenter knows the
position and the healthiness of all civilians, if no messages have been lost. After
completing all the tasks in their sector, PoliceForces will act as if they had not
received any sector, see section 5.2.

5.2 PoliceForces Without a Sector

The behavior of those PoliceForces are quite simple, they have only two
tasks. The first one is to clear roads on the path from a fire to a refuge. Unlike
the other type of PoliceForces, they are not restrained to a specific sector, so
they choose the closest fire. By clearing the path from a fire to a refuge, they
are clearing the roads around fires and around refuges. This is interesting since

they are really important spots to clear to help the other agents to move freely
in the city. When there are no more roads to clear from a fire to a refuge, they
will search for buried civilians by visiting all unexplored buildings.

5.3 PoliceOffice

The PoliceOffice role is relatively simple in the simulation. First of all, they
allocate the sectors for the PoliceForces at the beginning of the simulation.
After that, they are simply redirecting messages coming from the PoliceForces
and from the other centers.

6 Conclusion

This paper has presented the strategies used by all the agents of the DAMAS-
Rescue team, an intended participant in the 2004 RoboCupRescue simulation
world competition. To resume, FireBrigade agents are choosing the best fire to
extinguish based on the utility of a building on fire and their capacity to extin-
guish it. The capacity is learned by the agent with a selective perception learn-
ing method. AmbulanceTeams are always rescuing the same civilian based on the
messages received by the AmbulanceCenter. This center chooses the civilian that
maximize the number of civilians that could be saved afterwards. PoliceForces
have a sector assigned to them at the beginning of the simulation and they are
responsible to clear all roads in this sector.

Finally, we hope that this article could help some new teams in developing
agents to participate in the next RoboCupRescue simulation competitions.

References

1. Paquet, S.: DAMAS-Rescue web page. Online (2004)
http://www.damas.ift.ulaval.ca/projets/RobocupRescue/index.php.

2. Nick Howden, Ralph Rnnquist, A.H., Lucas, A.: Jack intelligent agents summary
of an agent infrastructure. In: Second International Workshop on Infrastructure for
Agents, MAS, and Scalable MAS, Montral, Canada (2001)

3. Kitano, H., Tadokor, S., Noda, H., Matsubara, I., Takhasi, T., Shinjou, A., Shimada,
S.: Robocup-rescue: Search and rescue for large scale disasters as a domain for
multi-agent research. In: Proceedings of the IEEE Conference on Systems, Man,
and Cybernetics (SMC-99). (1999)

4. Kitano, H.: Robocup rescue: A grand challenge for multi-agent systems. In: Pro-
ceedings of ICMAS 2000, Boston, MA (2000)

5. McCallum, A.K.: Reinforcement Learning with Selective Perception and Hidden
State. PhD thesis, University of Rochester, Rochester, New-York (1996)

6. Quinlan, J.R.: Combining instance-based and model-based learning. In: Proceed-
ings of the Tenth International Conference on Machine Learning, Amherst, Mas-
sachusetts, Morgan Kaufmann (1993) 236–243

