
UTEternity’s Team Description : Layered Learning in

RoboCup Rescue Simulation

Ali Akhavan Bitaghsir
1
, Fattaneh Taghiyareh

2
, Amirhossein Simjour

1
,

Amin Mazloumian
1
, Babak Bostan

1

Electrical and Computer Engineering Dep., faculty of Engineering,

University of Tehran,

IRAN

a.akhavan@ece.ut.ac.ir, ftaghiyar@ut.ac.ir, a.simjour@ece.ut.ac.ir

Abstract : In past few years, multiagent systems have emerged as an active

subfield of Artificial Intelligence (AI). Because of the inherent complexity of

MAS, there is much interest in using Machine Learning (ML) techniques to help

build multiagent systems. Besides, in these complex systems for which acquiring

a mapping from the system's inputs to the appropriate outputs is not simple, the

need for a good paradigm for converging the system's functionality to the

appropriate goal is apparent. A layered neuro-fuzzy paradigm which is inspired

from incremental learning model is proposed. Our approach to using ML and

fuzzy logic as tools for developing intelligent firefighter robots involves layering

increasingly complex learned behaviors. In this article, we describe multiple

levels of learned behaviors, ranging from low level environmental behaviors to

more high level and complex behaviors. We also verify empirically that the

learned behaviors perform well in disaster situations.

Key-words: artificial neural networks, fuzzy logic, layered learning, RoboCup

Rescue Simulation System (RCRSS).

Introduction

In recent years, multiagent systems (MAS) have emerged as an active subfield of

Artificial Intelligence (AI). Because of the inherent complexity of MAS, there is much

interest in using Machine Learning (ML) techniques to help deal with this complexity [2,

3].

 RoboCup Rescue is a particularly good domain for studying MAS [11]. The testbed has

enough complexity to be realistic; also good multiagent ML opportunities have brought

this domain into a challenging area for MAS researchers.

 Our approach to acquisition of intelligent behaviors for fire extinguishment by a team

of fire-fighters, is to break down the complexity of decision making step by step, and

solving simpler tasks first; going for acquiring higher level team behaviors (strategies),

after learning the low level behaviors. This idea is mainly inspired from Incremental

Evolution (discussed in [4]) which is a method for avoiding limitation of direct evolution

in difficult problems where the percentage of the search space that constitutes a solution

is very small, and the fitness landscape very rugged. In this case the probability of

a.mazloumian@ece.ut.ac.ir, b.bostan@ece.ut.ac.ir

producing fruitful individuals in the initial random population will be low, and evolution

will not make progress; thus the population gets trapped in suboptimal regions of the

fitness landscape during the early stages of evolution. One way to scale ML algorithms to

tasks that are too difficult to evolve directly, is to begin by viewing the task we want to

solve, as a member of a family of tasks, ranging from simple tasks to complex tasks. As

tasks get more difficult, the solution set becomes smaller, but because successive tasks

are somehow related (depending on the chosen abstraction level for tasks'

decomposition), each task positions the population in a good region of the space to solve

the next task. Eventually, if the tasks are generated properly, the goal task can be

achieved (see figure 1).

Figure 1. Incremental fitness landscapes. The figure illustrates, for a 1-dimensional search

space, how incremental evolution works by gradually reshaping the fitness landscape to guide the

population toward a solution to the goal task. The initial task provides an easy target for

evolution, which positions the population in the correct region to approach . Successive tasks

do the same until the goal task is reached [4].

1t

2t

nt

A layered paradigm is inspired from Incremental learning model discussed above. Our

research focuses on acquiring behaviors for tasks in which a direct mapping from inputs

to outputs is intractable. Previously, hierarchical reinforcement learning has been studied

and motivated by the well-known "curse of dimensionality" in reinforcement learning

(RL). As surveyed in [5], most hierarchical RL approaches use gated behaviors; meaning

that there are a collection of behaviors mapping the environment states into low level

actions and a gating function decides upon which behavior must be executed [6, 7]. Also

MAXQ algorithm [8] and feudal Q-learning [9] learn at all levels of the hierarchy,

simultaneously. A constant among these approaches is that the behaviors and the gating

function are all control tasks with similar inputs and actions, however In this research the

input representation of different layers may be learned previously in lower levels.

Moreover none of the above methods has been implemented in a large scale, complex

domain. More inline with this type of learning is the work presented by Stone [1]. In their

approach a layered model has been tested on RoboCup Soccer server which is a complex

domain; three abstraction levels were observed for learning a soccer player robot's

behavior. However, in this paper, introducing the abstraction level for learning robots'

behavior is done in a different manner. Namely, in our domain of discourse the layers

may not necessarily represent robot behaviors. Instead we may learn the environment's

behavior (model) in a layer in order to provide more robust decision making in higher

levels.

This paper contributes the concrete representation of layered learning in a complex

multiagent domain, namely RoboCup Rescue Simulation System. In section 2 the

formalism of our approach is given, discussing about the layered paradigm, formally. A

brief specification of simulated RoboCup rescue robots is given in section 3. Our

observation of different layers in addition to the implementation phase is demonstrated in

section 4. In section 5, the result of our proposed method is discussed; and finally in

section 6, we arrive at conclusion and discuss directions for future work.

The Layered Paradigm

The layered learning paradigm is designed for domains in which a direct mapping from

input representation to output representation is not tractably acquired. Our research

involves layering increasingly complex behaviors of both the rescue robot controller and

the environment itself. In this section a formalism much like the one addressed in [1], but

with necessary modifications due to the complex dependency of the robot controller to

the environment's behavior is presented. The major characteristic of the paradigm is that

the output of each layer can have direct effect on at least one of the subsequent layers by:

supplying the features used for learning;

forming the training example set.

Besides, the output of each layer can give us more knowledge about the contribution of

previous layers in the final goal; for example we may realize that previous layers are

polluted by noisy, irrelevant,..., features which lead us to revise the feature selection

process and repeat the layered approach again.

Formalism

Consider the learning task of acquiring a function from among a class of functions

which map a set of input features (world state sensory information)

f

F I to a set of

outputsO , such that based on a set of training examples, is most likely (of the

functions in) to represent unseen examples and provide the appropriate output. In order

to accomplish the task, several layers are introduced based on the previous

knowledge of the designer in the domain of context, complying with the following form:

f

F

1 2{ , ,..., }nL L L

)),(,,,(
iMiiiii TMfOIL (1)

In which:

iI : is the set of inputs (features) selected by the designer; for indicates the feature

acquired directly from the environment or previous layers outputs. Each member of

j

iI
thj

1I

(1

jI) is a member of I .

iO : is the set of outputs which may indicate the environment’s behavior (model) or the

robots appropriate action for the corresponding subtask of this layer (if any). nO O

if : is the approximated function which maps iI into .iO

iM : if is acquired whether by means of a machine learning algorithm or any manual

method which may exploit the inherent knowledge of the domain. The method used in

this layer is called iM

iMT : In case a machine learning algorithm is used as iM , a set of training examples

iMT is fed into iM .

It is noteworthy that if provides one or more inputs for some of the subsequent layers:
j

i kI where and is an arbitrary value. In the following sections, each layer is

described in detail.

i k n j

Simulated Rescue Robots

RoboCup Rescue Simulation System (RCRSS) is designed to simulate the rescue

mission problem in real world [10]. In this simulation system a communication center

and a number of simulators are existent to simulate the traffic after earthquake, fire

accidents as a result of gas leakage, road blockages, etc [10].

RCRSS environment is a heterogeneous multi-agent system in which the agents

correspond to the agents involved in a real rescue mission. Types of agents in this domain

are as follows:

Fire brigade: This agent is responsible for extinguishing burning buildings.

Fire station: It organizes the function of fire brigades.

Rescue Agent: It is responsible for saving civilians and carrying them to the

refuge.

Police Agent: The agent is responsible for clearing blocked roads and opening the

traffic locks caused by the disaster.

Police & Rescue Center: They are responsible for organizing affairs between their

corresponding agents, respectively.

Our research goal is to arrive at effective fire extinguishment behavior for fire brigade

agents. The system simulates Kobe city for 300 cycles (each cycle corresponding to one

minute in real world) after the earthquake [10]. In each cycle, the fire simulator simulates

fire propagation in the city by means of pre-computed statistical information gathered

from the real Kobe earthquake in 1995. The final performance of the agents' work is

assigned in proportion to the unburned buildings at the end of simulation. At each cycle

each fire brigade agent can send one of the following actions to the system's kernel:

Extinguish (B): for which the simulator extinguishes (decreases the burn of) building B

in proportion to the maximum amount of water a fire brigade can supply.

Move (R): in which R is a route plan; the traffic simulator moves the fire brigade through

R in the next cycle.

By regulation, an unburned building can be ignited by one of its neighboring
1
 burned

buildings. Let's call a group of neighboring burned buildings a fire site. According to the

mentioned regulation, a fire site in the city will grow in all directions, simultaneously. In

order to stop the spread of existent fire to other unburned buildings (and thus achieving a

higher final performance), the fire fighters must try to extinguish the boundary buildings

of each fire site at first. The border of a fire site is defined to be the set of all ignited

buildings for which there's at least one unburned building in their neighborhood (see

figure 2). Thus, the mission is to manage the fire brigade agents' time efficiently, for

extinguishing the border of a fire site in the minimum possible time.

Figure 2. A snapshot from a fire site in Kobe city after earthquake; border buildings are marked with “*”

symbol. Four fire brigade agents are extinguishing a building in border.

Implementation

In this section, we illustrate our layered approach via a full-fledged implementation in

RCRSS [11]. Here, the high-level goal is for a team of fire brigade agents to achieve

complex collaborative behavior.

1 Building 1B is in neighborhood of building 2B if and only if 2,) 30000[]1distance(B B mm (in the

map scale) [11])

Layer 1: The Fire Spread Speed

First, the agents learn a basic environmental behavior: the fire spread speed. As

mentioned before, the potential buildings for burning are the buildings which are

neighbor to at least one of the border buildings of a fire site. Understanding this

environmental behavior is required for the fire brigade agents in order to predict the

future state of the potential buildings for burning. We chose to have our agents learn this

behavior by means of a ML algorithm, because the fire simulator behavior in this case is

so complex and thus, fine-tuning an approximative function by hand is difficult.

We provided our agents with a large number of training examples and used a

supervised learning technique: neural networks (). A fully connected neural network

(

1M

1f) with 13 inputs and 16 hidden sigmoid units and a learning rate of 0.7 was trained.

1I consists of the following parameters gathered from the environment at regular time

intervals: the potential building B 's Total Area, {1 3i : Fieryness of ,

Distance Between B and , Burning Time of } where s for 1 are the

three nearest buildings to , respectively; and Fieryness is the state that specifies how

much the building is burning [11]. Also = {

iB

iB iB iB 3i

B

1O EF(B) } where is EF(B) the expected

time for building B to be ignited. was constructed by sampling the environment's

parameters in regular time intervals for 2000 times. The neural network was trained for

15000 epochs. The network was trained by Joone [12] (a java package for training and

using neural networks), giving us the opportunity to serialize the trained neural network

weights and biases into a file for real time usage during the simulation. At the first cycles

of the simulation, each agent loads this file into its memory. Thus, our learning method is

off-line in this case, providing the same knowledge to all the agents in their mission

domain.

1M
T

The RMSE (error) of the NN at the end of training was approximately 0.04
2
. Also, for

unseen data, the trained network performs well by an average error of 8 cycles

(for ()EF B), where the range of ()EF B is 150 cycles and the average is taken over 500

patterns.

Layer 2: The Effect of Collaboration

Collaboration is a key idea for successful teamwork in RCRSS, as well as other

Multiagent systems. Although the effect of extinguishing is not defined explicitly, it may

not be difficult for even a few fire brigades to extinguish an early fire. On the contrary, it

is difficult for even many to extinguish a late and big fire. Consequently, the agents

should be aware of the effect of collaboration in fire extinguishment for further decision

making. In this layer (), we aim to understand the environment's feedback to the joint

effort of k fire brigade agents for extinguishing a specific building

2L

B . Similar to the

previous layer, complexity leads us to using a ML algorithm, which is again a Neural

Network ().2M 2I is comprised both from the target building's characteristics and the

2 Inputs and outputs are normalized to [0,1].

number of collaborating agents : 2I = {B 's Total Area, 's Fieryness, 's Burning

Time, NP, MinDistance, NCol} where NP is the number of

B B

B 's neighboring buildings

which are potential for igniting B , MinDistance is the minimum distance of such

buildings to B and NCol} is the number of collaborating agents. Also = {2O EX(B) },

where EX(B) is equal to the expected time for the collaborating agents to extinguish

building B . A fully connected neural network (2f) with 6 input and 15 hidden sigmoid

units was trained. The learning rate was equal to 0.7. The neural network was provided

with 2500 input patterns () gathered from several simulation runs. In each run, the

agents try to extinguish a specific building as the target, taking log data at regular time

intervals from environment for constructing
2
. The NN was trained for 5000 epochs.

After nearly 4500 epochs the network's RMSE will not be decreased. So we finished

learning the NN at this epoch (see figure 3). The NN may learn the input pattern noises in

case of further learning. We've provided the NN with training examples in which the

NCol parameter ranges from 1 to 6. Our NN has the strength of generalizability (when

NCol 6), However, if the maximum number of collaborating agents in a simulation

is known in advance, one may train N different neural networks separately (providing

the NN only training examples with NCOL

2MT

MT

N

thi i) in order to have more specialized

NNs.

Now that the agents are provided with useful primary knowledge, they must be able to

plan an intelligent strategy for extinguishing a whole fire site.

N eur wo rk R M SE

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1000 20 3000 4000 5000 6000

E P OCH

al N et

00

Figure 3. The RMSE (Root Mean Square Error) generated by Joone’s Teacher Object [12] during training.

Layer 3: Extinguishing a Fire Site

In order to extinguish a whole fire site, the agents use their learned functions (EF, EX) to

decide upon which building is more urgent (prior) to extinguish in each situation. In this

layer () each building will be assigned a priority value for extinguishment

(), based on its influence on the unignited buildings. Regarding this priority, all the

agents rush to the building with the maximum priority value by sending the Move

commands to the system's kernel, sequentially. After all agents were located in a certain

distance to the target building, they collaboratively extinguish this building by sending

Extinguish commands
3
. After extinguishing this building, the agents will evaluate other

buildings' priority value again, choosing their next target building for extinguishment.

The agents will repeat this process until no burning building remains in the fire site.

As the parameters used for decision making in this layer can be noisy and inaccurate, a

fuzzy rule-base system was used to evaluate the priority of a building. The developed

fuzzy system uses singleton fuzzifier, the Larsen inference engine and the function left

maximum defuzzifier [13]. At first, the fuzzy system assigns to each unburned

buildingB , a danger value (), which indicates the potential damage that can

impose to the system's performance when ignited. Due to our observations, the much area

a building has, the later the fire brigades can extinguish it (causing lower performance).

Consequently, is in direct proportion toB 's total area. On the other hand,

dangerousness (potential imposing damage) of an unburned building depends on its

expected time for ignition; namely the sooner a building is ignited, the more damage it

will impose to the system's performance, in long run. The system uses these two

linguistic variables (

3L B ()P B

3O

()D B B

()D B

3I) for determining as a crisp value between 0 and 100. The

membership function of EF(B),B 's area and in High, Average and Low sets are

depicted in figure 4; also the corresponding values for the labels are given in figure 5.

The knowledge base of the fuzzy system consists of 9 fuzzy rules. Regarding figure 5, for

each of the 9 membership status of the linguistic variables in the sets, a rule is generated.

For example, the entry in the first row and third column of dangerous table in figure 5

corresponds to the following rule:

()D B

()D B

if EF(B) is LOW and 's Total Area is HIGH thenB D(B) is HIGH

3 In our simulation, the agents work together at all the times. This is due to the drastic difference between

the performance of fire brigades when they work as a team and when they work individually [11].

Figure 4. The general Member function diagrams for all linguistic variables’ fuzzifiers.

Now that is evaluated for each unburned building, the agents should determine the

most urgent (burning) building for extinguishment. For this purpose, another fuzzy

system is used for evaluating the priority of each burning building B () for

extinguishment. is evaluated based on three parameters:

()D B

()P B

()P B

1. EX(B): The more time extinguishing building B takes, the less prior is B for

extinguishment, due to the agents' time loss for extinguishing this building.

2. The maximum value of amongB 's neighbors (max().()D B ())D B

3. The distance between B and its most dangerous neighbor building ().()Dis B

Figure 5. The labels' corresponding value used in fuzzy inference (left), corresponding table for

evaluating dangerousness (middle), corresponding table for evaluating priority (right).

The second fuzzy system's configuration is much like the first one. The membership

functions of and are the same as previous functions (Figure 4). The

corresponding values for labels are given in figure 5. The only difference is

max(())D B ()Dis B

()EX B , for

which only two labels (HIGH, LOW) are used. The knowledge base of the fuzzy system

is constructed like the previous system regarding figure 5 (based on ,

), except for the dashed entries. For these entries the following rules were used:

max(())D B

()Dis B

(i) if Dis(B) is LOW and D(B) is LOW and EX(B) is LOW then P(B) is AVERAGE

(ii) if Dis(B) is LOW and D(B) is LOW and EX(B) is HIGH then P(B) is LOW

These rules distinguish the problem features at entry (1, 1) for the EX(B) variable. The

same pattern is used for the other two dashed entries
4
. Finally a crisp value for is

driven from the fuzzy system.

()P B

Now the fire brigade agents choose the building with maximum priority
5
 as their next

target.

Results

In order to evaluate the proposed method, the developed team of fire brigade agents was

tested several times with different configurations of the city. In previous work, another

"state of the art" approach was presented [14], in which the fire brigade agents extinguish

the fire site by dividing it into several sectors (assuming the fire site as a circle) and select

the sectors to extinguish, based on a cost function implemented in "Eternity" rescue

simulation team [14]. The agents will extinguish all of the buildings in one sector before

going to the next sector; also, the most prior buildings for extinguishment are found with

"state of the art" algorithms not including machine learned components. The team has

won the 4th place in the International RoboCup rescue simulation league. In figure 6, our

proposed method's performance is compared with Eternity's performance based on the

initial size of the fire site. The comparison was done for two configurations. In the first

configuration the city does not have any road blockage; but in the second, the city is

simulated with road blockages generated by RCRSS GIS [11]. The results show the

average performance of these two methods on the specified initial city map. The

performance is evaluated regarding RoboCup 2003 regulations:

Performance =
0

B

B

Where 0B is the total area of buildings at the beginning of the experiment and B is the

area of the unburned buildings.

4 Entries (3, 2) and (2, 3).
5 If there was more than one such building, they'll choose the nearest to the group, not to waste their time

for movement

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

Initial fire site size

P
e
rf

o
rm

a
n

c
e

Eternity

Proposed Method

Figure 6. Performance comparison between the proposed method and Eternity's approach. In the first

configuration the city is simulated with no road blockage (left), however, the second configuration

considers road blockages (right).

The results show that in the first configuration, our method works better than Eternity's

approach for nearly all of the tested values as the initial fire site size. As the initial size of

the fire site increases, Eternity's performance gets closer to our method's performance.

This is due to the fact that for larger fire sites, the agents’ movement cost between the

site's buildings increases, which causes lower performance in the proposed method.

However, in Eternity's approach the agents may not move to the next sector of the fire

site, unless they extinguish the current sector's buildings; thus the agents will not pay

much for movement costs.

In the second configuration, however there exist road blockages in the city which will

cause severe movement cost for agents. As it is clear in the diagram, our proposed

method’s performance is better for fire sites with initial size less than 37, however, as the

fire site initial size increases Eternity’s performance become better. This is because the

road blockages in the second configuration cause more movement cost in comparison to

the first one; thus Eternity has the opportunity to achieve better performance in large fire

sites. As the fire site initial size decreases out proposed method performs better due to

less movement cost.

Police Force Agents Strategy

We’ve used the following formula for computing the potential

source,

)epower-1(powerpower)k,i(dist-
n

1i

kkk

)k,i(dist-
n

1i

kkk epowerpowerpower

, in order to implement the way "Police force" should act. That is, to mark strategic

locations of the city, as positive or negative sources in order to make the action of the

"Police force" more efficient and reliable. "Potential" starts to flow out of the source and

covers all the adjacent streets, becoming less and less effective as the distance between

the street and the source increases.

 "Police agents" use the potential of streets, and select the path they want to clear up.

It's important to keep the streets leading to refuges and fire sites clear. Hence, in the

beginning of the process, every refuge is appointed as a "potential source".

"Police forces" gave the responsibility of providing a suitable working place for other

forces. Therefore every time an agent is entrapped in a place, a message is sent to inform

the "Police force" of that incident, and so that location becomes a "potential source".

Each "Potential source" is known by its "power".

The more "the power of a potential force", the more "the potential" of its adjacent streets.

The following formula calculates the potential of each street:

Pi = Power(k) e

In which, Pi represents the potential of the street number i, Power(k) represents the power

of the potential source number k, Dist (i, k) holds the distance between street number i and

potential source number k. and are constant values. The police agents are expected to

be attracted to the "potential sources" due to the inverse relation between Pi and Dist (i, k).

The streets adjacent to each "potential source" are cleared up by the "police agents"

during the time.

In this case the power of these sources updated and decreased by the following formula:

Power (k) =

 is a constant value. When the police agents are attracted to a potential source, they clear

up its adjacent streets and according to the latter formula its power would be decreased.

Another important factor is the way the police agents are distributed around the city. The

city is divided into different areas, any of them controlled by a specified police agent.

Therefore the police agents can not interfere with each other.

The power of the "potential sources" locates inside the working area of a police agent is

multiplied by a number (more than 1), in such a way that each police agent as more

attracted to the sources in its own working area and when needed, they can even clear up

streets of other areas (see figure 7).

There is another method that helps keep the distance between the police agents: each

police agent appoints other police agents as negative potential sources and therefore

avoids them. Due to the restrictions on the amount of data transformed this can not be

done freely. Hence each police agent appoints another agent us a potential source

whenever they meet each other.

The power of the sources located on police agents decreases during the time.

After some time, the main routes of the city are cleared up and the police agents may only

use the clear routes and so become useless. In order to solve this problem the police

agents mark the streets they cleat as weak negative potential sources named as Roads Pot

Source (RPS) that do not effects the potential of the adjacent paths and therefore prefer to

use un cleared paths. Using method the police agents are moved to the corners of the city

and due to the great distance they are entrapped, in the corners. In order to solve this

problem the power of the RPS is decreased during the time.

 This method has other advantages such as stability in the movement of the police

agents also unnecessary movements of the police agents would be avoided.

Another advantage of this method is that, when a police agent clears the first street of a

block, it continues to the next street without returning.

Therefore it clears the streets of the whole block one after another. This helps the other

agents to reach different blocks more quickly.

 There are other potential sources, to help the movement of the "Ambulances" named as

Float Pot Source (FPS). There are always a constant number of these sources named as

Float Pot Source Number (FPSN). These sources are randomly distributed around the city

and therefore attract the police agents to different parts of the city and when the power of

one of these sources is fully consumed, it would be omitted and another source would be

created in a random location.

In the beginning of the process the need for clearing the paths connecting the "refuges" to

the fire sires is of a higher importance, therefore the FPSN is set to zero and is increased

during the time. This will result in a better movement of the ambulances (with the help of

the police agents), in comparison with the fire brigades.

Figure 7. The simulated policeforces and the potential sources

Conclusion

This paper has presented a layered paradigm for acquiring a function which tries to

maximize the fire brigade agents' performance, and illustrated it with a fully-

implemented example in RoboCup Rescue Simulation System (RCRSS). The results

were satisfying in comparison with the previous "state of the art" method implemented

earlier. An important direction for future work is to:

Design, revise and develop further layers in this domain;

and applying this paradigm to other complex domains.

For example one may introduce another layer above the previous learned layers, which is

responsible for dividing the fire brigade agents among different sites (when several sites

exist). This will introduce higher level of cooperation for the agents. Finally, one can say

that layered learning paradigm's power is derived from the concept of directly combining

different ML algorithms within a hierarchically decomposed task representation.

References

1. Peter Stone. Layered Learning in Multi-Agent Systems. PhD thesis, Computer Science

Department, Carnegie Mellon University, Pittsburgh, PA, December 1998. Available as

technical report CMU-CS-98-187.

2. AAAI. Adaptation, Coevolution and Learning in Multiagent Systems: Papers from the

1996 AAAI Spring Symposium, Menlo Park,CA, March 1996. AAAI Press. AAAI

Technical Report SS9601. Sandip Sen–Chair.

3. Gerhard Wei and Sandip Sen, editors. Adaptation and Learning in Multiagent

Systems. Springer Verlag, Berlin, 1996.

4. Faustino John Gomez : Robust Non-linear Control through Neuroevolution. Report AI-

TR-03-303, August 2003.

5. Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement

learning: A survey. Journal of Artificial Intelligence Research, 4:237{285, May 1996.

6. Long-Ji Lin. Reinforcement Learning for Robots Using Neural Networks. PhD thesis,

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1993.

7. Pattie Maes and Rodney A. Brooks. Learning to coordinate behaviors. In Proceed- ings

of the Eighth National Conference on Artificial Intelligence, pages 796{802. Morgan

Kaufmann, 1990.

8. Thomas G. Dietterich. The MAXQ method for hierarchical reinforcement learning. In

Proceedings of the Fifteenth International Conference on Machine Learning. Morgan

Kaufmann, 1998.

9. Peter Dayan and Geokrey E. Hinton. Feudal reinforcement learning. In S. J. Hanson, J.

D. Cowan, and C. L. Giles, editors, Advances in Neural Information Processing Systems

5. Morgan Kaufmann, San Mateo, CA, 1993.

10. Hiroaki Kitano, Satoshi Tadokoro, Itsuki Noda, Hitoshi Matsubara, Tomoichi

Takahashi, Atsushi Shinjou, and Susumu Shimada. Robocup rescue: Search and rescue in

large-scale disasters as a domain for autonomous agents research. In Proc. Of IEEE Conf.

on System, Man and Cybernetics, Dec. 1999.

11. The RoboCup Rescue Technical Committee: RoboCup Rescue Simulation Manual,

version 0, July 2000.

12. Joone's Technical Reference, see http: //www.jooneworld.com for more information.

13. Li-Xin Wang : A Course in Fuzzy Systems and Control. Prentice-Hall International

Inc., 1997.

14. E.Mahmoudi, S. Mirarab, N. Hakimipour, A.Akhavan Bitaghsir : Eternity's Team

Description, Springer Verlag, Robocup 2003 Issue, 2004 (To appear).

