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Abstract

Since 2012 the AI Birds competition hosted at major AI con-
ferences sets out to challenge humans by fostering the de-
velopment of autonomous agents that can outperform human
players in a single-player physical simulation game. Unlike
several other games, AI agents have not yet come close to hu-
man performance, let alone defeated average human players.
In this paper we analyze what makes acting in physical en-
vironments hard and why computers show poor performance
in open-world tasks. By evaluations performed on our agent
that currently dominates the competition we aim to pinpoint
to fundamental challenges which AI needs to face to ready
itself for entering the open world. Our results show that the
shortcomings are due to a lack of dynamics in common ar-
chitectures. We then outline how qualitative reasoning can be
applied to achieve a dynamic interplay of AI components.

1 Introduction
The AI Birds competition1 (Renz et al. 2015) is carried out
annually at major AI conferences since 2012. The aim of
this competition is to assess the progress in AI towards prob-
lem solving in open domains whilst avoiding the challenges
of working with technical systems such as robots and their
limitations, thus putting a stronger focus on problem-solving
skills (Renz et al. 2019). In short, the competition is based
on the physical simulation game Angry Birds and requires
an autonomous agent to catapult birds at structures protect-
ing enemies in order to destroy them (see Figure 1). In a
survey among AI researchers, AI Birds was estimated to be
one of the next milestones of AI accomplishments in which
an AI system will defeat humans by around 2022 (Grace
et al. 2018). Since 2016, the BamBirds agent developed at
the University of Bamberg participates in the competition
and has won the competition three times so far. Like most
agents participating, the code of the BamBirds agent is made
publicly available.2 We can thus use the BamBirds agent as
a basis to discuss progress in the AI Birds competition. Also,
the BamBirds agent can serve as a baseline to explore gen-
eral shortcomings of today’s AI approaches for open-world
problem solving. The aim of this paper is to, first, give a
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description of the BamBirds agent and, second, to identify
principle shortcomings that need to be addressed in order
to make significant progress towards open-world problem
solving in physical domains. A particular focus of this paper
is to discuss possible contributions of qualitative reasoning.
We also substantiate a claim that the problem areas identi-
fied encompass crucial gaps that need to bridged in order to
reach for human-like performance in open words.

The remainder of this paper is structured as follows. In
Section 2 we first introduce the AI Birds competition and
discuss the challenges it encompasses for AI. Thereafter,
Section 3 presents the BamBirds agent and discusses the
contribution of distinct modules to successful performance
in the competition. In Section 4 we then analyse principle
limitations of the BamBirds agent that are symptomatic for
current AI architectures. We identify research gaps and dis-
cuss means to overcome today’s limitations. The paper con-
cludes by summing up our key observations and claims.

2 The AI Birds Competition
In the AI competition, agents are confronted with a set of
previously unseen levels. Within a set time limit, the agent
has to gather as many points as possible by solving a level.
The competition is run in several rounds: in the final, the
two agents scoring highest in the semi-finals compete with
one another; in the semi-final the four agents scoring high-
est in the quarter-finals compete; and so on, depending on
the amount of agents participating. In each round a new set
of unseen levels is used. In the finals, agents are typically
given 20 minutes to solve 8 levels, allowing them to re-try
each level about 2–5 times, depending on the complexity of
the levels and agent speed. Each level (see Figure 1 for an
example) comprises a set of target objects (green pigs), ob-
jects of different kinds, and a sequence of birds that can be
launched from a slingshot by performing a drag-and-release
operation. Once released, a bird is catapulted from the sling
towards the area where pigs are positioned. By placing shots
appropriately, all pigs must be destroyed, either by direct
hit, or by any other physical impact of sufficient strength.
When launching bird after bird once the physical scene has
stabilised from the previous impact, a single level may take
up to 2–3 minutes to play, depending on how many birds
are available and shot. An agent is awarded points only if
all pigs are destroyed. Points are determined by the game



Figure 1: Example levels from AI Birds competition. To
solve the level shown at the top, the blue bird (in the sling)
has to be shot at the blue ice blocks in order to clear the path
for the red bird (third in sequence). The yellow bird (second
in sequence) must be shot at the wood structure that prevents
the round stone on the right from rolling towards the TNT
boxes on the ground. Explosion of the TNT boxes triggers a
domino effect on the stone pillars, eventually destroying the
bottom pig.

through some undisclosed formula that awards points to ob-
jects destroyed and a large amount of points to each unused
bird when a level gets cleared. If an agent clears a level
several times, it is awarded the maximum of points it has
scored. The more damage is inflicted and the lower number
of birds fired, the more points an agent receives. To make the
game attractive to humans, several birds comprise special
functions (e.g., blue birds can split into three smaller birds,
allowing to hit multiple targets at once) and have unique ef-
fects when shot at particular game objects (e.g., yellow birds
penetrate wood particularly well). Also, the game includes
elements with special properties, in particular indestructible
obstacles and explosives, which allow a great variety of lev-
els to be constructed.

On a technical level, every agent communicates with
the game through a network interface. Agents may request
screenshots from the game and can issue click and click-
drag-release (shot) actions. Moreover, agents can restart a
level or select any of the levels from the current round. Also,
agents can pan the view (for large levels) and control the
zoom level. In later rounds of the competition, an agent may
inquire the current best scores for each level. The AI Birds
game is executed in a web browser window and can only
be accessed via this interface. This setup has the following
implications:
• game mechanics are concealed, i.e., physical simulation

is performed with parameters unknown to the agent and
can only be estimated from observations

• the interface is real-time, e.g., agents cannot quickly
gather training data, even outside competitions

The competition challenges agents in two regards: solving
individual levels and maximising the overall score.

2.1 Solving Levels
In order to solve a level, each agent has to interpret the
screenshot and locate relevant objects. It is particularly im-
portant to identify the location of the slingshot and scale of
the scene precisely in order to perform goal-directed shots

as the game calculates flight trajectories with respect to the
slingshot. If the pivot point of the sling is not estimated to
within a few pixels accurately, no shot will be performed,
or the bird drops off the sling. In order to clear a level, an
agent has to plan a number of shots (two to five, typically)
in an uncertain physical environment. Due to the lack of a
reliable forward model and the sometimes chaotic reaction
(e.g., how large structures collapse), uncertainty in action
outcomes cannot be neglected.

2.2 Maximising Score
Typically, agents participating in the competition are not
able to solve every level, at least not within the given time
limit. As points are only awarded for levels solved, it is im-
portant to use some strategy for selecting which level to try
next. Agents have to balance between re-playing a level al-
ready solved in order to improve the high-score, trying to
crack a previously unsolved level, and not wasting time on
levels unsolvable to them.

2.3 When Games are not Toys
AI has always considered games as benchmarks, be it for
the public impact (like IBM’s Deep Blue defeating Garri
Kasparow or Google’s AlphaGo defeating Lee Sedol), or for
what Schaeffer called “microcosms of AI research” (Scha-
effer 2014). Games may offer a convenient platform for
conducting research as the rules of the game are fixed and
clear—no bias by committing research to individual as-
sumptions is at risk and results of different groups are easily
comparable. Nevertheless, we believe one should reflect on
a commitment to work on a game rather than a “real” prob-
lem that promises direct rewards for the society. As a physi-
cal simulation game, Angry Birds present a simplification of
physical manipulation required for versatile service robots
that eventually will assist humans in their everyday tasks,
e.g., by getting dishes from cupboards, preparing meals for
humans within an environment designed by humans for hu-
mans. For most labs, hardware for such versatile robots is
beyond reach and even where such systems are available,
technical challenges are manifold. For example, research on
manipulation required for preparing meals like opening a
bottle of milk, retrieving flour from their typical paper con-
tainers, etc. is hardly possible while contemporary progress
in versatile robots is still involved with opening cupboards in
kitchens, see (Kazhoyan et al. 2021). Above all, differences
between robotic platforms used and the specific tasks con-
sidered hinder a direct comparison. In the light of the versa-
tility of problems that can easily be constructed in a simple
2D physical simulation game (cp. (Stephenson, Renz, and
Ge 2020)), the AI Birds competition thus constitutes a viable
option for fundamental AI research that has prospects to im-
prove future robotic applications. In particular, the physical
nature of AI Birds is well-aligned with fundamental tasks
and goals of qualitative reasoning (cp. (Forbus 2019)).

3 Synopsis of BamBirds Agent
The BamBirds agent is developed at the University of Bam-
berg, Germany. Its development is significantly supported by
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Figure 2: Architecture of BamBirds agents

student projects and thesis works. Within individual study
groups, selected AI techniques that were expected to im-
prove the agent are developed, implemented, and evaluated.
Successful components are then integrated into the Bam-
Birds agent. By design, BamBirds integrate GOFAI (Good
Old-Fashioned AI) approaches like symbolic state space
representation with probabilistic methods and lightweight
machine learning. An explicit hybrid representation com-
prising quantitative and qualitative knowledge about levels
is central to the design of the agent. BamBirds comprise the
building blocks we detail in the following, and shown in Fig-
ure 2.

3.1 Visual Object Recognition and Scene
Understanding

All planning hinges on a description of the situation the
agent faces, in particular the objects within a level, their
whereabouts, and the overall level scale (which can be de-
rived from the size of the sling in pixels due to its constant
size in spatial units). A precise representation is required for
delivering precise shots at chosen targets.

Scene understanding itself is largely based on simple
methods provided by the AI Birds organisers for visual
object recognition to detect primitive objects; due to the
graphic nature of the Angry Birds game, a simple approach
already yields sufficiently good results in most cases. The
visual recognition provided by the organisers and used in
the BamBirds agents provides polygonal outlines of objects
and a classification into the object types (wood, stone, ice,
etc.). As an example, see Figure 3 for the example level from
Figure 1 as seen by the BamBirds agent.

Visual object recognition is also responsible for detecting
the game state, in particular to recognise that a ‘level won’
or ‘level lost’ screen appears and the agent is expected to
select a new level.

From the geometric description of the scene, the agent de-
rives qualitative spatial and physical relations that allow ba-
sic strategies to be grounded. To this end, two techniques are
used. First, qualitative spatial relations (above, below, left of,
etc.) are instantiated based on the semantics grounded in the
location of objects. Second, a physical simulation using a 2D
physics simulator is consulted to determine whether objects
weigh on one another (for inferring stability) and to foresee
selected effects of actions performed in the game. As physics
simulation under uncertain start conditions is susceptible to
noise and may easily yield wrong results, the component is
only consulted for basic prediction of forces. In order to

1 belongsTo(ice0,struct2).
2 expl_affects(tnt0,stone7).
3 isOver(hill0,pig0).
4 protects(struct2,pig1).
5 slingshotPivot(145.2,332.8).
6 supports(ice0,ice1).
7 ...

Figure 3: Example level from AI Birds competition depicted
in Figure 1 as interpreted by BamBirds agent an excerpts
from the respective scene descriptions.

Table 1: score of BamBirds vs. IHSEV agent per round in
2016 competition, level complexity increases towards final

round BamBirds IHSEV

quarter final 280, 390 470, 940
semi final 406, 200 562, 820
final 451,250 288, 720

construct this component, we consulted the IHSEV agent
which also includes physical simulation and used regression
to fit parameters to the game (M. and Buche 2013). Gener-
ally, physical simulation is not robust due the nearly chaotic
nature of how complex arrangements response to impact in
conjunction with inevitable uncertainty in parameter estima-
tion and visual object recognition. To illustrate, we point to
the score of the IHSEV agent relying on physical simula-
tion from the 2016 competition (AI Birds 2016) as reported
in Table 1. As can be seen in the table, advancing from the
quarter final to the final, the increasing level complexity cor-
related with the performance of IHSEV wrt. BamBirds de-
creasing (we note that absolute points are not comparable
due to different amount of points that can be reached). Simi-
lar numbers can be observed in the 2019 competition where
BamBirds defeated the simulation-based agent SimbaDD.

In short, the competition taught us that physical sim-
ulation is not reliable beyond simple inferences in semi-
complex and complex environments. We therefore critically
assess a much recognised argumentation for physical sim-
ulation in scene understanding (Battaglia, Hamrick, and
Tenenbaum 2013), beyond grounding qualitative primitives
on simple force calculations, e.g., rests on.

As the output of the scene understanding module, a scene
description in Prolog syntax is generated which contains
both quantitative information (in pixel coordinates) and
qualitative relations (see Figure 3 for an excerpt).



3.2 Qualitative Rule-Based Planning
The second and most involved component is responsi-
ble for determining possible shot candidates, given a
scene description. By obtaining an explicit representation
of qualitative relationships such as, for example, from
isOver(pig,ice) and supports(ice,stone), it
is possible to design rules that serve as heuristics for iden-
tifying (potentially) useful shots. One of these rules states
that by destroying an object that supports another, the now
unsupported object will fall down and be likely destroyed.
In the example above, aiming at the ice object could thus be
a viable plan since the unsupported stone will fall onto the
pig, destroying it. Until now, the rule base of BamBirds has
been designed manually. Although BamBirds does not per-
form physical simulation for shots, the symbolic method is
augmented with a quantitative estimator, e.g., to estimate the
likelihood of penetrating objects by a single shot or the like-
lihood that a tower of objects will collapse when shooting
at it. Also, an estimate is given whether the shot is expected
to succeed. For example, a direct shot at a freely reachable
pig is given full confidence, whereas a shot against a wall
of objects to bounce off into the direction of some goal is
given low confidence. To obtain functions for estimations,
machine learning and regression has been performed on se-
lected parameters from recorded games.

As a last step in the shot heuristic, a simple partial order
planning is performed. In particular, shots are decreased in
confidence if a later bird will be better suited to reach the
goal, and shots are increased if the current bird is more use-
ful for achieving some (intermediate) goal than forthcoming
birds. A level taken from Stephenson and Renz (2018) that
challenges lookahead planning is depicted in Figure 4. The
player has a blue and a yellow bird, the blue bird must be
shot first. The yellow bird can penetrate both wooden (yel-
lowish) pillars, directly hitting the pig. The blue bird can
only destroy one pillar, making the stones fall down and ren-
der the level unsolvable. Here, the agent has to waste the
blue bird (e.g., shooting it over the structure or against the
stone blocks) in order to finish the level with the yellow bird.

3.3 Shot Planning and Level Selection
The third component of our agent implements the shot selec-
tion from the set of candidates computed by the shot heuris-
tic module. We approach the problem as heuristic search
in a tree whose edges represent shots. For every shot per-
formed we monitor its effect (e.g., the points awarded, pigs
destroyed). When retrying a previously unsolved level the
algorithm aims to find an alternative to a previously tried
shot sequence. Consider again the example from Figure 4.
Our agent lacks a forward model to anticipate that shoot-
ing the blue bird at the wooden pillars or the ice bar is a
bad idea. However, once it has tried that shot (and noticed
it has no plan for finishing the level with the yellow bird),
the shot is discarded and an alternative is tried when revisit-
ing the level. In absence of promising alternatives, the agent
soon tries shooting at one of the stone objects (without much
effect, if any) and is then able to finish the level with the yel-
low bird. Unlike classic game settings previously studied in

AI, it is not possible to explore a significant portion of the
search tree since exploration requires to engage in the game;
only very few retries are possible during the competition.

In the 2021 competition, a clone of the BamBirds 2019
agent has won the competition which has chosen a parameter
in favour of more exploration. Although winning 257,330
to 168,290 against BamBirds 2021 in the grand final3, the
BamBirds 2021 agent defeated its clone 312,910 to 270,200
in the previous round. We may therefore conclude that shot
selection is critical but not sufficiently well evaluated in a
single competition.

In a fourth and last step, once a level has been played,
we decide which level to try next. We select the level that is
expected to yield the largest reward considering information
about the type of level, the number of previous attempts, the
points that might be earned, the set of shot candidates not yet
tried. We apply machine learning (offline) to obtain an esti-
mator function that predicts the probability distribution for
the performance of our agent based on previous attempt and
features of the level. We then apply a randomised selection
balancing potential gain with probability of success.

3.4 Action Execution and Monitoring
For all shots performed in the game, we monitor the effects
to collect data and to determine when a level has stabilised
after a shot, allowing the agent to plan its next shot.

3.5 Modul Interconnections and Adaption
For the most part, modules are executed one after another
along the main horizontal axis shown in Figure 2. However,
there is one notable exception to the linear flow, which is
found in the module “adaption”.

Precise visual object localisation is required for delivering
precise shots at chosen targets. We found our agent to be too
limited when relying on the visual object recognition tech-
niques available. Therefore, we use data from the observed
flight parabolas to improve estimates of scene scaling and
sling position using regression on a per-level basis while
the agent is playing. Most importantly, we trace the flight
parabolas of each bird shot and, using regression, we adapt
slingshot location and scaling parameters to align predicted
shot parabolas to the observed one.

4 What is Missing in AI Problem Solving?
As we have seen, the typical “AI” approach of transform-
ing real-life problems into optimisation problems fails for all
but the simplest configurations in AI birds. On the level of
physical processes alone, it seems to be unsolvable with cur-
rent techniques. Of agents relying on machine learning, the
agent DQ-Birds (Nikonova and Gemrot 2021) using a Deep
Q-Network trained from about 115,000 situations was the
best-performing agent so far with being able to solve 3 out of
8 levels scoring 185,869 points in the 2017 quarter finals, the
last round it participated. Other learning-based agents have
performed worse and teams decided to quit participating
in the competition. By contrast, BamBirds scored 290,020

3http://aibirds.org/past-competitions/2021-competition/results.
html
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Figure 4: Example of level that requires lookahead planning

points in the 2017 quarter finals and the best-performing
agent in that round 405,260 points.

Approaches relying on rules, inference, or planning on an
abstract symbolic representation work for specific cases, but
despite the fragile basis of symbols grounded in perception,
they are still missing (and that regards all computational sys-
tems today) the ability to switch strategies, to “step out of the
system” (Hofstadter 1979) and reconsider one’s own under-
standing of the situation and the strategy to be applied.

AI has a long tradition on abstract representations: logic
(Nebel 2001; McCarthy 2000), frame-based representations
(Minsky 1974), and qualitative abstraction (Forbus 2019).
Together with the representations we have powerful rea-
soning mechanism for, e.g., qualitative reasoning (Forbus
2019), analogical reasoning (Falkenhainer, D.Forbus, and
Gentner 1989), and planning (Ghallab, Nau, and Traverso
2016).

It has turned out that none of these representations alone
can represent and solve realistic problems (Forbus, Nielsen,
and Faltings 1991). Ideas of how to combine different repre-
sentations on a problem have been around for a long time as
well, such as the mental image of a society of mind (Minsky
1986). Blackboard systems (Engelmore and Morgan 1988)
have tried to provide an architectural basis for combining
different representation and reasoning strategies.

Such approaches have been around for a while now and
it feels this must be the direction to go. Still, none of them
have made the step from hand-crafted systems to self-aware
systems that understand the situation and act according to it.

4.1 Knowledge Representation and
Transformation

From our experience, the main bottleneck is the interac-
tion between different representations, especially symbolic
and subsymbolic representations, often referred to as sym-
bol grounding. Of course, there have also been attempts to
do this, especially in robotics (see contributions in special
issue (Coradeschi, Loutfi, and Wrede 2013)).

The fundamental flaw with all of these approaches is that
they treat the task as a mathematical mapping from one rep-
resentation to another. But there is no such mapping. When
we transform subsymbolic information to a symbolic rep-

resentation, we lose detail (usually numerical information),
but we add interpretation. This interpretation always comes
with some arbitrariness. The same numerical state represen-
tation can be part of different situations. Sitting in front of a
black screen can mean that the computer is switched off, or
that the screen is broken, or that the computer simply shows
a fully black screen to name just a few possible interpreta-
tions. At this moment, there is no way to fully understand the
situation based on perception. Some disambiguation can be
done by including memory (remembering having switched
on computer and screen), some may be possible after wait-
ing some time (the computer showing something else than
black), but others may need some interaction between rea-
soning, action and re-observation, like switching the screen
off and on again.

The other way around we encounter the same problem.
When some reasoning process has come to a conclusion like
a “good” shot, it has done so with impoverished information,
since it had abstracted from numerical values. Abstraction is
great to focus a problem and keep the state space small. The
problem is just that settling on one specific solution makes
the whole process extremely fragile. It is up to luck whether
the one solution settled on will really fit the situation. And
when we transform the one abstract solution into a lower-
level command, we again have to guess, this time the nu-
merical values that are necessary for action execution, but
that are not part of the output of the abstract solution pro-
cess. If we then observe an action to fail, it may be due to a
poor plan or a poor transformation.

4.2 Dynamics
We propose that the way out of the dilemma lies in a more
dynamic view on computation. Even if the problem itself is
static (as is the case for Angry Birds, at the moment the agent
has to decide on an action, nothing changes in the setup), the
solution process needs to be dynamic.

The basic idea is that we should replace the computational
pipelines that are used today with a network of interacting
modules, each of which is running its own decision-making
process in a way described in (Kirsch 2019): the module
would continually 1) consider a set of alternatives (which
may be the output of some other module) and 2) evaluate and
rank those alternatives (again a service that may be provided



by other modules). Differently from the pipeline approach,
no module would have to settle on one single solution. Of
course, at some point an agent should act. This could be
done if enough modules have converged to a stable solution,
meaning that their most favoured alternative is not changing
by any further decision iterations. Actions could also just
be executed with a certain frequency, using the best-ranked
alternative in some action module.

For example, during shot planning multiple shots are out-
put which aim at the same object but at a different target
point, each of them being a candidate for one specific goal
(e.g., tossing over some object). If we know that one of
these shots has succeeded, there is no need to consider the
alternatives—if one shot goes terribly wrong by destroying
the object, other shots at the same object will suffer from
the same problem. The problem our agent is facing is that
there are too many potential alternatives to consider. We
could counter-act this problem by structuring the suggested
shots and providing means to dynamically move within this
structure. To this end, feedback information about a shot
tried is required, revealing how it failed and why it might
have failed. Qualitative relations allow us conveniently to
describe how an action failed by comparing the actual out-
come with the expected outcome. With respect to grasping
causality, we again have to acknowledge that it will not be
possible to single out the one reason, but only to rank alter-
native explanations.

In further steps, modules could even be added and re-
moved (or switched on and off) depending on the situation
(there would be a need for special modules to decide on
the module configuration). The machine would not have to
invent completely new modules, but it could decide to run
modules with the same task, but being instantiated with dif-
ferent sets of parameters.

Why should this work? A clear argument for trying more
dynamic processes is nature. There is no doubt that human
thinking is dynamic, both on the neuronal level (Hawkins
and Blakeslee 2004), on behavioral or problem-solving lev-
els (Hayes-Roth and Hayes-Roth 1979; Newell and Simon
1972), also in the development of language and abstract
concepts (Lakoff 1987). The reason why human thinking
processes are dynamic, is surely the complex and dynamic
world around us (Rittel and Webber 1973; Taleb 2010;
Varela, Thompson, and Rosch 2016). Previous attempts by
the authors in this direction have shown promising results
(Kirsch 2017). We back up our claim by the following ex-
periment: In Bambirds, we have a very simple form of dy-
namics implemented by proposing a certain type of risky
shots (termed ‘last resort shots’) only if no other shots can be
found. To study the effect of this simple form of dynamics,
we compare it against a variant of Bambirds that always con-
siders last resort shots. Running the agent on the 131 com-
petition levels with a time limit of 5 minutes per level (about
four tries per level), the agent in the dynamic condition was
not able to solve 32 levels. When always considering last re-
sort shots, 36 levels remained unsolved. Put differently, the
agent performed better when dynamically increasing its set
of plan candidates as compared to considering all plans at

once. This experiment suggests that a dynamic interaction
between shot planning and other modules is helpful.

Engineering Fears Interacting modules is about the last
thing an engineer wishes for. While single modules are easy
to control and debug, interaction always comes with uncer-
tainty. A change in one module may break the whole sys-
tem. It is exactly this kind of complexity that engineers try
to avoid by a module pipeline.

Interaction, however, does not necessarily imply paral-
lelism. In previous work we have explored interacting mod-
ules for robot navigation (Kirsch 2017). The modules were
run sequentially, the resulting behavior was “rather” deter-
ministic (since the study was run in a physical robot simu-
lation, navigation tasks could be exactly reproduced, but the
physical parameters still introduced some non-deterministic
behavior in the actions).

Even with modules running in parallel, the behavior can
be stable without extreme engineering overhead. In a retro-
spective of the Hearsay II blackboard architecture, the au-
thors report: “A surprising result was that system perfor-
mance, in terms of accuracy, was as good with the synchro-
nization disabled as its performance with the full synchro-
nization.” (Lesser and Erman 1977, p. 797)

And there are theories around how to deal with dynamic
systems, e.g., cellular automata (Wolfram 2002). It is just
that the type of stability shown by dynamic systems is dif-
ferent than the exactly predictable input–output pairs we are
used to from chaining functions in a processing pipeline. As
soon as the environment exhibits uncertainty and dynamics,
the pipe(line) dream comes to an end anyway. Instead of try-
ing to force environments into our engineering wishes, we
should rather accept the challenge and learn to deal with it.

Interfaces When different modules use their own repre-
sentations, we need to find a way to combine them. Black-
board architectures (Engelmore and Morgan 1988) are an
attempt to channel the complexity of interacting modules
to a central memory where all modules communicate. This
makes the information flow easy to track and to debug (all
the relevant information is in the central blackboard mem-
ory). But it also makes it hard or almost impossible to find
the one representation that fits all modules. The experiences
described on the Hearsay II architecture (Lesser and Erman
1977) confirm what can be expected: at the end, one does
construct special pieces of information that are only relevant
and useful for some modules.

Therefore, instead of trying to put all pieces of informa-
tion in one central memory in a unified language, we sug-
gest to try networks of interconnected modules. Each mod-
ule must support communication interfaces to its neighbors,
in the way known from current pipeline structures. Such
a network constrains the options for adding and removing
modules, but as stated above, we do not expect to generate
fully new modules any time soon. Additional modules could
be clones from other modules and would have a matching
place in the network of modules.

We want to emphasize that modules form a network, not
a hierarchy. One module may use a more abstract represen-
tation than another, but that does not put it “above” the other



module. An observation from a neuroscientist friend: When
we look at graphical representations of modules in the hu-
man brain, each scientist will put the module she is working
on in the center of any diagram, but if you were to draw
the full picture, there is no ‘upper module’. All the pieces
are connected, and in all directions. A network only makes
sense with information passing in both directions, otherwise
we would be back at a processing pipeline.

4.3 A New Role for Qualitative Reasoning
The considerations above motivate us to propose a new ap-
proach to qualitative reasoning in agents. Rather than only
using QR in the classical form of describing a process ab-
stractly, we advocate to use QR to describe the interplay of
modules. To give an example, the feedback loop in the Bam-
birds agent that adapts parameters for visual scene recogni-
tion from observations could be described using qualitative
rules that explain how scene parameters must be changed
(i.e, increased, or decreased), given how a shot missed the
target anticipated. QR techniques can then be applied to
govern the convergence process of modules, similar to how
QR rules about throwing objects like “reduce launch speed
if throwing too far” make action selection converge more
quickly (Wolter and Kirsch 2015).

5 Summary and Conclusion
This paper presented the BamBirds agent, which has won
the AI Birds competition three times. The agent is based on
several modules that are involved with visual object recog-
nition and scene understanding, shot planning, shot selec-
tion, an action module, and feedback components that al-
low the agent to improve (during gameplay by adapting pa-
rameters, during development by learning estimators from
recorded data). We discuss why we believe a physical sim-
ulation game cannot be tackled with existing AI techniques
such as machine learning or QR alone, but motivates basic
AI research. Despite the survey among AI experts (Grace
et al. 2018) that projected the arrival of an agent defeat-
ing humans in Angry Birds around the year 2022, we are
pessimistic that an agent will come close to human perfor-
mance in the near future. We argue that a severe limitation of
today’s approaches is due to static architectures of indepen-
dent modules that lack the ability to reflect their decisions
and to reach their output in a dynamic process of interact-
ing with other modules. In order to let the modules step out
of their static roles, researchers must also step out of their
beaten path of higher degrees of specialisation in AI research
and focus more on AI architectures and how they allow ex-
isting techniques to be integrated. Rather than aiming for
a precise method to govern module interactivity, we argue
that QR techniques are of interest which steer convergence
processes, but allow components to interact in a dynamic
manner.
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