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Abstract

This paper introduces a novel approach that leverages quali-
tative reasoning to enhance reinforcement learning in physi-
cal domains. Traditional reinforcement learning methods of-
ten suffer from sample inefficiency and lack of explainabil-
ity, especially in complex, physics-driven environments. Our
proposed approach addresses these challenges by integrating
qualitative induction and qualitative planning to learn a con-
trol strategy. Our method enables faster convergence of the
learning process and yields an interpretable and physically
plausible model of the environment. It employs a unique feed-
back loop mechanism that iteratively improves the qualitative
model of the environment based on the observed outcomes of
the executed plans, allowing continual refinement of the sys-
tem’s understanding and actions. Through an extensive set
of experiments, we demonstrate a superior performance of
our method compared to a state-of-the-art deep reinforcement
learning method.

Introduction
Reinforcement Learning (RL), especially when used in
Deep Learning (DL), has excelled in various environ-
ments, from discrete-action games to continuous control in
robotics (Sutton and Barto 2018; Mnih et al. 2015; Silver
et al. 2017; Vinyals et al. 2019; Silver et al. 2014; Lillicrap
et al. 2015; Ibarz et al. 2021). However, deep architectures
typically require large training data and consequently take a
long time to converge. The obtained models offer minimal
insight into their internal control policies. Model-based RL
methods partly address these issues by combining learning
with planning and using state transition models to enhance
efficiency and explainability (Moerland et al. 2023; Plaat,
Kosters, and Preuss 2023; Milani et al. 2022).

When training an agent within a physical domain (e.g. in
robotics - either real-world or simulated), integrating some
degree of physical knowledge into the training mechanism
can significantly speed up the training process. In RL, do-
main knowledge is typically coded in the reward function
that guides the agent faster towards the goal (Grzes 2017).
Reward shaping is limited to the form of a real-valued func-
tion and cannot encode generalized laws of physics. Instead
of dealing with physics directly, the agent tries to maximize
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the received rewards, handcrafted by a domain expert that
considered certain laws of physics when designing it.

Qualitative representations (Forbus 2019) show a promis-
ing direction towards sample efficient learning (Šuc 2003;
Žabkar et al. 2011), learning explainable models (Bratko
2008, 2011; Košmerlj, Bratko, and Žabkar 2011), and learn-
ing explainable control strategies (Šoberl and Bratko 2019).
These representations can bridge the gap between numerical
and symbolic machine learning, and can therefore be used
for symbolic learning and planning in continuous robotic
environments (Žabkar, Bratko, and Mohan 2008; Wiley,
Bratko, and Sammut 2018; Šoberl and Bratko 2020).

In this paper, we propose a qualitative approach to learn-
ing continuous control policies, where instead of a reward-
ing mechanism, qualitative reasoning about the physical en-
vironment is used to constrain the search space and guide
the system toward the goal state. A qualitative model is
built and a qualitative state space determined during the first
few episodes of training and then being continuously re-
fined over new observations as the training continues. The
training is guided along qualitative plans, which are devised
from the observed state transitions, and so avoiding spuri-
ous solutions. We evaluate the performance of our proposed
method on the swing-up problem for the inverted pendulum
and compare it to the performance of the Deep Determinis-
tic Policy Gradient (DDPG) on the same problem (Lillicrap
et al. 2015).

In comparison to similar qualitative control methods, the
contributions of this paper are the following:
• The learned qualitative model, the inferred qualitative

state space and the execution parameters are being con-
tinuously refined, while the existing methods refine only
the execution parameters.

• The structure of the qualitative state space is inferred
from the observed numerical behaviors instead of from
the rules of qualitative simulation, which eliminates the
possibility of spurious plans and confines the computa-
tional complexity of planning to the complexity of the
breadth-first search algorithm.

• Qualitative control is demonstrated on the swing-up
benchmark domain and its performance is compared to
the performance of the deep reinforcement learning al-
gorithm DDPG.



Related work
First attempts at solving physical and mechanical problems
qualitatively date back to the 1980s, when the concept of
Qualitative Differential Equations (QDE) as a simplified al-
ternative to ordinary differential equations (ODE) was intro-
duced (Forbus 1984; De Kleer and Brown 1984). Kuipers
devised a way to use QDEs to simulate dynamic systems
and introduced an algorithm for qualitative simulation called
QSIM (Kuipers 1986). Forbus formalized the concept of ac-
tion in the context of qualitative simulation (Forbus 1989),
which complied with the paradigm of classical planning,
where actions are deterministic and instantaneous. Such a
formulation was used by Sammut and Yik (Sammut and Yik
2010) to devise a qualitative plan for a bipedal robot walk-
ing, which was executed through trial-and-error (Sammut
and Yik 2010). A similar approach was used by Wiley et
al. to train a multi-tracked vehicle to climb the stairs (Wiley,
Bratko, and Sammut 2018).

When first introduced, QDEs were abstracted from ODEs
manually. However, when a numerical model of the domain
is not known or cannot be easily devised by intuition, there
is a tendency to learn it from numerical traces. This was
largely made possible with the introduction of Multivari-
ate Monotonic Qualitative Constraints (MMQC) (Wellman
1991). These types of constraints can be induced directly
from numerical data and represented in the form of decision
trees (Bratko and Šuc 2003), or abstracted as qualitative par-
tial derivatives and constructed into a model with any cho-
sen classifier (Žabkar et al. 2011). Because these qualitative
models abstract away most of the numerical information and
present the learned theory in the form of increasing and de-
creasing intervals, they better comply with the human intu-
ition that the traditional numerical models (Bratko 2008).

Practical applications demonstrated that by autonomously
interacting with the physical world, a robot can learn qual-
itative representations that could intuitively be interpreted
as obstacle, stability and movability (Leban, Žabkar, and
Bratko 2008; Košmerlj, Bratko, and Žabkar 2011). The
robots were interacting with high-level actions and observa-
tions. Mugan and Kuipers (Mugan and Kuipers 2012) pro-
posed learning on the motor level and developed an unsu-
pervised learning algorithm QLAP (Qualitative Learner of
Action and Perception) that uses qualitative representations
as a way to discretize the input data. The learned models are
represented as Dynamic Bayesian Networks (DBNs).

Using learned qualitative models on the motor level to ex-
ecute robotic tasks requires a method for resolving the ef-
fects of actions on a qualitative level. This approach alone
allows a reactive execution of tasks, simple enough to be
solved without planning. This was demonstrated on the
problems of pursuing a goal, avoiding collision and push-
ing a box (Šoberl, Žabkar, and Bratko 2015; Šoberl and
Bratko 2017). Employing qualitative planning, explainable
control strategies can be devised, which was demonstrated
on the problem of balancing the inverted pendulum (Šoberl
and Bratko 2019). Combining qualitative planning with re-
active execution, a quadcopter was able to learn an explain-
able controller to navigate through space and plan its way

around a simple maze (Šoberl and Bratko 2020). A domain-
independent framework was proposed soon after (Šoberl
2021).

Learning qualitative control vs. Reinforcement
learning

Existing qualitative approaches to learning motor-level con-
trol learn a qualitative model first, then devise a qualitative
plan, which is finally refined through execution. The learned
model and the qualitative plan remain unchanged for the re-
mainder of the execution. The solution is either a quanti-
fied qualitative plan (Sammut and Yik 2010; Wiley, Bratko,
and Sammut 2018) or a qualitative plan with a numerically
fine-tuned execution policy (Šoberl and Bratko 2019, 2020).
In both cases, learning is model-based and goal-oriented.
This is fundamentally different from reinforcement learn-
ing, where the learned policy is refined continuously as new
observations are collected. In the case of the model-free Q-
learning method, no model of the environment is learned,
while the learned policy aims to maximize the reward func-
tion, typically without any notion of a goal state.

Each of the two approaches has certain advantages over
the other: Reinforcement learning can be used with a wider
range of discrete and continuous environments and requires
a large set of training samples, obtained over a large num-
ber of training episodes. The learned control policy is purely
numerical, typically in the form of a deep neural network.
The latter methods do not provide any explanation of why
a certain action is taken in a certain state. The policy is nu-
merically bound to the training environment and requires re-
training in case the environmental parameters change.

The fundamental idea behind learning qualitative control
is to narrow down the search space by constraining it in two
ways: (i) with qualitative constraints that arise from the laws
of physics, and (ii) with domain-specific qualitative con-
straints learned through experimentation with the environ-
ment. The first type of constraints restrict the use of qual-
itative control methods to continuous real-world environ-
ments — typically to robotic domains. The reasons to con-
strain the search space qualitatively instead of numerically
are: (i) the generality of qualitative physics, and (ii) sample
efficient learning of qualitative models. Qualitative physics
is more general than conventional physics in the sense that
it abstracts away numerical constants and works with sym-
bolic time. It, therefore, predicts a succession of qualitative
states instead of exact numerical states at precise times. This
makes the devised qualitative solutions transferable to en-
vironments with the same qualitative dynamics, but differ-
ent numerical parameters. The execution parameters need
to be re-tuned, but qualitative models and plans remain un-
changed. Moreover, qualitative abstractions comply with the
way humans reason about the physical world and are there-
fore a feasible basis for explainability (Bratko 2008; Šoberl
and Bratko 2019). The key differences between reinforce-
ment learning and learning qualitative control are summa-
rized in Table 1.

The presumption taken in previous research on learning
qualitative control is that constraining the search space qual-



Reinforcement learning Learning qualitative control
Environment types Arbitrary mechanics Real-world physics
Trainable entity (Deep) neural networks Qualitative constraints
Background knowledge Reward function (explicit) Qualitative physics (implicit)
Reward function Crucial for success Used as performance metric
Goal Maximize the reward Reach a goal state
Sample efficientcy Low High
Explainable policy No Yes, through qualitative behaviors
Transferable policy No Yes, qualitative models and plans

Table 1: Key differences between reinforcement learning and learning qualitative control.

itatively reduces the training time. It is a reasonable premise,
considering the fact that model-free reinforcement learning
usually attempts many absurd and non-intuitive actions, be-
fore finding a working solution. However, this has — to the
best of our knowledge — not yet been demonstrated and
evaluated on a common benchmark domain. One of the rea-
sons for the lack of such a comparison is the fundamentally
different ways in which the two methods approach a prob-
lem and hence the lack of a common evaluation metric. In
this paper, we introduce certain adaptations to the qualita-
tive control method, that bring it closer to the paradigm of
reinforcement learning. Training is executed over multiple
episodes of limited duration and the received rewards are
used as a performance metric, although they are not utilized
by the qualitative method for training.

The proposed method
Any qualitative method of acting in a numerical environment
would inevitably assume at least the following four phases:
(1) data collection, (2) qualitative abstraction, (3) qualita-
tive reasoning, and (4) numerical implementation. Qualita-
tive abstraction lifts numerical data to a qualitative level so
that qualitative reasoning can take place, while numerical
implementation acts in reverse: it quantifies a qualitative so-
lution so that it can be executed in the numerical environ-
ment. Our method denotes these four phases as:

1. Data collection. Sensory data is collected either by ran-
dom or systematic experimentation or by motor babbling.

2. Qualitative abstraction. A qualitative model is induced
from the collected numerical data.

3. Qualitative planning. A qualitative plan is found from the
current state to a goal state.

4. Plan execution. The obtained qualitative plan is executed
reactively — one action at a time in a closed control loop.

Existing approaches to qualitative control employ similar
four phases, but mostly in linear succession, with the exe-
cution phase being the only one done in a closed loop. We
propose expanding the sensory feedback also to the phases
of qualitative induction and qualitative planning. In such a
non-linear setting, these can no longer be deemed phases,
but rather levels of acting. Experimentation is the only phase

of acting done separately from the rest. It is performed dur-
ing the first few episodes of training to collect the minimum
required samples to induce a qualitative model. In reinforce-
ment learning, the first few episodes are often also purely ex-
plorational. Samples are then collected for the remainder of
the training and used to refine the parameters on each level.

Data collection
The objective of the initial data collection is to provide
enough numerical samples to induce a qualitative model.
The goal is to model how actions affect the observable nu-
merical state. For example, modeling the behavior of a sim-
ple pendulum, we model how the force F ∈ X , applied to
the pendulum, affects its radial acceleration θ̈ ∈ Y at a cer-
tain position and radial velocity θ, θ̇ ∈ C. When parts of
the state space exhibit different operational principles than
others, samples should be collected in all operating regions
(as in (Šoberl, Žabkar, and Bratko 2015; Wiley, Bratko, and
Sammut 2018)).

Qualitative induction
Qualitative induction is a process of generating qualitative
models from numerical data (Bratko and Šuc 2003). In this
paper, we consider qualitative models that capture mono-
tonically increasing and decreasing intervals of continuous
functions. For instance, function y = x2 has two such in-
tervals — it is monotonically decreasing in all x < 0 and
monotonically increasing in all x > 0. Point x = 0 is con-
sidered a critical point, a border between two operating re-
gions. In this paper, we use Padé (Žabkar et al. 2011), which
allows us to systematically introduce into the modeling the
action variables X , dependant variables Y , and conditional
variables C. We do this in the following way:

numerical
samples Padé classifier

qualitative
model

X ,Y C

In the case of only one operating region, the resulting qual-
itative model would consist of qualitative constraints of the
form Y = Q{+,−}(X ), which are valid everywhere within
the domain. If there is more than one operating region, the
model would contain multiple sets of such constraints, each
set conditioned by values from C.



Let us recall the pendulum example from the previous
section. Since we only have direct control over the output
variable F ∈ X , we want to model the effect of F on the
radial acceleration θ̈ ∈ Y . Assuming that this effect may be
qualitatively different depending on θ, θ̇ ∈ C, we use Padé
to find qualitative dependencies of the form θ̈ = Q{+,−}(F )
and a classifier (typically a decision tree learner) to learn op-
erating regions determined by θ and θ̇.

Qualitative planning
Qualitative planning considers a search through the quali-
tative state space from an initial to a goal qualitative state;
a qualitative plan is a qualitative behavior, permitted by the
given qualitative model (Wiley, Bratko, and Sammut 2018;
Šoberl and Bratko 2020). The definition of the qualitative
state space has been adopted from Kuipers’ QSIM (Kuipers
1986) and adapted for planning by extending it with the con-
cept of action. We adopt the same definition of the qualita-
tive state space, but base its internal structure on qualita-
tively abstracted observations, instead on the QSIM’s theo-
retical framework. For instance, suppose that a robot is mov-
ing uphill toward some critical point. The robot’s path can in
such case be qualitatively abstracted as the interval before
the critical point and the interval after the critical point. Be-
cause of the continuity of the path, QSIM would presume the
possibility of transitioning between the two intervals. How-
ever, the hill may in reality be too steep for the robot to reach
the critical point and transition to the next qualitative state.
Our method, therefore, presumes the possibility of transi-
tioning between two qualitative states only if the transition
has already been observed.

To promote some level of exploration, maximum depth d
is given as a parameter and all qualitative plans up to depth d
are constructed. A randomly chosen plan is then selected for
execution. If no plan is found, a random action is executed
and planning is repeated from the new state, hopefully with
new observations allowing for a wider set of state transitions.
In contrast to reinforcement learning, where at every step a
single action is chosen either randomly or by the learned
policy, our method commits to plans rather than to single
actions.

Plan execution
Execution of qualitative plans is the problem of implement-
ing a continuous transition between two consecutive quali-
tative states Si → Si+1 of the plan within a particular nu-
merical environment. We consider reactive control: the agent
selects and executes an action several times per second af-
ter observing the current numerical state with the same fre-
quency. At each reactive step, the executor is solving two
problems: (i) determining which qualitative action will pro-
duce the most desirable effect towards state Si+1, and (ii)
translating the qualitative action to output numerical signals.

The question of how to resolve the effects of qualitative
actions through qualitative models has been addressed in
(Šoberl and Bratko 2017). Qualitative action has been de-
fined as an instruction on the directions of change of control
variables. Formally, let c{1...m} ∈ R be control variables

that represent output signals (e.g., signals to control the mo-
tors). Then a qualitative action A formalized as A = [c1 :
dir1, . . . , cm : dirm], where dir{1...m} ∈ {inc, dec, std}. Ac-
tion A = [c1 : inc, c2 : dec, c3 : std] would therefore instruct
the value of c1 to be increased, the value of c2 decreased, and
c3 kept at its current value. There is no information on the
rates of change at this stage.

The process of action prioritization is mathematically for-
mulated as follows. Let variables xi for all i ≤ k and some
k have a target value, and let variables xi for all i > k
be numerically constrained. Numerical constraints are op-
tional1 and determine the fail states, e.g. numerical con-
straint −π

2 < θ < π
2 specifies the allowed interval for vari-

able θ. Let ei be the respective time estimates of variables
xi. Define the function:

f(e1, . . . , en) =

k∑
i=1

ei
2

2
+

+

n∑
i=k+1

(
(1 + ei)

−1 · (1− ei)
−1 − 1

) (1)

and denote its gradient as:

∇f =

(
∂f

∂e1
, . . . ,

∂f

∂en

)
. (2)

Let E = [dirx1
, . . . , dirxn

] be the vector of qualitative ef-
fects of action A on variables x1, . . . , xn as deduced through
the qualitative model, where qualitative directions dirxi ∈
{inc, std, dec} are mapped to integers as inc 7→ 1, std 7→
0, dec 7→ −1. The priority Q(A) of action A is then com-
puted as

Q(A) = −∇f · E. (3)

In previous work (Šoberl and Bratko 2020; Šoberl 2021),
it was presumed that acceleration is constant over the entire
domain. If the agent was observed to accelerate at a certain
rate, it was presumed that it can decelerate at the same rate
at any location. However, there are domains where this is
not the case. A pendulum, for instance, will exhibit different
accelerations under the same applied force when in different
positions, due to the force of gravity. Therefore, in this pa-
per, we propose predicting the maximum possible decelera-
tion through linear regression. From the collected numerical
samples, we select the points near the goal state to model
the relation between the control variables and the observed
accelerations. Using linear regression, we then predict the
maximum deceleration rates at the goal position. The pre-
dictions get refined as new samples are collected throughout
training episodes.

The experimental domain
To demonstrate our approach, we simulated a classic bench-
mark control problem of swinging up the inverted pendu-
lum. A freely rotating pole is attached to a cart as shown in

1In this paper we do not use numerical constraints, but they can
be useful in other control domains, e.g. (Šoberl, Žabkar, and Bratko
2015; Šoberl and Bratko 2019; Šoberl 2021).



Figure 1. The cart can be moved either left or right by ap-
plying a force in the direction of motion. Consequently, the
pole accelerates rotationally either clockwise (CW) or coun-
terclockwise (CCW). The pendulum is initially in the down-
ward position (θ = −180◦). The goal is to lift the pendulum
upward (θ = 0◦) and maintain it in this state. We do not
impose any goals or constraints on the position of the cart.
We orient the coordinate system so that the force F is posi-
tive in the right direction, and the pole’s angle θ increases in
the CCW direction. The length of the cart is 1m and weighs
10 kg. The pole is 1m long and weighs 1 kg. The force F is
applied to the cart with the frequency of 50Hz and can be
between −100N and 100N. We limit the maximum speed
of the pole to 360◦/s in any direction. We did not simulate
noise.

F⃗
θ

θ̇

θ — The angle of the pole.

θ̇ — The angular velocity of the pole.

F⃗ — The force applied to the cart.

Figure 1: The state (θ, θ̇) and the action (F⃗ ) in our cart-pole
domain.

The observable state of the system is (θ, θ̇), while θ̈ can
be derived from the observed ∆θ̇ and ∆t. The initial state
is (θ = −180◦, θ̇ = 0) with F = 0, and the goal state is
defined as (θ = 0◦, θ̇ = 0). We use the reward function

R(θ, θ̇) = −
(
θ2 + 0.1 · θ̇2

)
, (4)

which is similar to the reward function used in the OpenAI
Gym pendulum environment (Brockman et al. 2016), except
for the torque component (+0.001 ·u2), which we here omit.
In the Gym pendulum domain, force F is applied directly
to the tip of the pole, so the translation of the force to the
torque is straightforward. In our inverted pendulum domain,
the force is transferred via the cart to the base of the pole,
which makes the torque not directly observable. Moreover,
the impact of the torque on reward values is small due to
a low coefficient of 0.001. The two methods compared in
this paper – reinforcement learning and our qualitative con-
trol method — are hence both driven by the same observ-
able quantities θ and θ̇, the former through optimizing the
received rewards and the latter by pursuing the goal state.
Recall that our qualitative method does not employ a reward
function; we use it here only to be able to compare the per-
formance of both methods.

Reinforcement learning is usually done over multiple
episodes. After each episode, the system is reset to its ini-
tial state and the training is repeated with the updated policy.
The DDPG method updates the weights and biases of the ac-
tor and the critic neural networks (as described in (Lillicrap
et al. 2015)), while our qualitative control method updates
(i) the qualitative model, (ii) the set of state transitions and
(iii) the linear regression model to predict accelerations. We
set the length of each episode to 6 seconds, which is 300
steps with the 50Hz action frequency. We identify no fail
states in this domain, although, in general, a fail state would
also terminate an episode.

Results
In this section, we separately present the results of qualita-
tive induction, qualitative planning, and execution that we
obtained in our simulated inverted pendulum domain. We
compare the results of execution with those obtained by the
DDPG algorithm that we ran in the same simulator and un-
der the same conditions.

Qualitative induction
The training of the inverted pendulum started purely exper-
imentally. Random forces F were applied to the cart with
random durations between 20 and 500 ms. Numerical sam-
ples (F , θ, θ̇) were captured 50 times per second, and θ̈ com-
puted as ∆θ̇ under the constant time step ∆t = 20 ms be-
tween two consecutive observations. What we aim to model
is how the force F affects θ̈ in any given state (θ, θ̇). Since
θ̈ is the time derivative of θ̇ and the latter of θ, the effect
of F on those higher integrals would be simulated by the
qualitative planner.

After 3 episodes, 900 samples were obtained, which suf-
ficed for inducing a qualitative model with an average nu-
merical error below 4◦ for θ. Considering that the maxi-
mum speed of the pole θ̇ is 360 ◦ s−1 and that observations
are collected with the frequency of 50 Hz, up to 7.2◦ in-
put error is possible just from temporal resolution. The col-
lected numerical samples and the induced qualitative model
are shown in Figure 2. It can be seen from the model that
two operating regions have been learned: θ̈ = Q+(F ) for
−89.94◦ ≥ θ < 93.53◦ and θ̈ = Q−(F ) outside that in-
terval. The theoretically correct boundaries are −90.0◦ and
90.0◦ respectively. The error decreased with further sam-
pling, dropping below 1.2◦ after 30 episodes. The learner
determined that θ̇ plays no role in specifying the operating
regions.

The obtained qualitative model can be interpreted in the fol-
lowing way:

If the pole is in the upright position (above the hori-
zontal line), increasing the force on the cart will in-
crease the acceleration of the pole, and vice-versa.
If the pole is in the downright position (below the hor-
izontal line), increasing the force on the cart will de-
crease the acceleration of the pole, and vice-versa.
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Figure 2: Qualitative induction from numerical samples.
Above: Samples collected during the experimentation
episodes. Below: A qualitative model induced after process-
ing the numerical samples with Padé.

Qualitative planning
The qualitative model was passed to the qualitative planner,
together with the initial state (θ = −180◦, θ̇ = 0) and the
goal state (θ = 0◦, θ̇ = 0), the planner immediately deter-
mines the landmarks of the configuration space (θ, θ̇):

θ :{−180,−90, 0, 90, 180},
θ̇ :{min, 0,max}.

(5)

For clarity, we here write the theoretical boundaries −90 and
90 for the two operating regions, although the actual val-
ues with the induced model are −89.94 and 93.53. The min
and max landmarks are symbolic representations of the min-
imum and maximum values, which at this point are not yet
known.

These landmarks determine 24 possible qualitative states.
The possible qualitative values for θ are:

[−180], [−180..−90], [−90], [−90..0], [0], [0..90], [90], [90..180],

and for θ̇:
[min..0], [0], [0..max],

to which we will also respectively refer to as neg, zero, and
pos.

Transitions between the qualitative states are deduced
from numerical observations. Most of the possible transi-
tions were abstracted from the 900 numerical samples used
to induce the qualitative model. From these, the circular
topology (−180◦ = 180◦) of θ was also discovered and in-
corporated into the initial space partitioning (5). As seen
from Figure 2, the 900 samples are more densely concen-
trated around the initial position θ = −180◦, while being
sparse at the goal position θ = 0◦. For this reason, the transi-
tions abstracted from these samples were also denser around
the initial position, while most transitions around the goal
position were discovered in later episodes. A typical sce-
nario occurring during the early episodes of training would
be making the pole rotate a full circle after overshooting the
goal, because the possibility of stopping the pole close to the
goal and reversing its direction had not yet been observed.
Still, the early plans did tend to bring the pole closer to the
goal more often than random exploration, hence new transi-
tions were eventually discovered and with them the possibil-
ities of new plans.

Figure 3 shows how a qualitative plan was found to swing
up the pendulum. The shorter plan, leading from the initial
state [−180/zero] to goal state [0/zero] failed to transition
from [−180..−90/zero] to [−90/zero] due to the lack of mo-
mentum to overcome the force of gravity. A longer plan was
then deduced which takes a different path after the point of
failure. This way the concept of swinging to build up the
momentum was discovered.

Figure 4 shows a plan deduced after the goal posi-
tion θ = 0◦ is overshot. Instead of transitioning from
[0..90/neg] to [0/zero], the pendulum would overshoot to
state [−90..0/neg]. A plan would then be devised to reverse
the direction of the pendulum back to the goal position.

Execution
We compared the performance of our qualitative execution
with the performance of DDPG, which we configured as fol-
lows: the actor and the critic neural networks both contained
two hidden layers of 64 and 32 nodes, both using the ReLu
activation function. The actor took two inputs, θ and θ̇, and
output via the Tanh activation function a continuous action
within [−1, 1], which was scaled to F ∈ [−100, 100] before
being executed. The critic took the same input as the actor,
together with the actor’s output, and output the Q-value via
the linear activation function. Both networks used the Adam
optimizer with the learning rate α = 10−3. The Q-learning
discount factor was set to γ = 0.99. The training was done
in batches of 32 samples with unlimited replay memory size.
We tried various other DDPG configurations with different
neural network architectures but achieved the best results us-
ing the described settings.

The training performance of both algorithms is shown in
Figure 5. The plots were obtained by running each algorithm
100 times and averaging the episode rewards obtained in
each training episode. The episode reward itself is the av-
erage of the 300 rewards received during an episode (re-
call that the duration of each episode is 300 steps). Both
algorithms eventually converged toward the same strategy
— build up the momentum by swinging and then balance



-180/zero -180..-90/pos -90/pos -90..0/pos 0/zero

-180..-90/zero -180..-90/neg -180/neg 90..-180/neg 90/neg 0..90/neg 0/zero

Figure 3: A qualitative plan found to swing up the pendulum. The alternative (lower) branch is deduced when the transition
marked with the red arrow fails to execute.

0..90/neg 0/zero -90..0/neg -90..0/zero -90..0/pos 0/zero

Figure 4: A qualitative plan found to correct a goal overshoot. The alternative (lower) branch is deduced when the pendulum
fails to stop exactly at the goal position.

at the goal position. However, our qualitative algorithm con-
verged significantly faster. The level of performance reached
by DDPG after about 150 episodes, was achieved by our
qualitative executor around episode 50 in the worst case.

Conclusion
This paper aims to bridge the gap between reinforcement
learning and learning qualitative models, which have pre-
viously been researched separately and, to the best of our
knowledge, never evaluated on the same control problem.
The type of qualitative modeling and reasoning that we fo-
cus on in this paper is based on monotonic qualitative con-
straints, which are more sample efficient to learn, have bet-
ter noise resiliency and offer a higher level of explainability
than traditional numerical models.

We demonstrated our method on a single benchmark con-
trol problem and compared it to state-of-the-art deep rein-
forcement learning method. The approach should easily be
transferrable to other control domains. We find it somewhat
more difficult to implement than a typical reinforcement
learning algorithm, since it contains a three-layered feed-
back loop, the complete Padé learner, a qualitative physics
engine, and a non-trivial execution mechanism that is capa-
ble of dynamically adapting to the environment. It also can-
not be used in (simulated) environments that do not comply
with Newtonian physics.
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