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Abstract

Detecting and responding to novel situations in open-world
environments is a key capability of human cognition and is
a persistent problem for AI systems. In an open-world, nov-
elties can appear in many different forms and may be easy
or hard to detect. Therefore, to accurately evaluate the nov-
elty detection capability of AI systems, it is necessary to in-
vestigate how difficult it may be to detect different types of
novelty. In this paper, we propose a qualitative physics-based
reasoning method to quantify the difficulty of novelty detec-
tion focusing on open-world physical domains. We apply our
method in the popular physics simulation game (PSG) An-
gry Birds and conduct a user study across different novelties
to validate our method. Results indicate that our calculated
detection difficulties are in line with those of human users.

1 Introduction
With the increasing reliance on autonomous systems such as
self-driving cars and planetary robots, detection and adap-
tation to novel situations have become important capabili-
ties for such AI systems. For example, if an autonomous car
is not trained on slippery roads, the car may fail to detect
when the friction is reduced and adjust the speed accord-
ingly. Open-world learning is an emerging research area that
attempts to address the challenge of detecting and adapting
to novel situations (Langley 2020). Open-world learning re-
search requires adequate evaluation protocols to capture the
performance of agents under the two tasks: detection and
adaptation (Senator 2019). This paper focuses on creating a
difficulty measure for novelty detection to aid the evaluation
of novelty detection by disentangling agents’ performance
from the intrinsic difficulty of novelties.

The novelties we encounter in an open world can take
various forms (Boult et al. 2021). In this paper, we focus
on structural transformation, a very common type of real-
world novelty where an unknown object is encountered or a
previously known object changes one/more of its properties
(Langley 2020). For example, this could be a new vehicle
type on the road, a new type of product in the supermar-
ket with new packaging, a previously empty box filled with
goods, or an abnormally heavy ball in a billiards game. As
these examples suggest, only some of the novelties can be
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identified from appearance. Novel objects with different ap-
pearances can be detected by observing the change in color
or shape. Quantifying the difficulty of detecting them can be
addressed with the use of concepts presented in color science
(Giesel and Gegenfurtner 2010) and research conducted on
object shapes and sizes (Perner 2018). However, the dif-
ficulty of detecting novel objects with the same appear-
ance but different physical parameters (e.g., mass, friction,
bounciness) is not addressed so far. It is also not straightfor-
ward as one needs to interact with the objects and observe
changes in their movements. Moreover, the detectability of
such novelty depends on several factors: the physical param-
eter that is changed or the number and arrangement of novel
objects in the environment.

This paper presents a qualitative-physics based method to
quantify the difficulty of detecting novel objects with the
same appearance but altered physical parameters (compared
to previously seen versions of the objects). The proposed
method aids a thorough evaluation by disentangling agents’
performance from the difficulty of detecting the novelty. For
example, if the novelty cannot be identified from the appear-
ance and occurs in an object that is not reachable to interact,
then the novelty cannot be detected. Therefore, the difficulty
of novelty detection should be considered before making
conclusions on the detection ability of an agent. The method
we propose is agent-independent and enables us to evalu-
ate an agent’s performance (both detection performance and
task performance) at different levels of difficulty (that can
be categorized as easy, medium, and hard). We apply our
method to the popular PSG Angry Birds, as it has semi-
realistic physics and provides an ideal platform to introduce
novelty (Gamage et al. 2021). We then conduct a user study
experiment with human participants to verify that the calcu-
lated novelty detection difficulty values are in line with those
of humans.

2 Background and Related Work
This section presents the notion of difficulty and novelty in
the context of physical worlds and AI. We also discuss the
related work in qualitative physical reasoning and a brief de-
scription of our experimental domain.

Difficulty Assessing difficulty is a popular research area
in neuroscience where researchers are interested in quanti-
fying the difficulty of tasks or decisions (Franco et al. 2018).



Figure 1: Examples from Angry Birds. The figure in the left (a)
has original parameters whereas the figure in the right (b) has an
increased bounciness parameter for pigs. The two figures show the
difference in pig’s movement for the same shot in the original (a)
and increased bounciness (b) of pigs.

Measuring difficulty is also a main topic of discussion when
measuring the intelligence of AI systems (Chollet 2019).
It is also a widely studied topic in the gaming industry to
make games interesting to players. The flow-theory, one of
the most prevalent models in the game design, suggests that
the games should not be too easy or too difficult to maintain
player enthusiasm (Takatalo et al. 2010). Considering the
difficulty of detection, researchers have studied this in areas
such as emotion detection (Laubert and Parlamis 2019) and
missing content detection (Yom-Tov et al. 2005). However,
to our best knowledge, the difficulty of novelty detection in
physical domains is not studied so far and is important when
evaluating the detection capabilities of agents.

Novelty In the context of AI, novelty is described as sit-
uations that violate implicit or explicit assumptions about
the agents, the environment, or their interactions (SAIL-ON-
BBA 2019). Similarly, Boult et al. formalize a theory of
novelty for open-world environments and Langley explains
different types of environmental transformations that can be
considered as novelty. Following these ideas, the novelties
we consider in this paper occur as a result of changed physi-
cal parameters of objects. It could be the mass, friction, elas-
ticity, etc. These novelties do not change the appearance of
the object but cause it to behave differently after an inter-
action. For example, in the real-world, a novelty could be a
new tennis ball with higher bounciness than the balls seen
before, a previously empty bottle now filled with water, or a
box of goods with less weight due to a manufacturing defect.
Figure 1 shows differences in the observed movements of
objects after physical parameters have been changed in the
research clone of Angry Birds (Ferreira and Toledo 2014).

Qualitative Physics As discussed previously, novelties
based on physics parameters are not detectable from appear-
ance alone. Therefore, one needs to interact with the objects
and observe any difference in their expected movements.
Humans are often unaware of the exact physical parameters
such as density, friction, and mass distribution of objects and
do not need to solve complex differential equations when
reasoning about their movements, instead relying on spatial
intelligence (Walega, Zawidzki, and Lechowski 2016).

To analyze object movements, a qualitative physics ap-
proach was proposed to approximate structural stability
based on the extended rectangular algebra (ERA) (Zhang
and Renz 2014). ERA comprises 27 interval relations based
on the approximated center of mass of the object and offers

more flexibility than the original 13 interval algebra rela-
tions (Allen 1983). Ge, Renz, and Zhang point out that ERA
is more suitable to approximate the stability of a single ob-
ject rather than a structure and extends the use of ERA by
proposing two qualitative stability analysis algorithms: local
stability and global stability. A similar algorithm, vertical
impact is proposed by Walega, Zawidzki, and Lechowski,
which combines the concepts of local stability and global
stability into one algorithm. They also introduced the algo-
rithm horizontal impact, to provide a heuristic value to the
interaction based on force propagation. Our difficulty mea-
sure also uses the algorithm vertical impact along with new
reasoning components which reason about the nature of the
object movements that are necessary to detect novelty.

Experimental Domain Our experimental domain, Angry
Birds is a PSG where the player shoots birds at pigs from a
slingshot. These pigs are often protected by different phys-
ical structures that are made up of three types of materials:
wood, ice, and stone. There are also static platforms, which
are indestructible objects that are not affected by forces. The
task of an agent that attempts to detect novelty is to iden-
tify if anything has changed from the normal game envi-
ronment by shooting at game objects. As the original An-
gry Birds game by Rovio Entertainment is not open source,
we conduct our experiments using a research clone of the
game (Ferreira and Toledo 2014). One example of novelty
in Angry Birds is displayed in figure 1. As Figure 1a shows,
the agent who is familiar with the normal game environment
expects the pigs to fall down without bouncing up after an
interaction. However, when the bounciness parameter is in-
creased, the agent observes a change in the pigs’ movement
as shown in Figure 1b.

We selected Angry Birds as our experimental domain due
to three reasons. First, solving an Angry Birds game instance
(game level) requires reasoning about object movements
in complex physical structures (Zhang and Renz 2014).
Second, there are many game levels and level generators
(Stephenson et al. 2019) that enable us to evaluate our dif-
ficulty measure on a diverse set of levels. Third, this is an
ideal platform to vary different physics parameters and add
the type of novelties we are investigating in this study. More-
over, Angry Birds is a very popular domain among AI re-
searchers with several long-running competitions associated
with it (Renz et al. 2015, 2019).

3 Overview of the Difficulty Measure
This section presents a high-level overview of our difficulty
measure formulation for novelty detection in physical do-
mains. We define the following to aid our explanations.

• Each object consists of a set of appearance-related param-
eters and a set of physical parameters. There is a pre-
defined many-to-one mapping from appearance parame-
ters to physical parameters (objects with the same appear-
ance always have the same physical parameters and two or
more objects with different appearance can have the same
physical parameters). Objects with the same appearance
are referred to as an object type. The number of object
types is predefined.



Figure 2: A set of novel instances. Each instance contains one/-
more novel pigs denoted by the red circle and a set of normal ob-
jects. Note that, this paper focuses on novel objects with the same
appearance as non-novel objects but with different physical param-
eters. Therefore, novel objects cannot be distinguished visually.

• normal object: An object that preserves the predefined
mapping between appearance and physical parameters.

• novel object: An object that violates the predefined map-
ping between appearance and physical parameters.

• normal instance: An arrangement with a collection of nor-
mal objects.

• novel instance: An arrangement with a collection of nor-
mal objects and novel objects. (See Figure 2)

Our measure has three properties. Our difficulty measure:

1. is instance-based, i.e., we provide the difficulty of detect-
ing novelty for a specific novel instance.

2. quantifies the difficulty of detecting novelty when an
agent encounters the novel instance for the first time (the
agent does not attempt the instance multiple times).

3. is agent independent (i.e., we do not collect data from
agents to develop the measure).

Given below are three assumptions we make.

1. As designers of the difficulty measure, we have full un-
derstanding of the novel instance (i.e., the novel object,
location of the novel object, the changed parameters, and
the value of the parameters).

2. The agent has a full understanding of the object dynam-
ics in the normal environment. The agent is fully aware
of how objects move without novelty and the agent can
detect that the environment is novel if a change in move-
ments happens in the novel environment (perfect detec-
tion). We made this assumption because the detection
difficulty can be different across agents; therefore, our
measure is based on the lower bound of the detection dif-
ficulty by assuming perfect detection.

3. The agent attempts to detect novelty using a sequence of
interactions. i.e., the agent cannot have multiple interac-
tions at the same time. For example, in the billiards game,
an agent can move only one ball at a time.

Figure 3 shows the components of our difficulty measure
formulation.There are two inputs, the initial state of an in-
stance (i.e., the state of an instance before any interactions)
and the novelty present in the instance. Novelty present can
be a set of objects with their changed physical parameter
(e.g. {(wood objects, mass), (stone objects, friction)}). Our
first module, the Target Determining Module takes the above

Figure 3: Overview of the method to compute the difficulty of
novelty detection.

two inputs and searches possible target objects, i.e., the ob-
jects an agent can interact with. This module outputs all pos-
sible target objects in the given state.

The second module, Object Dynamics Reasoning Module
has two components, the object movement analysis compo-
nent and the detectability analysis component. The object
movement analysis component takes each target object and
identifies other objects that are moved due to the interaction
with the target object. Next, the detectability analysis com-
ponent determines if the interaction has caused the novel ob-
ject to move in a detectable way. For example, when a novel
object has a different sliding friction value, an interaction
that causes the novel object to fall from above would not
make the novel object detectable. In contrast, an interaction
that causes the novel object to slide on a surface would make
the novel object detectable.

Knowing the target objects that make detectable move-
ments, the Difficulty Computation Module quantifies the dif-
ficulty of novelty detection to the given initial state. If the
algorithms in the difficulty computation module require the
next state to predict the difficulty, the updated states (i.e.,
state after an interaction) are sent to the Target Determining
Module (dotted arrow in Figure 3) and the process iterates
until the difficulty for the instance can be calculated.

4 Difficulty Measure Applied to Angry Birds
This section presents each component of Figure 3 in detail
by considering the domain of Angry Birds. Novelties in An-
gry Birds can appear in any game object. When explaining
our difficulty measure formulation, we do not consider the
novelties that appear in the birds’ game object, as such nov-
elties can usually be identified directly after a single shot by
observing birds’ behavior.

The first input is the initial state of the instance without
any interaction. In our example domain, this is the game
instance before shooting any birds. To represent the game
scene, we use a 2D coordinate system where the x-axis is
horizontal and oriented to the right while the y-axis is ver-
tical and oriented to the top (Figure 4). P denotes all pixel
points in a scene. For a pixel pi, x(pi) and y(pi) denote its
x and y coordinates. O represents all objects in the environ-
ment. Each object oj (s.t. oj ∈ O) comprises a set of pixels
that can be mapped to a specific object (e.g. square wood).

The second input is the novelty present in the instance.
In our example domain, novelties may appear in different
object categories (i.e., wood, ice, stone, pigs) and the novel
property could be any physics parameter (e.g. mass, friction,
bounciness, etc). Thus, an example of the input is (stone
blocks, mass). These inputs are sent to the target determin-
ing module to search for possible target objects.



Figure 4: Representation of the object space. o2, o3, o4 and o5
satisfy the left-of relation to o1. The trajectories to each object are
denoted by the dotted line. A dot in the line represents a pixel point
pi ∈ P. o2, o3, o4, and o5 satisfy the target predicate. o1 is not a
target as the traj(o1) intersects with o4, which is in left to o1. o3
supports o4. If o3 moves, o4 also moves: impacted(o3,o4) is true.

Target Determining Module
This module is used to identify the target objects. We con-
sider the target objects as the objects that are directly reach-
able to interact. We do not consider platforms as target ob-
jects as they are static. We use the following predicates to
determine the targets in our example domain.
• left-of (oi, oj): if object oj is in left of object oi (Figure 4).

left-of(oi, oj) ≡ oi ̸= oj ∧ xmax(oi) > xmin(oj),
where: xmax(oi) and xmin(oj) are the maximum pixel co-
ordinate of object oi in x direction and minimum pixel co-
ordinate of oj in x direction respectively.
xmax(oi) = max(x(pk) ∀ pk ∈ oi),
xmin(oj) = min(x(pk) ∀ pk ∈ oj)

• traj(oi): trajectory from a starting point to object oi.
As shown in Figure 4 for object o3, a trajectory may con-
tain multiple connections starting from a fixed position
(slingshot in Angry Birds) to the connection point of the
object. The connections can be represented using a set of
points denoted by the dotted lines in Figure 4. We define:
traj(oi) = {ti1, ti2, ..., tin}
where, tik = {p1k, p2k, ..., pnk}
i.e., a set of points that belong to one of the parabola tra-
jectories and only pn· ∈ oi.

• target(oi): if object oi is a target object.
oi is a target if the object is directly reachable, i.e., there
is at least one trajectory to oi such that trajectory points
do not intersect with any object with left-of relation to oi
according to our domain.
target(oi) ≡ (∃ ti ∈ traj(oi)) ∧ ti /∈ oj ∀ {oj : left −
of(oi, oj) ∀oj ∈ O}
Similar to the above left-of relation, we can define right-

of, below, or above relations according to the requirement
in each domain. We can also define traj(oi) and target(oi)
specific to each domain. For example, if the way to interact
with the objects is to drop an object from above, traj(oi)
should be defined according to the path taken by the object
in gravitational free fall and target(oi) is determined by the
trajectories that do not intersect with the objects in above
relation to target(oi) ≡ (∃ ti ∈ traj(oi)) ∧ ti /∈ oj ∀ {oj :
above(oi, oj) ∀oj ∈ O}

Object Dynamics Reasoning module
After target objects are determined, it is necessary to iden-
tify the objects that can be moved due to the interactions
with the target objects. This is achieved by using the ob-
ject movement analysis component. We instantiate all com-
ponents using our proposed qualitative physics algorithms.
If the novel objects are among the impacted objects identi-
fied (defined below) or the target objects, the detectability
analysis component captures if the novel objects move in a
detectable way. We first define the following to aid the ex-
planations of the methods used in the two components.
• novel-object(oi): if object oi is a novel object. As de-

fined earlier, oi is a novel object if it violates the prede-
fined mapping between appearance and physical parame-
ters. i.e., object has changed physical parameter values.

• impacted(oi, oj): if oj is moved due to the interaction of a
bird with the target object oi. For example, if oi supports
oj and oi is hit by a bird, oj also moves (See o3 and o4
in Figure 4. The reasoning for the identification of such
objects is presented under object movement analysis).

• detectable(oi, oj): if oj moves in a detectable way due
to the interaction of a bird with the target object oi.
detectable(oi, oj) returns true when oj is a novel object
and impacted(oi, oj) is true and oj is impacted by the tar-
get object oi in a detectable way. A case-based exploration
of the detectability is conducted in detectability analysis.

Object Movement Analysis This section presents the
qualitative physics approach used in identifying the objects
that satisfy the impacted predicate presented above. i.e., we
identify which objects move after an interaction with a tar-
get object. We use two algorithms 1) based on the stability,
2) based on the force propagation in the horizontal direction
(Algorithm 1). We used the algorithm vertical impact pro-
posed by Walega, Zawidzki, and Lechowski to reason about
the stability of the objects. We also propose a new algorithm,
approximate horizontal influence to check the impact on the
objects located in the horizontal direction.

Vertical impact: This algorithm recursively checks the
objects in a structure starting from the object that is directly
impacted and returns a list of objects that may fall.

It exploits the rule which is the basis for stability inves-
tigation, “an object is stable if the vertical projection of the
centre of mass of the object falls into the area of support
base” (Zhang and Renz 2014). The algorithm contains eight
steps where at each step object relationships are examined
and substructures are constructed. The stability of objects
is examined by approximating the center of mass of sub-
structures and their supporters. A clear explanation of the
algorithm is available in the work of Walega, Zawidzki, and
Lechowski and is diagrammatically summarized in the ex-
tended version of our paper (Pinto et al. 2023). At the end of
the eight steps, the algorithm returns the list of objects that
may fall after the interaction with a target object.

Approximate horizontal influence: This algorithm exam-
ines the impact a target object can cause due to the force
propagation on the objects located horizontally to the target.

We start by analysing if the target object can get destroyed
due to the interaction. If it is not destroyed, we check if the



object will slide or it will flip as a result of the interaction
(collision). Destruction of the target object heavily depends
on the materials and the types of the two colliding objects
and the velocity at the collision. In our example domain, we
define the following predicate by considering the object ma-
terials (e.g., wood, ice, stone, pig) and the bird (e.g., red,
blue, yellow). We approximate the velocity at the collision
by using the law of energy conservation.

object-destroy(oi) ≡ olifei – damage < 0. olifei is the ob-
ject life and it depends on the material of the object and
type of it (e.g. square wood-block, rectangular ice-block).
This is a constant value for a specific object. damage de-
pends on the type of the bird used and the relative veloc-
ity at collision. Damage caused by a bird type is a fixed
value for a specific object, obird damage

i . damage can be ap-
proximated as obird damage

i × relative-velocity at collision.
relative-velocity can be approximated using the law of en-
ergy conservation. Thus, the final formulae for the object-
destroy(oi) predicate can be given as, object-destroy(oi) ≡
(olifei − obird damage

i

√
k1 × (ystart − ytarget) + k2bird) < 0

where, k1 is an experimentally fixed constant value, and
k2bird is a value based on the initial kinetic energy of the
bird (In Angry Birds, the value only depends on the bird
mass as the initial launch velocity is fixed because agents
use the slingshot with full stretch). (ystart − ytarget) is the
height difference between slingshot and the target object.

If the object-destroy(oi) predicate is false, we check the
object-flip(oi) predicate by considering object dimensions.

object-flip(oi) ≡ ymax(oi)−ymin(oi)
xmax(oi)−xmin(oi)

> kflip,
where: ymax(oi) and ymin(oi) are the maximum pixel co-

ordinate of object oi in y direction and minimum pixel co-
ordinate of oj in y direction respectively. The kflip is an ex-
perimentally fixed constant value.

kflip= flipping threshold,
ymax(oi) = max (y(pj) ∀ pj ∈ oi),
ymin(oi) = min (y(pj) ∀ pj ∈ oi),
and xmax(oi), xmin(oi) are as defined previously.
These predicates hold the basis for the approximate hori-

zontal influence algorithm. A pseudo-code of the process is
demonstrated in Algorithm 1 and Figure 5 explains the terms
falling-arc(oi) and sliding-path(oi) used in Algorithm 1.
• For a circle C, with centre (xmax(oi), ymin(oi)) and ra-

dius (ymax(oi)−ymin(oi)), let q1 be the set of pixel points
in the first quadrant of C. falling-arc(oi) returns the list of
objects within the falling arc of object oi (See Figure 5a).
We define falling-arc(oi) as follows:
falling-arc(oi) ≡ {oj ∈ O | oj ̸= oi ∧ (oj ∩ q1)∀oj ∈ O}

• sliding-path(oi) returns the list of objects within the path
the object oi slides (See Figure 5b). We define sliding-
path(oi) as follows:
sliding-path(oi) ≡ { oj ∈ O | oi ̸= oj

∧ (xmax(oi) < xmin(oj) < xmax(oi) + ksliding constant)

∧ ((ymin(oi) < ymax(oj) < ymax(oi)) ∨ (ymin(oi) <
ymin(oj) < ymax(oi))) ∀oj ∈ O}
where, ksliding constant is an experimentally determined
distance that approximates the distance an object can slide
after a collision.

Figure 5: Left Figure (a) shows examples for falling-arc(o1) and
the right Figure (b) shows examples for sliding-path(o1)

Algorithm 1: Approximate horizontal influence
Input: State representation of objects, target object (oi)
Output: List of impacted objects
1: Initialize horizontal-propagation(HP) impact list
2: if ¬ (object-destroy(oi)) then
3: if object-flip(oi) then
4: pending list = falling-arc(oi)
5: else
6: pending list = sliding-path(oi)
7: end if
8: closest object = oj | min(xmin(oj) − xmax(oi) ∀ oj ∈

pending list)
9: Add vertical impact(closest-object) to HP impact list

10: end if
11: return HP impact list

In Algorithm 1 (line 8), we only limit to a single clos-
est object obtained from either the falling-arc or sliding-
path according to the experimentation with our example do-
main. However, this can be altered according to the domain.
The output of the object movement analysis module is the
list of impacted objects obtained from the vertical impact al-
gorithm and the approximate horizontal influence algorithm.

Detectability Analysis This section presents the case-
based exploration in identifying the detectable predicate
shown above. Once the set of impacted objects is available,
we can categorize each object into at least one of the below
cases that represent observable features in a physical world.
The observable movement of the directly-hit object (i.e., tar-
get object) can be explained using the first three cases.

• Case 1: Directly hit and destroys
• Case 2: Directly hit and flips
• Case 3: Directly hit and slides

Apart from these three special cases, all objects subject
to at least one of the following six cases. Case 4 and 5 fo-
cus on object rotation. We assumed that rotation of the im-
pacted objects directly above and very close to static struc-
tures (ground or a platform) is hardly observable. Other ob-
jects could rotate due to the collisions with objects and there
is a chance of observing the rotation when objects fall.

• Case 4: Falls from the top without rotating
• Case 5: Falls from the top while rotating

Case 6 and 7 focus on the objects that slide. The object
may slide and stop, or it might fall if it’s located above the



ground based on the sliding path.

• Case 6: Slide and stop
• Case 7: Slide and fall down

Case 8 and 9 focus on the objects which flip. Similar to the
above two cases, it may either fall or stop based on location.

• Case 8: Flips and stop
• Case 9: Flips and fall down

The nine cases cover the majority of observable move-
ments in Angry Birds (More details in (Pinto et al.
2023)).However, there could be situations that may be not
captured using the nine cases. To evaluate if the novel object
is detectable, we check if the object is moved in a detectable
manner by considering the changed attribute along with the
object type. Consider the following examples:
Example 1: Novelty in “friction” of stone blocks - If at least
one impacted stone block satisfies the requirements for case
3, 6, or 7, we can detect the novelty (as friction changes can
be observed when the object slides).
Example 2: Novelty in “bounciness” of wood objects - If
at least one impacted wood object satisfies the requirements
for case 2, 3, 4, 5, 6, 7, 8, or 9, we can detect the novelty (as
bounciness can be observed when objects collide).

The output of this module enables to capture the objects
that satisfy detectable predicate for each target object.

Difficulty Computation Module
This component quantifies the difficulty of detecting novelty
for each game instance. We propose two algorithms to cal-
culate the detection difficulty. Factors including the novelty
in the object, the placement of the objects, the number of
detectable objects, the number of reachable objects, and the
number of interactions available (number of birds in Angry
Birds) are considered when developing both methods.

We define the following to identify the most influential
target object to interact with (i.e., the target object that gives
the most information about objects movements. We refer to
this as the best-target).

• impact-score(oi): The heuristic impact score of target(oi)
is defined based on the objects moved and the novelty.
Example 1: If the novelty is in only one object in the in-
stance, the score per each object moved = 1
Example 2: If the novelty is in objects with the same ma-
terial (wood, ice, stone), the score per material moved=1
Example 3: If the novelty is in object types and if the
player is informed that the wood objects are not novel, the
score per each wood object moved = 0, the score per other
types of objects moved = 1
impact-score(oi) =

∑
oj∈O|impacted(oi,oj)

scoreoj

• best-target: The target object with the highest impact-
score. If there are multiple objects with the same impact-
score, the first object from all objects is selected.
best-target ≡ oi | target(oi) ∧ impact-score(oi) =
max(impact-score(oi)) ∀ oi ∈ O

Algorithm 2: Probabilistic interaction difficulty
Input: State representation of objects (O) Output: PID
1: Initialize PID = 0
2: for i in total number of interactions do
3: Ni = | { oj ∈ O | target(oj) ∀ oj ∈ O } |
4: ni = | { oj ∈ O | (target(oj) ∧ ∃ ok ∈ O s.t. novel-

object(ok) ∧ detectable(oj , ok)) ∀ oj , ok ∈ O } |
5: Mi = (Ni – ni) / Ni

6: PID += Mi

7: if Mi ̸= 1 then
8: break
9: else

10: Shoot at the best-target
11: Update state of objects
12: end if
13: end for
14: PID = PID / total number of interactions
15: return PID

Probabilistic interaction difficulty (PID) Algorithm 2 is
based on the intuition that the probability of novelty detec-
tion depends on the number of novel objects available. In-
tuitively, if the probability of finding a target that impacts
the novel object in a detectable way is lower, the difficulty is
higher. PID is initialized at zero, and the algorithm loops
over the number of possible interactions (i.e., number of
birds available in Angry Birds) while updating the PID. To
proceed to the next interaction, it is assumed that the agent
shoots the best-target and the objects in the environment
are updated along with the search space (which objects to
explore next). The terms, Ni is the total number of target
objects and ni represents the total number of target objects
which makes the novel object move in a detectable way in
the given state. Thus, Mi is the proportion of targets that do
not yield a detectable movement. At the end of the compu-
tation, PID is normalized to [0,1] (1 indicates the highest
difficulty, and PID is unitless). One limitation of this algo-
rithm is that it only considers the best-target when updating
the next state instead of considering all possible targets. This
is due to time restrictions and works under the assumption
that an intelligent agent would always select the best-target.
Best-shot interaction difficulty (BID) Algorithm 3 is in-
spired by an intelligent human-like agent and is based on
the interaction which yields the most information. Here we
try to maximize the chance of novelty detection by making
the most influential interaction (i.e., always shooting at the
best-target: ok*). The algorithm loops over the number of
possible interactions that can be made: if the novelty is un-
detectable by shooting at the best-target, it proceeds after
updating the environment, the search space (which objects
to explore next), and BID. Similar to Algorithm 2, BID is
normalized to [0,1], where 1 indicates the highest difficulty
and is unitless.

These two difficulty algorithms can be used separately or
collectively according to the suitability of the study.

5 Experimental Evaluation
As the difficulty measures we proposed is general, we ex-
amined the relationship between our proposed difficulty
measure and human perception. We conducted an experi-
ment approved by the Australian National University hu-



Algorithm 3: Best-shot based interaction difficulty
Input: State representation of objects Output: BID
1: Initialize BID = 0
2: Initialize detection flag = False
3: for i in total number of interactions do
4: BID = BID + 1
5: if (∃oj ∈ O | novel − object(oj) ∧ detectable(ok∗, oj))

then
6: detection flag = True
7: break
8: else
9: Shoot at the best-target

10: Update state of objects
11: end if
12: end for
13: if detection flag = False then
14: BID = total number of interactions + 1
15: end if
16: BID = (BID - 1) / total number of interactions
17: return BID

man ethics committee (protocol-2020/717). We gathered
data from 20 voluntary participants (aged 20-35, including
males and females) with no prior knowledge of the tested
novelties. Participants played 10 instances without novelty
(generated from Angry Birds levels generator (Stephenson
and Renz 2017)) to familiarize themselves with the game
physics and dynamics. Then, they played 15 instances, each
featuring one of three different novelties. We measured the
difficulty of detecting each novelty using our proposed ap-
proach. Each participant was allowed to play the novel in-
stance only once to detect if there is any novelty in the game
objects. If the novelty was detected, we recorded the num-
ber of interactions (number of shots) the participant used to
detect that novelty. We requested the participant to provide a
simple description of the observation to validate the results.
Each participant took approximately 40-50 minutes to com-
plete the experiment. The novelties we generated are:
• Type 1 (T1): The parameter gravity scale of pigs is de-

creased twice the original value. Pigs fall down slower due
to this novelty.

• Type 2 (T2): The parameter bounciness of wood objects
is increased by four times the original value. This makes
the wood objects bouncier.

• Type 3 (T3): The parameter life of stone objects increased
by five times. This makes stone blocks difficult to destroy.

Game Instance Selection A set of 100 game instances
was generated from the state-of-the-art (SOTA) level gen-
erator (Stephenson and Renz 2017) and the novelty game
instances were created for each novelty type. We then com-
puted difficulty using the two algorithms, PID and BID for
each instance. We combined the two values: Difficulty Value
= αPID + (1-α)BID, where α ∈ [0,1], can be adjusted
based on the importance of the two algorithms in an ex-
periment. In our experiment, we got α = 0.5 to give equal
importance. Game instances within each novelty type were
then classified into three categories: easy (e), medium (m),
hard (h). Game instances with values < the value at 33.33%
percentile, 33.33% - 66.67%, and values > 66.67% were
considered as e, m, and h instances respectively. The game

Figure 6: Experiment results from human participants. The left
figure (a) shows the percentage of novelty detection and the right
figure (b) shows the average normalized number of shots for nov-
elty detection for each difficulty level. Error bars represent the stan-
dard error. e,m,h indicate easy, medium, and hard categories.

instances used for the experiment were selected randomly
from each category. However, techniques such as harmonic
mean/clustering methods could also be utilized to categorize
based on the data available.

Results According to our difficulty measure, we expect
the percentage of novelty detection to decrease in the order
e, m, and h (Algorithm 2). Ideally, if the novelty is detected,
we expect a lower number of interactions to detect the nov-
elty in the category e and a higher number of interactions in
the category h (Algorithm 3). Figure 6a illustrates the per-
centage of human participants who correctly detected the
novelty for each novelty type in the three difficulty levels.
In line with our hypothesis, the lowest percentage of detec-
tion is recorded in the category h and the highest is recorded
in the category e. This observation is consistent for all three
experimented novelty types. For the T1 novelty type, none
of the participants were able to detect the novelty in the cat-
egory h, while all the participants detected it in category e.

Figure 6b summarizes the average normalized number of
shots needed for detection for each difficulty level for the
three novelty types. That is, for each participant, the num-
ber of shots taken for detection is normalized by the total
number of possible interactions (i.e., the number of birds in
the game instance). For novelty type T1, the category h is not
presented as none of the participants detected the T1 novelty
type. The m and e categories follow our expectation by pro-
ducing a lower value for the category e. Similarly, T2 results
are also consistent with our expectation. For T3, while the
category h gives the highest normalized interactions for de-
tection, the category m is lower than the category e. Accord-
ing to our observations, some participants used more shots
to confirm that stone-blocks have a higher health value even
though they already detected this novelty earlier and some
participants did not notice the change in stone-blocks at all.
Overall, the difficulty of novelty detection for human partic-
ipants falls in line with the calculated difficulty values.

6 Discussion and Conclusion
Detecting novelty is an important capability for an intelli-
gent system in an open-world environment. In real-world
situations, an agent needs to reason about physics in order
to detect novel objects with different physical parameters.
These novelties often vary in their difficulty of detection
and have not been studied before this paper. However, un-



derstanding this difficulty can be an important aspect of con-
ducting a robust and fair evaluation. Thus, we have proposed
a method to quantify the difficulty of novelty detection using
qualitative physics. Our method is agent-independent and
can be used to make more accurate conclusions about the
detection capabilities of different agents. This measure was
applied in the Angry Birds domain, and validated by com-
paring the results of the proposed measure with the perfor-
mance of human participants. To define the physical reason-
ing predicates, we have used quantitative thresholds based
on domain knowledge.

The different components and algorithms that were intro-
duced in this paper can also be applied to other research
problems. When formulating our novelty difficulty measure,
we proposed the algorithm approximate horizontal influence
that could also be used as a component for agents to predict
the influence of moving an object. This is an improvement
to the prior work (Zhang and Renz 2014; Walega, Zawidzki,
and Lechowski 2016) as it considers objects that are discon-
nected in the horizontal direction. Our difficulty formulation
can also be used to create novel game instances at a prede-
fined difficulty of novelty detection. It can be used as a com-
ponent in the SOTA novelty generation framework for An-
gry Birds (Gamage et al. 2021) to generate novel game in-
stances with a predefined difficulty. This facilitates research
in open-world learning agent development by creating dif-
ferent instances with different levels of difficulty.

We plan to extend our study to address limitations such as
generalizing our presented qualitative reasoning algorithms
in object movement analysis to other domains. Moreover, we
have discussed how the difficulty formulation can be applied
to PHYRE (Bakhtin et al. 2019) in the extended version
of this paper (Pinto et al. 2023) and we plan to extend the
framework to suit a wider variety of novelties and be appli-
cable to a wider range of domains. In this paper, we laid a
foundation for quantifying the difficulty of novelty detection
that aids to conduct a sound open-world evaluation.
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