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Abstract

Today, Cyber-Physical Systems (CPS) are often used in
safety-critical situations. More and more, Artificial Intelli-
gence (AI) and especially data-based methods, i.e. Machine
Learning (ML), are used to increase the adaptability of sys-
tems. This immediately leads to a security risk, since data-
based methods usually learn a black-box model (e.g. neu-
ral network or reinforcement learning). To still use these AI
methods for safety-critical systems, like anomaly detection,
optimisation or reconfiguration tasks, a supervision tool is
needed.
In order to enable safe operation of data-based ML algorithms
and to make statements about the stability of the system we
present an implementation of qualitative monitoring of the
system behaviour in the context of reconfiguration. This leads
to the next problem, as a qualitative state prediction tends to
branch infinitely for complex systems. Our approach limits
the state prediction to the states with immediate impact. To
achieve this goal and to visualise the effects for a supervi-
sion task a virtual structure similar to decision trees is imple-
mented to generate an overview of the upcoming predicted
system states. In addition, the behaviour of the system vari-
ables is extracted from the qualitative states in order to deter-
mine the risk of a predicted state.
In summary, this algorithm acts as an independent supervi-
sion agent for various AI/ML algorithms and alerts when
risks are detected during operation. We can show that dif-
ferent reconfiguration options for a CPS with abnormal be-
haviour can be successfully evaluated in order to transfer the
CPS as safely as possible to a new state.

1 Introduction
Cyber-Physical Systems (CPS) are very prevalent in our
modern times, as the integration of microcomputers and
other advanced technology offers a significant impact for
a systems computational and communicative capabilities,
see (Baheti 2011) and (Wolf 2009). To improve their per-
formance a high level of technical expertise is required,
which is often associated with high costs. Therefore, Ma-
chine Learning (ML) algorithms are often used for optimi-
sation tasks based on existing data sets. However, once AI
and data-based modelling determine the way a system oper-
ates, we lose predictability. This issue is of utmost impor-
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tance because AI solutions, particularly data-based meth-
ods like many ML algorithms, typically create black box
models based on given data (Tjoa and Guan 2021) and
(Wan et al. 2021). When a system’s behaviour is solely de-
termined by measurement data, it cannot be fully defined.
In safety-critical applications, this poses significant risks
as infallibility cannot be verified. Although some solutions
based on ML approaches, such as the Safety+AI approach
of (Gheraibia et al. 2019), have been researched, we aim to
focus on qualitative reasoning instead.

”Reasoning about, and solving problems in, the phys-
ical world is one of the most fundamental capabilities
of human intelligence and a fundamental subject for
AI.”

These words of Bredeweg (Bredeweg 2003) show very
well our motivation for our approach. Our goal is to design
a supervision agent that is able to monitor the behaviour of a
system and to estimate the consequences of AI interventions.
In theory an extensive numerical simulation would be able
to evaluate those consequences very accurate, but especially
for CPS, which combine computational science with engi-
neering disciples this is not a trivial task and such a simula-
tion is often not available. For this purpose, we investigate
the possibility of using qualitative system models, based on a
general system description, instead of complex simulations.

The benefits of such a prediction approach are examined
in the joint project (K)ISS1. The aim of the project is to mon-
itor the safety-critical life support system of the ISS module
COLUMBUS. We aim to reconfigure the system by activating
redundant components based on detected faults, ensuring ef-
fective recovery. To validate the reconfiguration process and
assess different AI decisions, we successfully implement our
approach for a supervision agent.

In section 2 we will explore general concepts related to
qualitative system representations, and then in section 3 we
will present our solution based on qualitative reasoning. The
application of this will be in section 4 using a simulated en-
vironment. Finally, we will conclude this work in section 5
and provide an outlook on future tasks and challenges.

1(K)ISS is part of dtec.bw®, see Acknowledgements for fund-
ing information
https://dtecbw.de/home/forschung/hsu/projekt-kiss



2 State of the Art
Before our solution is presented in section 3, we will first
present a general overview of current approaches and ex-
plain their shortcomings, which we encountered during our
research.

Safety Analysis of AI and the Shortcomings of
Data-Based Models
As long as system measurement data is available the be-
haviour of a CPS can be learned. A basic application is
to learn and formulate this behaviour in form of a timed
automaton. As an example for how a automaton can be
learned, we look at the algorithm of HyBUTLA, presented
by (Niggemann et al. 2021). This algorithm constructs a
timed automaton, which can be learned from system mea-
surements, to describe the behaviour of a system, see Fig-
ure 1. In general the steps to learn the behaviour of such a
system can be described with:

0: Record and synchronize the signals of the CPS.
1: Generate a list of discrete events.
2: Construct a tree based on the recorded events.
3: Simplify the tree by merging similar nodes.

The BUTLA algorithm, which depends on positive data
examples, still has shortcomings. In certain cases, anomalies
can occur that are not identified or are incorrectly identified.
This happens because the data of error cases is not available
and therefore there is a deficit of information.
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Figure 1: General concept of learning a timed automaton,
the steps refer to the HyBUTLA algorithm, see (Niggemann
et al. 2021)

Other data-based solutions, like many different ML algo-
rithms, are commonly used, but their black-box nature hin-
ders understanding and verification, especially of their inter-
nal workings - see (Tjoa and Guan 2020). The idea to trans-
late and encode the behaviour of those AI models is part
of the research of Explainable Artificial Intelligence (XAI).
But most approaches of XAI are not universally valid. In-
stead, methods like saliency maps help with specific use
cases like image recognition, but are more difficult to apply
to decision process models. They can be used, but even if a
correlation between input and output can be established, the
result is by far not sufficiently precise enough to determine

the internal decision process. Conventional algorithms such
as decision trees, which do not operate on the same basis as
AI algorithms, are much more reliable. But as shown in the
work of (Wan et al. 2020), they lack in performance. They
have shown the accuracy of decision trees in comparison to
neural networks in image detection is behind by up to 40%.

Our approach emphasises the importance of decision tree
reliability and combines it with qualitative reasoning for the
safety assessment algorithm.

Qualitative Reasoning based on QSIM
In contrast to data based models, we can describe a sys-
tem instead by its qualitative behaviour. The qualitative be-
haviour of a system is based on available system knowledge,
which also grants information about non-measurable states.
A promising concept about qualitative description of sys-
tem behaviour was presented by (Kuipers 1986) in the pa-
pers about the QSIM algorithm. The used notation has been
recognised by various scientists (Simon 1991; Say and Kuru
1996; Trave-Massuyes, Ironi, and Dague 2003), which is
why we will also use its notation in this paper to describe
a qualitative system.

The theory behind QSIM is to mimic the differential equa-
tions of classical systems with qualitative differential equa-
tions (QDE). A QDE would describe how a qualitative state
can change. For each parameter P (which is basically a sys-
tem variable) the qualitative state QS would be defined at a
qualitative point in time ti in the form of a tuple consisting
of a discrete qualitative value and the direction of change.
An example is given with:

QS(P, ti) = ⟨val, dir⟩ (1)

The discrete value val can be defined as a single point
value or as a pair of values specifying an interval in which
the current qualitative value lies. In order to capture the
change of a state, it is assigned an additional direction of
change dir, which can take one of three variants: steady, in-
creasing or decreasing. In addition, there is a discrete range
of values for each parameter called the quantity space, which
contains all known discrete values of that parameter - known
as landmark values. To include multiple qualitative states in
this kind of formulation a set F containing multiple param-
eters F = {Pi, ...} can be created. Based on this a whole
system can be defined by QS(F, ti).

To represent the QDE, which define the qualitative be-
haviour of a system, a set of constraints is needed, each lim-
iting the possible transitions of the qualitative states opf the
parameters. A comprehensive list is shown in Table 1. To
depict a more complex ordinary differential equation, the
equation can be separated in multiple elementary functions,
which can then be translated in qualitative constraints. In
some cases a constraint might change if the system reaches
or leaves a set operating point. This can be handled by defin-
ing restrictions, which define which constraints apply for a
given set point. A geometric function such as the sine can
represent its cyclic effect with restrictions and alternating
between M+ and M- constraints.



ADD(X,Y, Z) Z(t) = X(t) + Y (t)
DERIV(X,Y ) dX/dt = Y (t)
M+(X,Y ) X(t) = f(Y (t)), where f ′ > 0
M-(X,Y ) X(t) = f(Y (t)), where f ′ < 0
MINUS(X,Y ) X(t) = −Y (t)
MULT(X,Y ) Z(t) = X(t) ∗ Y (t)
CONST(X) X(t) = constant value

Table 1: List of Qualitative Constraints, complemented ver-
sion of (Say and Kuru 1996)

Qualitative reasoning, similar to QSIM, has been re-
searched and developed in the field of discrete model
diagnosis. These approaches are often specific to cer-
tain toolboxes and proprietary applications, see (Williams
et al. 2003; Struss and Price 2003). The fundamentals are
widely known and were the focus of multiple research pa-
pers (de Kleer and Brown 1984; Dvorak and Kuipers 1989;
de Kleer 1993), but since the year 2000 the application of
qualitative simulation shifted. The numerical simulations
became more reliable thanks to the increased computing
power of computers, and the qualitative analyses were used
more for the theoretical discussion of abstract systems and
interrelationships, such as the effects on the population of
species in (Salles and Bredeweg 2006).

In (Bredeweg 2003) the main issues and some open tasks
of qualitative simulation back in 2003 were highlighted, par-
ticularly the modality of qualitative systems. On the one
side this modality allows users to create diverse model li-
braries, which can be reused in different ways, but on the
other hand each qualitative analysis needs a different degree
of abstraction and detail and a uniform system did not exist
back then. This problem continued with a lack of integra-
tion in standard engineering and research tools. In (Klenk
et al. 2014) this problem got tackled by combining the us-
age of Modelica models with the ideas of qualitative reason-
ing. They achieved the goal to generate the qualitative model
mapped upon existing modelica models, which negates the
need for an additional modelling step. On the other hand we
transferred the principles of QSIM and QDEs into the mod-
ern programming language python, which is especially well
used in the machine learning community as another imple-
mentation. In this paper we will not further expand on the
topic of implementation, but instead focus on the concept
how this qualitative description can be used to evaluate the
behaviour of a system. Still we are taking a custom take on
the implementation to focus the constraints more on system
dependencies instead of ideal QDEs.

Identification of Anomalies and Faults
For the sake of completeness, the need for identification and
diagnosis of errors should be noted. One may assume that
a failure is feasible via the QDEs defined above, but their
algorithm, depending on implementation, cannot deduce the
source of a defect. Still the underlying fundamentals of ne-
glecting a specific mathematical model can be applied as
well.

The work of (de Kleer and Williams 1987) shows how

the shift of model-based diagnosis shifted from specific fault
models towards the tracking of an inconsistent behaviour as
indicator of a fault. Based on this, there are various alterna-
tive methods for detecting anomalies and faults that do not
even require a mathematical model, as CPS usually provide
a comprehensive database. These data-based algorithms can
be evaluated as multi-time variant data sets and serve as a ba-
sis to describe the system behaviour of the plants from obser-
vations. Based on this data, it is then possible to create data-
based models such as the Univariate Fully-Connected Au-
toEncoder (UAE), whose good performance was described
by Garg et al. (Garg et al. 2022). However, their limitations
were also pointed out, as these solutions are often limited
to a specific use case, for example the UAE’s performance
decreased when used for a system with multiple operating
states.

Still those algorithms perform well and there is no need
to apply an additional supervision layer on top. In the later
context, we assume that the identification of an anomaly and
the diagnosis of faulty system components is available as a
basis for the reconfiguration task.

3 Solution
In this section, we address implementing a qualitative mon-
itoring agent for a CPS. We’ll explain the generated input
during reconfiguration, the use of QSIM basics in our super-
vision agent, and risk evaluation for predicted states. This
guides the selection of a reconfiguration option with the low-
est expected risk.

Assumptions for this paper: The system is faulty, but the
cause is diagnosable and faulty components got detected.
We aim to find a reconfiguration that adjusts the system
structure to return to a safe workspace.

Reconfiguration
Generally, the goal of the supervision layer is to identify
those possible configurations of the system that yield a safe
and stable system. The actual identification of possible, valid
configurations is typically performed by a reconfiguration
program. Here, we would like to present the implemented re-
configuration algorithm AutoConf in brief, which is detailed
and applied to ECLSS by (Kelm et al. 2022).

AutoConf, a qualitative model-based reconfiguration al-
gorithm using Satisfiability Theory (SAT), was recently pre-
sented by Balzereit and Niggemann (Balzereit and Nigge-
mann 2022). It can be used for the reconfiguration of hybrid
systems and is divided into two main steps. In the first step
a logical formula which represents the reconfiguration prob-
lem is created. In the second step, this formula is solved by
a SAT solver.

The first step in creating the logical formula, known as the
qualitative system model (QSM), involves generating causal
graphs G that define the relationships between inputs and
system states, e.g. a qualitative description of system dy-
namics. The inputs, represented as binary values (e.g., valve
opened or closed), are denoted as B = bbb1, ..., bbbk. The causal
graph is divided into positive (G+ = (V,E+)) and negative
(G− = (V,E−)) subgraphs, indicating their influence on



state variables. The nodes in the graphs include states and
inputs (V = xxx1, ...,xxxn, bbb1, ..., bbbk), while the edges in the
positive graph E+ represent significant state increases when
inputs are activated. The negative graph E− represents sig-
nificant state decreases.

Next, the algorithm encodes the causality into proposi-
tional logic by using symbols (lowxi

and highxi
) to repre-

sent state limits. These symbols indicate whether a state is
below the lower limit or above the upper limit and, conse-
quently, imply the activation or deactivation of certain in-
puts. Binary logical connectives (implication [⇒], negation
[¬], conjunction [∧], and disjunction [∨]) are used to formu-
late constraints. For instance, if a reservoir exceeds its limit,
the formula implies either opening an outflow or closing an
inflow.

In the second step, a logical SAT solver is employed to
solve the logical formula, utilising logical reasoning. If the
formula is satisfiable, it means there exists an assignment
of input variables that satisfies the formula. This assignment
corresponds to the new configuration required to achieve a
valid system state within a specified reconfiguration time
∆trcfg. If the formula is not satisfiable, a reconfiguration
is not possible, and the system may need to be shut down.

Generally there are multiple valid configurations that are
solutions of the reconfiguration problem, which can be it-
erative listed by negating the previously found solution and
searching for another solution. To identify the best solution,
e.g. the solution with the lowest risk of instability, a super-
vision layer is required.

Qualitative Supervision
To assure a safe operation of safety-critical systems during
after a detected fault, the reconfiguration needs to be eval-
uated to prevent malfunctions. Therefore we want to de-
sign an supervision agent, to monitor the qualitative conse-
quences of such actions.

Previously we presented the QSIM algorithm by (Kuipers
1986) and described how it can be used to abstract the be-
haviour of a system. In contrast to QSIM we added the F+
and F- functions. These function behave similarly to the M+
and M- functions in the original, but additionally investigate
the dependencies of 0-values. The added F+ and F- func-
tions are not monotonously increasing or decreasing func-
tions, but allow a saddle point behaviour at a discrete value
of ⟨0⟩. This is due to the fact that the dependencies on the
input configuration represent a dependency on binary val-
ues, which can be implemented more efficiently by allow-
ing a steady 0-value. In the case a system component is not
needed and therefore shutoff, the function can be deactivated
and then take on the classical M+ or M- behaviour once the
component is reactivated.

The qualitative variables are initialised at t0 in the form
of:

QS(Pi, t0) = ⟨val, dir⟩
val ∈ [0, too low, low, norm, high, too high,+∞]

dir ∈ [dec, std, inc]
(2)

The qualitative values val of those variables are discretised
measured values, which are categorised as low, norm or
high depending on the known limits of their working range
or too high and too low if the boundaries are exceeded. Ad-
ditionally, their current change of direction is depicted with
dir - increasing, steady or decreasing.

Combining qualitative findings with reliable system rep-
resentation allows us to use a decision tree structure to un-
derstand system behaviour. We introduce the Qualitative
Analysis Tree (QuAT) for this purpose. A simplified exam-
ple is illustrated in Figure 2. Starting from an initial quali-
tative state 0, we assess its constraints to find possible tran-
sitions (e.g., a and b). As transitions occur, new qualitative
states emerge, and their constraints are evaluated for prede-
cessor states. If a transition leads to a steady state or de-
tects a risk (e.g., transition b), further evaluations cease. The
topic of risk assignment will be covered in the upcoming
subsection. Nonetheless, to predict the comprehensive sys-
tem state, we also consider subsequent states of successors,
as they might appear deceptively safe, as seen in Figure 2
(0 ⇒ a ⇒ 1 ⇒ d ⇒ Risk).

If each successor state is evaluated we would obtain a
qualitative description of the entire system like the original
QSIM application. However, this approach becomes incred-
ibly complex due to its combinatorial nature. To address this
challenge, we reduce the number of iterations for our qual-
itative evaluation. Predicting the behaviour over a short ab-
stract time horizon can still be highly effective, as each dis-
crete qualitative time-step represents a specific event or a
significant change of parameter values. Long-term analysis
often isn’t necessary as short-term defects have more seri-
ous consequences that require immediate prevention. Any
negative long-term effects can be corrected with ongoing re-
configuration inputs.

The supervision agent’s goal isn’t finding optimal transi-
tions but spotting safety-critical states after transitions. At a
minimum, the next states, including all possible transitions,
are analysed.

Validation of Analyzed States
Once the system’s behaviour can be qualitatively analysed,
it allows for evaluating its behaviour as a predictive model
for future steps. By performing the qualitative algorithm for
each discrete event, the upcoming behaviour can be anal-
ysed. As mentioned before we can create a QuAT whose
tree structure consisting of successor states allows us to de-
termine the qualitative system behaviour in the next discrete
time points. Valid transitions can be assigned a positive score
based on the operating range of each parameter, indicating
that those states are considered acceptable.

But how is this score defined? The operating range for
each variable is known and therefore we can estimate if a
qualitative value becomes too high or too low. If these pa-
rameters exceed predefined safety limits, they are identified
as risky states. Predicted states, which direction of change
is not steady pose a minor risk as they, potentially lead to
limit violations later on. By combining the evaluation of the
qualitative values and their direction of change, a risk score
can be estimated and assigned to each state.



Figure 2: Exemplary QuAT for the representation of how
supervision of system states is carried out. Each positional-
state is represented with a box and roman numerals, while
the possible transitional-states are marked with circles and
small letters. States which oppose a risk are shown in orange.

If further insights into the system are available and the
risks associated with the interaction of specific parameters
are known, these effects can be easily detected based on
the qualitative state descriptions. Interdisciplinary effects
should be considered when creating the qualitative state con-
straints. Similar to backpropagation in a neural network, risk
estimations can be applied to predecessor states, enabling
the assignment of a validity score to the entire QuAT, as
during the creation of a QuAT the intermediate states can’t
be fully evaluated without knowledge about how their child
states behaviour.

Algorithm 1 demonstrates an implementation example.
Predefined qualitative system descriptions and system mea-
surements are essential to define the initial qualitative state
(Line 1-2). This includes the assignment of measurements to
known qualitative discrete quantities, but also the represen-
tation of the system intervention that is to be studied. The
current state undergoes qualitative simulation (Line 3-8) un-
til the prediction horizon is reached or a steady state is at-
tained. Analysed states are then organised into a tree struc-
ture, illustrating the system behaviour (Line 9). The risk as-
signment (Line 10-16) follows two main steps: Firstly, the
tree is evaluated in a bottom-up manner, starting with the
risk estimation of the leaf nodes. Afterwards their predeces-
sors are updated primarily by their successors’ risk. Once
evaluation of all qualitative states is completed, the output
contains the risk analysis of the current state’s transition
(Line 17).

The output of the safety assessment can depend on the
use-case. One option would be to return the estimated risk
for the current possible transitions, to validate if a specific
transition should be avoided. Alternatively, the whole tree
with the updated risk scores can be returned to present the
system engineers a current overview of the system and its

Algorithm 1 Safety assessment based on qualitative risk as-
signment
Input: Current data of the system
Model: Qualitative system description, based on set F
Output: Risk-analysis of transitions

1: Discretize input data.
2: Initial qualitative state QS(F, t0) is set as QS(active).
3: while qualitative prediction do
4: Analyze successor states of QS(active).
5: Add all valid states to ActiveList.
6: remove QS(active) from ActiveList
7: set next state from ActiveList to QS(active)
8: end while
9: ⇒ create Tree, with nodes of all qualitative states

10: for each state in Tree in bottom-up order do
11: if state is leaf node then
12: Assign estimated risk
13: else
14: Update risk, based on successor nodes
15: end if
16: end for
17: return risk and qualitative behaviour

upcoming behaviour. The latter case is particularly impor-
tant in situations where multiple safety-critical states are
identified, requiring operators to navigate the system during
challenging operations.

4 Application in Safety Assessment and
Supervision of AI Solutions

This section covers the application of the monitoring agent
for a CPS, here the COLUMBUS module of the ISS. The
knowledge about upcoming system states, especially in
terms of the assessed risk, is essential for a safe and secure
operation.

CPS System Description - ISS Columbus ECLSS
The COLUMBUS module is the biggest contribution of the
European Space Agency (ESA) to the International Space
Station. Its purpose is to serve as a unique platform for dif-
ferent fields of research: Human physiology, biology, funda-
mental physics, material sciences and fluid physics. Further-
more, external experiment facilities allow the long-term and
non-perturbed observation of the Earth and the universe. The
European laboratory is operated by the COLUMBUS Control
Center at the German Space Operations Center nearby Mu-
nich (Doyé 2012).

The most critical and vital system of the COLUMBUS
module is the Environmental Control and Life Support Sys-
tem (ECLSS), whose topology is shown the process flow
diagram in figure 3. It consists of a supply (ISFA) and return
(IRFA) fan assembly, a redundant pair of cabin fan assem-
blies (CFA 1/2), a temperature control valve (TCV), which
distributes the airflow into two redundant cooling and con-
densation cores (Core 1 and 2) within the condensate heat
exchanger (CHX) to cool and dehumidify the air.



Figure 3: Cabin Loop of ISS ECLS-System by (Doyé 2012)

The airflow is then channelled into the cabin, where it
mixes with the cabin air. To refresh the air and ensure smoke
detection, a minimum volumetric flow rate has to be passed
by the smoke detectors (SD 1/2) and is returned by the ISFA
and recycled in part through the CFAs. The thermal control
system (TCS) is composed of the Cores, the coolant and ex-
ternal heat exchangers and is controlled by the redundant
cabin temperature control units (CTCU 1/2).

Additionally, there are multiple sensors, measuring the
volumetric airflow (AFS), pressure differentials across fans
and filter (∆P or DPS), partial pressure of O2 and of CO2

gas (PPOS/PPCS), cabin temperature (CTS 1-6), humidity
(HS 1/2) and the total pressure (TPS 1-4).

Reconfiguration of a Fault Case
Consider the following hypothetical failure case for illustra-
tion purposes: An accident occurs in the COLUMBUS mod-
ule during an experiment, resulting in the failure of Cool-
ing Core 1. The cabin’s pressure has increased beyond the
threshold due to gas leakage, and the hatch has been closed
after the accident. The initial system state before reconfigu-
ration is represented by

xxx0 = [Tc, ϕc, V̇AFS , pc]
T

= [303K, 0.50, 500m3/h, 103.5× 103 Pa]T

and the input configuration by

bbb0 = [bISFA, bIRFA, bCFA1
, bCFA2

, ...

bTCV1
, bTCV2

, bC1
, bC2

]T

= [1, 0, 0, 1, 1, 0, 1, 0]T .

(3)

We thus have only ISFA, CFA2 and one cooling branch
(TCV1, C1) activated, which corresponds to the default con-
figuration, where the used air is returned over the hatch
opening.

We also find, by an underlying fault diagnosis algorithm,
that two actuators have failed. The health state is given by

hhh0 = [1, 1, 1, 0, 1, 1, 0, 1]T . (4)
Using the causal graph, the reconfiguration algorithm

classifies the inputs into inflows and outflows. These are

then transformed into a logical set of formulas using Auto-
Conf ext. The formulas aim to answer the question:

Which inputs do I need to open or close to bring the
corresponding state within acceptable bounds?

An excerpt of the logical formula demonstrates the implica-
tions of a high temperature, where either one of the cooling
cores (b7 or b8) or the ISFA fan (b1) need to be activated:

It shows the implications of a high temperature, which are
to switch on either one of the cooling cores (b7 or b8) or to
switch on the ISFA fan. The negation of the pre-reconfigured
inputs (b0) excludes inputs that are already reconfigured. Ac-
tuator dependencies and internal flow structures are also in-
cluded in the logical formula.

The logical formula is then checked for satisfiability us-
ing Z3. If it is satisfiable, a model (input assignment) that
satisfies the formula can be obtained. In this fault case, the
formula is satisfiable, and the algorithm proposes a new in-
put configuration to recover the system:

bbb = [1, 1, 0, 0, 0, 1, 0, 1]T . (5)
By activating the ISFA and the second cooling branch

(TCV2 and C2), the pressure can be reduced, and the tem-
perature can be lowered. Note that there exist multiple valid
configurations (e.g. CFA1 could also be switched on). If the
logical formula is not satisfiable, the system is shut down.
Alternatively, constraints can be relaxed to lower the system
requirements and prioritize certain state variables. The out-
put is then presented as a list of possible configurations that
solve the logical formula, the supervision agent will then se-
lect the safest system intervention.

Supervision of the Reconfiguration
The reconfiguration evaluates the current system state and
determines a possible system configuration on the basis of
the system’s stability status, which is intended to bring the
system to a stable state in the event of an anomaly. This pro-
cedure was described before using the system pressure and
the cabin temperature as examples. As long as the logical
formula can be solved with the AutoConf ext algorithm, sev-
eral alternative configurations in the form of equation 6 can
usually be determined. All of them can remedy the anomaly
that has occurred as they solve the logical formula presented
in the reconfiguration approach.

bbb0 = [10001000]T

bbb1 = [11001000]T

bbb2 = [01101000]T

bbb3 = [00100100]T

bbb4 = [01100101]T

(6)

The next step is to select the most suitable system config-
uration. For this purpose, we use the qualitative evaluation
procedure to determine the risk of the possible consequen-
tial states and to select the safest variant. In our application
case we concentrate on the creation of the model on the ba-
sis of simplified system dependencies, because these can be



derived from the system representation, see figure 3. This
approach of using the knowledge of the system structure as
a basis is always possible independent of the data basis and
the existence of any simulation. With this knowledge we can
formulate simplified qualitative equations for each state of
equation 3 in the form of:

Tc = +TAct − TISFA − TC1||C2

ϕc = +ϕAct − ϕISFA − ϕC1|C2

V̇AFS = +V̇ISFA − V̇IRFA

pc = +pISFA − pIRFA

(7)

The equations 7 still need to be converted to the QSIM
notation to be used for qualitative evaluation. Therefore we
define the qualitative behaviour of the system based on its
constraints and introduce auxiliary variables. the qualitative
constraints are then shown using the example of the cabin
temperature Tc in equation 8:

F−(TISFA, bISFA),

F−(TCHX , bC1||C2),

F+(TAct, Activity),

ADD(TISFA, TCHX , TnSum),

ADD(TAct, TnSum, Tc)

(8)

In this case, the temperature Tc can be understood as the
sum of the negative and positive effective parameters. On
the one hand, the astronauts’ activity lead to an increase in
temperature, and on the other hand, the colder supply air
through the ISFA and the cooling core work against it.

Finally if all qualitative system equations are defined, the
list of reconfiguration options can be tested and validated.
Based on current system data the qualitative variables can be
initialised and the algorithm 1 can be executed. The QuAT
which was introduced before can’t be utilised for the vi-
sualisation of the system, because it is far too complex to
present the results here in this place as it contains thousands
of states. Instead the Table 2 shows a validation of the differ-
ent reconfiguration options. For each of the state variables,
which were defined in equation 3, we can create their own
QuAT and analyse the predicted risk for each reconfigura-
tion option. Overall this allows an estimation of how a spe-
cific configuration affects the different state variables and
therefore an initial guess on which reconfiguration to apply.
The total risk assumptions can be compared to suggest the
option with the least transitions into risky operations.

An experienced operator might favour a configuration
with a better performance for one specific state, based on the
current fault diagnosis, but we select the option with mini-
mal expected overall risk. In this case reconfiguration op-
tion bbb3 is considered optimal with the least totaled calculated
risk. It performs well because the states V̇AFS and pc are not
directly affected by the configuration changes and therefore
exist in a steady state without further disturbance, and there-
fore without any expected risk. It is arguable whether the
qualitative equation of V̇AFS defined in equation 7 should be

Tc ϕc V̇AFS pc
bbb0 42 42 33 38
bbb1 42 42 44 44
bbb2 34 34 38 33
bbb3 34 34 5 5
bbb4 42 42 38 33

Table 2: Risk score calculation for each reconfiguration op-
tion bbbi based on the QuAT.

affected by the fanspeed of the CFA1 or CFA2, but as long
as the cabin door is shut, the circulating air is only defined
by the supply (ISFA) and return (IRFA) fan assemblies.

Measuring the effectiveness of qualitative state predic-
tions is still an ongoing task in the project, but in its cur-
rent form the supervision tool grants important insights by
ranking the available reconfiguration options. For a given
accident or failure multiple reconfiguration options can be
identified, but in order to explicitly propose a solution and
pave the way for autonomous deployment, a decision pro-
cess must be integrated. By assessing the risk of upcoming
qualitative states the decision can be forced to priories the
well-being of the astronauts and a secure operation of the
life support system.

5 Conclusion and future work
We present a novel approach that combines the fundamen-
tals of qualitative system description with applications in ar-
tificial intelligence and system control theory. Our concept
of qualitative prediction allows for the construction of an ab-
stracted model based on fundamental knowledge of cause-
effect relationships, enabling the prediction of complex sys-
tem behaviour. Risk estimation plays a crucial role in se-
lecting the appropriate configuration to recover from unin-
tended system behaviour. However, the algorithm’s perfor-
mance currently hinders its application to systems with low
response time. The combinatorial explosion of possible suc-
cessor states is a computationally intensive task even with
the proposed depth limitations. The operation time depends
on factors such as the number of evaluated configurations,
required depth, and the level of model detail. In our case the
simplified qualitative equations in 7 analysed 2066 states in
less than 30s, increasing the amount of reconfiguration op-
tions to 10 increased the evaluation time to about 100s for
roughly 7700 states and adding an additional state variables
like the pressure at the first intersection increased the evalu-
ation time to about 240s. Of course the evaluation time de-
pends on the used hardware, but the tendency is clear: Opti-
misation is necessary to improve the algorithm’s efficiency.

The generation and definition of qualitative equations
still requires expertise, and a poorly constructed model can
limit overall functionality. Additionally, the abstract nature
of qualitative solutions can pose challenges when convert-
ing them back into numerical contexts. To address these
issues, the work of Say (Say and Kuru 1996) and Nigge-
mann (Niggemann et al. 2021) shows promise in includ-
ing system identification and merging of learned system
behaviours, respectively. Incorporating these advancements



into our approach of constructing the qualitative analysis
tool (QuAT) can enhance its capabilities. To build upon these
ideas it might be worthwhile to include data based concepts
to set probabilities for the state transitions to account for
normal behaviour and the most probable transitions. This
could help to predict the risk of an action more accurate,
or rather to help to identify planned and safe transitions.
On the other hand the probability for failures and anoma-
lies can’t be based on data-sets, if those issues only occur in
rare instances especially if the supervision tool is meant to
supervised data based methods.

Furthermore, the presented qualitative evaluation can be
used in other tasks. The evaluation of predicted system states
is of particular interest in the task domain of approaches
based on neural networks. In this context, we want to re-
search the possibility to apply the qualitative reasoning to
reinforcement learning by integrating the prediction of ex-
pected system states as action masking in internal reward
policies. With this approach risky actions will be avoided
during training. By doing so, we hope to optimise the learn-
ing behaviour and drastically reduce learning effort.
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