Preliminary Experiments using LLMs for Design

John T Maxwell III, Johan de Kleer, Ion Matei, Maksym Zhenirovsky

Palo Alto Research Center
SRI International
{maxwell, dekleer, matei, mazhenir} @parc.com

Abstract

In analogy to using an LLM to generate a story
on some topic, or Dall-E to generate an image,
we can use LLMs to design a physical system to
achieve a function. A system such as ChatGPT
isn’t a great designer, but it has two significant ad-
vantages. First, the designs it produces are approx-
imately correct and thus we can use it as a start-
ing point for developing a practical design. Sec-
ond, it has a vast amount of knowledge about phys-
ical domains and is not limited to one domain. All
other design tools have severe domain limitations.
In short, it is an extremely general but sloppy de-
signer. In this paper we show how the sloppy de-
signs produced by ChatGPT can refined to produce
practical designs.

1 Design experiment methodology

For all our design experiments we start with a known design
(e.g., low-pass filter, power-train, op-amp) and construct a
data set by simulating its behaviors over time that character-
ize its function. For example, for a low-pass filter we simu-
late its behavior at a frequency within its pass-band, and out-
side of it. We provide those input/output sequences to our
automated designer to construct a system which produces the
same input/output sequences. There are often multiple ways
of achieving the same input-output behavior, so the designed
system may not have the same topology or parameters as our
original system. We are not trying to recreate the original de-
sign, but rather to automatically construct a design which be-
haves in the same way. There are usually an infinite number
of ways a desired function can be achieved. Our approach
finds a simpler one simply because the LLM [Devlin er al.,
2019] will typically find simpler ones.

An immediate challenge to using ChatGPT [Roumeliotis
and Tselikas, 2023] is that it has a poor grasp of mathematics.
Hence, we use ChatGPT only to generate a topology of com-
ponents. ChatGPT cannot assign parameter values to compo-
nents. That task is left to an optimizer which picks values for
component parameters such that the function of the system is
achieved.

2 Low-pass filter

Consider designing a low pass filter. A low pass filter is a
circuit which reduces the high frequencies in the input sig-
nal and passes through unaltered low frequencies (hence the
name). Figure 1 is a simple example of a low-pass filter.
To construct the input-output data set let R = 1K) and

o—/WA t O

Vin O Vout

Figure 1: Low pass filter

C = 0.1pF. With those values the circuit has a cutoff fre-
quency of approximately 1.6/ Hz (the frequency at which
there is 3db loss in amplitude. To frame our experiment we
simulate our circuit at f = 1K Hz and f = 2K Hz. Assume
the load impedance is 10K€2. We then simulate the low-pass
filter to construct two sequences of input/outputs. The out-
put voltage time series corresponding to a sinusoidal input at
1K Hz and 2K H z frequencies are shown in Figure 2. These
time series will serve as ground truth for the design challenge.

3 Modelica and ChatGPT

We use Modelica [Fritzson, 2004] as our primary modelling
tool. Modelica consists of a modeling language and a simu-
lator so that we can test any designs that are discovered. The
ChatGPT training set includes enough Modelica models that
we can use ChatGPT 4.0 directly. We first construct a prompt
which includes the library of Modelica components to choose
among, the interface of the desired system, and the natural
language description of the desired function. In order to de-
sign the low-pass filter we provide ChatGPT 4.0 the following
prompt:

Here is a library of Modelica components:

—— Vout(f=1KHz)

Vout(f=2KHz)
10

0.8+

0.5

0.4+

054

054

1.0 T T T
0.000 0.002 0.004

T T
0.006 0.008 0.010

Figure 2: Output voltage for a sinusoidal input voltage 1K Hz and
2K H z frequencies.

model Modelica. Electrical . Analog. Basic. Capacitor
Modelica. Electrical . Analog. Interfaces . PositivePin p;
Modelica. Electrical . Analog. Interfaces . NegativePin n;
end Modelica. Electrical . Analog. Basic. Capacitor;

model Modelica. Electrical . Analog. Basic.Ground
Modelica. Electrical . Analog. Interfaces .Pin p;
end Modelica. Electrical . Analog.Basic.Ground;

model Modelica. Electrical . Analog.Basic.Inductor
Modelica. Electrical . Analog. Interfaces.PositivePin p;
Modelica. Electrical . Analog. Interfaces . NegativePin n;
end Modelica. Electrical . Analog.Basic.Inductor;

model Modelica. Electrical . Analog.Basic.Resistor
Modelica. Electrical . Analog. Interfaces . PositivePin p;
Modelica. Electrical . Analog. Interfaces . NegativePin n;
Modelica.Thermal . HeatTransfer. Interfaces . HeatPort.a heatPort;
end Modelica. Electrical . Analog. Basic. Resistor;

model Modelica. Electrical . Analog.Ideal .IdealOpAmp3Pin
Modelica. Electrical . Analog. Interfaces . PositivePin in_p;
Modelica. Electrical . Analog. Interfaces . NegativePin in_n;
Modelica. Electrical . Analog. Interfaces . PositivePin out;
end Modelica. Electrical . Analog.Ideal.IdealOpAmp3Pin;

Here is the interface for a low pass filter:

model two_port_interface

Modelica. Electrical . Analog. Interfaces . PositivePin p.in;
Modelica. Electrical . Analog. Interfaces . NegativePin n_in;
Modelica. Electrical . Analog. Interfaces . PositivePin p_out;
Modelica. Electrical . Analog. Interfaces.NegativePin n_out;
end two_port_interface;

Connect components from the library into a well—formed
Modelica model to create a low pass filter that extends
two_port_interface. Name the Modelica model ‘‘low_pass_filter

ChatGPT outputs the following Modelica code:

model low_pass_filter "Low Pass Filter”
extends step-function_test;

Modelica. Electrical . Analog. Basic.Resistor
R1(R=1000);

Modelica. Electrical . Analog. Basic. Capacitor
Cl(C=le —6);

equation
connect(p_in, Rl.p);
connect(Rl.n, Cl.p);
connect(Rl.n, p_out);
connect(Cl.n, n_out);
end low_pass_filter;

We will address the fact that the indicated parameters are
incorrect for the task. ChatGPT cannot find correct parame-
ters even if they exist because it understands so little about

equations. We have built a simple automatic renderer for
Modelica models, Figure 3 is drawn by our renderer, not
ChatGPT. Hence, the drawings appear awkward.

5o

+ T R1 w £

3 © £
(D S5 = |8
78 R=1000 Ohm & ald™
o o [

ground

Figure 3: Low pass filter

4 Generate and Test

Figure 4 illustrates our approach to using ChatGPT in design.
Once we have a Modelica model topology, we use the Sizer to

Prompt: Verified
Library Working
Requirements _‘ Madel

Fail

Figure 4: Ideal Framework: ChatGPT constructs a Modelica topol-
ogy from the requirements and and optimization is used to determine
the exact parameters needed. If no parameters can be found for that
topology that achieve the desired function, the generate and test loop
continues.

determine the values of the parameters so that the input/out-
put sequences match as closely as possible (through optimiza-
tion).

We use Dymola to convert the Modelica model into an
FMU. We then use a gradient-free descent method (Powell) to
determine the best values for the parameters. We optimize the
parameters against the desired input-output function data set.
Thus we use ChatGPT to determine a topological model from
specifications written in English, and continuous optimiza-
tion to determine the parameters of the topology that match
the requirements. In the case of the RC circuit, only the prod-
uct RC is relevant, thus the optimizer can find various val-
ues for R and C, depending on the initial conditions of the
algorithm. For example for one run with random initial con-
ditions in [0,1] and 1K H z input frequency, the Sizer finds
R = 0.0096912, C' = 0.01041F. Their product is roughly
104, which is exactly the product of the R, C' parameters
for the ground truth case.

Note however that ChatGPT will not always generate
topologies for which the Sizer can find any appropriate val-
ues for the system parameters. For example, in the case of

a purely resistive circuit, the Sizer will never find correct pa-
rameters that can match the ground truth. Worse, the models
ChatGPT constructs can be syntactically incorrect. These er-
rors occur because LLMs are not general Als and make many
mistakes. The surprise is more than ChatGPT can often find
almost correct designs.

Since ChatGPT is stochastic, every invocation of ChatGPT
often yields a new topology. Therefore, one could just keep
on calling ChatGPT over and over again until, hopefully, it
comes up with a valid topology. This obviously yields very
poor performance. Figures 5 and 6 show two faulty topolo-
gies ChatGPT generates.

1 Ohm
load

C=param_C_C.
ct
L]
R=

R1

R=param_R_R...
L]

Beyunders

O

@
S
E\H-—
a

Figure 5: Bad low pass filter. This has a disconnected input and its
output is always 0. It attenuates all frequences.

inductor

—=—

R_resi..
capacitor

L]
1 Ohm

resistor
load

L=param_L_indu...

sbeyonders
]
R

C=param_C_cap...

R=param

ground

Figure 6: Another bad low pass filter. This one is syntactically cor-
rect, but output is always 0. It attenuates all frequences.

S Generate and Repair

Instead of taking a pure “generate and test” approach, we
could try to repair the designs that are syntactically invalid
or that do not have the proper behavior.

One way to try to repair the designs would be to ask Chat-
GPT to redesign a faulty design given some information of
what was wrong with it. We did some experiments to try this
out. Since ChatGPT is stochastic, it was hard to tell whether
the new information made a difference. So we tried each re-
pair ten times both with and without the new information. For
a few repairs it was more likely to produce a good design with

the new information, but for most repairs there was no differ-
ence. In this case, using ChatGPT for repair was effectively a
“generate and test” approach.

To perform our experiments we introduce a 3rd module
to our framework. The repair module detects whether there
is some simple syntactic reason the Modelica topology pro-
duced by ChatGPT cannot function. (It also checks for dupli-
cate topologies.) It then attempts to repair the topology with
a a simple local transformation. This is much less expensive
than starting the Modelica optimizer. Figure 7 is the frame-
work we use in our experiments.

Prompt: Veriied

i izer
Requiements 7| ChatGPT —| Repair — (Mg:‘]eelica) > VWorking

Fail

Figure 7: More efficient framework which repairs syntactically in-
correct Modelica topologies.

Although we could have the repair module generate a se-
quence of designs to test, we instead have the repair module
generate a model that represents a space of designs where the
different design choices are represented by switches. Cur-
rently, we generate a sequence of designs to test from the
space of designs, but in the future we hope to use ATMS[de
Kleer, 1986] reasoning to search the space more efficiently
than by using exhaustive enumeration.

The first thing that the repair module does is repair syn-
tactically invalid models. For instance, ChatGPT sometimes
leaves out the ‘equation’ keyword from the model. The re-
pair module detects this and inserts an ‘equation’ keyword
between the components and the connections.

The next thing the repair module does is to look for pos-
sible topological errors such as disconnected ports (Figure 5)
and positive ports connected to ground (Figure 6). For each
possible error, it generates a range of alternatives. For in-
stance, it converts Figure 5 into Figure 8, and Figure 6 into
Figure 9.

Once we have a repair space, we can generate candidate
designs by enumerating switch values that are consistent with
the ‘oneof’ constraints and passing the resulting design to the
Sizer to determine optimal parameter values. Figures 8 and 9
contain valid low-pass filter designs, so this process produces
a successful design in these cases.

6 Design of a Power Train

The Modelica Standard Library (MSL) contains an extensive
collection of power train components. Figure 10 illustrates a
simple vehicle power train. This model has a simple model
of the road and driver.

The input-output function we desire is produced by a sim-
ulated driver (Figure 11).

The following ChatGPT prompt generates powertrain
topologies.
Here is a library of Modelica components:

model Modelica.Mechanics. Rotational.Components. Brake
Modelica.Mechanics. Rotational . Interfaces . Flange_a flange_.a;

M M
switcht R1 switch2
o

—=

1 0hm

param_C.
11
a—
c1
u
R:
load

VA
=+
aBenipdors

=

\ A v
switch3 switchd
—o—] —o—{
L]
v
switchs
avul|

oneof (switchl, switch2,switch3)
oneof (switch4,switchl)
oneof (switch5,switch2)

Figure 8: Repair space for Figure 5.

., M v
;;\ g resistor switcht inductor capacitor swilchd £
3 I —f—o .
Vg Reparam R, L=param_L. C=param_C. a
v v
swich? switchs
. .

J
A

X

ground

oneof (switchl, switch2)oneof (switchl, switch3)
oneof (switch4,switch5)oneof (switch4, switch6)

Figure 9: Repair space for Figure 6.

Modelica.Mechanics. Rotational . Interfaces .Flange_b flange_b;
Modelica.Blocks. Interfaces.Reallnput f_normalized
end Modelica.Mechanics. Rotational.Components. Brake;

model Powertrain.Components. Chassis
Modelica.Blocks. Interfaces.RealOutput speed;
Modelica.Mechanics. Translational . Interfaces .Flange_a flange_a;
Modelica.Mechanics. Translational . Interfaces .Flange_a flange_b;
Modelica.Blocks. Interfaces.Reallnput grade;

end Powertrain.Components. Chassis;

model Modelica.Mechanics. Rotational .Components. Clutch
Modelica.Mechanics. Rotational . Interfaces . Flange_a flange_.a;
Modelica.Mechanics. Rotational . Interfaces . Flange.b flange_b;
Modelica.Blocks. Interfaces.Reallnput f_normalized;

end Modelica.Mechanics.Rotational . Components. Clutch;

model Powertrain.Driver.Driver
Modelica.Blocks. Interfaces.Reallnput actualSpeed;
Modelica.Blocks. Interfaces.RealOutput gear;
Modelica.Blocks. Interfaces.RealOutput clutch;
Modelica.Blocks. Interfaces.RealOutput gasPedal;
Modelica.Blocks. Interfaces.RealOutput brakePedal;
end Powertrain. Driver. Driver;

Tonr

s
drivers—]
=
5
o ¢
g
.s
33
£5
SE
: z
B
y L .
. hassis|
i @
m clutch
12
£s
zZE
¥2
=y
5
5
o ;‘
2
g
w5
Figure 10: A working powertrain
driver.actualSpeed —— driver.brakePedal driver.clutch driver.gasPedal —— driver.gear
20
A
I
-] f e
i /
I\ /
[\
A /
0] AN /
A J
ﬂ |
T R J
| o
| ;
]I n T 0 B R u
ST T T T T T T T 1
o » ® © ® w » w

Figure 11: Desired power train behavior

model Powertrain.Components. Engine
Modelica.Blocks. Interfaces.Reallnput pedal;
Modelica.Mechanics. Rotational . Interfaces.Flange_b flange_a;
end Powertrain.Components.Engine;

model Powertrain.Components.GearBox
Modelica.Mechanics. Rotational . Interfaces.Flange_.a flange.a;
Modelica.Mechanics. Rotational . Interfaces.Flange_b flange.b;
Modelica.Blocks. Interfaces.Reallnput gear;

end Powertrain.Components.GearBox

model Powertrain.Driver.RoadGrade
Modelica.Blocks. Interfaces .RealOutput grade;
end Powertrain. Driver.RoadGrade;

model Powertrain.Components. SimplifiedwheelRoad
Modelica.Mechanics. Rotational . Interfaces.Flange_a flange_.a;
Modelica.Mechanics. Translational . Interfaces . Flange_b flange_al;
end Powertrain.Components. SimplifiedwheelRoad ;

Connect components from this library in a well—formed Modelica model

to create a drive train.

7 Generate and Behavioral Repair

ChatGPT 4.0 mostly generates bad topologies which are not
repairable with the syntactic techniques just outlined. The
Sizer does not find parameters which yield a correct function
for any of the repairs. Three such bad designs are: Figures

12, 13, and 14.

- B>
. hassis| driverg '
B

Figure 12: Problems: Brake output should be connected to
wheelRoad, not chassis. Rotational flanges should not be con-
nected to translational flanges. Missing a connection between
driver.brakePedal and brake input.

Figure 13: Problems: Brake input is connected to wheelRoad instead
of output. Clutch is connected to wheelRoad instead of brake input.
roadGrade is connected to chassis.flange_b (wrong type)

Figure 14: Problem: Missing brake

Consider the design in Figure 14. There is nothing in the
design structure to indicate that the brake is missing. The
problem only shows up in the behavior. In the ideal behav-
ior, we see that when the brake pedal is pressed, the vehicle
sharply decelerates (see Figure 11). This can be seen more
clearly in Figure 15, where the extraneous variables have been
removed.

Figure 14 doesn’t use the brake pedal, so that is a clue. But
what should the brake pedal be connected to? How do we
know to add a brake?

——— driver.brakePedal —— driver.actualSpeed

5 T T T T T T T 1

40
time (s)

Figure 15: Behavior of brake pedal in power train

One way to determine that we are missing a brake is to
look at the qualitative behavior of the brake pedal versus the
speed in Figure 15. When the brake pedal is zero, then the
speed can be positive or zero, and the first derivative can be
positive, negative, or zero. However, when the brake pedal
is positive, then the speed is always decelerating. So we can
look for a component in our library that has that behavior.

Each component in the library has a unit test that exhibits
the behavior of that component. The unit test for the brake is
shown in Figure 16 and its behavior is shown in Figure 17.

ramp

S

duration=3 s
ramp1

e

duration=0.1's

torqueStep

inertia1 inertia2

m Clutch

Tt
ra J=0.1 kg.m2 J=0.1 kg.m2 n e

Figure 16: Unit test model for brake

Although it is not easy to see in Figure 17, the output
variable starts decelerating when the input variable is (very
slightly) positive. So this suggests that adding a brake might
repair Figure 14. The first step to adding Figure 16 to Figure
14 is to convert the design by replacing the unit test scaffold-
ing with the power train scaffolding. This produces Figure
18.

The next step is to merge Figure 18 and Figure 14. There
are many ways to merge these two designs. If we assume
that linear designs tend to remain linear, and that duplicate
components are shared, then we can use code to zipper the

—— inertia2 w (rad/s) —— brake.{_normalized

Powertrain . Driver.RoadGrade roadGrade;
7 Powertrain.Driver.Driver driver;
Powertrain.Components. Engine engine;
Modelica.Mechanics. Rotational . Components. Clutch
clutch (mue_pos=[0, 0.3], peak=1.1, cgeo=0.176, fn.max=6973);
R AN Powertrain.Components. GearBox gearBox;
a \ Powertrain.Components. SimplifiedwheelRoad
b4 simplifiedwheel_road (vehicle_mass=1520, radius=0.3);
\ Powertrain . Components. Chassis chassis(vehicleMass=1520);

S \ equation
. connect(engine. flange_a, clutch.flange.a);
7 \ connect(clutch.flange_b, gearBox.flange.a);

S \ connect(driver.gear, gearBox.gear);

S connect(driver.clutch, clutch.f_normalized);
\ connect(driver.gasPedal , engine.pedal);

i \ connect(gearBox . flange.b, simplifiedwheel_road.flange.a);
z \ connect(simplifiedwheel_road.flange_al , chassis.flange.a);
. a /_A_: connect(roadGrade . grade , chassis.grade);

connect(driver.actualSpeed, chassis.speed);
end vehicle2;

0 T T T T T T T T T 1 Merge these two modelica models to produce a new Modelica model
time (5) named vehicle within Powertrain.
The new Modelica model should represent a drive train.

Figure 17: Behavior of brake unit test

This sometimes produces Figure 19.

inertiat
=

J=0.1kg.m2 .

[chassis|

Figure 19: A valid powertrain generated by ChatGPT.

We can extend this qualitative behavior analysis to the
other components in the library. For instance, the unit test for
the engine is shown in Figure 20 and its behavior is shown in

Figure 21.
Figure 18: Brake unit test converted to power train pedal
designs together to produce the power train in Figure 19. period=20 s
We can also ask ChatGPT to merge the two designs
through the following prompt:
inertia
Here are two Modelica models:
within Poyvertrain B J=0.1 kg.m2
model vehiclel
Powertrain.Driver . RoadGrade roadGrade;
Powertrain. Driver.Driver driver;
Powertrain.Components. Engine engine; Flgure 20: Unit test model for engine
Modelica.Mechanics. Rotational . Components. Clutch
clutch (mue_pos=[0, 0.3], peak=1.1, cgeo=0.176, fn_max=6973);
Powertrain.Components. SimplifiedwheelRoad . .
simplifiedwheel _road (vehicle_mass=1520, radius=0.3); When the engine pedal is zero, the output can be zero or
Powertrain.Components. Chassis chassis(vehicleMass=1520); 143 o : Tt _
Modelica Mechanies ‘Rotational . Components. Brake pqsfuve and the first derlvatlvg can be p.osmvg,. Zero or neg
brake (locked (fixed=true , start=true), ative. However when the engine pedal is positive at around
50s=[0.0.3]. fn.max=293200.0): . . .
mue-pos=[0,0.31, fn-max=293200.0); 3 seconds, the output is accelerating. This suggests that the
equation . 1 1 engine acts as an accelerator.
connect(engine. flange_a , clutch.flange_.a);
connect(driver.clutch . clutch . fonormalized): The unit test for the clutch is shown in Figure 22 and its
connect(driver . gasPedal , enginc.pedal): , behavior is shown in Figure 23.
connect(simplifiedwheel_road.flange_al , chassis.flange_a); . A .
connect (roadGrade . grade , chassis.grade); When the clutch Input 1s zero, then the output 1s zero. When
connect(driver.actualSpeed, chassis.speed); . . st . et
connoct (driver brakePedal . brake.f.normalized): the clutch input is positive then the output is positive and ac-
connect (brake . flange-a, clutch.flange-b); celerating. This suggests that the clutch acts as an accelerator
connect(brake.flange_b, simplifiedwheel_road.flange.a); .
end vehiclel : or as an on/off switch.

.) The unit test for the gear box is shown in Figure 24 and its
within Powertrain; . . . h
model vehicle2 behavior is shown in Figure 25.

—— engine.pedal —— inertiaw (rads)

Figure 21: Behavior of engine unit test

ramp

b

duration=1s

step

.

startTime=0 s

inertia

m clutch J=0.1 kg.m2

Figure 22: Unit test model for clutch

—— cluteh.f_normalized —— inertia.w (rad/s)

T T 1
o 2 4 6 s 10

Figure 23: Behavior of clutch unit test

When the gear box input is zero, then the output is zero.
When the gear box input is positive, then the output is pos-
itive and accelerating. When the gear box input is 2, then
the average output is higher than when the gear box input is
1. This suggests that the gear box is acting as some sort of
selector.

The qualitative behaviors of the brake, engine, clutch, and
gear box can be detected in the desired behavior in Figure 11.
This suggests that all of these components are necessary to

ramp

=awi] pels
step1

|=owi] Jiels
step2

SOb

o
—
duration=3 s " .
step A@S— 2
startTime=0 s
|:> inertia

q 1] L
T

1]
m Clutch J=1.0 kg.m2

Figure 24: Unit test model for gearbox

—— gearBox.gear —— inertiaw (rad/s)

o 5 10 15 2

Figure 25: Behavior of gear box unit test

make a power train. If a candidate design is missing one of
these behaviors, then it is worth trying to add the correspond-
ing component.

This sort of qualitative analysis of component behavior can
be extended to multi-component behavior as well. It works if
a library of known designs has designs with qualitative be-
havior that can be detected. If a qualitative behavior is in the
target behavior but not in a candidate’s behavior then we can
try adding the known design with that behavior to the candi-
date design. If a candidate design has a qualitative behavior
that the target design does not have and the candidate has a
known design with that behavior embedded in it then we can
try deleting the known design from the candidate design.

8 Conclusion

The Sizer algorithm can be surprisly expensive and numer-
ical simulation is often fragile within the optimization loop.
Therefore, it makes more sense to qualitatively simulate ev-
ery design before attempting to find the values needed for the
parameters. [Klenk ef al., 2012].

This paper has illustrated that ChatGPT can be a powerful

tool as part of a automated design process. In future work
we plan to perform experiments on a wide variety of design
problems and determine how large a space of designs can be
covered. Introducing more QR promises to greatly speed up
the search for possible designs.

References

[de Kleer, 1986] Johan de Kleer. An assumption-based tms.
Artificial Intelligence, 28(2):127-162, 1986.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171-4186, Minneapo-
lis, Minnesota, June 2019. Association for Computational
Linguistics.

[Fritzson, 2004] P. Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1. Wiley-IEEE
Press, Piscataway, NJ, 2004.

[Klenk et al., 2012] Matthew Klenk, Johan de Kleer,
Daniel G Bobrow, Sungwook Yoon, John Hanley, and
Bill Janssen. Guiding and verifying early design using
qualitative simulation. In ASME 2012 International
Design Engineering Technical Conferences and Comput-
ers and Information in Engineering Conference, pages
1097-1103. American Society of Mechanical Engineers,
2012.

[Roumeliotis and Tselikas, 2023] Konstantinos I. Roumelio-
tis and Nikolaos D. Tselikas. Chatgpt and open-ai models:
A preliminary review. Future Internet, 15(6), 2023.

	Design experiment methodology
	Low-pass filter
	Modelica and ChatGPT
	Generate and Test
	Generate and Repair
	Design of a Power Train
	Generate and Behavioral Repair
	Conclusion

