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• Jure	žabkar,	University	of	Ljubljana,	Slovenia	 	



	 	



Preface	
Proceedings	 of	 the	 working	 papers	 accepted	 and	 presented	 at	 the	 36th	 International	
Workshop	on	Qualitative	Reasoning	(QR)	held	on	October	1st,	2023,	co-located	with	ECAI	
in	Krakow,	Poland.	
The	 QR	 community	 is	 involved	 with	 the	 development	 and	 application	 of	 qualitative	
representations	to	understand	the	world	from	incomplete,	imprecise,	or	uncertain	data.	
Our	 qualitative	models	 span	 natural	 systems	 (e.g.,	 physics,	 biology,	 ecology,	 geology),	
social	 systems	 (e.g.,	 economics,	 cultural	 decision-making),	 cognitive	 systems	 (e.g.,	
conceptual	learning,	spatial	reasoning,	intelligent	tutors,	robotics),	and	more.	
The	QR	community	includes	researchers	in	Articicial	Intelligence,	Engineering,	Cognitive	
Science,	Applied	Mathematics,	and	Natural	Sciences,	commonly	seeking	to	understand,	
develop,	and	exploit	the	ability	to	reason	qualitatively.	This	broadly	includes:	

• Developing	new	formalisms	and	algorithms	for	QR.	
• Building	and	evaluating	predictive,	prescriptive,	diagnostic,	or	explanatory	

qualitative	models	in	novel	domains.	
• Characterizing	how	humans	learn	and	reason	qualitatively	about	the	(physical)	

world	with	incomplete	knowledge.	
• Developing	novel,	formal	representations	to	describe	central	aspects	of	our	

world:	time,	space,	change,	uncertainty,	causality,	and	continuity.	
The	International	Workshop	on	Qualitative	Reasoning	provides	a	forum	for	researchers	
from	multiple	perspectives	to	share	research	progress	toward	these	goals.	
Topics	of	interest	include:	

• Qualitative	modelling	in	physical,	biological	and	social	sciences,	and	in	
engineering.	

• Representations	and	techniques	for	QR.	
• Methods	that	integrate	QR	with	other	forms	of	knowledge	representation,	

including	quantitative	methods,	machine	learning	and	other	formalisms.	
• Using	QR	for	diagnosis,	design,	and	monitoring	of	physical	systems.	
• Applications	of	QR,	including	education,	science,	and	engineering.	
• Cognitive	models	of	QR,	including	the	use	of	existing	QR	formalisms	for	cognitive	

modelling	and	results	from	other	areas	of	cognitive	science	for	QR.	
• Using	QR	in	understanding	language,	decision-making,	sketches,	images,	and	

other	kinds	of	signals	and	data	sources.	
• Formalization,	axiomatization,	and	mathematical	foundations	of	QR.	

The	accepted	papers	were	reviewed	by	at	least	two	members	of	the	international	
program	committee.	
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Abstract 
Quantities are ubiquitous in our conceptualization of the 
world, and the ability to learn and reason with them is an 
important aspect of commonsense reasoning. Existing 
cognitive models of similarity and generalization often 
lack sensitivity to quantitative knowledge, and those that 
are often represent it implicitly, meaning that it is not 
available for further learning or reasoning. This paper pre-
sents an extension to analogical reasoning processes that 
enables learning from mixed qualitative and quantitative 
knowledge. This is accomplished by utilizing qualitative 
representations of quantity, and by leveraging structure 
mapping to build schemas incrementally, maintaining 
probability distributions for quantitative knowledge, and 
then using these distributions to generate predicates that 
participate in structured generalization. This extension, 
called AnalogicalQuantityEstimation (AQE) is both in-
cremental and unsupervised, and our results show that 
AQE performs significantly better than a baseline where 
quantitative knowledge is not taken into account. In addi-
tion, we compare AQE to a standard linear regression es-
timator, which, despite being batch and supervised, does 
not perform significantly better than AQE, and in some 
cases, performs worse. 

Introduction 
 
Commonsense knowledge is playing an increasingly im-
portant role in the development of AI systems. Many large-
scale knowledge bases are emerging that encode general facts 
about the world using both structured qualitative and quanti-
tative knowledge. Such knowledge is available in large open-
domain knowledge bases such as OpenCyc, DBpedia and 
WikiData.  

The ability to learn and generalize from these knowledge 
sources is therefore useful to any AI agent. Most existing 
computational models of retrieval and similarity cannot use 
numerical representations (Forbus et al., 2017; Holyoak and 
Thagard, 1989; Hummel and Holyoak, 1997), leading to 
quantitative information being ignored in computation of 
similarity. There are models in case-based reasoning (Ram 
and Santamaria, 1997) that use numeric information, but they 

employ ad hoc similarity metrics that are not psychologically 
grounded. A major motivation of this work is to generate cog-
nitively plausible symbolic representations of quantity and 
show that these representations aid in learning.  

In this paper, we introduce a novel algorithm, AQE, that 
improves an existing analogical learner so that it is sensitive 
to quantity. A similar idea was proposed by Paritosh (2004), 
which introduced a computational model called CARVE. 
AQE extends CARVE in two ways. First, CARVE’s quantity 
symbolization was external to the analogical learner and 
needed to be run manually. Second, this symbolization pro-
cess was batch, meaning that it needed access to an entire da-
taset before learning, and symbolization needed to be com-
plete before any learning took place. AQE addresses these is-
sues by automatically symbolizing quantities incrementally 
as new cases are generalized. Additionally, CARVE did not 
find any regularities in the data it was tested on, whereas our 
model shows significant improvement over a baseline. 

AQE is tested by estimating quantities for two datasets de-
rived from Wikidata; one containing knowledge about coun-
tries, and the other knowledge about universities. Wikidata 
contains vast amounts of knowledge in a wide array of do-
mains, and therefore is a useful resource that contains a 
wealth of ground facts that can be used for commonsense rea-
soning (Forbus and Demel, 2022). 

We begin by introducing the most relevant related work on 
systems that used mixed qualitative and quantitative 
knowledge. Then we present AQE, including the qualitative 
representation scheme and its incorporation into an existing 
analogical learner. Finally, we show results for experiments 
on two Wikidata datasets, ending with conclusions and future 
work. 

Related Work 
We give a brief overview of previous computational models 
that use mixed qualitative and quantitative representations, as 
well as related models of similarity and retrieval. 

Computational Models 
There are many examples of representational schemas that 
combine structured and quantitative knowledge. Hinton's 
(1979) model of mental imagery combines structured 
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knowledge with numerical properties. Both ACT-R (Ander-
son, 2009) and SOAR (Laird, 2012) use numerical compo-
nents in their representations, for example, statistical 
metadata on recency, frequency, and utility for symbolic 
structures. There are currently several theoretical frameworks 
that tightly integrate logic and probability, including Markov 
Logic Networks (Richardon and Domingos, 2006), while 
Rosenbloom's (2013) SIGMA cognitive architecture is ex-
ploring how to use graphical models to build a complete cog-
nitive architecture, including both symbolic and statistical 
reasoning.  
 Many of these models treat quantity implicitly, meaning 
that it is not available at the level of knowledge. On the other 
hand, explicit reification is useful because it allows for grace-
ful extension in learning and reasoning, as well as access to 
the richer semantics of quantity ontologies, such as QP theory 
(Forbus, 2019).  

In addition, these models often require batch learning, 
which is problematic for cognitive agents because all previ-
ous knowledge must be stored. On the other hand, AQE in-
crementally accumulates distributional knowledge over 
quantities, meaning that distributions can be updated online 
as new examples are generalized. 

There is converging psychological evidence for structured 
models of retrieval, similarity, and generalization. One limi-
tation of existing models of analogical processing, e.g., 
ACME (Holyoak and Thagard, 1989), LISA (Hummel and 
Holyoak, 1997), ABSURDIST (Goldstone and Rogosky, 
2002) is that they do not handle numerical properties ade-
quately. In most of these models, numbers are treated like 
symbols, so 99 and 100 are as similar/different as 99 and 
10000. AQE addresses this issue by automatically symboliz-
ing quantity using the qualitative representations proposed by 
CARVE, creating new predicates that contribute to similarity 
in analogical learning. 

Background 
Next, we overview the analogical learning stack (SME, 
MAC/FAC, and SAGE) that we are extending, CARVE, a 
computational model of quantity estimation that we are build-
ing on top of, and Wikidata, the source of our data. 

Analogical Learning 
The generalization mechanism for AQE is built on models 
inspired by Gentner's structure-mapping theory of analogy 
and similarity (Gentner, 1983). AQE uses the Structure Map-
ping Engine (SME; Forbus et. al, 2016) for analogical match-
ing, MAC/FAC for retrieval, and SAGE for analogical gen-
eralization. These analogical processes have been used in a 
wide range of domains, including sketch recognition (Chen 
et al., 2023), learning to play strategy games (Hancock and 
Forbus, 2021), and question answering (Crouse et al., 2019), 
and so we hypothesize that it will be useful for learning with 
representations of quantity. We summarize each component 
in turn. 

The structure mapping engine (SME) is a domain-general 
computational model of analogy and similarity, based on 

Gentner's structure mapping theory. It returns a set of map-
pings between a base and a target, both structured represen-
tations, along with a similarity score for each mapping. Each 
mapping contains (1) correspondences that map entities and 
expressions in the base with entities and expressions in the 
target, (2) a numerical structural evaluation score of the qual-
ity of the mapping, and (3) candidate inferences. Candidate 
inferences are expressions that occur in the base description 
and not in the target but can be hypothesized to hold in the 
target. 

The MAC/FAC algorithm (Forbus, Gentner, and Law, 
1995) is a model of analogical retrieval. MAC/FAC takes as 
input a probe description (a set of facts) and a set of examples, 
and returns the example that is most similar to the probe. 
MAC/FAC stands for many are called, few are chosen. Re-
trieval is a two-stage procedure. In the MAC stage, each case 
is represented by a content vector. Each dimension in a con-
tent vector represents a predicate, and its magnitude corre-
sponds to the number of occurrences of the predicate in that 
case. The dot product of two content vectors provides a rough 
estimate of what SME would compute for a similarity score 
for the corresponding structured representations. This dot 
product is used as a pre-filter to reduce the number of com-
parisons made in the FAC stage, which are computationally 
more expensive. The MAC stage is a map/reduce operation, 
where a dot product for a content vector of the probe is com-
puted in parallel with the vectors for all items in the case li-
brary, with the top three scoring cases passed on to the FAC 
stage. The FAC stage also is map/reduce but using SME on 
the probe and the three retrieved cases, keeping the best. The 
MAC stage provides scalability, since vector dot products are 
quite fast. The FAC stage provides the sensitivity to structure 
that human retrieval demonstrates. 

The Sequential Analogical Generalization Engine (SAGE; 
Kandaswamy & Forbus, 2012) is a model of analogical gen-
eralization. SAGE learns models of concepts, incrementally,  
from examples. In SAGE, generalization pools, or gpools, 
are used to build up models of concepts. The number of 
gpools used for learning is determined by the number of con-
cepts in a domain and the learning goals that arise. A gpool 
is subdivided into clusters of similar examples, or generali-
zations, and outliers that are not similar to any other cases or 
generalizations. Each generalization can be thought of as a 
component of a disjunctive model for the concept. In this 
sense SAGE is like k-means with outliers, except that there 
is no a priori determination of the number of clusters; the al-
gorithm derives that from the data. 

Generalization with SAGE involves assimilating new ex-
amples into gpools, and inference involves finding a general-
ization (or outlier) that is most similar to a probe case. For 
assimilation, an incoming case is used to retrieve existing 
outliers and generalizations within a gpool, using MAC/FAC. 
If the case is sufficiently similar to an existing generalization 
or outlier, as determined by a fixed assimilation threshold, it 
is merged with that item and a mapping is returned. Other-
wise, a new outlier is created. If merging occurs between the 
probe and an outlier, then a new generalization is created. 
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In the case where two items are merged, SAGE uses infor-
mation computed in a mapping to store metadata about the 
generalization. Probabilities are updated for aligned facts, re-
flecting the frequency of that fact within the generalization. 
For example, facts about international organization member-
ship are included in each country case. After a number of 
country cases have been assimilated, a generalization will 
have a lifted facts corresponding to these memberships, and 
a probability for each fact. For example,  
((MemberOfInternationalOrgFn  

AllianceofSmallIslandStates) <?country>): 0.96 
 
reflects the fact that a country is a member of the Alliance of 
Small Island States, and has a probability of .96 within the 
context of one generalization, meaning that 96% of the con-
stituents of that generalization exhibit this attribute. 

 The <?country> placeholder is a skolem (new unique 
symbol) that is denoted in knowledge by a non-atomic term 
(GenEntFn). Probabilities for generalizations are updated 
every time a new example is assimilated. Statements whose 
probabilities become too low are eventually deleted, based on 
a fixed probability cutoff threshold.  

Quantity Representation in CARVE 
AQE builds upon representations of quantity and a computa-
tional model, CARVE, developed by Paritosh (2004). 
CARVE used two distinctions for representation of quantity: 
distributional and structural partitions. Distributional parti-
tions map a continuous value to some ordered interval within 
a probability distribution. More than just the norm, ordered 
partitions can be defined within the distribution (e.g. small, 
large) for many quantities, which are construed as a qualita-
tive decomposition of the space. There is psychological evi-
dence that suggests that we can and do accumulate distribu-
tions of quantities (Malmi and Samson, 1983; Fried and Ho-
lyoak, 1984; Kraus et al, 1993). Distributional partitions are 
represented by statements of the form 
 
(isa <?country> (<?amount> <?qtype>)) 
 
For example, the USA has a high literacy rate relative to all 
other countries in the world, represented by:  
 
(isa USA (HighAmountFn LiteracyRate)) 
 

Whereas distributional partitions decompose individual 
quantities, structural partitions highlight how quantities are 
constrained by what values other quantities in the system 
take. For instance, GDP tends to increase as a country’s pop-
ulation increases, and literacy rates tend to increase with 
GDP. These constraints represent the underlying mecha-
nisms, or correlations within the domain. Limit points decom-
pose values into regions where the underlying correlational 
story is different (e.g., rich vs poor nations), which induces 
important and interesting distinctions of quality on the space 
of quantity. 

Wikidata 
The AQE algorithm is domain-independent and ontology in-
dependent. This work focuses on readily available structured 
knowledge derived from the Wikidata dataset. Wikidata is a 
collaborative knowledge graph that serves as a repository of 
structured data for a wide range of information from many 
different domains. Like its sibling Wikipedia, Wikidata uti-
lizes the distributed-community model of editors—as of this 
writing, thousands of editors and bots have made over 1.6 bil-
lion edits to over 97 million items. This model allows Wiki-
data to serve as the downstream aggregate of otherwise inde-
pendent structured data sources.  

Wikidata is organized around items, with each having a 
unique identifier (QID) and a set of statements about it. Each 
statement is an RDF triple of <subject property value>. For 
example, “the United States is a member of the World Health 
Organization” can be expressed as <member of (P463), 
United States (Q30),World Health Organization (Q7817)> 
where the terms in italics are the English rendition of the ob-
jects whose ids are in parentheses. In QR terminology, items 
are entities and values are quantity values. In some cases the 
quantity type is obvious (e.g. Area, Color), while in others it 
is more opaque (Statistical Population). Any property can 
specify constraints on its value. Certain properties specify 
that their values must be a string, number, date, URL, media 
file, or another Wikidata entity. Other properties, like capital 
(P36) enforce no more than one value since most states have 
only one capital. Since Wikidata consists of RDF triples, it 
can be queried via a SPARQL endpoint (query.wikidata.org). 
In Wikidata, predicates like point in time (P585) can be used 
to qualify statements like population (P1082), for which there 
may be several different assertions that hold in different 
years. In the case where a country’s capital (P36) may have 
changed, values can be associated with a start time (P580) 
and end time (P582). 

Analogical Quantity Estimation 
Recall that SAGE computes progressive structural overlap 
over incoming cases, resulting in a set of disjunctive general-
izations for a concept. For example, in this work a generali-
zation might denote the set of wealthy European nations. In 
this sense, generalizations can be viewed as structural parti-
tions that describe some latent concept (i.e. rich countries). 
The goal of structural partitioning is to assign cases to gener-
alizations that correspond to useful distinctions (for instance, 
groups of developed and underdeveloped nations). Learning 
for AQE consists of two steps. In the first, quantitative facts 
are symbolized; that is, continuous quantities are mapped to 
qualitative distributional partitions, and the resulting new 
facts are added to the original case. In the second step, this 
augmented case is added to a separate gpool, which learns 
structural partitions in the data. We outline each of these steps 
next. 

Distributional Partitioning 
The first step for AQE is to encode numeric facts in incoming 
cases. Many quantity estimators, e.g. regression, assume that 

3



incoming data is unstructured, and that attributes are already 
aligned. Since Wikidata combines structured and unstruc-
tured knowledge, this poses an additional challenge to learn-
ing. That is, entities and attributes must be aligned before 
learning can take place. For learners like regression, this is 
handled outside of the learning mechanism, often manually. 
One benefit of AQE is that this procedure is handled auto-
matically by computing analogical mappings and is tightly 
integrated into the learning mechanism. Thus, the first step in 
symbolizing quantities is to compute attribute alignments 
(Figure 1, qualitative quantity encoding). Once this is com-
plete, distributions for aligned quantities are used to map con-
tinuous quantities to distributional partitions, which we de-
scribe next.  

First, an incoming quantity must be mapped to a set of pre-
viously seen quantities. For example, to symbolize the liter-
acy rate of the USA, which is 99.4 as of 2022, then this quan-
tity should be compared with the distribution for literacy rates 
of all previously seen countries. This is handled with SAGE 
by maintaining a gpool that has an assimilation threshold of 
zero. Recall that the assimilation threshold sets the minimum 
requirement for two cases to be considered similar. An assim-
ilation threshold of zero means that a gpool will have a single 
generalization that contains all assimilated cases. While not 
useful for learning (because it makes no distinctions), this 
model is useful because it provides a global schema. This 
schema provides useful metadata about facts in the dataset. 
For one, the relative frequency of each aligned fact is stored, 
(e.g. 3.4% of countries border Cameroon). Second, it associ-
ates each quantity type with information about the values that 
that quantity type has taken. The goal is to separate each 
quantity type into a predetermined number of qualitative par-
titions. This is achieved with an online k-means algorithm. 
Given an unseen quantity, it is assigned to one of the K dis-
tributions by minimizing the Euclidian distance between the 
quantity and the norms of each distribution. If less than k 

quantities have been seen, a new distribution is created, and 
the new quantity is set as the mean. 

For this paper, the number of distributional partitions is set 
at five, as we have found that this is a good balance between 
expressiveness and relevance. Too expressive (too many par-
titions) and all quantities tend towards dissimilarity. Too few 
distinctions, and all quantities tend towards similarity. Using 
five partitions results in a quantity space that can be inter-
preted as (very small, small, medium, large, very large). The 
number of distributions K can be set at the level of a gpool 
by by asserting a fact 

 
(kMeansForQuantityAnalysis <?gpool> <?K>) 

 
in the knowledge base. 

The next step is to generate qualitative facts based on the 
assignment of a quantity to one of the K distributional parti-
tions. If fewer than K quantities have been seen, then no fact 
is generated. Otherwise, a new fact is created, e.g. 
 

(isa USA (HighAmountFn GDP)) 
 
and added to the existing case in place of the prior quantita-
tive fact. 

Next, the associated distribution is updated to reflect the 
new quantity. SAGE stores with each distribution a set of sta-
tistics: the cardinality, minimum, maximum, mean, and sum 
of squared error of the constituent quantities. This metadata 
is used later on for inference, which is detailed below. 

Structural Partitioning 
Once quantities in a case have been symbolized, the case is 
given as input to a second SAGE gpool, this time with a non-
zero assimilation threshold. The assimilation threshold used 
for these experiments is .6, which is a standard value that has 
been successful for learning across many domains. In this 
step, both existing qualitative as well as the new symbolized 

 
Figure 1: Overview of the AQE encoding, generalization, and inference processes. Stage 1 encodes qualitative facts for 
each numeric quantity found in a case. This is achieved by accumulating statistical information about each quantity type 

in the stage 1 gpool. For example, country GDP will have an associated k means. This distributional knowledge is used to 
encode quantitative knowledge in incoming cases. Stage 2 generalizes the newly symbolized cases, resulting in a set of 
generalizations (structural partitions), each accumulating statistical information about constituent cases. This model is 

then used for inference, to estimate quantities for new cases. 
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qualitative facts are taken into account by analogical match-
ing. Figure 2 shows an example gpool with white circles des-
ignating generalizations containing similar countries. Each 
generalization reflects some structural partition in the source 
dataset. Structural partitions are a reflection the system’s un-
derstanding of the correlational structure of a set of cases. 
 The gpool for the second stage accumulates the same sta-
tistical knowledge about quantity distributions as the first 
stage, over quantities of cases within the same generalization. 
In the next section, we describe how, along with analogy, 
these statistics contribute to inference in AQE by allowing 
quantity estimation for quantities in held out cases. 

Quantity Estimation 
For inference, the idea is to estimate an unseen quantity for 
some case. First, knowledge about the target quantity is re-
moved from the case. Then, quantity estimation proceeds by 
first symbolizing all quantities, using the gpool from stage 1. 
First SAGE retrieves a mapping between the probe case and 
a generalization. Since the stage 1 gpool has an assimilation 
threshold of zero, all cases are similar to the single generali-
zation, and a mapping is guaranteed. This mapping aligns 
quantities in the probe to previously seen quantities from 
training. For each aligned quantity, the k-means algorithm as-
signs it to one of K distributions. This assignment is used to 
generate a qualitative fact, as detailed previously. This fact is 
added to the probe case, and once this has been performed for 
all aligned quantities, inference proceeds to stage 2. 
 Next, SAGE retrieves a mapping from the augmented case 
to an object in the stage 2 (structural) gpool. If a mapping to 

 
1 https://www.qrg.northwestern.edu/nextkb/index.html contains 

downloadable files in various formats, browsers, and reasoning sys-
tems. It uses Creative Commons Attribution 4.0 licensing, compati-
ble with OpenCyc, FrameNet, and other resources. 

a generalization is found, the mean of the target quantity type 
for that generalization is used as the estimate. If no mapping 
is found, then the estimate is the marginal average for that 
quantity type across all cases in the gpool. If the case maps to 
an outlier, then the quantity from the outlier is used for pre-
diction, or the marginal over all cases in the gpool if the out-
lier does not have a quantity value for that quantity type. 

Evaluation 
This paper evaluates AQE on a set of cases that were ex-
tracted from Wikidata. Next, we describe this extraction pro-
cedure and then discuss how the resulting dataset is used to 
evaluate AQE. 

Case Construction from Wikidata 
For learning in AQE, we translate from Wikidata to the open-
license knowledge base NextKB1, which is used for AQE ex-
periments. Data from Wikidata was pulled using the public 
SPARQL endpoint at query.wikidata.org. For the country da-
taset, ten quantitative attributes were queried for the year 
2022 (population, GDP, GDP per capita, median income, de-
mocracy index, life expectancy, fertility rate, area, literacy 
rate, and human development index) and 6 qualitative attrib-
utes (continent, bordering countries, bordering bodies of wa-
ter, language(s) spoken, international organization member-
ships, and currency). Overall, 197 cases were generated, hav-
ing an average of 40 facts each. 

For the set of university cases, qualitative attributes are (in-
stanceOf; P31), organizational memberships (P463), and 
Carnegie Membership Classification (P2643). For quantities, 
students count (P2196), total assets (P2403), employees 
(P1128), admission rate (P5822), endowment (P6589), and 
admission yield rate (P10263) were used. For each university, 
the latest available quantity for each quantity type was used. 
All quantities are from 2019 and later, up to the year 2023. 
This dataset was extracted on July 31, 2023. Cases were gen-
erated for universities that were founded prior to 1860, which 
resulted in 231 university examples. Those that did not have 
any associated quantitative knowledge were removed, result-
ing in 194 cases. 

Attributes for cases were chosen based on the hypothesis 
that there is a rich underlying correlational structure that can 
be learned. These facts were translated into OpenCyc’s on-
tology language for use within NextKB. For some predicates 
there was a natural correspondence, such as nominal GDP in 
Wikidata and grossDomesticProduct in OpenCyc. Other 
predicates were missing from OpenCyc and thus hand ontol-
ogized, e.g. human development index as the predicate 
hdiOfCountry and percentage of applicants admitted as per-
centApplicantsAdmitted. 

For example,  
 
<United States (Q30), population (P1082), 331,449,281> 

 
Figure 2: A SAGE Gpool consisting of 15 generaliza-
tions (white circles), each containing individual cases 

(black dots). Generalizations represent groups of similar 
cases (structural partitions of the dataset).   
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results in  
 
(populationOfRegion  

UnitedStatesOfAmerica  
((UnitOfCountFn Person) 331449281)).  

Experiment 
For the experiments, AQE is evaluated against two baselines: 
(1): analogical quantity estimation without quantity symboli-
zation and (2): against a standard linear regression estimator. 
Our hypothesis is that AQE will outperform analogical quan-
tity estimation without qualitative representations of quan-
tity. Additionally, results from a standard linear regression 
estimator are included. Recall that AQE is both incremental 
and unsupervised; incremental learners are well known to 
lack statistical guarantees of their batch counterparts due in 
part to the stochastic effects of initialization. The results for 
linear regression are included as a means of comparing learn-
ing performance of AQE vs a technique with better learning 
guarantees. 
 To run the experiments, standard cross validation is used 
to partition each dataset into ten folds, each consisting of a 
train and test set. For countries, there are 197 cases, and 194 
for universities, resulting in a test set for each of the ten folds 
consisting of approximately 20 cases for both datasets. The 
folds are generated by first randomizing the cases, and then 
generating ten partitions based on the ordering from this ran-
domization. AQE and the incremental baseline are imple-
mented in Allegro Common Lisp 10.1. A seed for the random 
state in Allegro Common Lisp is set to 55 for the baseline and 
AQE conditions, as well as generation of the cross validation 
set. The linear regression estimator is run using the imple-
mentation in Python’s ScikitLearn module, using default pa-
rameters, also using the same cross validation set that was 
generated in Allegro Common Lisp. Learning regression 
models requires vectorizing structured knowledge from each 
dataset. This is accomplished by manually creating a map-
ping, where each quantity type is considered a feature, and 
each unique qualitative attribute (e.g. currency, organization 
membership) is represented by a one-hot vector. Missing 
quantities are imputed using Python’s impute function from 
the SciPy module. This results in 883 features across the 197 
country cases for universities, and 181 features across 194 
cases for the university dataset. 
 For the country dataset, each condition is tested on four 
different quantity types: life expectancy (LE), human devel-
opment index (HDI), democracy index (DI), and nominal 
GDP (GDPnom). For universities, average yield percent 
(AYP), percent applicants admitted (PAA), and number of 
emplyees (NOE) are tested. 

Results 
For countries, our results show that AQE performs signifi-
cantly better (p < .05) than the baseline for every quantity that 
was tested. Additionally, the regression condition fails to per-
form significantly better than AQE for any quantity (p > .05), 
and AQE outperforms the regression estimator in one in-
stance (nominal GDP).  

 
 LE HDI DI GDPnom 
baseline 60.84 .023 5.15 5.54e8 
AQE 20.8 .0088 2.63 3.79e8 
regression 19.88 .0062 1.95 4.9e8 

Table 1: mean squared error across 10 folds for four quantity 
types (life expectancy, human development index, democ-
racy index, and nominal GDP) across three experimental con-
ditions. 

For the university dataset, all experiments were run using 
the same parameters that were used for the country cases. We 
tested AQE on average yield percent (AYP) (the percentage 
of students that enroll given acceptance), percent applicants 
accepted (PAA), number of employees (NOE), and endow-
ment value (EV). For this experiment, AQE outperformed the 
incremental baseline as well as regression for all quantities 
tested. Admission yield percent and percent applicants admit-
ted showed significant improvement over the incremental 
baseline (p < .05). The regression condition suffered due to 
overfitting on certain folds, resulting in large out-of-distribu-
tion predictions.  
 

 AYP PAA NOE EV 
baseline .017 .059 1.31e7 3.9e19 
AQE .011 .034 8.46e6 2e19 
regression 39443 7.5 9.43e9 2.95e19 

Table 2: mean squared error across 10 folds for four quantity 
types (admission yield percent, percent applicants admitted, 
number of employees, and endowment value). 

Explainability 
The qualitative representations of quantity used in AQE also 
result in explainable models, because they are compatible 
with natural language. The final learned model (stage 2) rep-
resents a disjunction over structural partitions of the data. 
Figure 3 shows a subset of facts from one of these learned 
structural partitions. In SAGE terms, this corresponds to a 

Fact Prob 
((MemberOfInternationalOrgFn  
   AfricanDevelopmentBank)  
 <?country>) 

1.0 

((MemberOfInternationalOrgFn AfricanUn-
ion)  
 <?country>) 

1.0 

((MemberOfInternationalOrgFn 
   InternationalBankforReconstruction-
andDevelopment)  
 <?country>) 

1.0 

(isa <?country> (CountryTypeFn 
       (VeryLowAmountFn grossDomes-
ticProduct-Nominal))) 

.862 

Figure 3: Example facts from a single generalization 
(structural partition) with 29 member cases 
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generalization, which stores probabilities of individual facts. 
The depicted generalization in Figure 3 shows that every con-
stituent is a member of the African Development Bank. Fur-
thermore, inspection of the model reveals that 86.2% of the 
participants have a very low GDP. The nature of these repre-
sentations means that they are inspectable. In the next section, 
we discuss possible extensions that use these learned models 
for further learning. 

Discussion and Future Work 
This paper introduces AQE, an extension to SAGE that ena-
bles learning with quantitative knowledge by automatically 
symbolizing those quantities into predicate statements that 
denote distributional partitions. Furthermore, the experiment 
shows that these representations can assist in estimating 
quantity by using analogy to learn salient structural partitions 
of the underlying data in two datasets. Specifically, using 
qualitative representations significantly improves over a 
baseline in which these representations are not included. 
AQE is also compared against a linear regression estimator, 
which, despite being supervised and batch, does not perform 
significantly better than AQE in the first experiment, and in 
the second experiment, performs worse for every quantity. 

As Paritosh (2004) points out, relative magnitudes such as 
large are context dependent and thus elude global definition. 
A person might be tall with respect to the general populace, 
but short compared to the set of professional basketball play-
ers. These ecological constraints surrounding judgements of 
this kind mean that the ability to quickly estimate from a few 
examples is especially useful, because new contexts are en-
countered frequently. The relative data efficiency of AQE is 
a boon compared to the data-hungry nature of many current 
statistical learners. This raises the possibility of applying 
AQE to new domains, such as concept acquisition in situated 
learning (e.g. learning near and far by symbolizing quantity).  
 Furthermore, declarative representations like the ones used 
in this paper allow for extensibility, in that they can be used 
as a foundation for other kinds of reasoning. For example, 
further refinement is possible by connecting the learned rep-
resentations with the semantics of a more expressive qualita-
tive reasoning framework, e.g. Qualitative Process theory 
(Forbus, 2019). This opens up the possibility of refining these 
models by incorporating knowledge from other sources, e.g. 
language. One way that this might be accomplished is by lev-
eraging causal relationships parsed from language to high-
light what is salient for a given estimation task. The idea is 
that this causal knowledge could improve model accuracy by 
filtering out noise introduced by non-salient attributes, e.g., 
extending a quantitative anchoring framework such as 
KNACK (Paritosh and Klenk, 2006). 
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Abstract 
This paper presents three qualitative models that 
were developed for the Stargazing Live! program. 
This program consists of a mobile planetarium that 
aims to inspire and motivate learners using real tel-
escope data during the experience. To further con-
solidate the learning experience three lessons are 
available that teachers can use as follow up activities 
with their learners. The lessons implement a peda-
gogical approach that focuses on learning by creat-
ing qualitative models with the aim to have learners 
learn subject specific concepts as well as generic 
systems thinking skills. The three lessons form an 
ordered set with increasing complexity and were de-
veloped in close collaboration with domain experts. 

1 Introduction 

Star formation, stellar properties and the underlying physical 
laws are fundamental topics in pre-university physics educa-
tion. However, learning about stars can be challenging for 
learners, due to a variety of pre-instructional conceptions and 
learning difficulties. For example, learners often do not know 
that nuclear fusion provides stars with their energy, allowing 
them to generate light [1,3]. In addition, they have an incom-
plete understanding of how stars are formed. When asked 
how stars differ from each other, learners often mention prop-
erties such as size or composition, but less often luminosity, 
temperature, or lifespan. For example, in Bailey and col-
leagues' study [2], only 21 of 381 learners named mass as a 
property that distinguishes stars. Previous research shows 
that traditional instruction in astrophysics courses is not al-
ways sufficiently effective and that there is a need for inter-
ventions that stimulate conceptual understanding [3]. 

The Stargazing Live! project [11,12] uses a mobile plane-
tarium to bring semi-live real scientific astronomy data into 
the classroom. Planetariums have played a role in the learning 
of astronomical concepts since their inception [4]. They can 
provide a unique and enriching learning experience [14] and 

spark learners interest and excitement for astronomy [16, 13] 
and help improving retention [19]. 

Key requirements for an effective learning experience in a 
planetarium is that viewers are allowed and encouraged to ask 
questions, participate in simulations, and engage in hands-on 
activities to deepen their understanding of the concepts [16, 
17, 13]. The combination of planetarium and traditional 
classroom lessons can provide a well-rounded education ex-
perience that complements and reinforces each other [14, 15]. 

To address these issues, the Stargazing Live! program 
comprises two parts. First, learners are introduced to the idea 
of the changing universe and associated astronomy concepts 
during a live and interactive planetarium experience. Shortly 
thereafter, learners further develop and consolidate their 
knowledge with lesson activities during which they create 
and simulate cause-and-effect models using computer-sup-
ported modelling software. By constructing a model of a sys-
tem, learners develop a deeper understanding of its underly-
ing principles and relationships between components. This 
process helps to build and refine their conceptual model, 
providing a clearer and more comprehensive understanding 
of the system [8, 9]. Moreover, constructing a model requires 
active engagement, as learners think deeply about the infor-
mation and make connections to their prior knowledge. This 
form of active learning, where learners are actively involved 
in the learning process, has been shown to be more effective 
than passive forms of learning [18]. 

Three qualitative models were created to serve as a basis 
for the three learning by modelling lessons that the Stargaz-
ing Live! program developed. The lessons form an ordered 
set with increasing complexity. The first lesson, star proper-
ties, focuses on learners identifying key quantities that char-
acterize stars and establishing the causal dependencies be-
tween them. The second lesson, star states, follows on from 
the star properties assignment by adding ranges of qualitative 
values (represented in quantity spaces) to six key quantities. 
During this assignment learners learn how stars can be clas-
sified according to mass and how that relates to characteristic 
values for other quantities. The third lesson, fusion-gravity 
balance, focusses on the birth of stars and how a balance 
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emerges between the gravitational force (inwards) and the 
nuclear fusion force (outwards). 

The organization of this paper is as follows. Section 2 de-
scribes the planetarium experience. Section 3 introduces the 
DynaLearn software that was used to create the models for 
the lessons. Section 4, 5 and 6 each describe one of the three 
models. Section 7 concludes the paper. 

2 Planetarium experience 

The planetarium experience has been developed by NOVA 
(Netherlands Research School for Astronomy) using a Mo-
bile Planetarium (Fig. 1). The semi-live real data are taken 
from the small optical telescopes MeerLICHT (www.meer-
licht.org) and BlackGEM (www.blackgem.org), both oper-
ated by Radboud University in the Netherlands. MeerLICHT 
is stationed in South Africa and performs optical follow-up 
for the MeerKAT radio telescope. The BlackGEM array is in 
La Silla, Chile and currently comprises three telescopes. Data 
from the telescopes are uploaded each night, processed auto-
matically, and made available for use within 20 minutes. To 
run the lessons the mobile planetarium uses customized 
scripts in the Digistar 6 software. 

 
Figure 1. The planetarium experience. 

The topic of the Stargazing Live! program is ‘the changing 
universe’ and discusses a range of transient phenomena in the 
night sky including (near Earth) asteroids, variable stars, (su-
per)novae and gravitational wave events, such as kilonovae. 
Each topic is introduced with a discussion around a data set 
from the telescopes projected onto the correct region of the 
sky in the planetarium software. Learners are asked to iden-
tify changing features in the images and think about what 
they might be seeing. The various physical processes at work 
are then explained using custom-made 3D-visualisations and 
animations. Key curriculum topics for pre-university level as-
trophysics are also included such as an explanation of how 
Wien’s law connects stellar surface temperature to the ob-
served colour of an object and how the luminosity of a star is 
related to other measurable parameters. 

3 DynaLearn – Learning by representing 

The modelling lesson activities within the Stargazing Live! 
program use the DynaLearn software (https://dynalearn.eu) 
[6]. This software provides a qualitative vocabulary to repre-
sent conceptual models [10]. No quantitative information is 
used. Instead, logic-based algorithms are used to generate 
simulations [5]. Models built in DynaLearn can be repre-
sented at multiple levels of complexity [6]. Higher levels use 
a richer vocabulary to express the system and its behaviour. 
At each level, the software has scaffolds to support learners 
during their knowledge creating effort. The norm-based feed-
back pinpoints errors made by learners (solving these remains 
a task of the learner). The scenario advisor inspects the status 
of the model before starting a simulation and automatically 
highlights missing initial settings as well inconsistent set-
tings. The progress bar shows how many ingredients have 
already been created and how many still need to be created. 
The working of the software is partly explained in the work-
book which guides learners through the assignments, but it is 
also provided from within the software [7]. 

4 Star properties (level 2) 

Lesson activities were developed to extend the planetarium 
experience, focusing on key concepts in the Dutch secondary 
school physics curriculum. A specific request was to focus on 
conceptual understanding of star formation and star proper-
ties and the associated laws (e.g., Wien’s law and the Stefan-
Boltzmann law). 

The star properties model is shown in Fig 2. The model is 
created at level 2 of the software, which is relatively simple 
for learners in pre-university education. The complexity 
arises from the number of ingredients that need to be created 
and connected (26 modelling steps) combined with running 
various intermediate simulations with various initial values. 

Entities are used to represent the objects (or parts) that to-
gether form the system. This model comprises three entities, 
Stars (the overarching object), the inner Core and the outer 
Surface. Two configurations specify that Stars have a Core 
and Stars have a Surface. Quantities represent the dynamic 
and measurable properties that characterize the stars and their 
behaviour. Eleven quantities are defined, such as Mass, Grav-
ity, Fusion-energy, etc. Causal dependencies specify how the 
change of one quantity influences the change of another 
quantity. They can be positive, e.g., more Mass results in 
more Gravity, or negative, e.g., higher Fusion-energy results 
in a shorter Lifespan. 

Initial settings are required to run a simulation. Mass is the 
quantity at the beginning of the causal chain and thus the only 
quantity for which an initial change must be specified. When 
Mass is set to change, the simulation shows how the remain-
ing quantities change (green arrows in Fig. 3). As can be seen 
in Fig. 3, when Mass increases, all intermediate quantities 
also increase, and at the end of the causal chain, Radius and 
Luminosity also increase while Wavelength and Lifespan de-
crease. 
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A workbook is used to guide leaners during the lesson. The 
workbook presents the lesson in 5 steps, notably (a) Entity 
stars with two quantities (which focusses on Mass ad Grav-
ity), (b) Properties of the core (which focusses on Pressure, 
Temperature and Fusion-energy, and how these are causally 
related as well as related to the quantities created in the first 
step), (c) Properties of the surface (which focusses on Tem-
perature (of the Surface), Wavelength and Luminosity and 

how these are causally related as well as related to the quan-
tities created before), (e) What else do we know? (which chal-
lenges learners to find and add the still missing quantities 
(namely Gas pressure, Radius & Lifespan) and their cause-
and-effect relations. After each step. Learners are asked to 
run simulations and process the results (e.g., by answering 
questions). 

 
Figure 2. Star properties model with three entities (Stars, Core & Surface), two configurations (2x have), eleven quantities (Mass, Gravity, 
Pressure, Temperature (of the Core), Fusion-energy, Temperature (of the Surface), Wavelength, Luminosity, Gas pressure, Radius & 
Lifespan), and ten causal dependencies (2 negative & 8 positive). Mass is set to initially increase (blue arrow). 

 

 

Figure 3. Simulation result for the star properties model shown in Fig. 2. Each quantity has a ∂ which can be decreasing (arrow down), steady 
(∅), or increasing (arrow up). Starting with Mass increasing, the simulation shows how other quantities change depending on their propor-
tional relationship with the preceding quantity. 

11



 

 

5 Star states (level 3) 

The star states model (Fig. 4) is created at software level 3. 
New vocabulary at this level includes quantity space (a set of 
alternating point and interval values that the quantity can take 
on), correspondence (for representing co-occurring values 
among values from different quantity spaces), and exogenous 
quantity behavior (setting a quantity to keep decreasing, in-
creasing, behave random, etc.) [5]. Correspondences can be 
directed (only when the source is known, the target can be 
calculated) or undirected (if one is known, the other can be 
calculated), and regular (the highest value of one quantity 
corresponds to the highest value of the other quantity, etc.) or 
inverse (the highest value of one quantity corresponds to the 
lowest value of the other quantity, and vice versa). 

The star states model augments six key quantities from the 
star properties model with a quantity space, notably Mass, 
Temperature (of the Surface), Wavelength, Luminosity, Ra-
dius & Lifespan. However, to optimally fit the curriculum re-
quirements Wavelength has been replaced by Peak wave-
length and Peak colour. Each quantity space holds five values 
(three intervals separated by two points), and specific values 
correspond to quantities across the model. For instance, stars 
with Mass in the red dwarf region (less than 0.5 times the 
mass of the sun), have a (Surface) Temperature of less than 

4000 K, a Lifespan of more than 10^11 years, a Peak wave-
length of more than 720 nm, etc. 

Learners build the quantity space for each of the key quan-
tities and specify how these values correspond across the 
model. The lesson is organised as follows. Learners start by 
creating the quantity space for Mass, run the simulation and 
discover that they need to apply an exogenous increase to the 
mass to have the simulation progress through the quantity 
space fully. Step 2 focusses on the quantity space for 
Lifespan, and that it inversely corresponds the quantity space 
of Mass (more Mass corresponds to shorter Lifespan, etc.). 
Step 3 focusses on Surface Temperature. Step 4 focusses on 
Peak wavelength and Peak colour simultaneously. Finally, 
step 5 focusses on Luminosity and step 6 on Radius.  

To support learners in determining the values of the quan-
tity spaces the workbook provides short descriptions of each 
phenomenon. Effectively, all the terms are mentioned in the 
workbook, but it still requires an effort on behalf of the learn-
ers. Specifically, deciding upon the correct terms, their order, 
and which value is lowest and which value is highest (bottom 
and top of the quantity space, respectively). Notice that, the 
norm-based support [7] helps the learners with this challenge. 
Once a quantity space is in place the next task for learners is 
to place the correct correspondence, both deciding upon 
which quantity spaces (of which quantities) to relate and 
whether the correspondence is regular or inversed.

 

 
 

Figure 4. Part of the simulation results for the star states model. The simulation started with Mass=<red dwarfs, +> (not shown). Following 
this setting the six key quantities get their initial value via correspondences (C), notably, Lifespan started at <10^9 year, Radius at <0.6 Rsun, 
Temperature at <4000 K, Luminosity at <0.1 Lsun, Peak wavelength at <360 nm, and Peak colour at infra-red. The derivatives are calculated 
using the causal dependencies (–, +). The state-graph (RHS) shows that the simulation progressed through 5 states. State 5 is shown (LHS). 
 

6 Fusion-gravity balance (level 4) 

The goal of this fusion-gravity balance model is to represent 
the process of star formation and the consequential fusion-

gravity balance that emerges. This model is therefore created 
at level 4 of the DynaLearn software (Fig. 5). This level in-
troduces influence (I+/I–) and proportionality (P+/P–) [5,10] 
to distinguish between processes (I) (initial causes) and the 
propagation (P) of these through the system. Positive and 
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negative feedback loops and in/equality (< ≤ = ≥ >) to repre-
sent the relative impact of competing processes. 

The model starts by distinguishing three entities and their 
associated quantities: Nebula (Mass & Accretion), Star 
(Mass, Gravity, Density & Fusion) and Protoplanetary disk 
(Mass). The model assumes a certain amount of Mass being 
present in the Nebula <+, ?>, while other quantities are zero 
<0, ?> (Masses of Star and Protoplanetary disk, and Fusion) 
or unknown <?, ?> (Accretion, Gravity, and Density). Simu-
lating the model delivers 5 states. Each state representing a 
unique qualitative behaviour of the system. Table 1 shows the 
details with for each quantity, in each state, specifying its 
value and direction of change, represented as a tuple <v, ∂>. 

How are these results generated? It starts with the Accre-
tion process, which corresponds (C) and is proportional (P+) 
to the Nebula’s Mass (hence Accretion=<+, –>). Accretion 
negatively influences (I–) this Mass of the Nebula (hence 
Mass=<+, –>) and positive influences (I+) the Mass of the 
Star and the Protoplanetary disk (both <0, +>, see Table 1, 
state 1). Note that, as soon as Accretion becomes active, it is 
decreasing because Mass (of the Nebula) is decreasing. 

The Gravity of the Star corresponds (C) and is proportional 
(P+) to the Mass of the Star (Gravity=<0, +>). The Gravity 

positively influences (I+) the Density, but being zero, has no 
effect yet in the initial state (state 1). Therefore, Density re-
mains steady, and Gravity in balance with the (not yet active) 
Fusion (Gravity=Fusion). Note that, to keep the model sim-
ple, we choose to not define a quantity space for Density. 

State 1 terminates into state 2 in which the Star accumu-
lates Mass (Mass=<+, +>) and consequently the gravitation 
becomes active (Gravity=<+, +>). Now Density starts in-
creasing and Fusion is about to start (Fusion=<0, +>), but 
momentarily not yet, therefore Gravity>Fusion. 

State 2 progresses into state 3 in which the Fusion becomes 
active (Fusion=<+, +>), however Gravity still has a stronger 
impact, hence Gravity>Fusion. State 3 changes into state 4 in 
which all the Mass from the Nebula has been consumed 
(Mass=<0, 0>). The Accretion stops (Accretion=<0, 0>) and 
the Mass of the Star and the Protoplanetary disk stabilise 
(hence, both <+, 0>). However, Gravity remains active 
(Gravity=<+, 0>), still outperforms Fusion (Gravity>Fusion), 
and therefore Density keeps increasing. In state 5 the Fusion 
catches up with the Gravity and the processes balance (Grav-
ity=Fusion) and the Density stabilises. Fig. 6 shows the sim-
ulation results for this final state. 
 

 

 
Figure 5. The fusion-gravity balance model and its initial setting. The model assumes a certain amount of Mass being present in the Nebula 
<+, ?>, while other quantities are zero <0, ?> (Masses of Star and Protoplanetary disk, and Fusion) or unknown <?, ?> (Accretion, Gravity, 
and Density). Note that in this starting state, Gravity=Fusion. In fact, both are still non-existing. 

Table 1. Simulation results for the fusion-gravity balance model. Quantities have a value and a direction of change, represented as <v, ∂>. 
 Nebula Proto. disk Star 

State Mass Accretion Mass Mass Gravity Density Fusion Gravity ? Fusion 
1 <+, –> <+, –> <0, +> <0, +> <0, +> <?, 0> <0, 0> Gravity = Fusion 
2 <+, –> <+, –> <+. +> <+, +> <+, +> <?, +> <0, +> Gravity > Fusion 
3 <+, –> <+, –> <+. +> <+, +> <+, +> <?, +> <+, +> Gravity > Fusion 
4 <0, 0> <0, 0> <+. 0> <+, 0> <+, 0> <?, +> <+, +> Gravity > Fusion 
5 <0, 0> <0, 0> <+. 0> <+, 0> <+, 0> <?, 0> <+, 0> Gravity = Fusion 
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Figure 6. The simulation results for state 5 of the fusion-gravity balance model. 
 

 
 To support learners in developing this model, the workbook 
uses 6 steps. Each construction step is interleaved with simu-
lation activities. 

Learners built the full model from scratch and start by add-
ing the Star with its Mass and Gravity, including the quantity 
spaces, the causal dependency, and the correspondence. Sim-
ulations are performed to ensure proper working of this first 
part. The second step focusses on Density being caused by 
Gravity and the fact that this is a process (steady gravity caus-
ing density to increase). Step 3 focusses on Accretion, but 
first only on the impact it has on the Mass of the Star. Note 
that, accretion is also a process. Step 4 includes the Mass of 
the Nebula and its relationship with Accretion. Step 5 focus-
ses on Fusion and how it counteracts Gravity. Finally, step 6 
adds the details regarding the Protoplanetary disk. 

In addition to instructing learners in building the model 
and having them answer questions regarding the mecha-
nisms, the workbook also presents notions of caution and the 
fact that a model is a simplification. E.g., it explains that the 
assumption that the mass of the star is zero is not entirely cor-
rect. That in fact, the star forms in the nebula. Hence, the mo-
ment the collapse of the nebula starts (i.e., accretion starts), 
the star already contains some material. For simplicity, how-
ever, the model assumes that the nebula and the star are sep-
arate from each other, so that the mass of the nebula flows 
into an ‘empty’ star. 

7 Working with experts 

Astrophysics experts contributed to creating the models pre-
sented in this paper. During each meeting improved versions 
of the model were presented to the experts for critical reflec-
tion. After consensus was reached with the first group, the 

model was reviewed by two further experts, in three consec-
utive sessions. 

Most of the work focussed on the star properties model. In 
addition to clarifying terms and agreeing on the basic mech-
anism, most discussion concerned the notion of temperature 
and pressure before and after the start of nuclear fusion. Two 
postulates were formulated to reach consensus. Firstly, the 
model represents a family of stars, those in the main se-
quence, and not the specific behaviour of a single star. Hence, 
‘changing the mass of a star’ (in the star properties and star 
states model) refers to comparing stars of different mass in 
the main sequence. Secondly, the quantities may refer to fea-
tures at different moments during the lifespan of stars. As 
such, Pressure and Temperature (of the Core) refer to the fea-
tures that led to the nuclear fusion starting, while Tempera-
ture and Gas pressure (of the Surface) refer to features that 
result from the nuclear fusion being active. 

8 Classroom evolution 

Evaluation of the lessons have been carried out (cf. [20]). 
Specifically, the star properties lesson has been evaluated in 
real classroom settings, the star states and fusion-gravity bal-
ance lessons have been pilot-tested with master students and 
reviewed by teachers. 
Pilot. A pilot version of the three lesson activities were 

tested with three astrophysics master students, taking about 1 
hour to complete a lesson. Students reflected on the activity 
and suggested improvements to the workbooks. The models 
remained unchanged. 
Teachers. During a 90-minute teacher-training, physics 

teachers from the participating schools where informed about 
the three lesson activities and the evaluation study. Teachers 
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agreed to reserve 90 minutes for star properties lesson, in-
cluding a pre- and post-test. 
Learners. One hundred and fifty-two learners from 9 clas-

ses from three secondary schools (across the Netherlands) 
participated in an evaluation study of the star properties les-
son. Learners had no previous experience with learning by 
constructing qualitative representations. Results obtained 
during these lessons show that there is a significant positive 
effect of conceptual modelling on learners’ understanding of 
the causal relationships between quantities of stars in the 
main sequence and the qualitative vocabulary [20]. 

9 Conclusion and Discussion 

Three models and corresponding lessons have been devel-
oped to extend the Stargazing Live! mobile planetarium ex-
perience with lesson activities that relate to the Dutch second-
ary school physics curriculum. The lessons are available and 
can be taken online via https://dynalearn.eu/. 

The star properties lesson focuses on learners identifying 
the key quantities that characterize stars and establishing the 
causal dependencies between those quantities. The star states 
activity follows on from the star properties lesson by adding 
ranges of qualitative values to six key quantities. During this 
lesson, learners learn how stars can be classified according to 
mass and how that relates to characteristic values for other 
quantities. The fusion-gravity balance model focusses on the 
birth of stars and how a balance emerges between the gravi-
tational force (inwards) and the nuclear fusion force (out-
wards). 

The lessons have been well-received by astrophysics mas-
ter students and physics teachers in secondary education. The 
star properties lesson has been successfully evaluated in real 
classes in secondary education. 

As future research we plan to evaluate the lessons on star 
states and on fusion-gravity balance. Furthermore, we intend 
to expand the set of conceptual modelling lessons to include 
other phenomena discussed in the planetarium lesson. For in-
stance, we are currently developing conceptual modeling les-
sons related to circular and elliptical orbits of celestial bodies. 
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Abstract

Since 2012 the AI Birds competition hosted at major AI con-
ferences sets out to challenge humans by fostering the de-
velopment of autonomous agents that can outperform human
players in a single-player physical simulation game. Unlike
several other games, AI agents have not yet come close to hu-
man performance, let alone defeated average human players.
In this paper we analyze what makes acting in physical en-
vironments hard and why computers show poor performance
in open-world tasks. By evaluations performed on our agent
that currently dominates the competition we aim to pinpoint
to fundamental challenges which AI needs to face to ready
itself for entering the open world. Our results show that the
shortcomings are due to a lack of dynamics in common ar-
chitectures. We then outline how qualitative reasoning can be
applied to achieve a dynamic interplay of AI components.

1 Introduction
The AI Birds competition1 (Renz et al. 2015) is carried out
annually at major AI conferences since 2012. The aim of
this competition is to assess the progress in AI towards prob-
lem solving in open domains whilst avoiding the challenges
of working with technical systems such as robots and their
limitations, thus putting a stronger focus on problem-solving
skills (Renz et al. 2019). In short, the competition is based
on the physical simulation game Angry Birds and requires
an autonomous agent to catapult birds at structures protect-
ing enemies in order to destroy them (see Figure 1). In a
survey among AI researchers, AI Birds was estimated to be
one of the next milestones of AI accomplishments in which
an AI system will defeat humans by around 2022 (Grace
et al. 2018). Since 2016, the BamBirds agent developed at
the University of Bamberg participates in the competition
and has won the competition three times so far. Like most
agents participating, the code of the BamBirds agent is made
publicly available.2 We can thus use the BamBirds agent as
a basis to discuss progress in the AI Birds competition. Also,
the BamBirds agent can serve as a baseline to explore gen-
eral shortcomings of today’s AI approaches for open-world
problem solving. The aim of this paper is to, first, give a

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1aibirds.org
2https://github.com/dwolter/BamBirds

description of the BamBirds agent and, second, to identify
principle shortcomings that need to be addressed in order
to make significant progress towards open-world problem
solving in physical domains. A particular focus of this paper
is to discuss possible contributions of qualitative reasoning.
We also substantiate a claim that the problem areas identi-
fied encompass crucial gaps that need to bridged in order to
reach for human-like performance in open words.

The remainder of this paper is structured as follows. In
Section 2 we first introduce the AI Birds competition and
discuss the challenges it encompasses for AI. Thereafter,
Section 3 presents the BamBirds agent and discusses the
contribution of distinct modules to successful performance
in the competition. In Section 4 we then analyse principle
limitations of the BamBirds agent that are symptomatic for
current AI architectures. We identify research gaps and dis-
cuss means to overcome today’s limitations. The paper con-
cludes by summing up our key observations and claims.

2 The AI Birds Competition
In the AI competition, agents are confronted with a set of
previously unseen levels. Within a set time limit, the agent
has to gather as many points as possible by solving a level.
The competition is run in several rounds: in the final, the
two agents scoring highest in the semi-finals compete with
one another; in the semi-final the four agents scoring high-
est in the quarter-finals compete; and so on, depending on
the amount of agents participating. In each round a new set
of unseen levels is used. In the finals, agents are typically
given 20 minutes to solve 8 levels, allowing them to re-try
each level about 2–5 times, depending on the complexity of
the levels and agent speed. Each level (see Figure 1 for an
example) comprises a set of target objects (green pigs), ob-
jects of different kinds, and a sequence of birds that can be
launched from a slingshot by performing a drag-and-release
operation. Once released, a bird is catapulted from the sling
towards the area where pigs are positioned. By placing shots
appropriately, all pigs must be destroyed, either by direct
hit, or by any other physical impact of sufficient strength.
When launching bird after bird once the physical scene has
stabilised from the previous impact, a single level may take
up to 2–3 minutes to play, depending on how many birds
are available and shot. An agent is awarded points only if
all pigs are destroyed. Points are determined by the game
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Figure 1: Example levels from AI Birds competition. To
solve the level shown at the top, the blue bird (in the sling)
has to be shot at the blue ice blocks in order to clear the path
for the red bird (third in sequence). The yellow bird (second
in sequence) must be shot at the wood structure that prevents
the round stone on the right from rolling towards the TNT
boxes on the ground. Explosion of the TNT boxes triggers a
domino effect on the stone pillars, eventually destroying the
bottom pig.

through some undisclosed formula that awards points to ob-
jects destroyed and a large amount of points to each unused
bird when a level gets cleared. If an agent clears a level
several times, it is awarded the maximum of points it has
scored. The more damage is inflicted and the lower number
of birds fired, the more points an agent receives. To make the
game attractive to humans, several birds comprise special
functions (e.g., blue birds can split into three smaller birds,
allowing to hit multiple targets at once) and have unique ef-
fects when shot at particular game objects (e.g., yellow birds
penetrate wood particularly well). Also, the game includes
elements with special properties, in particular indestructible
obstacles and explosives, which allow a great variety of lev-
els to be constructed.

On a technical level, every agent communicates with
the game through a network interface. Agents may request
screenshots from the game and can issue click and click-
drag-release (shot) actions. Moreover, agents can restart a
level or select any of the levels from the current round. Also,
agents can pan the view (for large levels) and control the
zoom level. In later rounds of the competition, an agent may
inquire the current best scores for each level. The AI Birds
game is executed in a web browser window and can only
be accessed via this interface. This setup has the following
implications:
• game mechanics are concealed, i.e., physical simulation

is performed with parameters unknown to the agent and
can only be estimated from observations

• the interface is real-time, e.g., agents cannot quickly
gather training data, even outside competitions

The competition challenges agents in two regards: solving
individual levels and maximising the overall score.

2.1 Solving Levels
In order to solve a level, each agent has to interpret the
screenshot and locate relevant objects. It is particularly im-
portant to identify the location of the slingshot and scale of
the scene precisely in order to perform goal-directed shots

as the game calculates flight trajectories with respect to the
slingshot. If the pivot point of the sling is not estimated to
within a few pixels accurately, no shot will be performed,
or the bird drops off the sling. In order to clear a level, an
agent has to plan a number of shots (two to five, typically)
in an uncertain physical environment. Due to the lack of a
reliable forward model and the sometimes chaotic reaction
(e.g., how large structures collapse), uncertainty in action
outcomes cannot be neglected.

2.2 Maximising Score
Typically, agents participating in the competition are not
able to solve every level, at least not within the given time
limit. As points are only awarded for levels solved, it is im-
portant to use some strategy for selecting which level to try
next. Agents have to balance between re-playing a level al-
ready solved in order to improve the high-score, trying to
crack a previously unsolved level, and not wasting time on
levels unsolvable to them.

2.3 When Games are not Toys
AI has always considered games as benchmarks, be it for
the public impact (like IBM’s Deep Blue defeating Garri
Kasparow or Google’s AlphaGo defeating Lee Sedol), or for
what Schaeffer called “microcosms of AI research” (Scha-
effer 2014). Games may offer a convenient platform for
conducting research as the rules of the game are fixed and
clear—no bias by committing research to individual as-
sumptions is at risk and results of different groups are easily
comparable. Nevertheless, we believe one should reflect on
a commitment to work on a game rather than a “real” prob-
lem that promises direct rewards for the society. As a physi-
cal simulation game, Angry Birds present a simplification of
physical manipulation required for versatile service robots
that eventually will assist humans in their everyday tasks,
e.g., by getting dishes from cupboards, preparing meals for
humans within an environment designed by humans for hu-
mans. For most labs, hardware for such versatile robots is
beyond reach and even where such systems are available,
technical challenges are manifold. For example, research on
manipulation required for preparing meals like opening a
bottle of milk, retrieving flour from their typical paper con-
tainers, etc. is hardly possible while contemporary progress
in versatile robots is still involved with opening cupboards in
kitchens, see (Kazhoyan et al. 2021). Above all, differences
between robotic platforms used and the specific tasks con-
sidered hinder a direct comparison. In the light of the versa-
tility of problems that can easily be constructed in a simple
2D physical simulation game (cp. (Stephenson, Renz, and
Ge 2020)), the AI Birds competition thus constitutes a viable
option for fundamental AI research that has prospects to im-
prove future robotic applications. In particular, the physical
nature of AI Birds is well-aligned with fundamental tasks
and goals of qualitative reasoning (cp. (Forbus 2019)).

3 Synopsis of BamBirds Agent
The BamBirds agent is developed at the University of Bam-
berg, Germany. Its development is significantly supported by
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Figure 2: Architecture of BamBirds agents

student projects and thesis works. Within individual study
groups, selected AI techniques that were expected to im-
prove the agent are developed, implemented, and evaluated.
Successful components are then integrated into the Bam-
Birds agent. By design, BamBirds integrate GOFAI (Good
Old-Fashioned AI) approaches like symbolic state space
representation with probabilistic methods and lightweight
machine learning. An explicit hybrid representation com-
prising quantitative and qualitative knowledge about levels
is central to the design of the agent. BamBirds comprise the
building blocks we detail in the following, and shown in Fig-
ure 2.

3.1 Visual Object Recognition and Scene
Understanding

All planning hinges on a description of the situation the
agent faces, in particular the objects within a level, their
whereabouts, and the overall level scale (which can be de-
rived from the size of the sling in pixels due to its constant
size in spatial units). A precise representation is required for
delivering precise shots at chosen targets.

Scene understanding itself is largely based on simple
methods provided by the AI Birds organisers for visual
object recognition to detect primitive objects; due to the
graphic nature of the Angry Birds game, a simple approach
already yields sufficiently good results in most cases. The
visual recognition provided by the organisers and used in
the BamBirds agents provides polygonal outlines of objects
and a classification into the object types (wood, stone, ice,
etc.). As an example, see Figure 3 for the example level from
Figure 1 as seen by the BamBirds agent.

Visual object recognition is also responsible for detecting
the game state, in particular to recognise that a ‘level won’
or ‘level lost’ screen appears and the agent is expected to
select a new level.

From the geometric description of the scene, the agent de-
rives qualitative spatial and physical relations that allow ba-
sic strategies to be grounded. To this end, two techniques are
used. First, qualitative spatial relations (above, below, left of,
etc.) are instantiated based on the semantics grounded in the
location of objects. Second, a physical simulation using a 2D
physics simulator is consulted to determine whether objects
weigh on one another (for inferring stability) and to foresee
selected effects of actions performed in the game. As physics
simulation under uncertain start conditions is susceptible to
noise and may easily yield wrong results, the component is
only consulted for basic prediction of forces. In order to

1 belongsTo(ice0,struct2).

2 expl_affects(tnt0,stone7).

3 isOver(hill0,pig0).

4 protects(struct2,pig1).

5 slingshotPivot(145.2,332.8).

6 supports(ice0,ice1).

7 ...

Figure 3: Example level from AI Birds competition depicted
in Figure 1 as interpreted by BamBirds agent an excerpts
from the respective scene descriptions.

Table 1: score of BamBirds vs. IHSEV agent per round in
2016 competition, level complexity increases towards final

round BamBirds IHSEV

quarter final 280, 390 470, 940
semi final 406, 200 562, 820
final 451,250 288, 720

construct this component, we consulted the IHSEV agent
which also includes physical simulation and used regression
to fit parameters to the game (M. and Buche 2013). Gener-
ally, physical simulation is not robust due the nearly chaotic
nature of how complex arrangements response to impact in
conjunction with inevitable uncertainty in parameter estima-
tion and visual object recognition. To illustrate, we point to
the score of the IHSEV agent relying on physical simula-
tion from the 2016 competition (AI Birds 2016) as reported
in Table 1. As can be seen in the table, advancing from the
quarter final to the final, the increasing level complexity cor-
related with the performance of IHSEV wrt. BamBirds de-
creasing (we note that absolute points are not comparable
due to different amount of points that can be reached). Simi-
lar numbers can be observed in the 2019 competition where
BamBirds defeated the simulation-based agent SimbaDD.

In short, the competition taught us that physical sim-
ulation is not reliable beyond simple inferences in semi-
complex and complex environments. We therefore critically
assess a much recognised argumentation for physical sim-
ulation in scene understanding (Battaglia, Hamrick, and
Tenenbaum 2013), beyond grounding qualitative primitives
on simple force calculations, e.g., rests on.

As the output of the scene understanding module, a scene
description in Prolog syntax is generated which contains
both quantitative information (in pixel coordinates) and
qualitative relations (see Figure 3 for an excerpt).
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3.2 Qualitative Rule-Based Planning
The second and most involved component is responsi-
ble for determining possible shot candidates, given a
scene description. By obtaining an explicit representation
of qualitative relationships such as, for example, from
isOver(pig,ice) and supports(ice,stone), it
is possible to design rules that serve as heuristics for iden-
tifying (potentially) useful shots. One of these rules states
that by destroying an object that supports another, the now
unsupported object will fall down and be likely destroyed.
In the example above, aiming at the ice object could thus be
a viable plan since the unsupported stone will fall onto the
pig, destroying it. Until now, the rule base of BamBirds has
been designed manually. Although BamBirds does not per-
form physical simulation for shots, the symbolic method is
augmented with a quantitative estimator, e.g., to estimate the
likelihood of penetrating objects by a single shot or the like-
lihood that a tower of objects will collapse when shooting
at it. Also, an estimate is given whether the shot is expected
to succeed. For example, a direct shot at a freely reachable
pig is given full confidence, whereas a shot against a wall
of objects to bounce off into the direction of some goal is
given low confidence. To obtain functions for estimations,
machine learning and regression has been performed on se-
lected parameters from recorded games.

As a last step in the shot heuristic, a simple partial order
planning is performed. In particular, shots are decreased in
confidence if a later bird will be better suited to reach the
goal, and shots are increased if the current bird is more use-
ful for achieving some (intermediate) goal than forthcoming
birds. A level taken from Stephenson and Renz (2018) that
challenges lookahead planning is depicted in Figure 4. The
player has a blue and a yellow bird, the blue bird must be
shot first. The yellow bird can penetrate both wooden (yel-
lowish) pillars, directly hitting the pig. The blue bird can
only destroy one pillar, making the stones fall down and ren-
der the level unsolvable. Here, the agent has to waste the
blue bird (e.g., shooting it over the structure or against the
stone blocks) in order to finish the level with the yellow bird.

3.3 Shot Planning and Level Selection
The third component of our agent implements the shot selec-
tion from the set of candidates computed by the shot heuris-
tic module. We approach the problem as heuristic search
in a tree whose edges represent shots. For every shot per-
formed we monitor its effect (e.g., the points awarded, pigs
destroyed). When retrying a previously unsolved level the
algorithm aims to find an alternative to a previously tried
shot sequence. Consider again the example from Figure 4.
Our agent lacks a forward model to anticipate that shoot-
ing the blue bird at the wooden pillars or the ice bar is a
bad idea. However, once it has tried that shot (and noticed
it has no plan for finishing the level with the yellow bird),
the shot is discarded and an alternative is tried when revisit-
ing the level. In absence of promising alternatives, the agent
soon tries shooting at one of the stone objects (without much
effect, if any) and is then able to finish the level with the yel-
low bird. Unlike classic game settings previously studied in

AI, it is not possible to explore a significant portion of the
search tree since exploration requires to engage in the game;
only very few retries are possible during the competition.

In the 2021 competition, a clone of the BamBirds 2019
agent has won the competition which has chosen a parameter
in favour of more exploration. Although winning 257,330
to 168,290 against BamBirds 2021 in the grand final3, the
BamBirds 2021 agent defeated its clone 312,910 to 270,200
in the previous round. We may therefore conclude that shot
selection is critical but not sufficiently well evaluated in a
single competition.

In a fourth and last step, once a level has been played,
we decide which level to try next. We select the level that is
expected to yield the largest reward considering information
about the type of level, the number of previous attempts, the
points that might be earned, the set of shot candidates not yet
tried. We apply machine learning (offline) to obtain an esti-
mator function that predicts the probability distribution for
the performance of our agent based on previous attempt and
features of the level. We then apply a randomised selection
balancing potential gain with probability of success.

3.4 Action Execution and Monitoring
For all shots performed in the game, we monitor the effects
to collect data and to determine when a level has stabilised
after a shot, allowing the agent to plan its next shot.

3.5 Modul Interconnections and Adaption
For the most part, modules are executed one after another
along the main horizontal axis shown in Figure 2. However,
there is one notable exception to the linear flow, which is
found in the module “adaption”.

Precise visual object localisation is required for delivering
precise shots at chosen targets. We found our agent to be too
limited when relying on the visual object recognition tech-
niques available. Therefore, we use data from the observed
flight parabolas to improve estimates of scene scaling and
sling position using regression on a per-level basis while
the agent is playing. Most importantly, we trace the flight
parabolas of each bird shot and, using regression, we adapt
slingshot location and scaling parameters to align predicted
shot parabolas to the observed one.

4 What is Missing in AI Problem Solving?
As we have seen, the typical “AI” approach of transform-
ing real-life problems into optimisation problems fails for all
but the simplest configurations in AI birds. On the level of
physical processes alone, it seems to be unsolvable with cur-
rent techniques. Of agents relying on machine learning, the
agent DQ-Birds (Nikonova and Gemrot 2021) using a Deep
Q-Network trained from about 115,000 situations was the
best-performing agent so far with being able to solve 3 out of
8 levels scoring 185,869 points in the 2017 quarter finals, the
last round it participated. Other learning-based agents have
performed worse and teams decided to quit participating
in the competition. By contrast, BamBirds scored 290,020

3http://aibirds.org/past-competitions/2021-competition/results.
html
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Figure 4: Example of level that requires lookahead planning

points in the 2017 quarter finals and the best-performing
agent in that round 405,260 points.

Approaches relying on rules, inference, or planning on an
abstract symbolic representation work for specific cases, but
despite the fragile basis of symbols grounded in perception,
they are still missing (and that regards all computational sys-
tems today) the ability to switch strategies, to “step out of the
system” (Hofstadter 1979) and reconsider one’s own under-
standing of the situation and the strategy to be applied.

AI has a long tradition on abstract representations: logic
(Nebel 2001; McCarthy 2000), frame-based representations
(Minsky 1974), and qualitative abstraction (Forbus 2019).
Together with the representations we have powerful rea-
soning mechanism for, e.g., qualitative reasoning (Forbus
2019), analogical reasoning (Falkenhainer, D.Forbus, and
Gentner 1989), and planning (Ghallab, Nau, and Traverso
2016).

It has turned out that none of these representations alone
can represent and solve realistic problems (Forbus, Nielsen,
and Faltings 1991). Ideas of how to combine different repre-
sentations on a problem have been around for a long time as
well, such as the mental image of a society of mind (Minsky
1986). Blackboard systems (Engelmore and Morgan 1988)
have tried to provide an architectural basis for combining
different representation and reasoning strategies.

Such approaches have been around for a while now and
it feels this must be the direction to go. Still, none of them
have made the step from hand-crafted systems to self-aware
systems that understand the situation and act according to it.

4.1 Knowledge Representation and
Transformation

From our experience, the main bottleneck is the interac-
tion between different representations, especially symbolic
and subsymbolic representations, often referred to as sym-
bol grounding. Of course, there have also been attempts to
do this, especially in robotics (see contributions in special
issue (Coradeschi, Loutfi, and Wrede 2013)).

The fundamental flaw with all of these approaches is that
they treat the task as a mathematical mapping from one rep-
resentation to another. But there is no such mapping. When
we transform subsymbolic information to a symbolic rep-

resentation, we lose detail (usually numerical information),
but we add interpretation. This interpretation always comes
with some arbitrariness. The same numerical state represen-
tation can be part of different situations. Sitting in front of a
black screen can mean that the computer is switched off, or
that the screen is broken, or that the computer simply shows
a fully black screen to name just a few possible interpreta-
tions. At this moment, there is no way to fully understand the
situation based on perception. Some disambiguation can be
done by including memory (remembering having switched
on computer and screen), some may be possible after wait-
ing some time (the computer showing something else than
black), but others may need some interaction between rea-
soning, action and re-observation, like switching the screen
off and on again.

The other way around we encounter the same problem.
When some reasoning process has come to a conclusion like
a “good” shot, it has done so with impoverished information,
since it had abstracted from numerical values. Abstraction is
great to focus a problem and keep the state space small. The
problem is just that settling on one specific solution makes
the whole process extremely fragile. It is up to luck whether
the one solution settled on will really fit the situation. And
when we transform the one abstract solution into a lower-
level command, we again have to guess, this time the nu-
merical values that are necessary for action execution, but
that are not part of the output of the abstract solution pro-
cess. If we then observe an action to fail, it may be due to a
poor plan or a poor transformation.

4.2 Dynamics
We propose that the way out of the dilemma lies in a more
dynamic view on computation. Even if the problem itself is
static (as is the case for Angry Birds, at the moment the agent
has to decide on an action, nothing changes in the setup), the
solution process needs to be dynamic.

The basic idea is that we should replace the computational
pipelines that are used today with a network of interacting
modules, each of which is running its own decision-making
process in a way described in (Kirsch 2019): the module
would continually 1) consider a set of alternatives (which
may be the output of some other module) and 2) evaluate and
rank those alternatives (again a service that may be provided
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by other modules). Differently from the pipeline approach,
no module would have to settle on one single solution. Of
course, at some point an agent should act. This could be
done if enough modules have converged to a stable solution,
meaning that their most favoured alternative is not changing
by any further decision iterations. Actions could also just
be executed with a certain frequency, using the best-ranked
alternative in some action module.

For example, during shot planning multiple shots are out-
put which aim at the same object but at a different target
point, each of them being a candidate for one specific goal
(e.g., tossing over some object). If we know that one of
these shots has succeeded, there is no need to consider the
alternatives—if one shot goes terribly wrong by destroying
the object, other shots at the same object will suffer from
the same problem. The problem our agent is facing is that
there are too many potential alternatives to consider. We
could counter-act this problem by structuring the suggested
shots and providing means to dynamically move within this
structure. To this end, feedback information about a shot
tried is required, revealing how it failed and why it might
have failed. Qualitative relations allow us conveniently to
describe how an action failed by comparing the actual out-
come with the expected outcome. With respect to grasping
causality, we again have to acknowledge that it will not be
possible to single out the one reason, but only to rank alter-
native explanations.

In further steps, modules could even be added and re-
moved (or switched on and off) depending on the situation
(there would be a need for special modules to decide on
the module configuration). The machine would not have to
invent completely new modules, but it could decide to run
modules with the same task, but being instantiated with dif-
ferent sets of parameters.

Why should this work? A clear argument for trying more
dynamic processes is nature. There is no doubt that human
thinking is dynamic, both on the neuronal level (Hawkins
and Blakeslee 2004), on behavioral or problem-solving lev-
els (Hayes-Roth and Hayes-Roth 1979; Newell and Simon
1972), also in the development of language and abstract
concepts (Lakoff 1987). The reason why human thinking
processes are dynamic, is surely the complex and dynamic
world around us (Rittel and Webber 1973; Taleb 2010;
Varela, Thompson, and Rosch 2016). Previous attempts by
the authors in this direction have shown promising results
(Kirsch 2017). We back up our claim by the following ex-
periment: In Bambirds, we have a very simple form of dy-
namics implemented by proposing a certain type of risky
shots (termed ‘last resort shots’) only if no other shots can be
found. To study the effect of this simple form of dynamics,
we compare it against a variant of Bambirds that always con-
siders last resort shots. Running the agent on the 131 com-
petition levels with a time limit of 5 minutes per level (about
four tries per level), the agent in the dynamic condition was
not able to solve 32 levels. When always considering last re-
sort shots, 36 levels remained unsolved. Put differently, the
agent performed better when dynamically increasing its set
of plan candidates as compared to considering all plans at

once. This experiment suggests that a dynamic interaction
between shot planning and other modules is helpful.

Engineering Fears Interacting modules is about the last
thing an engineer wishes for. While single modules are easy
to control and debug, interaction always comes with uncer-
tainty. A change in one module may break the whole sys-
tem. It is exactly this kind of complexity that engineers try
to avoid by a module pipeline.

Interaction, however, does not necessarily imply paral-
lelism. In previous work we have explored interacting mod-
ules for robot navigation (Kirsch 2017). The modules were
run sequentially, the resulting behavior was “rather” deter-
ministic (since the study was run in a physical robot simu-
lation, navigation tasks could be exactly reproduced, but the
physical parameters still introduced some non-deterministic
behavior in the actions).

Even with modules running in parallel, the behavior can
be stable without extreme engineering overhead. In a retro-
spective of the Hearsay II blackboard architecture, the au-
thors report: “A surprising result was that system perfor-
mance, in terms of accuracy, was as good with the synchro-
nization disabled as its performance with the full synchro-
nization.” (Lesser and Erman 1977, p. 797)

And there are theories around how to deal with dynamic
systems, e.g., cellular automata (Wolfram 2002). It is just
that the type of stability shown by dynamic systems is dif-
ferent than the exactly predictable input–output pairs we are
used to from chaining functions in a processing pipeline. As
soon as the environment exhibits uncertainty and dynamics,
the pipe(line) dream comes to an end anyway. Instead of try-
ing to force environments into our engineering wishes, we
should rather accept the challenge and learn to deal with it.

Interfaces When different modules use their own repre-
sentations, we need to find a way to combine them. Black-
board architectures (Engelmore and Morgan 1988) are an
attempt to channel the complexity of interacting modules
to a central memory where all modules communicate. This
makes the information flow easy to track and to debug (all
the relevant information is in the central blackboard mem-
ory). But it also makes it hard or almost impossible to find
the one representation that fits all modules. The experiences
described on the Hearsay II architecture (Lesser and Erman
1977) confirm what can be expected: at the end, one does
construct special pieces of information that are only relevant
and useful for some modules.

Therefore, instead of trying to put all pieces of informa-
tion in one central memory in a unified language, we sug-
gest to try networks of interconnected modules. Each mod-
ule must support communication interfaces to its neighbors,
in the way known from current pipeline structures. Such
a network constrains the options for adding and removing
modules, but as stated above, we do not expect to generate
fully new modules any time soon. Additional modules could
be clones from other modules and would have a matching
place in the network of modules.

We want to emphasize that modules form a network, not
a hierarchy. One module may use a more abstract represen-
tation than another, but that does not put it “above” the other
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module. An observation from a neuroscientist friend: When
we look at graphical representations of modules in the hu-
man brain, each scientist will put the module she is working
on in the center of any diagram, but if you were to draw
the full picture, there is no ‘upper module’. All the pieces
are connected, and in all directions. A network only makes
sense with information passing in both directions, otherwise
we would be back at a processing pipeline.

4.3 A New Role for Qualitative Reasoning
The considerations above motivate us to propose a new ap-
proach to qualitative reasoning in agents. Rather than only
using QR in the classical form of describing a process ab-
stractly, we advocate to use QR to describe the interplay of
modules. To give an example, the feedback loop in the Bam-
birds agent that adapts parameters for visual scene recogni-
tion from observations could be described using qualitative
rules that explain how scene parameters must be changed
(i.e, increased, or decreased), given how a shot missed the
target anticipated. QR techniques can then be applied to
govern the convergence process of modules, similar to how
QR rules about throwing objects like “reduce launch speed
if throwing too far” make action selection converge more
quickly (Wolter and Kirsch 2015).

5 Summary and Conclusion
This paper presented the BamBirds agent, which has won
the AI Birds competition three times. The agent is based on
several modules that are involved with visual object recog-
nition and scene understanding, shot planning, shot selec-
tion, an action module, and feedback components that al-
low the agent to improve (during gameplay by adapting pa-
rameters, during development by learning estimators from
recorded data). We discuss why we believe a physical sim-
ulation game cannot be tackled with existing AI techniques
such as machine learning or QR alone, but motivates basic
AI research. Despite the survey among AI experts (Grace
et al. 2018) that projected the arrival of an agent defeat-
ing humans in Angry Birds around the year 2022, we are
pessimistic that an agent will come close to human perfor-
mance in the near future. We argue that a severe limitation of
today’s approaches is due to static architectures of indepen-
dent modules that lack the ability to reflect their decisions
and to reach their output in a dynamic process of interact-
ing with other modules. In order to let the modules step out
of their static roles, researchers must also step out of their
beaten path of higher degrees of specialisation in AI research
and focus more on AI architectures and how they allow ex-
isting techniques to be integrated. Rather than aiming for
a precise method to govern module interactivity, we argue
that QR techniques are of interest which steer convergence
processes, but allow components to interact in a dynamic
manner.
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Abstract

This paper introduces a novel approach that leverages quali-
tative reasoning to enhance reinforcement learning in physi-
cal domains. Traditional reinforcement learning methods of-
ten suffer from sample inefficiency and lack of explainabil-
ity, especially in complex, physics-driven environments. Our
proposed approach addresses these challenges by integrating
qualitative induction and qualitative planning to learn a con-
trol strategy. Our method enables faster convergence of the
learning process and yields an interpretable and physically
plausible model of the environment. It employs a unique feed-
back loop mechanism that iteratively improves the qualitative
model of the environment based on the observed outcomes of
the executed plans, allowing continual refinement of the sys-
tem’s understanding and actions. Through an extensive set
of experiments, we demonstrate a superior performance of
our method compared to a state-of-the-art deep reinforcement
learning method.

Introduction
Reinforcement Learning (RL), especially when used in
Deep Learning (DL), has excelled in various environ-
ments, from discrete-action games to continuous control in
robotics (Sutton and Barto 2018; Mnih et al. 2015; Silver
et al. 2017; Vinyals et al. 2019; Silver et al. 2014; Lillicrap
et al. 2015; Ibarz et al. 2021). However, deep architectures
typically require large training data and consequently take a
long time to converge. The obtained models offer minimal
insight into their internal control policies. Model-based RL
methods partly address these issues by combining learning
with planning and using state transition models to enhance
efficiency and explainability (Moerland et al. 2023; Plaat,
Kosters, and Preuss 2023; Milani et al. 2022).

When training an agent within a physical domain (e.g. in
robotics - either real-world or simulated), integrating some
degree of physical knowledge into the training mechanism
can significantly speed up the training process. In RL, do-
main knowledge is typically coded in the reward function
that guides the agent faster towards the goal (Grzes 2017).
Reward shaping is limited to the form of a real-valued func-
tion and cannot encode generalized laws of physics. Instead
of dealing with physics directly, the agent tries to maximize

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the received rewards, handcrafted by a domain expert that
considered certain laws of physics when designing it.

Qualitative representations (Forbus 2019) show a promis-
ing direction towards sample efficient learning (Šuc 2003;
Žabkar et al. 2011), learning explainable models (Bratko
2008, 2011; Košmerlj, Bratko, and Žabkar 2011), and learn-
ing explainable control strategies (Šoberl and Bratko 2019).
These representations can bridge the gap between numerical
and symbolic machine learning, and can therefore be used
for symbolic learning and planning in continuous robotic
environments (Žabkar, Bratko, and Mohan 2008; Wiley,
Bratko, and Sammut 2018; Šoberl and Bratko 2020).

In this paper, we propose a qualitative approach to learn-
ing continuous control policies, where instead of a reward-
ing mechanism, qualitative reasoning about the physical en-
vironment is used to constrain the search space and guide
the system toward the goal state. A qualitative model is
built and a qualitative state space determined during the first
few episodes of training and then being continuously re-
fined over new observations as the training continues. The
training is guided along qualitative plans, which are devised
from the observed state transitions, and so avoiding spuri-
ous solutions. We evaluate the performance of our proposed
method on the swing-up problem for the inverted pendulum
and compare it to the performance of the Deep Determinis-
tic Policy Gradient (DDPG) on the same problem (Lillicrap
et al. 2015).

In comparison to similar qualitative control methods, the
contributions of this paper are the following:
• The learned qualitative model, the inferred qualitative

state space and the execution parameters are being con-
tinuously refined, while the existing methods refine only
the execution parameters.

• The structure of the qualitative state space is inferred
from the observed numerical behaviors instead of from
the rules of qualitative simulation, which eliminates the
possibility of spurious plans and confines the computa-
tional complexity of planning to the complexity of the
breadth-first search algorithm.

• Qualitative control is demonstrated on the swing-up
benchmark domain and its performance is compared to
the performance of the deep reinforcement learning al-
gorithm DDPG.
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Related work
First attempts at solving physical and mechanical problems
qualitatively date back to the 1980s, when the concept of
Qualitative Differential Equations (QDE) as a simplified al-
ternative to ordinary differential equations (ODE) was intro-
duced (Forbus 1984; De Kleer and Brown 1984). Kuipers
devised a way to use QDEs to simulate dynamic systems
and introduced an algorithm for qualitative simulation called
QSIM (Kuipers 1986). Forbus formalized the concept of ac-

tion in the context of qualitative simulation (Forbus 1989),
which complied with the paradigm of classical planning,
where actions are deterministic and instantaneous. Such a
formulation was used by Sammut and Yik (Sammut and Yik
2010) to devise a qualitative plan for a bipedal robot walk-
ing, which was executed through trial-and-error (Sammut
and Yik 2010). A similar approach was used by Wiley et
al. to train a multi-tracked vehicle to climb the stairs (Wiley,
Bratko, and Sammut 2018).

When first introduced, QDEs were abstracted from ODEs
manually. However, when a numerical model of the domain
is not known or cannot be easily devised by intuition, there
is a tendency to learn it from numerical traces. This was
largely made possible with the introduction of Multivari-
ate Monotonic Qualitative Constraints (MMQC) (Wellman
1991). These types of constraints can be induced directly
from numerical data and represented in the form of decision
trees (Bratko and Šuc 2003), or abstracted as qualitative par-
tial derivatives and constructed into a model with any cho-
sen classifier (Žabkar et al. 2011). Because these qualitative
models abstract away most of the numerical information and
present the learned theory in the form of increasing and de-
creasing intervals, they better comply with the human intu-
ition that the traditional numerical models (Bratko 2008).

Practical applications demonstrated that by autonomously
interacting with the physical world, a robot can learn qual-
itative representations that could intuitively be interpreted
as obstacle, stability and movability (Leban, Žabkar, and
Bratko 2008; Košmerlj, Bratko, and Žabkar 2011). The
robots were interacting with high-level actions and observa-
tions. Mugan and Kuipers (Mugan and Kuipers 2012) pro-
posed learning on the motor level and developed an unsu-
pervised learning algorithm QLAP (Qualitative Learner of
Action and Perception) that uses qualitative representations
as a way to discretize the input data. The learned models are
represented as Dynamic Bayesian Networks (DBNs).

Using learned qualitative models on the motor level to ex-
ecute robotic tasks requires a method for resolving the ef-
fects of actions on a qualitative level. This approach alone
allows a reactive execution of tasks, simple enough to be
solved without planning. This was demonstrated on the
problems of pursuing a goal, avoiding collision and push-
ing a box (Šoberl, Žabkar, and Bratko 2015; Šoberl and
Bratko 2017). Employing qualitative planning, explainable
control strategies can be devised, which was demonstrated
on the problem of balancing the inverted pendulum (Šoberl
and Bratko 2019). Combining qualitative planning with re-
active execution, a quadcopter was able to learn an explain-
able controller to navigate through space and plan its way

around a simple maze (Šoberl and Bratko 2020). A domain-
independent framework was proposed soon after (Šoberl
2021).

Learning qualitative control vs. Reinforcement
learning

Existing qualitative approaches to learning motor-level con-
trol learn a qualitative model first, then devise a qualitative
plan, which is finally refined through execution. The learned
model and the qualitative plan remain unchanged for the re-
mainder of the execution. The solution is either a quanti-
fied qualitative plan (Sammut and Yik 2010; Wiley, Bratko,
and Sammut 2018) or a qualitative plan with a numerically
fine-tuned execution policy (Šoberl and Bratko 2019, 2020).
In both cases, learning is model-based and goal-oriented.
This is fundamentally different from reinforcement learn-
ing, where the learned policy is refined continuously as new
observations are collected. In the case of the model-free Q-
learning method, no model of the environment is learned,
while the learned policy aims to maximize the reward func-
tion, typically without any notion of a goal state.

Each of the two approaches has certain advantages over
the other: Reinforcement learning can be used with a wider
range of discrete and continuous environments and requires
a large set of training samples, obtained over a large num-
ber of training episodes. The learned control policy is purely
numerical, typically in the form of a deep neural network.
The latter methods do not provide any explanation of why
a certain action is taken in a certain state. The policy is nu-
merically bound to the training environment and requires re-
training in case the environmental parameters change.

The fundamental idea behind learning qualitative control
is to narrow down the search space by constraining it in two
ways: (i) with qualitative constraints that arise from the laws
of physics, and (ii) with domain-specific qualitative con-
straints learned through experimentation with the environ-
ment. The first type of constraints restrict the use of qual-
itative control methods to continuous real-world environ-
ments — typically to robotic domains. The reasons to con-
strain the search space qualitatively instead of numerically
are: (i) the generality of qualitative physics, and (ii) sample
efficient learning of qualitative models. Qualitative physics
is more general than conventional physics in the sense that
it abstracts away numerical constants and works with sym-
bolic time. It, therefore, predicts a succession of qualitative
states instead of exact numerical states at precise times. This
makes the devised qualitative solutions transferable to en-
vironments with the same qualitative dynamics, but differ-
ent numerical parameters. The execution parameters need
to be re-tuned, but qualitative models and plans remain un-
changed. Moreover, qualitative abstractions comply with the
way humans reason about the physical world and are there-
fore a feasible basis for explainability (Bratko 2008; Šoberl
and Bratko 2019). The key differences between reinforce-
ment learning and learning qualitative control are summa-
rized in Table 1.

The presumption taken in previous research on learning
qualitative control is that constraining the search space qual-
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Reinforcement learning Learning qualitative control
Environment types Arbitrary mechanics Real-world physics
Trainable entity (Deep) neural networks Qualitative constraints
Background knowledge Reward function (explicit) Qualitative physics (implicit)
Reward function Crucial for success Used as performance metric
Goal Maximize the reward Reach a goal state
Sample efficientcy Low High
Explainable policy No Yes, through qualitative behaviors
Transferable policy No Yes, qualitative models and plans

Table 1: Key differences between reinforcement learning and learning qualitative control.

itatively reduces the training time. It is a reasonable premise,
considering the fact that model-free reinforcement learning
usually attempts many absurd and non-intuitive actions, be-
fore finding a working solution. However, this has — to the
best of our knowledge — not yet been demonstrated and
evaluated on a common benchmark domain. One of the rea-
sons for the lack of such a comparison is the fundamentally
different ways in which the two methods approach a prob-
lem and hence the lack of a common evaluation metric. In
this paper, we introduce certain adaptations to the qualita-
tive control method, that bring it closer to the paradigm of
reinforcement learning. Training is executed over multiple
episodes of limited duration and the received rewards are
used as a performance metric, although they are not utilized
by the qualitative method for training.

The proposed method
Any qualitative method of acting in a numerical environment
would inevitably assume at least the following four phases:
(1) data collection, (2) qualitative abstraction, (3) qualita-
tive reasoning, and (4) numerical implementation. Qualita-
tive abstraction lifts numerical data to a qualitative level so
that qualitative reasoning can take place, while numerical
implementation acts in reverse: it quantifies a qualitative so-
lution so that it can be executed in the numerical environ-
ment. Our method denotes these four phases as:

1. Data collection. Sensory data is collected either by ran-
dom or systematic experimentation or by motor babbling.

2. Qualitative abstraction. A qualitative model is induced
from the collected numerical data.

3. Qualitative planning. A qualitative plan is found from the
current state to a goal state.

4. Plan execution. The obtained qualitative plan is executed
reactively — one action at a time in a closed control loop.

Existing approaches to qualitative control employ similar
four phases, but mostly in linear succession, with the exe-
cution phase being the only one done in a closed loop. We
propose expanding the sensory feedback also to the phases
of qualitative induction and qualitative planning. In such a
non-linear setting, these can no longer be deemed phases,
but rather levels of acting. Experimentation is the only phase

of acting done separately from the rest. It is performed dur-
ing the first few episodes of training to collect the minimum
required samples to induce a qualitative model. In reinforce-
ment learning, the first few episodes are often also purely ex-
plorational. Samples are then collected for the remainder of
the training and used to refine the parameters on each level.

Data collection
The objective of the initial data collection is to provide
enough numerical samples to induce a qualitative model.
The goal is to model how actions affect the observable nu-
merical state. For example, modeling the behavior of a sim-
ple pendulum, we model how the force F → X , applied to
the pendulum, affects its radial acceleration ω̈ → Y at a cer-
tain position and radial velocity ω, ω̇ → C. When parts of
the state space exhibit different operational principles than
others, samples should be collected in all operating regions
(as in (Šoberl, Žabkar, and Bratko 2015; Wiley, Bratko, and
Sammut 2018)).

Qualitative induction
Qualitative induction is a process of generating qualitative
models from numerical data (Bratko and Šuc 2003). In this
paper, we consider qualitative models that capture mono-
tonically increasing and decreasing intervals of continuous
functions. For instance, function y = x2 has two such in-
tervals — it is monotonically decreasing in all x < 0 and
monotonically increasing in all x > 0. Point x = 0 is con-
sidered a critical point, a border between two operating re-

gions. In this paper, we use Padé (Žabkar et al. 2011), which
allows us to systematically introduce into the modeling the
action variables X , dependant variables Y , and conditional
variables C. We do this in the following way:

numerical
samples Padé classifier qualitative

model
X ,Y C

In the case of only one operating region, the resulting qual-
itative model would consist of qualitative constraints of the
form Y = Q{+,→}

(X ), which are valid everywhere within
the domain. If there is more than one operating region, the
model would contain multiple sets of such constraints, each
set conditioned by values from C.
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Let us recall the pendulum example from the previous
section. Since we only have direct control over the output
variable F → X , we want to model the effect of F on the
radial acceleration ω̈ → Y . Assuming that this effect may be
qualitatively different depending on ω, ω̇ → C, we use Padé
to find qualitative dependencies of the form ω̈ = Q{+,→}

(F )

and a classifier (typically a decision tree learner) to learn op-
erating regions determined by ω and ω̇.

Qualitative planning
Qualitative planning considers a search through the quali-

tative state space from an initial to a goal qualitative state;
a qualitative plan is a qualitative behavior, permitted by the
given qualitative model (Wiley, Bratko, and Sammut 2018;
Šoberl and Bratko 2020). The definition of the qualitative
state space has been adopted from Kuipers’ QSIM (Kuipers
1986) and adapted for planning by extending it with the con-
cept of action. We adopt the same definition of the qualita-
tive state space, but base its internal structure on qualita-
tively abstracted observations, instead on the QSIM’s theo-
retical framework. For instance, suppose that a robot is mov-
ing uphill toward some critical point. The robot’s path can in
such case be qualitatively abstracted as the interval before

the critical point and the interval after the critical point. Be-
cause of the continuity of the path, QSIM would presume the
possibility of transitioning between the two intervals. How-
ever, the hill may in reality be too steep for the robot to reach
the critical point and transition to the next qualitative state.
Our method, therefore, presumes the possibility of transi-
tioning between two qualitative states only if the transition
has already been observed.

To promote some level of exploration, maximum depth d
is given as a parameter and all qualitative plans up to depth d
are constructed. A randomly chosen plan is then selected for
execution. If no plan is found, a random action is executed
and planning is repeated from the new state, hopefully with
new observations allowing for a wider set of state transitions.
In contrast to reinforcement learning, where at every step a
single action is chosen either randomly or by the learned
policy, our method commits to plans rather than to single
actions.

Plan execution
Execution of qualitative plans is the problem of implement-
ing a continuous transition between two consecutive quali-
tative states Si ↑ Si+1 of the plan within a particular nu-
merical environment. We consider reactive control: the agent
selects and executes an action several times per second af-
ter observing the current numerical state with the same fre-
quency. At each reactive step, the executor is solving two
problems: (i) determining which qualitative action will pro-
duce the most desirable effect towards state Si+1, and (ii)
translating the qualitative action to output numerical signals.

The question of how to resolve the effects of qualitative
actions through qualitative models has been addressed in
(Šoberl and Bratko 2017). Qualitative action has been de-
fined as an instruction on the directions of change of control

variables. Formally, let c{1...m} → R be control variables

that represent output signals (e.g., signals to control the mo-
tors). Then a qualitative action A formalized as A = [c1 :

dir1, . . . , cm : dirm], where dir{1...m} → {inc, dec, std}. Ac-
tion A = [c1 : inc, c2 : dec, c3 : std] would therefore instruct
the value of c1 to be increased, the value of c2 decreased, and
c3 kept at its current value. There is no information on the
rates of change at this stage.

The process of action prioritization is mathematically for-
mulated as follows. Let variables xi for all i ↓ k and some
k have a target value, and let variables xi for all i > k
be numerically constrained. Numerical constraints are op-
tional1 and determine the fail states, e.g. numerical con-
straint ↔ω

2 < ω < ω
2 specifies the allowed interval for vari-

able ω. Let ei be the respective time estimates of variables
xi. Define the function:

f(e1, . . . , en) =
k∑

i=1

ei2

2
+

+

n∑

i=k+1

(
(1 + ei)

→1 · (1↔ ei)
→1 ↔ 1

) (1)

and denote its gradient as:

↗f =

(
εf

εe1
, . . . ,

εf

εen

)
. (2)

Let E = [dirx1 , . . . , dirxn ] be the vector of qualitative ef-
fects of action A on variables x1, . . . , xn as deduced through
the qualitative model, where qualitative directions dirxi →
{inc, std, dec} are mapped to integers as inc ↘↑ 1, std ↘↑
0, dec ↘↑ ↔1. The priority Q(A) of action A is then com-
puted as

Q(A) = ↔↗f · E. (3)

In previous work (Šoberl and Bratko 2020; Šoberl 2021),
it was presumed that acceleration is constant over the entire
domain. If the agent was observed to accelerate at a certain
rate, it was presumed that it can decelerate at the same rate
at any location. However, there are domains where this is
not the case. A pendulum, for instance, will exhibit different
accelerations under the same applied force when in different
positions, due to the force of gravity. Therefore, in this pa-
per, we propose predicting the maximum possible decelera-
tion through linear regression. From the collected numerical
samples, we select the points near the goal state to model
the relation between the control variables and the observed
accelerations. Using linear regression, we then predict the
maximum deceleration rates at the goal position. The pre-
dictions get refined as new samples are collected throughout
training episodes.

The experimental domain
To demonstrate our approach, we simulated a classic bench-
mark control problem of swinging up the inverted pendu-
lum. A freely rotating pole is attached to a cart as shown in

1In this paper we do not use numerical constraints, but they can
be useful in other control domains, e.g. (Šoberl, Žabkar, and Bratko
2015; Šoberl and Bratko 2019; Šoberl 2021).
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Figure 1. The cart can be moved either left or right by ap-
plying a force in the direction of motion. Consequently, the
pole accelerates rotationally either clockwise (CW) or coun-
terclockwise (CCW). The pendulum is initially in the down-
ward position (ω = →180

→). The goal is to lift the pendulum
upward (ω = 0

→) and maintain it in this state. We do not
impose any goals or constraints on the position of the cart.
We orient the coordinate system so that the force F is posi-
tive in the right direction, and the pole’s angle ω increases in
the CCW direction. The length of the cart is 1m and weighs
10 kg. The pole is 1m long and weighs 1 kg. The force F is
applied to the cart with the frequency of 50Hz and can be
between →100N and 100N. We limit the maximum speed
of the pole to 360

→/s in any direction. We did not simulate
noise.

εFω

ω̇

ω — The angle of the pole.

ω̇ — The angular velocity of the pole.
εF — The force applied to the cart.

Figure 1: The state (ω, ω̇) and the action (εF ) in our cart-pole
domain.

The observable state of the system is (ω, ω̇), while ω̈ can
be derived from the observed !ω̇ and !t. The initial state
is (ω = →180

→, ω̇ = 0) with F = 0, and the goal state is
defined as (ω = 0

→, ω̇ = 0). We use the reward function

R(ω, ω̇) = →
(
ω2 + 0.1 · ω̇2

)
, (4)

which is similar to the reward function used in the OpenAI
Gym pendulum environment (Brockman et al. 2016), except
for the torque component (+0.001 ·u2), which we here omit.
In the Gym pendulum domain, force F is applied directly
to the tip of the pole, so the translation of the force to the
torque is straightforward. In our inverted pendulum domain,
the force is transferred via the cart to the base of the pole,
which makes the torque not directly observable. Moreover,
the impact of the torque on reward values is small due to
a low coefficient of 0.001. The two methods compared in
this paper – reinforcement learning and our qualitative con-
trol method — are hence both driven by the same observ-
able quantities ω and ω̇, the former through optimizing the
received rewards and the latter by pursuing the goal state.
Recall that our qualitative method does not employ a reward
function; we use it here only to be able to compare the per-
formance of both methods.

Reinforcement learning is usually done over multiple
episodes. After each episode, the system is reset to its ini-
tial state and the training is repeated with the updated policy.
The DDPG method updates the weights and biases of the ac-
tor and the critic neural networks (as described in (Lillicrap
et al. 2015)), while our qualitative control method updates
(i) the qualitative model, (ii) the set of state transitions and
(iii) the linear regression model to predict accelerations. We
set the length of each episode to 6 seconds, which is 300
steps with the 50Hz action frequency. We identify no fail
states in this domain, although, in general, a fail state would
also terminate an episode.

Results
In this section, we separately present the results of qualita-
tive induction, qualitative planning, and execution that we
obtained in our simulated inverted pendulum domain. We
compare the results of execution with those obtained by the
DDPG algorithm that we ran in the same simulator and un-
der the same conditions.

Qualitative induction
The training of the inverted pendulum started purely exper-
imentally. Random forces F were applied to the cart with
random durations between 20 and 500 ms. Numerical sam-
ples (F , ω, ω̇) were captured 50 times per second, and ω̈ com-
puted as !ω̇ under the constant time step !t = 20 ms be-
tween two consecutive observations. What we aim to model
is how the force F affects ω̈ in any given state (ω, ω̇). Since
ω̈ is the time derivative of ω̇ and the latter of ω, the effect
of F on those higher integrals would be simulated by the
qualitative planner.

After 3 episodes, 900 samples were obtained, which suf-
ficed for inducing a qualitative model with an average nu-
merical error below 4

→ for ω. Considering that the maxi-
mum speed of the pole ω̇ is 360 →

s
↑1 and that observations

are collected with the frequency of 50 Hz, up to 7.2→ in-
put error is possible just from temporal resolution. The col-
lected numerical samples and the induced qualitative model
are shown in Figure 2. It can be seen from the model that
two operating regions have been learned: ω̈ = Q+

(F ) for
→89.94→ ↑ ω < 93.53→ and ω̈ = Q↑

(F ) outside that in-
terval. The theoretically correct boundaries are →90.0→ and
90.0→ respectively. The error decreased with further sam-
pling, dropping below 1.2→ after 30 episodes. The learner
determined that ω̇ plays no role in specifying the operating
regions.

The obtained qualitative model can be interpreted in the fol-
lowing way:

If the pole is in the upright position (above the hori-

zontal line), increasing the force on the cart will in-

crease the acceleration of the pole, and vice-versa.

If the pole is in the downright position (below the hor-

izontal line), increasing the force on the cart will de-

crease the acceleration of the pole, and vice-versa.
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Figure 2: Qualitative induction from numerical samples.
Above: Samples collected during the experimentation
episodes. Below: A qualitative model induced after process-
ing the numerical samples with Padé.

Qualitative planning
The qualitative model was passed to the qualitative planner,
together with the initial state (ω = →180

→, ω̇ = 0) and the
goal state (ω = 0

→, ω̇ = 0), the planner immediately deter-
mines the landmarks of the configuration space (ω, ω̇):

ω :{→180,→90, 0, 90, 180},
ω̇ :{min, 0,max}.

(5)

For clarity, we here write the theoretical boundaries →90 and
90 for the two operating regions, although the actual val-
ues with the induced model are →89.94 and 93.53. The min

and max landmarks are symbolic representations of the min-
imum and maximum values, which at this point are not yet
known.

These landmarks determine 24 possible qualitative states.
The possible qualitative values for ω are:

[→180], [→180..→90], [→90], [→90..0], [0], [0..90], [90], [90..180],

and for ω̇:
[min..0], [0], [0..max],

to which we will also respectively refer to as neg, zero, and
pos.

Transitions between the qualitative states are deduced
from numerical observations. Most of the possible transi-
tions were abstracted from the 900 numerical samples used
to induce the qualitative model. From these, the circular
topology (→180

→ = 180
→) of ω was also discovered and in-

corporated into the initial space partitioning (5). As seen
from Figure 2, the 900 samples are more densely concen-
trated around the initial position ω = →180

→, while being
sparse at the goal position ω = 0

→. For this reason, the transi-
tions abstracted from these samples were also denser around
the initial position, while most transitions around the goal
position were discovered in later episodes. A typical sce-
nario occurring during the early episodes of training would
be making the pole rotate a full circle after overshooting the
goal, because the possibility of stopping the pole close to the
goal and reversing its direction had not yet been observed.
Still, the early plans did tend to bring the pole closer to the
goal more often than random exploration, hence new transi-
tions were eventually discovered and with them the possibil-
ities of new plans.

Figure 3 shows how a qualitative plan was found to swing
up the pendulum. The shorter plan, leading from the initial
state [→180/zero] to goal state [0/zero] failed to transition
from [→180..→90/zero] to [→90/zero] due to the lack of mo-
mentum to overcome the force of gravity. A longer plan was
then deduced which takes a different path after the point of
failure. This way the concept of swinging to build up the
momentum was discovered.

Figure 4 shows a plan deduced after the goal posi-
tion ω = 0

→ is overshot. Instead of transitioning from
[0..90/neg] to [0/zero], the pendulum would overshoot to
state [→90..0/neg]. A plan would then be devised to reverse
the direction of the pendulum back to the goal position.

Execution
We compared the performance of our qualitative execution
with the performance of DDPG, which we configured as fol-
lows: the actor and the critic neural networks both contained
two hidden layers of 64 and 32 nodes, both using the ReLu
activation function. The actor took two inputs, ω and ω̇, and
output via the Tanh activation function a continuous action
within [→1, 1], which was scaled to F ↑ [→100, 100] before
being executed. The critic took the same input as the actor,
together with the actor’s output, and output the Q-value via
the linear activation function. Both networks used the Adam
optimizer with the learning rate ε = 10

↑3. The Q-learning
discount factor was set to ϑ = 0.99. The training was done
in batches of 32 samples with unlimited replay memory size.
We tried various other DDPG configurations with different
neural network architectures but achieved the best results us-
ing the described settings.

The training performance of both algorithms is shown in
Figure 5. The plots were obtained by running each algorithm
100 times and averaging the episode rewards obtained in
each training episode. The episode reward itself is the av-
erage of the 300 rewards received during an episode (re-
call that the duration of each episode is 300 steps). Both
algorithms eventually converged toward the same strategy
— build up the momentum by swinging and then balance
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-180/zero -180..-90/pos -90/pos -90..0/pos 0/zero

-180..-90/zero -180..-90/neg -180/neg 90..-180/neg 90/neg 0..90/neg 0/zero

Figure 3: A qualitative plan found to swing up the pendulum. The alternative (lower) branch is deduced when the transition
marked with the red arrow fails to execute.

0..90/neg 0/zero -90..0/neg -90..0/zero -90..0/pos 0/zero

Figure 4: A qualitative plan found to correct a goal overshoot. The alternative (lower) branch is deduced when the pendulum
fails to stop exactly at the goal position.

at the goal position. However, our qualitative algorithm con-
verged significantly faster. The level of performance reached
by DDPG after about 150 episodes, was achieved by our
qualitative executor around episode 50 in the worst case.

Conclusion
This paper aims to bridge the gap between reinforcement
learning and learning qualitative models, which have pre-
viously been researched separately and, to the best of our
knowledge, never evaluated on the same control problem.
The type of qualitative modeling and reasoning that we fo-
cus on in this paper is based on monotonic qualitative con-

straints, which are more sample efficient to learn, have bet-
ter noise resiliency and offer a higher level of explainability
than traditional numerical models.

We demonstrated our method on a single benchmark con-
trol problem and compared it to state-of-the-art deep rein-
forcement learning method. The approach should easily be
transferrable to other control domains. We find it somewhat
more difficult to implement than a typical reinforcement
learning algorithm, since it contains a three-layered feed-
back loop, the complete Padé learner, a qualitative physics
engine, and a non-trivial execution mechanism that is capa-
ble of dynamically adapting to the environment. It also can-
not be used in (simulated) environments that do not comply
with Newtonian physics.
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Žabkar, J.; Možina, M.; Bratko, I.; and Demšar, J. 2011.
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Abstract

Detecting and responding to novel situations in open-world
environments is a key capability of human cognition and is
a persistent problem for AI systems. In an open-world, nov-
elties can appear in many different forms and may be easy
or hard to detect. Therefore, to accurately evaluate the nov-
elty detection capability of AI systems, it is necessary to in-
vestigate how difficult it may be to detect different types of
novelty. In this paper, we propose a qualitative physics-based
reasoning method to quantify the difficulty of novelty detec-
tion focusing on open-world physical domains. We apply our
method in the popular physics simulation game (PSG) An-
gry Birds and conduct a user study across different novelties
to validate our method. Results indicate that our calculated
detection difficulties are in line with those of human users.

1 Introduction

With the increasing reliance on autonomous systems such as
self-driving cars and planetary robots, detection and adap-
tation to novel situations have become important capabili-
ties for such AI systems. For example, if an autonomous car
is not trained on slippery roads, the car may fail to detect
when the friction is reduced and adjust the speed accord-
ingly. Open-world learning is an emerging research area that
attempts to address the challenge of detecting and adapting
to novel situations (Langley 2020). Open-world learning re-
search requires adequate evaluation protocols to capture the
performance of agents under the two tasks: detection and
adaptation (Senator 2019). This paper focuses on creating a
difficulty measure for novelty detection to aid the evaluation
of novelty detection by disentangling agents’ performance
from the intrinsic difficulty of novelties.

The novelties we encounter in an open world can take
various forms (Boult et al. 2021). In this paper, we focus
on structural transformation, a very common type of real-
world novelty where an unknown object is encountered or a
previously known object changes one/more of its properties
(Langley 2020). For example, this could be a new vehicle
type on the road, a new type of product in the supermar-
ket with new packaging, a previously empty box filled with
goods, or an abnormally heavy ball in a billiards game. As
these examples suggest, only some of the novelties can be

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

identified from appearance. Novel objects with different ap-
pearances can be detected by observing the change in color
or shape. Quantifying the difficulty of detecting them can be
addressed with the use of concepts presented in color science
(Giesel and Gegenfurtner 2010) and research conducted on
object shapes and sizes (Perner 2018). However, the dif-
ficulty of detecting novel objects with the same appear-
ance but different physical parameters (e.g., mass, friction,
bounciness) is not addressed so far. It is also not straightfor-
ward as one needs to interact with the objects and observe
changes in their movements. Moreover, the detectability of
such novelty depends on several factors: the physical param-
eter that is changed or the number and arrangement of novel
objects in the environment.

This paper presents a qualitative-physics based method to
quantify the difficulty of detecting novel objects with the
same appearance but altered physical parameters (compared
to previously seen versions of the objects). The proposed
method aids a thorough evaluation by disentangling agents’
performance from the difficulty of detecting the novelty. For
example, if the novelty cannot be identified from the appear-
ance and occurs in an object that is not reachable to interact,
then the novelty cannot be detected. Therefore, the difficulty
of novelty detection should be considered before making
conclusions on the detection ability of an agent. The method
we propose is agent-independent and enables us to evalu-
ate an agent’s performance (both detection performance and
task performance) at different levels of difficulty (that can
be categorized as easy, medium, and hard). We apply our
method to the popular PSG Angry Birds, as it has semi-
realistic physics and provides an ideal platform to introduce
novelty (Gamage et al. 2021). We then conduct a user study
experiment with human participants to verify that the calcu-
lated novelty detection difficulty values are in line with those
of humans.

2 Background and Related Work

This section presents the notion of difficulty and novelty in
the context of physical worlds and AI. We also discuss the
related work in qualitative physical reasoning and a brief de-
scription of our experimental domain.

Difficulty Assessing difficulty is a popular research area
in neuroscience where researchers are interested in quanti-
fying the difficulty of tasks or decisions (Franco et al. 2018).
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Figure 1: Examples from Angry Birds. The figure in the left (a)
has original parameters whereas the figure in the right (b) has an
increased bounciness parameter for pigs. The two figures show the
difference in pig’s movement for the same shot in the original (a)
and increased bounciness (b) of pigs.

Measuring difficulty is also a main topic of discussion when
measuring the intelligence of AI systems (Chollet 2019).
It is also a widely studied topic in the gaming industry to
make games interesting to players. The flow-theory, one of
the most prevalent models in the game design, suggests that
the games should not be too easy or too difficult to maintain
player enthusiasm (Takatalo et al. 2010). Considering the
difficulty of detection, researchers have studied this in areas
such as emotion detection (Laubert and Parlamis 2019) and
missing content detection (Yom-Tov et al. 2005). However,
to our best knowledge, the difficulty of novelty detection in
physical domains is not studied so far and is important when
evaluating the detection capabilities of agents.

Novelty In the context of AI, novelty is described as sit-
uations that violate implicit or explicit assumptions about
the agents, the environment, or their interactions (SAIL-ON-
BBA 2019). Similarly, Boult et al. formalize a theory of
novelty for open-world environments and Langley explains
different types of environmental transformations that can be
considered as novelty. Following these ideas, the novelties
we consider in this paper occur as a result of changed physi-
cal parameters of objects. It could be the mass, friction, elas-
ticity, etc. These novelties do not change the appearance of
the object but cause it to behave differently after an inter-
action. For example, in the real-world, a novelty could be a
new tennis ball with higher bounciness than the balls seen
before, a previously empty bottle now filled with water, or a
box of goods with less weight due to a manufacturing defect.
Figure 1 shows differences in the observed movements of
objects after physical parameters have been changed in the
research clone of Angry Birds (Ferreira and Toledo 2014).

Qualitative Physics As discussed previously, novelties
based on physics parameters are not detectable from appear-
ance alone. Therefore, one needs to interact with the objects
and observe any difference in their expected movements.
Humans are often unaware of the exact physical parameters
such as density, friction, and mass distribution of objects and
do not need to solve complex differential equations when
reasoning about their movements, instead relying on spatial
intelligence (Walega, Zawidzki, and Lechowski 2016).

To analyze object movements, a qualitative physics ap-
proach was proposed to approximate structural stability
based on the extended rectangular algebra (ERA) (Zhang
and Renz 2014). ERA comprises 27 interval relations based
on the approximated center of mass of the object and offers

more flexibility than the original 13 interval algebra rela-
tions (Allen 1983). Ge, Renz, and Zhang point out that ERA
is more suitable to approximate the stability of a single ob-
ject rather than a structure and extends the use of ERA by
proposing two qualitative stability analysis algorithms: local
stability and global stability. A similar algorithm, vertical
impact is proposed by Walega, Zawidzki, and Lechowski,
which combines the concepts of local stability and global
stability into one algorithm. They also introduced the algo-
rithm horizontal impact, to provide a heuristic value to the
interaction based on force propagation. Our difficulty mea-
sure also uses the algorithm vertical impact along with new
reasoning components which reason about the nature of the
object movements that are necessary to detect novelty.

Experimental Domain Our experimental domain, Angry
Birds is a PSG where the player shoots birds at pigs from a
slingshot. These pigs are often protected by different phys-
ical structures that are made up of three types of materials:
wood, ice, and stone. There are also static platforms, which
are indestructible objects that are not affected by forces. The
task of an agent that attempts to detect novelty is to iden-
tify if anything has changed from the normal game envi-
ronment by shooting at game objects. As the original An-
gry Birds game by Rovio Entertainment is not open source,
we conduct our experiments using a research clone of the
game (Ferreira and Toledo 2014). One example of novelty
in Angry Birds is displayed in figure 1. As Figure 1a shows,
the agent who is familiar with the normal game environment
expects the pigs to fall down without bouncing up after an
interaction. However, when the bounciness parameter is in-
creased, the agent observes a change in the pigs’ movement
as shown in Figure 1b.

We selected Angry Birds as our experimental domain due
to three reasons. First, solving an Angry Birds game instance
(game level) requires reasoning about object movements
in complex physical structures (Zhang and Renz 2014).
Second, there are many game levels and level generators
(Stephenson et al. 2019) that enable us to evaluate our dif-
ficulty measure on a diverse set of levels. Third, this is an
ideal platform to vary different physics parameters and add
the type of novelties we are investigating in this study. More-
over, Angry Birds is a very popular domain among AI re-
searchers with several long-running competitions associated
with it (Renz et al. 2015, 2019).

3 Overview of the Difficulty Measure

This section presents a high-level overview of our difficulty
measure formulation for novelty detection in physical do-
mains. We define the following to aid our explanations.
• Each object consists of a set of appearance-related param-

eters and a set of physical parameters. There is a pre-
defined many-to-one mapping from appearance parame-
ters to physical parameters (objects with the same appear-
ance always have the same physical parameters and two or
more objects with different appearance can have the same
physical parameters). Objects with the same appearance
are referred to as an object type. The number of object
types is predefined.
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Figure 2: A set of novel instances. Each instance contains one/-
more novel pigs denoted by the red circle and a set of normal ob-
jects. Note that, this paper focuses on novel objects with the same
appearance as non-novel objects but with different physical param-
eters. Therefore, novel objects cannot be distinguished visually.

• normal object: An object that preserves the predefined
mapping between appearance and physical parameters.

• novel object: An object that violates the predefined map-
ping between appearance and physical parameters.

• normal instance: An arrangement with a collection of nor-
mal objects.

• novel instance: An arrangement with a collection of nor-
mal objects and novel objects. (See Figure 2)

Our measure has three properties. Our difficulty measure:
1. is instance-based, i.e., we provide the difficulty of detect-

ing novelty for a specific novel instance.
2. quantifies the difficulty of detecting novelty when an

agent encounters the novel instance for the first time (the
agent does not attempt the instance multiple times).

3. is agent independent (i.e., we do not collect data from
agents to develop the measure).

Given below are three assumptions we make.
1. As designers of the difficulty measure, we have full un-

derstanding of the novel instance (i.e., the novel object,
location of the novel object, the changed parameters, and
the value of the parameters).

2. The agent has a full understanding of the object dynam-
ics in the normal environment. The agent is fully aware
of how objects move without novelty and the agent can
detect that the environment is novel if a change in move-
ments happens in the novel environment (perfect detec-
tion). We made this assumption because the detection
difficulty can be different across agents; therefore, our
measure is based on the lower bound of the detection dif-
ficulty by assuming perfect detection.

3. The agent attempts to detect novelty using a sequence of
interactions. i.e., the agent cannot have multiple interac-
tions at the same time. For example, in the billiards game,
an agent can move only one ball at a time.

Figure 3 shows the components of our difficulty measure
formulation.There are two inputs, the initial state of an in-
stance (i.e., the state of an instance before any interactions)
and the novelty present in the instance. Novelty present can
be a set of objects with their changed physical parameter
(e.g. {(wood objects, mass), (stone objects, friction)}). Our
first module, the Target Determining Module takes the above

Figure 3: Overview of the method to compute the difficulty of
novelty detection.

two inputs and searches possible target objects, i.e., the ob-
jects an agent can interact with. This module outputs all pos-
sible target objects in the given state.

The second module, Object Dynamics Reasoning Module
has two components, the object movement analysis compo-
nent and the detectability analysis component. The object
movement analysis component takes each target object and
identifies other objects that are moved due to the interaction
with the target object. Next, the detectability analysis com-
ponent determines if the interaction has caused the novel ob-
ject to move in a detectable way. For example, when a novel
object has a different sliding friction value, an interaction
that causes the novel object to fall from above would not
make the novel object detectable. In contrast, an interaction
that causes the novel object to slide on a surface would make
the novel object detectable.

Knowing the target objects that make detectable move-
ments, the Difficulty Computation Module quantifies the dif-
ficulty of novelty detection to the given initial state. If the
algorithms in the difficulty computation module require the
next state to predict the difficulty, the updated states (i.e.,
state after an interaction) are sent to the Target Determining
Module (dotted arrow in Figure 3) and the process iterates
until the difficulty for the instance can be calculated.

4 Difficulty Measure Applied to Angry Birds

This section presents each component of Figure 3 in detail
by considering the domain of Angry Birds. Novelties in An-
gry Birds can appear in any game object. When explaining
our difficulty measure formulation, we do not consider the
novelties that appear in the birds’ game object, as such nov-
elties can usually be identified directly after a single shot by
observing birds’ behavior.

The first input is the initial state of the instance without
any interaction. In our example domain, this is the game
instance before shooting any birds. To represent the game
scene, we use a 2D coordinate system where the x-axis is
horizontal and oriented to the right while the y-axis is ver-
tical and oriented to the top (Figure 4). P denotes all pixel
points in a scene. For a pixel pi, x(pi) and y(pi) denote its
x and y coordinates. O represents all objects in the environ-
ment. Each object oj (s.t. oj → O) comprises a set of pixels
that can be mapped to a specific object (e.g. square wood).

The second input is the novelty present in the instance.
In our example domain, novelties may appear in different
object categories (i.e., wood, ice, stone, pigs) and the novel
property could be any physics parameter (e.g. mass, friction,
bounciness, etc). Thus, an example of the input is (stone
blocks, mass). These inputs are sent to the target determin-
ing module to search for possible target objects.

35



Figure 4: Representation of the object space. o2, o3, o4 and o5

satisfy the left-of relation to o1. The trajectories to each object are
denoted by the dotted line. A dot in the line represents a pixel point
pi → P. o2, o3, o4, and o5 satisfy the target predicate. o1 is not a
target as the traj(o1) intersects with o4, which is in left to o1. o3
supports o4. If o3 moves, o4 also moves: impacted(o3,o4) is true.

Target Determining Module

This module is used to identify the target objects. We con-
sider the target objects as the objects that are directly reach-
able to interact. We do not consider platforms as target ob-
jects as they are static. We use the following predicates to
determine the targets in our example domain.
• left-of (oi, oj): if object oj is in left of object oi (Figure 4).

left-of(oi, oj) → oi ↑= oj ↓ xmax(oi) > xmin(oj),
where: xmax(oi) and xmin(oj) are the maximum pixel co-
ordinate of object oi in x direction and minimum pixel co-
ordinate of oj in x direction respectively.
xmax(oi) = max(x(pk) ↔ pk ↗ oi),
xmin(oj) = min(x(pk) ↔ pk ↗ oj)

• traj(oi): trajectory from a starting point to object oi.
As shown in Figure 4 for object o3, a trajectory may con-
tain multiple connections starting from a fixed position
(slingshot in Angry Birds) to the connection point of the
object. The connections can be represented using a set of
points denoted by the dotted lines in Figure 4. We define:
traj(oi) = {ti1, ti2, ..., tin}
where, ti

k
= {p1k, p2k, ..., pnk}

i.e., a set of points that belong to one of the parabola tra-
jectories and only pn· ↗ oi.

• target(oi): if object oi is a target object.
oi is a target if the object is directly reachable, i.e., there
is at least one trajectory to oi such that trajectory points
do not intersect with any object with left-of relation to oi

according to our domain.
target(oi) → (↘ t

i ↗ traj(oi)) ↓ t
i
/↗ oj ↔ {oj : left ≃

of(oi, oj) ↔oj ↗ O}
Similar to the above left-of relation, we can define right-

of, below, or above relations according to the requirement
in each domain. We can also define traj(oi) and target(oi)
specific to each domain. For example, if the way to interact
with the objects is to drop an object from above, traj(oi)
should be defined according to the path taken by the object
in gravitational free fall and target(oi) is determined by the
trajectories that do not intersect with the objects in above
relation to target(oi) → (↘ t

i ↗ traj(oi)) ↓ t
i
/↗ oj ↔ {oj :

above(oi, oj) ↔oj ↗ O}

Object Dynamics Reasoning module

After target objects are determined, it is necessary to iden-
tify the objects that can be moved due to the interactions
with the target objects. This is achieved by using the ob-
ject movement analysis component. We instantiate all com-
ponents using our proposed qualitative physics algorithms.
If the novel objects are among the impacted objects identi-
fied (defined below) or the target objects, the detectability
analysis component captures if the novel objects move in a
detectable way. We first define the following to aid the ex-
planations of the methods used in the two components.
• novel-object(oi): if object oi is a novel object. As de-

fined earlier, oi is a novel object if it violates the prede-
fined mapping between appearance and physical parame-
ters. i.e., object has changed physical parameter values.

• impacted(oi, oj): if oj is moved due to the interaction of a
bird with the target object oi. For example, if oi supports
oj and oi is hit by a bird, oj also moves (See o3 and o4

in Figure 4. The reasoning for the identification of such
objects is presented under object movement analysis).

• detectable(oi, oj): if oj moves in a detectable way due
to the interaction of a bird with the target object oi.
detectable(oi, oj) returns true when oj is a novel object
and impacted(oi, oj) is true and oj is impacted by the tar-
get object oi in a detectable way. A case-based exploration
of the detectability is conducted in detectability analysis.

Object Movement Analysis This section presents the
qualitative physics approach used in identifying the objects
that satisfy the impacted predicate presented above. i.e., we
identify which objects move after an interaction with a tar-
get object. We use two algorithms 1) based on the stability,
2) based on the force propagation in the horizontal direction
(Algorithm 1). We used the algorithm vertical impact pro-
posed by Walega, Zawidzki, and Lechowski to reason about
the stability of the objects. We also propose a new algorithm,
approximate horizontal influence to check the impact on the
objects located in the horizontal direction.

Vertical impact: This algorithm recursively checks the
objects in a structure starting from the object that is directly
impacted and returns a list of objects that may fall.

It exploits the rule which is the basis for stability inves-
tigation, “an object is stable if the vertical projection of the
centre of mass of the object falls into the area of support
base” (Zhang and Renz 2014). The algorithm contains eight
steps where at each step object relationships are examined
and substructures are constructed. The stability of objects
is examined by approximating the center of mass of sub-
structures and their supporters. A clear explanation of the
algorithm is available in the work of Walega, Zawidzki, and
Lechowski and is diagrammatically summarized in the ex-
tended version of our paper (Pinto et al. 2023). At the end of
the eight steps, the algorithm returns the list of objects that
may fall after the interaction with a target object.

Approximate horizontal influence: This algorithm exam-
ines the impact a target object can cause due to the force
propagation on the objects located horizontally to the target.

We start by analysing if the target object can get destroyed
due to the interaction. If it is not destroyed, we check if the
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object will slide or it will flip as a result of the interaction
(collision). Destruction of the target object heavily depends
on the materials and the types of the two colliding objects
and the velocity at the collision. In our example domain, we
define the following predicate by considering the object ma-
terials (e.g., wood, ice, stone, pig) and the bird (e.g., red,
blue, yellow). We approximate the velocity at the collision
by using the law of energy conservation.

object-destroy(oi) → o
life

i
– damage < 0. olife

i
is the ob-

ject life and it depends on the material of the object and
type of it (e.g. square wood-block, rectangular ice-block).
This is a constant value for a specific object. damage de-
pends on the type of the bird used and the relative veloc-
ity at collision. Damage caused by a bird type is a fixed
value for a specific object, obird damage

i
. damage can be ap-

proximated as obird damage

i
↑ relative-velocity at collision.

relative-velocity can be approximated using the law of en-
ergy conservation. Thus, the final formulae for the object-
destroy(oi) predicate can be given as, object-destroy(oi) →
(olifei → o

bird damage
i

√
k1 ↑ (ystart → ytarget) + k2bird) < 0

where, k1 is an experimentally fixed constant value, and
k2bird is a value based on the initial kinetic energy of the
bird (In Angry Birds, the value only depends on the bird
mass as the initial launch velocity is fixed because agents
use the slingshot with full stretch). (ystart ↓ ytarget) is the
height difference between slingshot and the target object.

If the object-destroy(oi) predicate is false, we check the
object-flip(oi) predicate by considering object dimensions.

object-flip(oi) → ymax(oi)→ymin(oi)
xmax(oi)→xmin(oi)

> kflip,
where: ymax(oi) and ymin(oi) are the maximum pixel co-

ordinate of object oi in y direction and minimum pixel co-
ordinate of oj in y direction respectively. The kflip is an ex-
perimentally fixed constant value.

kflip= flipping threshold,
ymax(oi) = max (y(pj) ↔ pj ↗ oi),
ymin(oi) = min (y(pj) ↔ pj ↗ oi),
and xmax(oi), xmin(oi) are as defined previously.
These predicates hold the basis for the approximate hori-

zontal influence algorithm. A pseudo-code of the process is
demonstrated in Algorithm 1 and Figure 5 explains the terms
falling-arc(oi) and sliding-path(oi) used in Algorithm 1.
• For a circle C, with centre (xmax(oi), ymin(oi)) and ra-

dius (ymax(oi)↓ymin(oi)), let q1 be the set of pixel points
in the first quadrant of C. falling-arc(oi) returns the list of
objects within the falling arc of object oi (See Figure 5a).
We define falling-arc(oi) as follows:
falling-arc(oi) → {oj ↗ O | oj ↘= oi ≃ (oj ⇐ q1)↔oj ↗ O}

• sliding-path(oi) returns the list of objects within the path
the object oi slides (See Figure 5b). We define sliding-
path(oi) as follows:
sliding-path(oi) ↓ { oj ↔ O | oi ↗= oj

↘ (xmax(oi) < xmin(oj) < xmax(oi) + ksliding constant)

↘ ((ymin(oi) < ymax(oj) < ymax(oi)) ≃ (ymin(oi) <

ymin(oj) < ymax(oi))) ⇐oj ↔ O}
where, ksliding constant is an experimentally determined
distance that approximates the distance an object can slide
after a collision.

Figure 5: Left Figure (a) shows examples for falling-arc(o1) and
the right Figure (b) shows examples for sliding-path(o1)

Algorithm 1: Approximate horizontal influence
Input: State representation of objects, target object (oi)
Output: List of impacted objects
1: Initialize horizontal-propagation(HP) impact list
2: if ¬ (object-destroy(oi)) then

3: if object-flip(oi) then

4: pending list = falling-arc(oi)
5: else

6: pending list = sliding-path(oi)
7: end if

8: closest object = oj | min(xmin(oj) → xmax(oi) ⇐ oj ↔
pending list)

9: Add vertical impact(closest-object) to HP impact list
10: end if

11: return HP impact list

In Algorithm 1 (line 8), we only limit to a single clos-
est object obtained from either the falling-arc or sliding-
path according to the experimentation with our example do-
main. However, this can be altered according to the domain.
The output of the object movement analysis module is the
list of impacted objects obtained from the vertical impact al-
gorithm and the approximate horizontal influence algorithm.

Detectability Analysis This section presents the case-
based exploration in identifying the detectable predicate
shown above. Once the set of impacted objects is available,
we can categorize each object into at least one of the below
cases that represent observable features in a physical world.
The observable movement of the directly-hit object (i.e., tar-
get object) can be explained using the first three cases.

• Case 1: Directly hit and destroys
• Case 2: Directly hit and flips
• Case 3: Directly hit and slides

Apart from these three special cases, all objects subject
to at least one of the following six cases. Case 4 and 5 fo-
cus on object rotation. We assumed that rotation of the im-
pacted objects directly above and very close to static struc-
tures (ground or a platform) is hardly observable. Other ob-
jects could rotate due to the collisions with objects and there
is a chance of observing the rotation when objects fall.

• Case 4: Falls from the top without rotating
• Case 5: Falls from the top while rotating

Case 6 and 7 focus on the objects that slide. The object
may slide and stop, or it might fall if it’s located above the
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ground based on the sliding path.

• Case 6: Slide and stop
• Case 7: Slide and fall down

Case 8 and 9 focus on the objects which flip. Similar to the
above two cases, it may either fall or stop based on location.

• Case 8: Flips and stop
• Case 9: Flips and fall down

The nine cases cover the majority of observable move-
ments in Angry Birds (More details in (Pinto et al.
2023)).However, there could be situations that may be not
captured using the nine cases. To evaluate if the novel object
is detectable, we check if the object is moved in a detectable
manner by considering the changed attribute along with the
object type. Consider the following examples:
Example 1: Novelty in “friction” of stone blocks - If at least
one impacted stone block satisfies the requirements for case
3, 6, or 7, we can detect the novelty (as friction changes can
be observed when the object slides).
Example 2: Novelty in “bounciness” of wood objects - If
at least one impacted wood object satisfies the requirements
for case 2, 3, 4, 5, 6, 7, 8, or 9, we can detect the novelty (as
bounciness can be observed when objects collide).

The output of this module enables to capture the objects
that satisfy detectable predicate for each target object.

Difficulty Computation Module

This component quantifies the difficulty of detecting novelty
for each game instance. We propose two algorithms to cal-
culate the detection difficulty. Factors including the novelty
in the object, the placement of the objects, the number of
detectable objects, the number of reachable objects, and the
number of interactions available (number of birds in Angry
Birds) are considered when developing both methods.

We define the following to identify the most influential
target object to interact with (i.e., the target object that gives
the most information about objects movements. We refer to
this as the best-target).

• impact-score(oi): The heuristic impact score of target(oi)
is defined based on the objects moved and the novelty.
Example 1: If the novelty is in only one object in the in-
stance, the score per each object moved = 1
Example 2: If the novelty is in objects with the same ma-
terial (wood, ice, stone), the score per material moved=1
Example 3: If the novelty is in object types and if the
player is informed that the wood objects are not novel, the
score per each wood object moved = 0, the score per other
types of objects moved = 1
impact-score(oi) =

∑
oj→O|impacted(oi,oj)

scoreoj

• best-target: The target object with the highest impact-
score. If there are multiple objects with the same impact-
score, the first object from all objects is selected.
best-target → oi | target(oi) ↑ impact-score(oi) =
max(impact-score(oi)) ↓ oi ↔ O

Algorithm 2: Probabilistic interaction difficulty
Input: State representation of objects (O) Output: PID
1: Initialize PID = 0
2: for i in total number of interactions do

3: Ni = | { oj → O | target(oj) ↑ oj → O } |
4: ni = | { oj → O | (target(oj) ↓ ↔ ok → O s.t. novel-

object(ok) ↓ detectable(oj , ok)) ↑ oj , ok → O } |
5: Mi = (Ni – ni) / Ni

6: PID += Mi

7: if Mi ↗= 1 then

8: break
9: else

10: Shoot at the best-target
11: Update state of objects
12: end if

13: end for

14: PID = PID / total number of interactions
15: return PID

Probabilistic interaction difficulty (PID) Algorithm 2 is
based on the intuition that the probability of novelty detec-
tion depends on the number of novel objects available. In-
tuitively, if the probability of finding a target that impacts
the novel object in a detectable way is lower, the difficulty is
higher. PID is initialized at zero, and the algorithm loops
over the number of possible interactions (i.e., number of
birds available in Angry Birds) while updating the PID. To
proceed to the next interaction, it is assumed that the agent
shoots the best-target and the objects in the environment
are updated along with the search space (which objects to
explore next). The terms, Ni is the total number of target
objects and ni represents the total number of target objects
which makes the novel object move in a detectable way in
the given state. Thus, Mi is the proportion of targets that do
not yield a detectable movement. At the end of the compu-
tation, PID is normalized to [0,1] (1 indicates the highest
difficulty, and PID is unitless). One limitation of this algo-
rithm is that it only considers the best-target when updating
the next state instead of considering all possible targets. This
is due to time restrictions and works under the assumption
that an intelligent agent would always select the best-target.
Best-shot interaction difficulty (BID) Algorithm 3 is in-
spired by an intelligent human-like agent and is based on
the interaction which yields the most information. Here we
try to maximize the chance of novelty detection by making
the most influential interaction (i.e., always shooting at the
best-target: ok*). The algorithm loops over the number of
possible interactions that can be made: if the novelty is un-
detectable by shooting at the best-target, it proceeds after
updating the environment, the search space (which objects
to explore next), and BID. Similar to Algorithm 2, BID is
normalized to [0,1], where 1 indicates the highest difficulty
and is unitless.

These two difficulty algorithms can be used separately or
collectively according to the suitability of the study.

5 Experimental Evaluation

As the difficulty measures we proposed is general, we ex-
amined the relationship between our proposed difficulty
measure and human perception. We conducted an experi-
ment approved by the Australian National University hu-
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Algorithm 3: Best-shot based interaction difficulty
Input: State representation of objects Output: BID
1: Initialize BID = 0
2: Initialize detection flag = False
3: for i in total number of interactions do

4: BID = BID + 1
5: if (→oj ↑ O | novel ↓ object(oj) ↔ detectable(ok↗, oj))

then
6: detection flag = True
7: break
8: else
9: Shoot at the best-target

10: Update state of objects
11: end if
12: end for

13: if detection flag = False then

14: BID = total number of interactions + 1
15: end if

16: BID = (BID - 1) / total number of interactions
17: return BID

man ethics committee (protocol-2020/717). We gathered
data from 20 voluntary participants (aged 20-35, including
males and females) with no prior knowledge of the tested
novelties. Participants played 10 instances without novelty
(generated from Angry Birds levels generator (Stephenson
and Renz 2017)) to familiarize themselves with the game
physics and dynamics. Then, they played 15 instances, each
featuring one of three different novelties. We measured the
difficulty of detecting each novelty using our proposed ap-
proach. Each participant was allowed to play the novel in-
stance only once to detect if there is any novelty in the game
objects. If the novelty was detected, we recorded the num-
ber of interactions (number of shots) the participant used to
detect that novelty. We requested the participant to provide a
simple description of the observation to validate the results.
Each participant took approximately 40-50 minutes to com-
plete the experiment. The novelties we generated are:
• Type 1 (T1): The parameter gravity scale of pigs is de-

creased twice the original value. Pigs fall down slower due
to this novelty.

• Type 2 (T2): The parameter bounciness of wood objects
is increased by four times the original value. This makes
the wood objects bouncier.

• Type 3 (T3): The parameter life of stone objects increased
by five times. This makes stone blocks difficult to destroy.

Game Instance Selection A set of 100 game instances
was generated from the state-of-the-art (SOTA) level gen-
erator (Stephenson and Renz 2017) and the novelty game
instances were created for each novelty type. We then com-
puted difficulty using the two algorithms, PID and BID for
each instance. We combined the two values: Difficulty Value
= ωPID + (1-ω)BID, where ω → [0,1], can be adjusted
based on the importance of the two algorithms in an ex-
periment. In our experiment, we got ω = 0.5 to give equal
importance. Game instances within each novelty type were
then classified into three categories: easy (e), medium (m),
hard (h). Game instances with values < the value at 33.33%
percentile, 33.33% - 66.67%, and values > 66.67% were
considered as e, m, and h instances respectively. The game

Figure 6: Experiment results from human participants. The left
figure (a) shows the percentage of novelty detection and the right
figure (b) shows the average normalized number of shots for nov-
elty detection for each difficulty level. Error bars represent the stan-
dard error. e,m,h indicate easy, medium, and hard categories.
instances used for the experiment were selected randomly
from each category. However, techniques such as harmonic
mean/clustering methods could also be utilized to categorize
based on the data available.

Results According to our difficulty measure, we expect
the percentage of novelty detection to decrease in the order
e, m, and h (Algorithm 2). Ideally, if the novelty is detected,
we expect a lower number of interactions to detect the nov-
elty in the category e and a higher number of interactions in
the category h (Algorithm 3). Figure 6a illustrates the per-
centage of human participants who correctly detected the
novelty for each novelty type in the three difficulty levels.
In line with our hypothesis, the lowest percentage of detec-
tion is recorded in the category h and the highest is recorded
in the category e. This observation is consistent for all three
experimented novelty types. For the T1 novelty type, none
of the participants were able to detect the novelty in the cat-
egory h, while all the participants detected it in category e.

Figure 6b summarizes the average normalized number of
shots needed for detection for each difficulty level for the
three novelty types. That is, for each participant, the num-
ber of shots taken for detection is normalized by the total
number of possible interactions (i.e., the number of birds in
the game instance). For novelty type T1, the category h is not
presented as none of the participants detected the T1 novelty
type. The m and e categories follow our expectation by pro-
ducing a lower value for the category e. Similarly, T2 results
are also consistent with our expectation. For T3, while the
category h gives the highest normalized interactions for de-
tection, the category m is lower than the category e. Accord-
ing to our observations, some participants used more shots
to confirm that stone-blocks have a higher health value even
though they already detected this novelty earlier and some
participants did not notice the change in stone-blocks at all.
Overall, the difficulty of novelty detection for human partic-
ipants falls in line with the calculated difficulty values.

6 Discussion and Conclusion

Detecting novelty is an important capability for an intelli-
gent system in an open-world environment. In real-world
situations, an agent needs to reason about physics in order
to detect novel objects with different physical parameters.
These novelties often vary in their difficulty of detection
and have not been studied before this paper. However, un-

39



derstanding this difficulty can be an important aspect of con-
ducting a robust and fair evaluation. Thus, we have proposed
a method to quantify the difficulty of novelty detection using
qualitative physics. Our method is agent-independent and
can be used to make more accurate conclusions about the
detection capabilities of different agents. This measure was
applied in the Angry Birds domain, and validated by com-
paring the results of the proposed measure with the perfor-
mance of human participants. To define the physical reason-
ing predicates, we have used quantitative thresholds based
on domain knowledge.

The different components and algorithms that were intro-
duced in this paper can also be applied to other research
problems. When formulating our novelty difficulty measure,
we proposed the algorithm approximate horizontal influence
that could also be used as a component for agents to predict
the influence of moving an object. This is an improvement
to the prior work (Zhang and Renz 2014; Walega, Zawidzki,
and Lechowski 2016) as it considers objects that are discon-
nected in the horizontal direction. Our difficulty formulation
can also be used to create novel game instances at a prede-
fined difficulty of novelty detection. It can be used as a com-
ponent in the SOTA novelty generation framework for An-
gry Birds (Gamage et al. 2021) to generate novel game in-
stances with a predefined difficulty. This facilitates research
in open-world learning agent development by creating dif-
ferent instances with different levels of difficulty.

We plan to extend our study to address limitations such as
generalizing our presented qualitative reasoning algorithms
in object movement analysis to other domains. Moreover, we
have discussed how the difficulty formulation can be applied
to PHYRE (Bakhtin et al. 2019) in the extended version
of this paper (Pinto et al. 2023) and we plan to extend the
framework to suit a wider variety of novelties and be appli-
cable to a wider range of domains. In this paper, we laid a
foundation for quantifying the difficulty of novelty detection
that aids to conduct a sound open-world evaluation.
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Abstract 
Circular and elliptical motion are fundamental 
topics in physics education, yet learners often 
struggle to grasp them. We investigate how 
interactive qualitative representations can be used to 
describe the characteristic behavior of circular and 
elliptical motion. We use the vocabulary and 
algorithms known as qualitative reasoning, which 
make it possible to represent the distinct features of 
these systems in a conceptual way. Leveraging the 
close alignment between qualitative reasoning and 
human reasoning about dynamic systems, these 
representations have the potential to enhance 
understanding in this domain.   

1 Introduction 
Circular motion is a fundamental concept in physics that 
describes the motion of an object moving in a circular path. 
The direction of velocity (but not the speed) of an object in 
circular motion changes due to the centripetal force which 
causes centripetal acceleration. Centripetal force is directed 
towards the center of the circle. In the case that an object is 
orbiting another object (e.g., a planet orbiting a star) 
centripetal force is equal to gravitational force. 

Celestial bodies generally follow elliptical orbits, although 
circular orbits are often used as a simplified approximation 
for easier understanding. Additionally, certain celestial 
bodies, like moons, exhibit nearly circular orbits around their 
parent planets. The elliptical motion of celestial bodies is 
governed by Kepler's laws of planetary motion, which can be 
explained by the gravitational forces exerted between 
celestial bodies. The strength of gravity depends on the 
distance between the bodies. As the distance changes within 
an elliptical orbit, gravity varies, resulting in different 
acceleration at different points along the orbit. The elliptical 
shape of the orbits arises from the balance between the 
gravitational force and the momentum (the product of the 
mass and velocity) of the object in motion. 

In physics education, circular and elliptical motion is often 
explained on the basis of mathematical formulas. Learners 
then work through exercises involving calculations using 
these formulas to process and learn this knowledge. The use 
of supporting software is limited. Particularly, the conceptual 
knowledge that explains the working of the mechanisms is 
not available in an interactive format. This issue poses a 
challenge in physics education, as there have been numerous 
reported difficulties associated with understanding circular 
and elliptical motion [e.g., Alonzo & Steedle, 2009; Barniol 
& Zavala, 2014; Canlas, 2016; Liu & Fang, 2016]. 

In this paper we focus on describing circular and elliptical 
motion using interactive qualitative representations 
[Bredeweg et al., 2023a]. For the work presented in this 
contribution we use the software Dynalearn [Bredeweg et al., 
2013]. This software is implemented as a server-based 
architecture deploying the Garp3 reasoning engine 
[Bredeweg et al., 2009]. The front-end is web-based and 
provides a diagrammatic approach for users to construct and 
articulate their thoughts. Learning through the construction 
of qualitative representations has proven to be a successful 
approach [Bredeweg et al., 2023a; Kragten & Bredeweg, 
2023], highlighting the potential of the representations 
described in this contribution to enhance understanding. 

2 Circular motion 
To represent circular motion qualitatively, the following 
notions have to be addressed: entities, quantities, possible 
values and direction of change, causal dependences, 
correspondences, and finally simulation consisting of 
qualitatively distinct states and transitions between them. 

2.1 Direction of change and values of quantities 
Entities represent the physical objects that constitute the 
system. Let’s assume we model a moon orbiting a planet. In 
that case, the qualitative representation will have two entities: 
Moon and Planet. Quantities represent the measurable 
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properties of entities, as such, the entity Moon has a position, 
a velocity, etc. 
 

 
Fig. 1. Circular motion of a moon orbiting a planet. A system 
manifesting circular motion has eight qualitatively distinct states. 

In a qualitative representation, each quantity has a value 
and a direction of change, represented as a tuple <v, ∂>. The 
possible values are represented in a quantity space, also for ∂. 
For instance, the direction of change can be captured by {−, 
0, +}, referring to decreasing, steady, and increasing, 
respectively. However, the exact meaning of this depends on 
the context. To represent the dynamics of circular motion, we 
project the system on an x- and y-coordinate plane (Fig. 1). 
With regard to Position, ∂=+ is used to refer to ‘increasing’ 
on the x−axis (moving to the right) or on the y-axis (moving 
upward), while ∂=− refers to decreasing on these axes, and 
∂=0 refers to remaining steady (no movement). 

A similar quantity space can be used for the possible 
values, namely {min, −, 0, +, max}. If we consider Position, 
then ‘min’ refers to most-negative point on the x-axis (or y-
axis), ‘−‘ refers to a negative interval between ‘min’ and ‘0’, 
‘0’ refers to the origin of the plane, ‘+’ refers to a positive 
interval between ‘0’ and ‘max’, and ‘max’ refers to the most-

positive point on the x-axis (or y-axis). Notice that, ‘min’, ‘0’ 
and ‘max’ are points, while ‘−‘ and ‘+’ are intervals. It turns 
out that the extreme values ‘min’ and ‘max’ are not needed 
for representing all the possible behaviors. This is because if 
the direction of change is zero within the negative and 
positive intervals, i.e., <−, 0> and <+, 0>, they also represent 
the minimum or maximum. Hence, we leave them out and 
work with the quantity space {−, 0, +}. Also note that, the 
planet is located at the origin of the coordinate plane. 

2.2 Expected qualitative states 
In a qualitative representation, each qualitatively distinct 

behavior of the system is represented as a state. 
Consequently, each state has a unique set of tuples <v, ∂> for 
the quantities describing the system. Given that the system is 
projected on a coordinate plane, the horizontal and vertical 
position, centripetal force, acceleration and velocity are the 
characteristic quantities. Together they describe the system 
using eight qualitatively distinct states (Fig. 1). 

Table 1 shows the values and directions of change for each 
of the quantities in the eight states. Consider the position of 
the moon in state 1, in which case x=<+, 0> and y=<0, +>. 
The moon is at its most-right position (somewhere in the 
positive interval, hence ‘+’) and there is no further change in 
the horizontal direction, hence ∂x=0. The y-coordinate is ‘0’, 
but the moon is in an upward motion so there is a positive 
change in the vertical direction, hence ∂y=+. 

In state 1, the centripetal force (Fc) and thereby the 
acceleration (a) is directed to the left. To describe the change 
of velocity we decompose the vectors of acceleration (and 
velocity) into a horizontal (ax) and vertical component (ay). 
For the horizontal acceleration holds ay=<−, 0>, which 
represents that ay is at its most-negative value (the vector is 
directed to the left at its maximum value) and momentarily 
steady (for an infinite small moment). There is no vertical 
acceleration but there is a negative direction of change, hence 
ay=<0, −>. There is no horizontal velocity and the change is 
negative, thus vx=<0, −>. The vertical acceleration is at its 
maximum, thus vy=<+, 0>. 

 
Table 1. Eight qualitative states of circular motion. Quantities are position: x-axis (x) and y-axis (y), acceleration: horizontal (ax) and 
vertical (ay), and velocity: horizontal (vx) and vertical (vy). Each quantity has a value and a direction of change, shown as <v, ∂>. Force 
corresponds to acceleration. Force is not shown in this table. 

 State 
Quantity 1 2 3 4 5 6 7 8 
x <+, 0> <+, −> <0, −> <−, −> <−, 0> <−, +> <0, +> <+, +> 
y <0, +> <+, +> <+, 0> <+, −> <0, −> <−, −> <−, 0> <−, +> 
ax <−, 0> <−, +> <0, +> <+, +> <+, 0> <+, −> <0, −> <−, −> 
ay <0, −> <−, −> <−, 0> <−, +> <0, +> <+, +> <+, 0> <+, −> 
vx <0, −> <−, −> <−, 0> <−, +> <0, +> <+, +> <+, 0> <+, −> 
vy <+, 0> <+, −> <0, −> <−, −> <−, 0> <−, +> <0, +> <+, +> 



 

 

Note that state 1 is a point. The quantities only have these 
values and directions of change at this specific x- and y-
coordinate in the system. In fact, state 1 has an infinite small 
duration. The system instantaneously moves into state 2, 
which has a duration. The values and directions of change in 
state 2 are true for the interval between state 1 and 3. State 3, 
5 and 7 are also points. State 2, 4, 6 and 8 are intervals (with 
duration). 

2.3 Adding dynamics to the representation 
The next challenge is to add dynamics to the qualitative 

representation so that the latter can be simulated and 
successive states calculated from the information in the 
preceding states. Let us focus on the motion in horizontal 
direction. The implementation of this part is shown in Fig. 2. 
As discussed before, the entity Moon has four quantities to 
represent this part of the behavior: x, Fx, ax and vx. All 
quantities have the quantity space {−, 0, +}. The direction of 
change is donated with ∂. 

Two types of causal dependencies are distinguished: 
proportionality and influence [Bredeweg et al., 2013]. When 
two quantities have a proportional relationship (P), a change 
in one quantity (the cause) results in a change in the other 
quantity. A proportional relationship can be positive (P+), 
where both quantities change in the same direction, or 
negative (P−), where the quantities change in the opposite 
direction. The relationship between the quantities x and Fx is 
negative proportional (P−). Note that Fx is the horizontal 
component of the centripetal force which in this system is 
equal to the gravitational force, i.e., if the moon moves 
towards the origin of the coordinate plane (the location of the 
planet) the gravitational pull in the horizontal direction 
decreases (but increases in the vertical direction). The 
relationship between the quantities Fx and ax is positive 
proportional (P+). This denotes that acceleration changes 
when the force applies changes. 

Causal dependencies of type influence (I+, I−) can be 
added to represent the relationship between a process (also 
represented as a quantity) and another quantity. A process 
adds or removes something to the system per time unit. If an 
influence is positive (I+), a positive value of the process 
results in a change in the positive direction of the affected 
quantity, a negative value results in a change in the negative 
direction. The relationship between ax and vx is of the type 
positive influence (I+) (if ax=− then δvx=−, if ax=0 then δvx=0 
and if ax=+ then δvx=+). For instance, if the acceleration in 
the horizontal direction is ‘0’ than there is no change in 
velocity. The relationship between vx and x is also a positive 
influence (I+) (if vx=− then δx=−, if vx=0 then δx=0 and if 
vx=+ then δx=+). For instance, if the velocity in the horizontal 
direction is negative ‘−‘, than the moon moves towards the 
negative side of the x-axis in the coordinate plane. 

To determine the potential states of the system, 
correspondences (C) can be incorporated to describe the 

relationship between co-occurring values. In the present 
system, the values of x and Fx are dependent, they correspond 
inversely (if x=− then Fx=+, if x=0 then Fx=0 and if x=+ then 
Fx=−). The values of Fx and ax are also dependent, they 
correspond regularly (if Fx=− then ax=−, if Fx=0 then ax=0 
and if Fx=+ then ax=+). The correspondences between x and 
Fx, as well as Fx and ax, are directed, suggesting one-way 
dependencies between the values. To represent these directed 
correspondences, an arrow pointing in one direction is used 
(Fig. 2). 

Fig. 2. Qualitative representation of the motion of a moon in 
horizontal direction. Quantities are position (x), force (F_x), 
acceleration (a_x) and velocity (v_x) (in the text we use Fx, ax and 
vx). The representation is simulated with initial settings: <+, ?> and 
velocity <0,?> (not shown in the figure; ? refers to undefined). The 
simulation generates 8 states, as show on the RHS in the figure. The 
simulation result of state 1 is shown. From the representation it can 
be inferred that: x=<+, 0>, Fx=<−, 0>, ax=<−, 0> and vx=<0, −> 
(show in green). Correspondences are represented by the symbol C.  

2.4 Simulation of horizontal motion 
Fig. 2 shows the simulation for the horizontal motion, as it 
can be computed from the details discussed so far. The initial 
settings for this simulation are: x=<+, ?> and vx=<0, ?> (? 
refers to undefined). All the other information can be inferred 
from this. The state graph (Fig. 2, RHS) shows that the 
system has eight states. The simulation result of state 1 is 
shown. 

In state 1, the moon has no horizontal velocity (vx=0), as 
determined by the initial settings. The causal dependency 
between vx and x is of type positive influence (I+) and 
therefore the horizontal position of the moon does not change 
(if vx=0 then δx=0). This results in x=<+, 0>, indicating that 
x is at its maximum. There is an inversed correspondence 
between x and Fx, indicating that the horizontal gravitational 
force on the moon is to the left (if x=+ then Fx=−). The 
correspondence between Fx and ax indicates that the moon its 
horizontal acceleration is also to the left (if Fx=− then ax=−). 
There is a negative proportional relationship (P-) between x 
and Fx and a positive proportional relationship (P+) between 
Fx and ax. The horizontal position of the moon does not 
change and as a result gravitational force in the horizontal 
direction does not change (if δx=0 then δFx=0). 
Consequently, acceleration in the horizontal direction does 
not change (if δFx=0 then δax=0). Therefore, in state 1, 



 

 

Fx=<−, 0> and ax <−, 0>. Both quantities are maximal in the 
negative interval, i.e., both vectors (Fx and ax) have their 
maximal value (or magnitude) and are directed to the left. The 
causal dependency between ax and vx is of type positive 
influence (I+). The horizontal acceleration is to the left and 
as a result the direction of change of the horizontal velocity 
is to the left (if ax=− then δvx=−), i.e., vx=<0, −>. 

In state 2 (Table 2), the moon its velocity in the horizontal 
direction is to the left and increasing, i.e., vx=<−, −>. As a 
result, the moon is on the right of the y-axis and moving 
towards the left, i.e., x=<+, −>. As the moon moves closer to 
the x-origin of the coordinate plane, the gravitational pull, 
and consequently, the acceleration in the horizontal direction 
towards the left, decreases, i.e.,  Fx=<−, +> and ax <−, +>. 

The changes from state 2 propagate onwards, continuing 
until state 8. Upon reaching state 8, the values resemble those 
of the simulation's initial settings, initiating the repetition of 
circular motion. 

2.5 Completing the model 
 Thus far we have managed to represent the movement of 

the celestial body in the horizontal direction. For this, it is 
important to see that the causal dependencies between 
quantities that describe vertical motion are similar to those of 
the horizontal direction. But how to represent the pendulum 
movement of the moon between its most-negative and most-
positive position in the horizontal and vertical direction? 
Both pendulum movements have 8 possible states and 
without further information this results in 64 (8 x 8) possible 
states. For instance, the motion in the horizontal direction can 
go through all its 8 states while the motion in the vertical 
direction is still in its first state. An important insight is to 
realize that the pendulum movements in both directions are 
dependent. 

Table 2 shows the correspondences between the values of 
the quantities in both directions when describing circular 
motion. All correspondences are bi-directional and apply to 
the entire quantity space. It is important to note that due to 
the bi-directional nature of correspondences, they also apply 
in the opposite direction. Table 2 includes six 
correspondences, namely between: 
▪ x and ax. When the moon is positioned on the left side of 

the y-axis, its acceleration in the horizontal direction is 
towards the right (if x=− then ax=+). If the moon crosses 
the y-axis, there is no acceleration in the horizontal 
direction (if x=0 then ax=0). When the moon is located 
on the right side of the y-axis, its horizontal acceleration 
is towards the left (if x=+ then ax=−). 

▪ x and vy. When the moon is positioned on the left side of 
the y-axis, its vertical velocity is downward (if x=− then 
vy=−). If the moon crosses the y-axis, there is no vertical 
velocity (if x=0 then vy=0). When the moon is located on 
the right side of the y-axis, its vertical velocity is upward 
(if x=+ then vy=+). 

▪ ax and vy. When the moon its acceleration in the 
horizontal is directed towards the left, its vertical velocity 
is upward (if ax=− then vy=+). If the moon has no 
acceleration in the horizontal direction, there is no 
vertical velocity (if ax=0 then vy=0). When the moon its 
acceleration in the horizontal direction is toward the 
right, its vertical velocity is downward (ax =+ then vy=−). 

▪ y and ay. When the moon is positioned below the x-axis, 
its acceleration in the vertical direction is upward (if y=− 
then ay=+). If the moon crosses the x-axis, there is no 
acceleration in the vertical direction (if y=0 then ay=0). 
When the moon is located above x-axis, its vertical 
acceleration is downward (if y=+ then ay=−). 

▪ y and vx. When the moon is positioned below the x-axis, 
its horizontal velocity is towards the right (if y=− then 
vx=+). If the moon crosses the x-axis, there is no 
horizontal velocity (if y=0 then vx=0). When the moon is 
located above the x-axis, its horizontal velocity is 
towards the left (if y=+ then vy=−). 

▪  ay and vx. When the moon its acceleration in the vertical 
direction is downward, its horizontal velocity is to the left 
(if ay=− then vx=−). If the moon has no acceleration in 
the vertical direction, there is no horizontal velocity (if 
ay=0 then vx=0). When the moon its acceleration in the 
vertical direction is upward, its horizontal velocity is to 
the right (ay =+ then vx=+). 

 

Table 2. Correspondences between quantity spaces in circular 
motion.  The correspondences establish the co-occurrence of 
values of quantities of the horizontal and vertical direction of 
circular motion. 
 value x y ax ay vx vy 
x −   +*   −* 
 0   0*   0* 
 +   −*   +* 
y −    +* +*  
 0    0* 0*  
 +    −* −*  
ax − +*     +* 
 0 0*     0* 
 + −*     −* 
ay −  +*   −*  
 0  0*   0*  
 +  −*   +*  
vx −  +*  −*   
 0  0*  0*   
 +  −*  +*   
vy − −*  +*    
 0 0*  0*    
 + +*  −*    
* bi-directional correspondence 
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We can now add correspondences between quantity spaces 
of the horizontal and vertical motion. We only add four bi-
directional correspondences (indicated by an arrow point on 
both sides) to the qualitative representation (Fig. 3) because 
by adding the correspondence between x and vy and vy and ax, 
the correspondence between x and ax becomes redundant. 
The same logic applies to the correspondence between y and 
yx after adding the correspondences between y and vx and vx. 
and ay. Note that we could have discarded other 
correspondences (or added them all). We made the decision 
to include correspondences between quantities of both 
directions, as they explicitly communicate the 
interdependence of the pendulum movements. 

2.5 Simulation of the complete model 
The representation is now ready and can be simulated. The 

starting condition for simulating the full representation is 
x=<+,?> and y=<0,?> which corresponds to state 1 in Figure 
1 and Table 1. The state graph (Fig. 3, RHS) shows that the 
system has eight states. 

 
Fig. 3. Qualitative representation of circular motion. The vertical 
motion (with quantities y, Fy, ay and vy) is comparable to the 
horizontal motion (with quantities x, Fx, ax and vx). The simulation 
generates 8 states, as show in Fig. 3 on the RHS. The simulation 
result of state 1 is shown. An important insight concerns the four 
correspondences between the two motions. 
 

Fig 4. Shows the value history of quantities x, ax, vx, y, ay 
and vy in the eight states. The value history shows the 
quantities, their possible values, their actual value, and their 
direction of change in each state. For instance, the quantity x 
in state 1 is positive and its change of direction is zero. By 
adding the correspondences, the motion in the vertical 
direction is now half a period out of phase with the horizontal 
motion. The sinusoidal patterns define the typical behavior 
observed in simple harmonic motion.  

The relationship between position, velocity, and 
acceleration in simple harmonic motion can be summarized 
as follows: when an object is at its equilibrium position, the 
velocity is maximum and the acceleration is zero. For 
example, in state 3, x is at its equilibrium point on the x-axis 

and its direction of change is negative <0, −> and acceleration 
in the horizontal direction (ax) is zero and its direction of 
change is positive <0, +>, i.e., the moon is in its equilibrium 
point on the x-axis and there is only gravitational pull in the 
vertical direction. The velocity in the horizontal direction is 
maximum in the negative direction <−, 0> , i.e., the moon is 
moving towards the left.  

As the object moves away from the equilibrium position, 
the velocity decreases, and the acceleration increases in the 
opposite direction. When the object reaches its maximum 
displacement, the velocity becomes zero, and the acceleration 
is at its maximum (in the opposite direction). The cycle 
repeats as the object returns to the equilibrium position and 
continues oscillating. 

Fig. 4. Values history of x, ax, vx, y, ay and vy with regard to the 
eight states of circular motion. 

3 Elliptical motion 
Elliptical motion can be described by twelve distinct 
qualitative states (Fig. 5).  

Fig. 5. Elliptical motion of a star orbiting a black hole. A system 
manifesting elliptical motion has twelve qualitatively distinct states. 
 
A concrete example is a star orbiting a black hole, where the 
black hole is in one of the focal points of the ellipse. Within 
an elliptical orbit, as the distance from the black hole 
changes, the gravitational force exerted on the star varies, 
leading to corresponding alterations in acceleration. The 
equilibrium between gravitational force and the star's  
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momentum gives rise to the elliptical shape of the orbit. The 
specific shape of the ellipse depends on the starting situation  
of the object's motion, such as its distance, velocity, and 
direction relative to the central body. However, regardless of 
the specific shape, the presence of twelve states remains 
constant. 

3.1 Expected qualitative states 
Table 3 shows the values and directions of change for each 

of the quantities in the twelve states. States 1, 2, 6, 7, 8 and 
12 in elliptical motion are similar to states 1, 2, 4, 5, 6, 8 in 
circular motion, respectively. In elliptical motion, there are 
six distinct states (3, 4, 5, 9, 10, and 11) that do not exist in 
circular motion, whereas states 3 and 7 in circular motion do 
not exist in elliptical motion. Although the relationships 
between position, force, acceleration, and velocity still 
govern the movements in both the horizontal and vertical 
directions, they are interdependent in a distinct manner 
compared to circular motion. 

3.2 Completing the model 
Table 4 shows the correspondences of elliptical motion and 
marks the differences with circular motion. Four bi-
directional correspondences are the same as in circular 
motion: between x and ax, ax and vx, y and ax, and y and vx. 
The other two correspondences (between x and vy, and ax and 
vy) are different compared to circular motion: the values that 
correspond may differ, the correspondence can change from 
bi-directional to directed, or there may be no correspondence 
at all. Because in circular motion all correspondences are bi-
directional, we will describe the specific changes for each 
pair of corresponding values in the context of elliptical 
motion below: 
▪ x and vy: 

(i) In circular motion: if x=− then vy=−. In elliptical 
motion there is no correspondence between x=− and 
values of vy. That is, when the star is positioned on 
the left side of the y-axis (x=−), its vertical velocity is 
either downward (vy=− in states 6, 7 and 8), it has no 
vertical velocity (vy=0 in states 4 and 10), or vertical 
velocity is upward (vy=+ in states 3 and 11). In 
elliptical motion the correspondence in the other  

 
direction (if vy=− then x=−) is directed. When the star 
its vertical velocity is downward vy=−, its position is 
on the left side of the y-axis (x=− in states 6, 7 and 8). 
This correspondence is directed because when the 
star is on the left side of the y-axis (x=−), it can also 
have no velocity in the vertical direction  (vy=0 in 
states 5 and 9) or its vertical velocity is upward (vy=+ 
in states 4 and 10). 

(ii) In circular motion: if x=0 then vy=0. In elliptical 
motion, when the star crosses the y-axis its vertical 
velocity is upward (if x=0 then vy=+ in state 3 and 
11). So the value of this correspondence changed and 
it is now directed because the star its vertical velocity 
is also upward (vy=+) when it is on the on the left  
(x=− in states 4 and 10) or on the right side of the y-
axis (x=+ in states 1, 2, and 12). The correspondence 
in the other direction (if vy=0 then x=0) changed its 
value and is now directed. When the star has no 

Table 3. Twelve qualitative states of elliptical motion. Quantities are position: x-axis (x) and y-axis (y), acceleration: horizontal (ax) and 
vertical (ay), and velocity: horizontal (vx) and vertical (vy). Each quantity has a value and a direction of change, shown as <v,∂>. Force 
corresponds to acceleration. Force is not shown in this table. 
 State 
Quantity 1 2 3 4 5 6 7 8 9 10 11 12 
x <+, 0> <+, −> <0, −> <−, −> <−, −> <−, −> <−, 0> <−, +> <−, +> <−, +> <0, +> <+, +> 
y <0, +> <+, +> <+, +> <+, +> <+, 0> <+, −> <0, −> <−, −> <−, 0> <−, +> <−, +> <−, +> 
ax <−, 0> <−, +> <0, +> <+, +> <+, +> <+, +> <+, 0> <+, −> <+, −> <+, −> <0, −> <−, −> 
ay <0, −> <−, −> <−, −> <−, −> <−, 0> <−, +> <0, +> <+, +> <+, 0> <+, −> <+, −> <+, −> 
vx <0, −> <−, −> <−, 0> <−, +> <−, +> <−, +> <0, +> <+, +> <+, +> <+, +> <0, +> <+, −> 
vy <+, 0> <+, −> <+, −> <+, −> <0, −> <−, −> <−, 0> <−, +> <0, +> <+, +> <+, +> <+, +> 

Table 4. Correspondences in elliptical motion.   The 
correspondences establish the co-occurrence of values of 
quantities of the horizontal and vertical direction of elliptical 
motion. 
 value x y ax ay vx vy 
x −   +*   3 
 0   0*   +1,2 
 +   −*   +2x 

y −    +* +*  
 0    0* 0*  
 +    −* −*  
ax − +* x     +2 x 
 0 0* x     +1,2 
 + −* x     3 
ay −  +*   −*  
 0  0*   0*  
 +  −*   +*  
vx −  +*  −*   
 0  0*  0*   
 +  −*  +*   
vy − −2xx  +2 x    
 0 −1,2  +1,2    
 + 3  3    
* bi-directional correspondence; differences compared to circular 
motion: 1value differs, 2 correspondence changed from bi-directional to 
directed, 3 no correspondence anymore. 
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vertical velocity, its position is on the left side of y-
axis (if vy=0 then x=− in states 5 and 9). This 
correspondence is directed because when the star its 
position is on the left side of the y-axis (x=−), its 
vertical velocity can be upward (vy=+ in states 4 and 
10) or downward (vy=− in states 6, 7 and 8). 

(iii) In circular motion: if x=+ then vy=+. In elliptical 
motion, when the position of the star is on the right 
side of the y-axis, its vertical velocity is also upward 
(if x=+ then vy=+ in states 1, 2, and 12), but the 
correspondence is now directed. It is directed because 
the star its vertical velocity is also upward (vy=+) in 
states 3 and 11 (x=0) and states 4 and 10 (x=−). The 
correspondence in the other direction (if vy=+ then 
x=+) does not exist in elliptical motion because the 
star its vertical velocity is upward (vy=+) through the 
full quantity space of x {−, 0, +}. 

▪ ax and vy: 
(i) In circular motion: if ax=− then vy=+. In elliptical 

motion, when the star its acceleration in the 
horizontal direction is towards the left, its vertical 
velocity is also upward (if ax=− then vy=+ in states 1, 
2, and 12). However, this correspondence is directed 
in elliptical motion because the star its vertical 
velocity is also upward (vy=+) when horizontal 
acceleration is to the left (ax=− states 4 and 10) or 
when there is no horizontal acceleration (ax=0 in 
states 3 and 11). Therefore, the correspondence in the 
other direction (if vy=+ then ax=−) does not exist in 
elliptical motion. 

(ii) In circular motion: if ax=0 then vy=0. In elliptical 
motion, when the star has no acceleration in the 
horizontal direction, its vertical velocity is upward (if 
ax=0 then vy=+ in states 3 and 11). This 
correspondence is directed because the star its 
vertical velocity is also upward (vy=+) when 
acceleration in the horizontal direction is to the left 
(ax=− in states 2 and 12) and to the right (ax=+ in 
states 4 and 10). The value of the correspondence in 
the other direction (if vy=0 then ax=0) has changed. 
When the star is has no velocity in the vertical 
direction, the gravitational pull and thereby the 
acceleration in the horizontal direction is toward the 
right (if vy=0 then ax=+ in states 5 and 9). The 
correspondence is directed, because when the star its 
acceleration in the horizontal direction is to the right 
(ax=+), velocity in the vertical direction can be 
downward (vy=− in states 6, 7 and 8) or upward (vy=+ 
in states 4 and 10). 

(iii) In circular motion: if ax=+ then vy=−. In elliptical 
motion there is no correspondence between ax=+ and 
values of vy. That is, when the star its horizontal 
acceleration is to the right (ax=+), its vertical velocity 
is downward (vy=− in states 6, 7 and 8), ), it has no 

vertical velocity (vy=0 in state 3 and 11), or its vertical 
motion is velocity (vy=+ in state 4 and 10). Therefore, 
the correspondence in the other direction (if vy=− then 
ax=+) is directed.  

 
We can now add the correspondences between quantity 
spaces of both directions (vertical and horizontal) to describe 
elliptical motion (Fig. 6). As mentioned before, we do not 
need to add all correspondences from Table 4 because adding 
one correspondence can make another redundant. We add the 
bi-directional correspondences that are the same as in circular 
motion. We also add the directed correspondences that define 
states 3 and 11 (if x=0 then vy=+) and states 5 and 9 (if vy=0 
then x=−).  

Fig. 6. Qualitative representation of elliptical motion. The 
simulation generates 12 states. The simulation result of state 1 is 
shown. 

3.3 Simulation of the complete model 
The representation can be simulated with initial conditions 

that correspond to state 1 in Fig. 5: x=<+,?> , y=<0,?> and vx 
= <+,?>. The latter initial condition is needed because there 
is no correspondence that automatically sets the value of vx in 
state 1. 

Fig. 7. Values history of x, ax, vx, y, ay and vy with regard to the 
twelve states of elliptical motion. 
 

Fig 7. Shows the value history of quantities x, ax, vx, y, ay 
and vy in the twelve states of elliptical motion. While motions 
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in both directions still exhibit sinusoidal patterns, it is 
important to note that in the case of elliptical motion, the 
system no longer strictly adheres to simple harmonic motion. 
The varying changes in gravitational force introduce 
complexities that deviate from the characteristics of circular 
motion in both directions. 

4 Conclusion and discussion 
In this paper, we present qualitative representations of 

circular and elliptical motion. The motions are depicted on a 
x- and y-coordinate plane. This allows for the decomposition 
of motion into a horizontal and vertical direction. To describe 
the dynamics of circular and elliptical motion, the 
representations include the quantities: position (x, y), force 
(Fx, Fy), acceleration (ax, ay), and velocity (vx, vy). The 
quantities have a quantity space that encompasses negative, 
zero, and positive values, hence {−, 0, +}. Note that force, 
acceleration and velocity are vectors and their qualitative 
value indicate both value and direction. 

We describe the dependencies between quantities and the 
correspondences that exist in both circular and elliptical 
motion. Specifically, we focus on the correspondences 
between horizontal and vertical motion and highlight the 
differences between circular and elliptical motion. 

Circular motion can be described by eight qualitatively 
distinct states, featuring six bi-directional correspondences 
between the quantities in the horizontal and vertical direction. 
When these correspondences are added to the representation, 
the system's behavior follows a pattern of two simple 
harmonic motions that are half a period out of phase. 

Elliptical motion consists of twelve distinct qualitative 
phases. The dependencies between the quantities in both 
directions are similar to circular motion. However, compared 
to circular motion, there are changes in two correspondences: 
(i) between the horizontal position (x) and velocity in the 
vertical direction (vy), and (ii) between acceleration in the 
vertical direction (ax) and velocity in the vertical direction 
(vy). These changes manifest in different ways: the values that 
correspond may differ, the correspondence itself may 
transition from being bi-directional to directed, or in some 
cases, there is no correspondence at all between certain 
values. These variations in correspondences highlight the 
distinct nature of elliptical motion compared to circular 
motion. 

In conclusion, qualitative representations, such as the ones 
presented in this paper, offer an alternative approach to 
describing and understanding circular and elliptical motion, 
bypassing the traditional mathematical methods. By 
constructing qualitative representations, learners can gain 
valuable insights into the behavior of these systems, fostering 
a deeper comprehension of the concepts involved [Kragten & 
Bredeweg, 2023]. Future research aimed at continuous 
improvement of the pedagogical approach should examine 

how students learn optimally by constructing such 
representations and identify the essential support they need 
during the learning process. 
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Abstract
Qualitative Spatial Reasoning (QSR) is well explored area of
Commonsense Reasoning and has multiple applications rang-
ing from Geographical Information Systems to Robotics and
Computer Vision. Recently many claims have been made for
the capabilities of Large Language Models (LLMs). In this
paper we investigate the extent to which one particular LLM
can perform classical qualitative spatial reasoning tasks on
the mereotopological calculus, RCC-8.

Introduction
Qualitative Spatial Reasoning (QSR1) (Cohn and Renz
2008; Chen et al. 2015; Cohn and Hazarika 2001) is a well
developed field which is concerned with the representation
of qualitative spatial information and reasoning with it. In
natural language, spatial information is usually represented
qualitatively (using prepositions such as on, in, left of, part
of, under, touching, ...) and many calculi have been devel-
oped to represent such information. There are calculi for
mereological relations (such as RCC-5 (Jonsson and Drak-
engren 1997)), mereotopological relations (such as RCC-8
(Randell, Cui, and Cohn 1992; Cohn et al. 1997)), direc-
tions (such as OPRA (Moratz 2006)), size (Gerevini and
Renz 2002) for example as well as calculi combining two
different aspects of spatial information, such as the Rectan-
gle Algebra (Guesgen 1989; Mukerjee and Joe 1990) which
can represent both mereotopological information as well as
directional. What is common to all these calculi is that they
consist of a set of jointly exhaustive and pairwise disjoint
(JEPD) base relations. For example, RCC-8 contains eight
JEPD base relations, illustrated in 2D in Fig. 1.

Large Language Models (LLMs) (Devlin et al. 2019;
Brown et al. 2020), such as ChatGPT-4 (Roumeliotis and
Tselikas 2023) are a recent example of so called Foundation
Models which have been trained on very large textual cor-
pora in order to generate text in response to a prompt. This
is not the place to survey this burgeoning field, but we note
that many claims have been made for the power and apparent
intelligent behaviour that these models can display. In par-
ticular their performance on some benchmarks may lead one
Copyright © 2023, The Authors. All rights reserved.

1We may use QSR as shorthand for both Qualitative Spatial
Reasoning and Qualitative Spatial Representation; context should
usually make clear which is intended.
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Figure 1: The eight relations of the RCC-8 calculus illus-
trated in 2D.

to believe that they possess, at least to some degree, the abil-
ity to perform commonsense reasoning. Spatial reasoning is
usually regarded as one core aspect of common sense so it
is natural to ask whether LLMs can reason about qualita-
tive spatial information. This is the question that we address
here.

In earlier work (Cohn and Hernandez-Orallo 2023) we
use extended dialogues with an LLM to try to map the
boundaries of spatial commonsense in some LLMs, address-
ing a variety spatial challenges, and examining not only the
response given but also the explanation/justification of the
response, but did not specifically focus on existing QSRs,
though some questions were asked which do correspond to
particular reasoning steps in an existing QSR. Here we focus
on one specific QSR and ask the question as to what extent
an LLM can perform reasoning in that calculus, and conduct
a more exhaustive evaluation, but looking at the ability to
perform compositions between relations and also to reason
about the conceptual neighbourhood diagram of the calcu-
lus. Weaknesses in the reasoning powers of LLMs have pre-
viously been noted (e.g. (Cai, Chang, and Han 2023)) so one
might not expect LLMs to perform well in this regard. But
on the other hand, there are a large number of papers about
QSR in the literature and these are likely to have formed part
of the training corpus of an LLM, and thus might facilitate
correctly responding to prompts – though the information
concerning the actual reasoning steps are often given in ta-
bles (in particular composition tables – see below) and thus
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might be hard for LLM training procedures to process well.
There are now many LLMs in the literature. Some of these

are open source and are explicit about the training corpus;
others are closed and give no specific information about the
training, or the precise corpus, such as the GPT family of
LLMs. Nevertheless since we observed previously (Cohn
and Hernandez-Orallo 2023) that ChatGPT-4 and GPT4
were the most performant for spatial reasoning, we use
ChatGPT-4 as the LLM with which we perform our experi-
ments. In each of the experiments below, an initial prompt
gave the problem setting and the task to be performed.
Subsequent prompts in the conversation probed about one
specific inference (e.g. one cell in a composition table).
Each experiment was a separate conversation and the ver-
sion number of ChatGPT-4 was given as “May 24” (presum-
ably, the version of May 24 2023). The conversations can be
found at the following location: https://tinyurl.com/qr23sup.

Compositional Reasoning
The most researched form of reasoning with Qualitative
Spatial Relations is that of composition: i.e. given a two
facts R1(x, y), and R2(y, z), then what relations are possi-
ble between x and z? In general more than one base relation
is possible, so the answer may take the form of a disjunc-
tion of relations, as can be seen in the composition table for
RCC-8 in Fig. 2. Given the ubiquity of RCC-8 in the QSR
literature, in this paper we focus on the abilities of an LLM
to reason with RCC-8.

Experiment 1: Compositional Reasoning in RCC-8
In this experiment the standard names of the eight relations
were given as well as a sentence stating that the relations
were part of the RCC-8 calculus:

Consider the following set of eight pairwise dis-
joint and mutually exhaustive binary spatial relations.
These relations form part of the well known RCC-8
qualitative spatial reasoning calculus. DC(x,y) means
that x and y are disconnected and share no spa-
tial parts. EC(x,y) means that x and y touch at a
boundary but do not share any interior parts. PO(x,y)
means that x and y share a spatial part, but neither is
part of the other. TPP(x,y) means that x is part of y
and touches y’s boundary. NTPP(x,y) means that x is
part of y but does not touch y’s boundary. TPPi(x,y)
is the same as TPP(y,x). NTPPi(x,y) is the same as
NTPP(y,x). Finally, EQ(x,y) means that x and y are
coincident. I will now ask you a series of questions
about these relations. There may be more than one
possible relation, in which case name all of the pos-
sible answers. If all eight relations are possible, just
say ALL.

As an example of a prompt and ChatGPT-4’s response,
consider the first one:

Prompt: If DC(x,y) and DC(y,z) then what are the
possible relationships between x and z. Response: If
DC(x,y) and DC(y,z), then x and z can either be dis-
connected (DC) or externally connected (EC). This

is because the disconnection between x and y, and y
and z, only guarantees that neither x nor z is con-
nected to y. It does not preclude the possibility that x
and z themselves might be disconnected or touching at
a boundary. However, the other relations like part-of
(TPP, NTPP) and their inverses (TPPi, NTPPi), par-
tial overlap (PO), and equality (EQ) are not possi-
ble because they would imply some level of connec-
tion between x and z through y, which contradicts our
initial conditions. So, the possible relationships be-
tween x and z are: DC(x,z): x and z are disconnected.
EC(x,z): x and z are externally connected.

Notice that in fact the composition of DC with DC is the
union of all eight RCC-8 relations, so the reasoning is incor-
rect here.

The results of the 7*7=49 prompts issued (compositions
involving EQ were omitted since they should be trivial) are
summarised in Fig. 3. There is a total of 85 relations cor-
rectly predicted (those in black), 197 relations which are cor-
rectly not predicted (those not in the table). Thus there are
a total of 282 correctly predicted (both present and missing)
relations, i.e. 71.94% of the total possible (7*7*8 = 392).
11 of the cells (out of 49) are completely correct. This is
clearly much better than chance but far from a correct com-
position table. Fig. 4 shows the absolute number and rela-
tive percentages of the 8 relations in the proportion that they
are correctly or incorrectly predicted. As can be seen, DC

is never missed as a correct prediction, and PO is never in-
correctly predicted as present. DC has the highest accuracy
which is perhaps not surprising since DC might be regarded
as intuitively easier to reason about (and this fits with the
predictions about human preferred models in the section be-
low). Including both correctly predicted and correctly miss-
ing relationships, all eight relations have broadly similar ac-
curacies.

In order to test whether the result was influenced by prior
knowledge of RCC-8 gained as part of its training, we also
performed the same experiment, but with all the relation
names prefixed by an X to disguise the connection to RCC-
8. The prompt was the same as above except for the change
of relation names and the omission of the second sentence.
The results are given in Fig. 5 while Fig. 6 shows the abso-
lute number and relative percentages of the 8 relations in the
proportion that they are correctly or incorrectly predicted.
As can be seen, DC again is never missed as a correct predic-
tion, and EC is only missed twice; again PO is never incor-
rectly predicted as present. As before, DC, EC, and POhave
the highest accuracies, along with EQ, but EQ is never pre-
dicted as present correctly, only incorrectly. The overall av-
erage of correctly predicted relations (present and missing)
drops from 71.94% in the non-anonymous case above to
67.09% so there is some loss of performance though whether
is due to the anonymisation of the relations or the stochas-
ticity of ChatGPT-4 is not clear.

Experiment 2: Preferred Compositions in RCC-8
As noted above, in general a composition of two relations
will yield more than one possible base relations, but it turns
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Figure 2: The RCC-8 Composition Table (Cohn et al. 1997)
.

DC EC PO TPP NTPP TPPi NTPPi
DC DEPTNQtn DEPTN DEPTN DEPTN DEPTN DE DE
EC DEPtn DE DEPTtQ DETN DETN DE DE
PO DEPtn DEPTNQtn DEPTNQtn DEPTNQtn DEPTNQtn DEPTNQtn DEPTNQtn
TPP D DE DEPTN TN N DEPTN Qt DEPTNtn
NTPP D DE DEPTN TN N DEPTN DEPTNQtn
TPPi DEPtn DEPtn DEPTQtn PTQtn PTNQtn TQtn TQtn
NTPPi D DEPTN PQtn TNQn NQn Qtn Qn

Figure 3: The Composition Table for RCC-8 produced by
ChatGPT-4. The entry in each cell uses the following cod-
ing: D (DC), E(EC), P(PO), T(TPP), N(NTPP), t(TPPi),

n(NTPPi), Q(EQ). Black means that relation is correctly
predicted (85 times), red means that relation is incorrectly
predicted (61 times), blue means that the relation was incor-
rectly not predicted (49 times).

.

out that humans tend to have a “preferred” relation. For ex-
ample, Ragni et al (2007) report on experiments performed
on native German speakers and native Mongolian speak-
ers for RCC-8. In their experiments the relations were de-
scribed, but the human subjects were not allowed to draw
possible configurations, so the setting is essentially equiva-
lent to an LLM setting.

Given that humans may struggle to see all the possible re-
lations2, determining whether there is agreement about the
most preferred is good question to ask. It turns out that there
is good agreement in general across and within the two cul-
tures, with the the percentage of people agreeing with the
same preferred relation ranging from 30% to 87.5% (a ran-
dom choice would yield 12.5% on average since there are
eight relations to choose from). (They did not query cases
where the composition yields a unique relation, nor did they
consider EQ as one of the two relations as this should be
a trivial task.) This agreement is perhaps surprising since
the two languages are linguistically very different. Ragni
et al (2007) do report some differences though – for exam-
ple although both language speakers preferred DC whenever
it was consistent, Mongolians preferred PO over NTPPi

2The fact that some humans may struggle to compute the com-
position table does not stop it being a valid question to see if an
LLM can determine the correct entries.

0

5

10

15

20

25

30

DC EC PO TPP NTPP TPPi NTPPi EQ

correctly present correctly missing missing incorrect

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DC EC PO TPP NTPP TPPi NTPPi EQ

Figure 4: Relation statistics for the Composition Table for
RCC-8 produced by ChatGPT-4. The upper chart shows the
absolute number of relations, and the lower the relative per-
centage for each relation.

.

whereas for Germans the converse was true. Both cultures
only chose EQ when composing a relation with its inverse
(e.g. TPP with TPPi).

The theory of preferred mental models (Knauff, Rauh,
and Schlieder 1995) states that people construct the sim-
plest (computationally cheapest) model consistent with the
premises. Their experiments showed that humans prefer
models with the smallest overlapping complexity which ex-
plains the preference for DC noted above.

Given the difficulty reported in Experiment 1 in ChatGPT-
4 correctly inferring all possible relations in a composition,
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DC EC PO TPP NTPP TPPi NTPPi
DC DE PTNQtn DE PTN DE PTN DE PTN DE PTN DE DE
EC DE Ptn DE PTQt DEP TN DEPTN DEPTN DEP DE
PO D Etn DEP tn DEP TNQtnDEPTN DEPTN DEPTtn DEPTtn
TPP D DE DEPTN TN N DEPTQt DEPNtn
NTPP D DE DEPTN N N DEPTNn DEPTNQtn
TPPi DEPtn DEPtn DEPTNtn DEPTNQtn DEPTNtn TQtn DEPTNtn
NTPPi DEPtn DEPtn DP DPTNtn DPTNtn DPTNtn DPTNtn

Figure 5: The Composition Table for RCC-8 produced by
ChatGPT-4 using anonymised relations. The entry in each
cell uses the following coding: D (DC), E (EC), P (PO), T

(TPP), N (NTPP), t (TPPi), n (NTPPi), Q (EQ). Black
means that relation is correctly predicted (95 times), red
means that relation is incorrectly predicted (57 times), blue
means that the relation was incorrectly not predicted (72
times).

.

asking this more specific query seems a natural task to try;
this gives some measure of whether the cognitive prefer-
ences of humans correspond at all to the choices made by
ChatGPT-4.

The initial prompt given to ChatGPT-4 was identical to
the initial prompt above when querying about composition.
In its responses, sometimes ChatGPT-4 gave a clear prefer-
ence for one relation, for example:

Prompt: If DC(x,y) and DC(y,z) then what is your
preferred relationship between x and z? Response:
The relations DC(x,y) and DC(y,z) mean that region x
is disconnected from region y and region y is discon-
nected from region z. These relationships don’t pro-
vide any information about the spatial relationship
between x and z. x and z could be disconnected, they
could touch at a boundary, or they could partially
overlap, among other possibilities. However, in ab-
sence of any other information and considering spa-
tial continuity, I would say the most likely relation
is DC(x, z), assuming x and z are also disconnected.
Please note that this is just a statistical assumption;
it’s possible for x and z to have any of the other rela-
tions defined in RCC-8.

In other cases ChatGPT-4 justified its choice by saying it was
the “cautious” choice, or the “safest choice”. The humans
in the (Ragni, Tseden, and Knauff 2007) experiment were
not asked to justify their choices, but the claim made by the
authors of that paper noted above is that choices were based
on computational/simplicity considerations – which differs
from the reasons claimed here by ChatGPT-4.

The initial prompt to ChatGPT-4 given was:
Consider the following set of eight pairwise disjoint
and mutually exhaustive binary spatial relations, be-
tween two one piece spatial 2D regions. These rela-
tions form part of the well known RCC-8 qualitative
spatial reasoning calculus. DC(x,y) means that x and
y are disconnected and share no spatial parts. EC(x,y)
means that x and y touch at a boundary but do not
share any interior parts. PO(x,y) means that x and y
share a spatial part, but neither is part of the other.
TPP(x,y) means that x is part of y and touches y’s
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Figure 6: Relation statistics for the Composition Table for
RCC-8 with anonymised relations produced by ChatGPT-4.
The upper chart shows the absolute number of relations, and
the lower the relative percentage for each relation.
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boundary. NTPP(x,y) means that x is part of y but
does not touch y’s boundary. TPPi (x,y) is the same
as TPP(y,x). NTPPi(x,y) is the same as NTPP(y,x).
Finally, EQ(x,y) means that x and y are coincident. I
will now ask you a series of questions about these re-
lations. It is possible that in some cases there could be
more than one relation that might hold; in these cases
just give me your single most preferred relationship.

As can be seen in Fig. 7, ChatGPT-4 only agreed with the
average human on 20/49 (40.82%) though in a further three
cases it agreed with one of the language groups (twice Mon-
golian, once German) giving a total of 23/49 (46.93%). In
seven cases it actually predicted an impossible relation as its
preferred composition3, and in all cases where the compo-
sition is unique it failed to note that. In all the other cases,
18/49 (36.63%) its preferred relation was possible but not
preferred by either language group or overall.

As can be seen, sometimes ChatGPT-4 made a logically
inconsistent prediction, for example with EC/NTPPi; look-
ing at the ChatGPT-4’s response in this case we can see that
this is because it seems to misunderstand the meaning of
NTPPi:

If EC(x,y) and NTPPi(y,z), this means that region x
touches the boundary of region y but does not over-
lap with it, and region y is a part of region z but does

3Sometimes the humans in the (Ragni, Tseden, and Knauff
2007) experiment also predicted an impossible relation as can be
seen in Table 2 of their publication.
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DC EC PO TPP NTPP TPPi NTPPi
DC DC DC DC DC DC DC DC
EC DC DC EC EC EC EC EC
PO DC EC PO PO PO PO PO
TPP DC EC PO TPP NTPP DC DC
NTPP DC DC NTPP NTPP NTPP DC DC
TPPi DC EC PO PO PO TPP NTPP
NTPPi DC DC PO NTPP NTPP NTPP NTPP

Figure 7: The table of preferred compositions for RCC-8
produced by ChatGPT-4. Green text means it agreed with
the human most likely model. Orange text means it agreed
with the human most likely model but failed to notify that
it was the only possible model. Red means it chose an im-
possible relation. Blue means it chose a possible but not pre-
ferred model. A green background means that it agreed with
preferred relation of one of the language groups but not the
overall average.

.

not touch z’s boundary, with the perspective of y being
contained in z. In this scenario, it’s likely that x and z
are either disconnected (DC) or touch at the bound-
ary (EC). Since y, which is part of z but does not touch
z’s boundary, is touching x at the boundary, there’s a
possibility for indirect spatial contact between x and
z. Without additional context, it’s safer to assume that
x and z touch at the boundary (EC). However, this
is just an assumption, and the actual relationship be-
tween x and z could be different depending on the spe-
cific spatial arrangement.

In a different case, TPPi/TPPi, the initial understanding of
the relations is correct inferring that z is part of x, but then
ChatGPT-4 makes a wrong step in the final part of its rea-
soning, and claims that TPP(x, y):

If TPPi(x,y) and TPPi(y,z), this means that region y
is a part of region x and touches x’s boundary, and
region z is a part of region y and touches y’s bound-
ary. Given these conditions, it’s likely that z is a part
of x and touches x’s boundary (TPP). This is because
z, which is a part of y and touches y’s boundary, is
also indirectly a part of x through y, which is a part of
x and touches x’s boundary. Therefore, my preferred
relationship between x and z would be TPP(x,z), as-
suming that z is a part of x and touches x’s boundary.
Please note that this is an assumption and the actual
relationship between x and z could be different de-
pending on the specific spatial arrangement.

ChatGPT-4 makes exactly the same error with TPPi/NTPPi.
For the wrong NTPPi/EC case, the the description of its
reasoning contains a more fundamental error:

...This is because y, which is a part of x and does not
touch x’s boundary, is also only touching z’s bound-
ary, so x and z would not have any overlap...

A similar more fundamental error is made in the cases of
NTPPi / TPP, whilst in the final two wrong cases, ChatGPT-
4 misunderstands the second relation as its inverse.

In order to test whether the result was influenced by prior
knowledge of RCC-8 gained as part of its training, we also

performed the same experiment, but with all the relation
names prefixed by an X to disguise the connection to RCC-
8. The prompt was the same as above except for the change
of relation names and the omission of the second sentence.
The results are given in Fig. 8. ChatGPT-4 only agreed with
the average human on 24/49 (48.99%) though in a further
five cases it agreed with one of the language groups (twice
times Mongolian, twice German), and in one case the Mon-
golian preference was equal between the overall choice and
the choice ChatGPT-4 made giving a an agreement with the
German speakers of 26/49 (53.06%) and 27/49 (55.1%) with
the Mongolian speakers. In three cases (6.12%) it actually
predicted an impossible relation as its preferred composition
(this also happened sometimes in the human experiment),
and in two cases (out of 11) where t he composition is unique
it failed to note that. In all the other cases, 20/49 (60.82%)
its preferred relation was possible but not preferred by either
language group or overall. The overall agreement with hu-
mans in this anonymised case is actually significantly higher
than the non-anonymised experiment above; it is not clear if
there is a reason for this and if so what.

DC EC PO TPP NTPP TPPi NTPPi
DC DC DC DC DC DC DC DC
EC DC EC PO EC EC EC EC
PO DC EC PO PO PO PO PO
TPP DC EC PO TPP NTPP DC DC
NTPP DC DC PO NTPP NTPP DC DC
TPPi DC EC PO PO PO TPPi NTTPi
NTPPi DC DC PO NTTPi NTPP NTPPi NTPPi

Figure 8: The table of preferred compositions for RCC-8
produced by ChatGPT-4 with anonymised relations. The re-
lation names are coloured in the same way as in Table 7.

.

Experiment 3: Spatial Continuity
Continuity networks were introduced by Randell and
Cohn(1989) to represent the set of possible ‘next’ relations
that might obtain, assuming that motion is continuous and
any transformations in the shape and/or size of an object are
also continuous. Subsequently these have been termed “con-
ceptual neighbourhoods” (Freksa 1992). Fortunately, the ab-
breviation for both of these terms is CN, which we shall
use henceforth. The CN for RCC-8 is depicted in Fig. 1.
The initial prompt was the same as for the composition table
prompt above, but with two additional sentences at the end:
In all these questions, assume that all motion is continuous,
and any deformations of the spatial regions are also con-
tinuous. Also please describe the motion or changes of size
or shape that would be required for the change of relation
to take place. Each subsequent prompt also emphasises the
need for the relation to be an immediate next relation. As an
example prompt/response pair consider the EC case:

Prompt: If EC(a,b) holds, then what are the next
possible relations that might hold as the two regions
translate or change their shape or size? I am inter-
ested in the immediate next relation, so no intermedi-
ate relation must hold. Response: If EC(a,b) holds,
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which means that the two regions a and b are just
touching at a boundary but do not share any interior
parts, then the immediate next possible relations as
the two regions translate or change their shape or size
could be either DC(a,b) or PO(a,b). DC(a,b): This
would occur if the regions move away from each other
and are no longer in contact at all, becoming fully dis-
connected. PO(a,b): This would occur if one region
begins to overlap with the other, but neither region
is completely contained within the other. They would
then be partially overlapping, sharing some but not
all of their spatial parts. The transitions to these re-
lations would involve either moving the regions apart
or moving them further into each other. In the case of
transition to PO(a,b), there could also be some defor-
mation of the regions if they change shape to allow for
the partial overlap.

An example of a faulty prediction is from PO:
If PO(a,b) holds, indicating that regions a and b par-
tially overlap but neither is fully contained within
the other, the immediate next relations could be
EC(a,b), DC(a,b), TPP(a,b), TPPi(a,b), or EQ(a,b).
EC(a,b): This would occur if the overlapping parts
of a and b are reduced to just boundary parts, mean-
ing the regions are touching but no longer overlap-
ping. DC(a,b): This would occur if regions a and
b are moved or deformed such that they no longer
overlap or touch at all. TPP(a,b) or TPPi(a,b): This
would occur if one region becomes fully contained
within the other, either by moving into it or shrink-
ing. TPP(a,b) means a is part of b and touches b’s
boundary. TPPi(a,b) means b is part of a and touches
a’s boundary. EQ(a,b): This could occur if the regions
are reshaped or resized such that they coincide ex-
actly, becoming the same region in space. The tran-
sitions to these relations would involve either moving
the regions, resizing them, or reshaping them in some
way.

Here, ChatGPT-4 has mistakenly said that DC is a next re-
lation, failing to notice that it has to pass through EC on the
way.

As can be seen, the predictions are mostly correct with
just five errors: three where a link is falsely predicted and
two where a link is missing. The two missing links are both
from EQ (to NTPP and to NTPPi). Interestingly the links in
the reverse direction are correctly predicted, so ChatGPT-4
is not able to reason that a link in one direction implies the
link in the other direction should also be present. Similarly
whilst the absence of a link from DC to PO is correctly pre-
dicted, the inverse case is not, and is also the case for PO

to/from NTPP and NTPPi.
In order to test whether the result was influenced by prior

knowledge of RCC-8 gained as part of its training, we also
performed the same experiment, but with all the relation
names prefixed by an X to disguise the connection to RCC-8.
The prompt was the same as above except for the change of
relation names and the omission of the second sentence. The
results are given in Fig. 10. There are 3 incorrectly predicted

DC EC PO TPP NTPP TPPi NTPPi EQ
DC x
EC x x
PO x x x x x
TPP x x x
NTPP x x x
TPPi x x x
NTPPi x x x
EQ x x x

Figure 9: The Continuity Table for RCC8 produced by
ChatGPT-4. An ‘x’ means that the relation in that column is
predicted as an immediate neighbour of the relation in that
row. An empty box means that the relation is not predicted
as an immediate neighbour. Green means that the prediction
was correct and red that it was incorrect. The leading diago-
nal is white since a relation is not a next relation of itself.

.

links, 3 missing links, 19 correctly predicted links and 31
correct missing links, giving an accuracy of 50/56 (89.2%).
This is slightly worse than the case above. There is one more
missing link but the missing links are all different in the two
cases. Although there are the same number of wrong links,
only one of these is in common (PO to DC). Overall the
results are broadly similar and may be due to the stochas-
tic nature of ChatGPT-4’s responses, suggesting that either
the disguise was not very effective, or that prior training did
not really affect the response and it was able to reason from
‘first principles’ (if not always correctly) in response to each
prompt.

DC EC PO TPP NTPP TPPi NTPPi EQ
DC x
EC x x
PO x x x x
TPP x x x
NTPP x x
TPPi x x x
NTPPi x x
EQ x x x x x

Figure 10: The Continuity Table for RCC-8 produced by
ChatGPT-4 using disguised relation names. The meaning of
the colouring is the same as in Fig. 9.

.

Concluding Remarks and Future Work
This investigation has supported the widely-held view that
LLMs can struggle to do reasoning tasks4. In the case of
Experiment 1, in which ChatGPT-4 was asked to compute
the entire composition table for RCC-8, this is a non triv-
ial task even for humans, so it is perhaps not surprising that
ChatGPT-4 did not achieve 100% accuracy – the scores of
71.94% (and 67.09% for the anonymised relatins) are clearly
much better than chance and do suggest a reasonable facility
to perform such computations. A detailed analysis of the ac-
tual conversations in the supplementary material shows that

4Bender et al (2021) have observed that LLMs might be re-
garded just as “stochastic parrots” and thus it is not suprising that
precise, logically correct deductive reasoning is challenging for an
LLM.
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sometimes ChatGPT-4 does appear able to do some interest-
ing (qualitative) spatial reasoning, but often fails, sometimes
making elementary mistakes. It also shows inconsistency in
being able to reason correctly about a relation but not its
inverse. It also sometimes confuses a relation with its in-
verse. It is possible that fine tuning, explicit chain-of-thought
prompting, or more carefully engineered prompts might im-
prove performance; however, given the stochastic nature of
LLMs it seems unlikely that the results would be as good as
logical reasoning (the experiment on preferred relations is of
course not strictly a logical reasoning exercise, except for the
requirement not to predict spatially impossible relations).

There are a variety of avenues for further work which
present themselves. Other calculi could be experimented
with – for example the coarser calculus RCC-5, or calculi
for reasoning about direction or size (Cohn and Renz 2008).
Other LLMs could be evaluated – though since new LLMs
and new LLM versions are continually being released, this
is a challenge with no definite stopping point. Tracking the
change in performance of a particular LLM across releases
would also be of interest – though in the case of closed
LLMs such as ChatGPT-4 where the owners have the right
to harvest user conversations and use them for future train-
ing, it will not be clear if any improvement is the result of
leakage from the previous conversation or more general per-
formance improvement5. It has already been observed (Cohn
and Hernandez-Orallo 2023) that different LLMs have dif-
ferent strengths – determining which LLMs are better at
which spatial reasoning tasks would also be worth of fu-
ture investigation. The overall conclusion that LLMs in gen-
eral struggle with more complex spatial reasoning tasks is
likely to remain the case, at least for the foreseeable future.
In the API version of GPT, different temperatures could be
tried, and multiple runs with averages computed. Different
prompts and prompting strategies could be tried, though ar-
guably since QSR has always been viewed as a form of com-
monsense reasoning, it should not be necessary to devise
specific prompts to elicit commonsense behaviour.

It is not clear how successful the anonymisation was – in
one case I mistyped an X relation and it was able to suggest
the intended relation name, suggesting that it has the ability
to dissect relation names; thus more sophisticated anonymi-
sation might be tried. In earlier work (Cohn and Hernandez-
Orallo 2023) we had already done some limited experimen-
tation asking an LLM to reason about spatial relations in
a real world context rather than the purely abstract setting
used in the experiments in this paper – it would be interest-
ing to conduct more extensive tests LLMs doing composi-
tional reasoning in a more realistic setting, and similarly for
the continuity experiment.

Experiment 2 above already investigated how LLM per-
formance compared to human performance to a limited ex-
tent but further investigation would be worthwhile, includ-
ing a head-to-head comparison rather than simply taking a
result from the literature originally intended to investigate
a different question. Another interesting avenue for further

5However, note that no feedback was given to ChatGPT-4 as to
whether the proffered response was correct or not.

work will be to explore the use of multimodal FMs – when
humans perform spatial reasoning tasks including the chal-
lenge of building a composition table, it is natural to use
pencil and paper to sketch diagrams and possible scenarios
– investigating whether a multi-modal FM with such abili-
ties (including the ability to analyse its own drawings) would
be of great interest to the spatial reasoning community.

As mentioned above, another possible avenue of research
is to investigate different prompting strategies, including k-
shot (Dang et al. 2022), chain-of-thought(Wei et al. 2022)
and tree-of-thought(Yao et al. 2023) strategies. Not doing so
was deliberate in this paper as I was interested in explor-
ing in how the “vanilla” LLM would perform. Whilst for
specific downstream tasks, fine-tuning or employing specific
prompting strategies may reasonable, there is an argument to
be made that for commonsense reasoning, this is not a rea-
sonable strategy since the task is a general one rather than a
specific downstream task.

Data statement
All the conversations with ChatGPT-4 that support
the summary tables in this paper can be found at
http://tinyurl.com/qr23sup.
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Abstract

The complexity of analysing dynamical systems often lies in
the difficulty to monitor each of their dynamic properties. In
this article, we use qualitative models to present an exhaustive
way of representing every possible state of a given system,
and combine it with Bayesian networks to integrate quantita-
tive information and reasoning under uncertainty. The result
is a combined model able to give explanations relying on ex-
pert knowledge to predict the behaviour of a system. We il-
lustrate our approach with a deterministic model to show how
the combination is done, then extend this model to integrate
uncertainty and demonstrate its benefits.

Introduction

Reasoning about a specific system’s behaviour requires a
good understanding of the involved entities, their quanti-

ties (i.e. their relevant numerical properties), how these are
related and the value they can take on. Establishing a model

able to explain those relations and the general behaviour of
the studied system is a complex task, hindered further by
the introduction of uncertainty: quantities are not always ob-
served and values tainted with errors can frustrate the inter-
pretations.

Bayesian Networks (Pearl 1985) (BNs), thanks to their
graphical aspect, allow to understand the underlying prob-
abilistic dependencies between the quantities (denoted as
variables in this context). However, they can be impaired
by the lack of physical understanding. While the models
learned with BNs offer a good quantitative description of the
studied system, they might lack explainability (i.e. their re-
sults do not always match human logical reasoning). This is
due to the fact that BNs build correlations, and not causation:
in practice, a model could learn RainÑGrass (”The rain
soaked the lawn”) as well as GrassÑRain (”The soaked
lawn provoked the rain”). To prevent such unwanted results,
(Pearl 2009) defined interventions (i.e. modifying one quan-
tity without touching the others) to construct causal mod-
els. This however is not always doable for practical, ethical
or economic reasons: for instance, studying the impact of
smoking on health would require to intervene on people to
force them to smoke.

Integrating external sources of knowledge can be useful to
guide the learning and prune impossible models. The most
common way of doing so for BNs is to impose a complete

(Baudrit et al. 2022) or partial (Munch et al. 2022) structure,
built with experts. This structure is denoted as theory, as it
reflects the experts’ (often causal) knowledge over the con-
sidered system. This approach helps to select the relevant
variables, and reduces the learning to the parameters (the
probabilities). However, this raises the question of the cor-
rectness and/or completeness of the fed causal theory: de-
pending on the experts, their number, their area of expertise,
... several can be proposed, each with possible distinct im-
pact over the learning.

On the other hand, qualitative reasoning (QR) builds
sound models with solid grounding on causality. By reason-
ing over quantities and defined relations, they can generate
all possible states of a system without relying on data (For-
bus 2011). Instead, they allow to define quantity spaces,
in order to consider only relevant values (e.g. {Ø, Low,
Medium, High}) and to reason on a symbolic level. As such,
they give a complete description of the system which can be
used to assess the validity of the expert knowledge integrated
in the BN’s learning.

In this article, we combine BNs with knowledge of the
system physics represented as qualitative models (QMs) to
learn models able to apprehend uncertain systems with ex-
plainable answers. Below, the first section presents the nec-
essary notions and state of the art on QM, BNs and the use of
QM for quantitative modeling. The second section presents
the principle of our approach illustrated by an example. Fi-
nally, the third section compares the results of our approach
compared to naive BN learning in order to demonstrate the
gain in explainability.

Modeling and simulation have been done using the Dy-
nalearn environment (Bredeweg et al. 2013), which is based
on the Garp3 software (https://dynalearn.nl/). BN learning
and computing have been done using the PyAgrum library
(Ducamp, Gonzales, and Wuillemin 2020).

Background

Qualitative Modeling with Garp3

Garp3 (Bredeweg et al. 2009) defines a qualitative system
through (1) the use of entities and their associated quanti-
ties and (2) their relations. Quantities are described by their
value (magnitude, e.g. +) and direction of change (derivative,
e.g. 0). Values are picked from associated quantity spaces,
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which holds every possible values they can take. While mag-
nitudes’ quantity spaces can be defined as desired by ex-
perts, derivatives’ are fixed: negative, null or positive. Fol-
lowing Garp3’s notation, they are denoted as {↭,!,↫}, or
{-, 0, +}. A combination of magnitude and derivative for
each quantity (e.g. !0,`") defines a state, i.e. the be-
haviour of the system at a certain time. Each state is a
unique qualitative behaviour of the system, characterized by
a unique set of quantity values and derivatives. Passing from
one state to the other represents the evolution of the system:
a graph of state is defined by a graphical representation of
all possible transitions between the different states, where
each node is a state and the edges the possible transitions.

In order to compute this graph, Garp3’s inference engine
reasons over two types of qualitative relations which defines
causal relations between each other (Forbus 1984): propor-

tionalities (changes caused by processes, denoted as P -/+),
and direct influences (causal propagation of changes, de-
noted as I-/+). Additional constraints can be added: cor-

respondences and inequalities allow the user to describe
the relations between certain quantity’s values and quanti-
ties (e.g. force the zero value, or force a value to be always
higher than another). Finally, reasoning is done over scenar-

ios, which define (some) values for the initial state.

Bayesian Networks

Bayesian Networks (BNs) (Pearl 1985) are acyclic graphs
G=(V,E), with V and E respectively the sets of all their nodes
(representing random variables) and arcs (representing the
conditional dependencies). To each variable, a conditional
probability table (CPT) is associated, giving the probability
distribution for each possible value it can take and how the
values of its parents (i.e. variables that have an oriented path
toward that variable) influence it (as shown in Fig.1). A joint
probability over all nodes V is defined as the product of local
probabilities given as:

P pX1, ...Xnq“
n!

i“1

P pXi|PapXiqq

with P pXi|PapXiqq being the conditional probability
function associated with random variable Xi, conditioned
on its parents PapXiq. A probability of 0 describes an im-
possible event, while a probability of 1 is associated to a
certain event.

While models have been proposed to take into account
continuity within BN’s structure, this article focuses on the
discrete part. BN’s learning is usually done is two steps:
considering a discretized database, the structure G is first
learned, then the probabilities. In this study, this last part is
tackled, as structure is provided by the addition of expert
knowledge from the QM.

Combining Quantitative and Qualitative

Explainable Artificial Intelligence has gained a tremendous
attention over the past years (Guidotti et al. 2018), as the
need of justifications for supporting a model’s predictions
is a key-question. More generally, there is an increase in
the need of understanding things correctly (e.g. science).

(a) BN (b) Marginal
Distribution

(c) Conditional Dis-
tribution

Figure 1: (a) Example of a BN composed of three variables
A, B and C. (b) Marginal distributions associated to A and
B. (c) CPT associated to C: in this example the probabilities
of C’s values (columns) depend on A and B’s values (rows).

Thanks to their graphical component BNs offer explainabil-
ity for their prediction. However, the lack of causality in
their approach leads to inaccurate models, unable to describe
real systems. Algorithms such as PC (Spirtes, Glymour, and
Scheines 2000) or more recently MIIC (Verny et al. 2017)
have been developed to tackle this issue and learn causal
structures from data alone. These approaches are however
costly in data. On another hand, integrating expert knowl-
edge (e.g. as partial node ordering (Parviainen and Koivisto
2013)) during the learning helps reducing the data cost by
reducing the search space (Munch et al. 2017). Yet, different
causal models lead to different BNs, whose correctness can
be difficult to evaluate.

In this article, QM is proposed to define a stable structure
able to frame the quantitative reasoning and integrate it into
quantitative learning. Such combination has been proposed,
for instance to improve simulations based on dynamic equa-
tions (Pang, Bruce, and Coghill 2018). In this case, QM al-
lows to define constraints that reduce intervals of simulation
for already known equations. It is often proposed to model
systems in order to bypass equations and simplify the simu-
lations (Soberl and Bratko 2022; Struss, Reiser, and Kreuz-
pointner 2018). (Klenk, Nabi, and Arvay 2016) proposes a
methodology to compare different explanatory models for
co-morbidities, using QM to develop mechanistic explana-
tions. While they do not rely on data, they raise the question
of inferences: given a patient and a validated causal model, is
it possible to derive conclusions? In the frame of this article,
the combination of BNs et QM would allow to answer quan-
titatively to these questions with probabilities, i.e. proposing
different possible answers with probabilities of their hap-
penstance. More generally, it aims at answering the three
advantages defined by (Forbus and Falkenhainer 1990) for
the combination of quantitative simulation with qualitative
knowledge: (1) increased automation (i.e. no need for man-
ually defining each relevant equation), (2) improved self-
monitoring (i.e. consistence checking with reality) and (3)
better explanations (i.e. justifications of predictions based on
causal reasoning).

Combining BNs and QMs

This section presents the combination of BNs and QMs as
showed in Fig.2, illustrated with a system.
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Figure 2: Summary of the approach. From a given system, a QM is constructed then used in a simulation to extract the different
possible qualitative states. From a dataset observing the different values of the systems quantities, an annotated dataset is
constructed, using the qualitative states to describe the dataset. This dataset is then transformed to allow the learning of a BN.

Example: the Container System

Consider a container with a floating cap being filled with
water described by three quantities (illustrated in Fig.3 (a)):

Q The inflow of water going in the container through a tap.
Initial flow is denoted Qin.

V The current volume of water in the container. Maximum
volume is denoted Vmax.

H The current height of the floating cap. Maximum height
is denoted Hmax.

Starting with an empty container, water is introduced at
a given flow, which arbitrarily decreases while height in-
creases. A floating cap is present such that, once the con-
tainer is filled, it interrupts the flow. For the following,
a dataset describing the values of the different quantities
through different simulation is considered. Each simulation
is initialized using:

• Hmax = 3
• Vmax = 3ω
• Qin ãÑ N (10, 1)

While this approach is able to address deterministic sys-
tems, randomness is introduced to demonstrate its robust-
ness when facing uncertainty. Fig.3 (b) shows the influence
of Qin on the filling rate speed.

Qualitative Model and States

The first step propose for the dynamic of this system a QM.
Following the system’s description, we consider two objects
and three quantities:
• The tap, associated to the inflow quantity Q. The quan-

tity space is {Ø,`}, referring respectively to the absence
and presence of flow.

• The container, associated to the amount V of wa-
ter and height H of the cap. Their quantity spaces is
{Ø,`,Max}, with !Max" respectively the maximum
volume and height. For both, !Ø" refers to the null

(a) Container system (b) Impact of Qin

Figure 3: Qualitative modeling of the container system. (a)
System. (b) Impact of the initial inflow Qin value over the
time required to reach the maximal height.

value (i.e. no water), while !`" refers to the amount
and height in between.

Fig.4 (a) presents the relations existing between the de-
fined objects and variables as well as the initial values used
for the simulation: Inflow is !`", while the Amount is
!Ø". This creates three possibles states for the system, de-
noted in the rest of this article as s1, s2 and s3:

s1 The tank is empty: water starts flowing through the tap.
The volume and height are null, but increasing.

s2 The tank is being filled: the volume and height are not
null and increasing, while the flow decreases.

s3 The tank is filled: water stops flowing. All quantities’
derivative are null, the system is at equilibrium.

Table 1 recaps the states different values, while Fig.4 (b)
and (c) presents the simulation’s results.

Annotated Dataset

While QM reasons over states and transitions between those,
quantitative models such as BNs are dedicated to the study
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(a) Qualitative modeling of the container system. (b) Evolution of
quantities’ values

(c)
States

Figure 4: Qualitative modeling of the container system. (a) Model and initial conditions. (b) Evolution of the quantities’ values
during simulation. (c) State graph of the simulation.

State Q V H

s1 !`,↭" !Ø,↫" !Ø,↫"
s2 !`,↭" !`,↫" !`,↫"
s3 !Ø,!" !`,!" !Max,!"

Table 1: Description of the quantities !Magnitude,
Derivative" for each state.

variable’s evolution across fixed intervals. This difference
of focus requires the definition of a novel quantity in order
to bridge between the two representations: the Time Step.
In practice, learning a quantitative model requires values
to reflect on; when learning a dynamic model, it helps to
have data describing the system at regular intervals (the time
steps). This is particularly important as the aim of the final
model is to be able to describe precisely the evolution (i.e.,
the passage or not from one state to the other) of the system:
irregular time steps would scramble the predictions. For the
following, the time step quantity refers to the time at which
the system is described.

Using Table 1 states, each time step is associated to one:
1. By discretizing the quantity’s value with its quantity

space. For instance, if Height = 0, then its discretized
value is !Ø"; Hmax becomes !Max"; otherwise, it is
discretized to !`".

2. By looking at the derivative for each quantity: if the dif-
ference between the quantity’s value at time t and t ` 1
is negative, then the derivative is also negative (↭); if the
values are equal, then the derivative is null (!); if it is
positive, then the derivative is positive (↫).

In the end, using the combination of the discretized value
and the derivative for each quantity, each time step can be as-
sociated to a QM state. A new quantity is also introduced for
interval of Time Steps: the Period. While Time Step marks
the passing of time, the Period indicates how long the sys-
tem has been in the current state. For the rest of this article,

Time H V Q dH dV dQ State Period
1 0 0 10 ↫ ↫ ↭ s1 1
2 2.9 9.1 7.3 ↫ ↫ ↭ s2 1
3 4.6 14.4 3.7 ↫ ↫ ↭ s2 2
4 5 15.7 0 ! ! ! s3 1
5 5 15.7 0 ? ? ? s3 2

Table 2: Example of a discretization using the QM, consid-
ering Qin=10, Hmax=5 and 5 time steps. Since Step 3 is an
equilibrium state, we assume that the observation at time 5
still matches state 3, although the derivatives are unknown.

Statet Statet`1 Periodt Statet Statet`1 Periodt

s1 s2 1 s3 s3 1
s2 s2 1 s3 s3 2
s2 s3 2

Table 3: Transformation of the database of Table 2 into a
database suitable for the BN learning.

given a quantity X, the variable Xt denotes its value at time
step t. Table 2 shows an example of the whole discretization
process.

Reduced Dataset

Since the model aims to learn the evolution of the system,
i.e. the transitions between steps, a new dataset is composed
from the Statet, Statet`1 and Periodt. This way, each lines
brings information of the system’s state, how long it has
been this way, and whether it will remain the same (or transi-
tion) in the next time step. Table 3 shows the transformation
applied to Table 2 in order to be able to learn a BN.

Bayesian Network

Structure Definition Once the database is prepared, a
structure is manually defined to guide the BN learning,
based on two assumptions:
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Table 4: Excerpt of the CPT showing the probabilities of
passing from Statet to Statet`1 if Periodt = 22.

• The Periodt value depends only on the value of Statet;

• The probability of passage from Statet to Statet`1 de-
pends on Statet and the Periodt;

This defines the following structure: Statet Ñ Statet`1

! Periodt Ñ Statet.

Parameters Learning Once the structure defined, param-
eters are learned through a statistical learning whose goal
is to maximize the likelihood by estimating the probabil-
ity of an event according to its frequency in the considered
database. In case an event is never observed (e.g. if the sys-
tem never stays more than one time step in s1, then the com-
bination {Statet=s1, Period=10} is never observed), the
probabilities are by default equiprobable: all possible out-
comes are considered as likely. The learned BN thus encom-
passes the QM model in its structure, and heavily depends
on the data only for its parameters.

Combined Model

In this article, two applications are presented in order to
demonstrate the reasoning offered by the learned model:

1. State Prediction. Reading the CPT, the probability of
passing from one state to the other knowing the period
can be deduced. Table 4 presents an excerpt, focusing on
the passage from one step to the other after a period of
22 (Periodt = 22). It shows that depending of Statet, the
most probable value of Statet`1 depends: if Statet = s2,
then it has a probability of 0.69 of staying s2; on another
hand, if Statet = s3, then it will stay s3 (which is logical,
since it is a equilibrium state). To be noted, if Statet =
s1, then the probability of transitioning is equiprobable
between s1 and s2 (s3 is not considered as s1Ñs3 is not
possible according the state graph): this is due to the fact
that the system has no information about cases where a
system has stayed 22 time steps in s1.

2. Period Prediction. Another way of exploiting the proba-
bilistic relations is to make inferences: knowing the value
of some variables, it is possible to compute the most
probable values of the others. Fig.5 presents such an ex-
ample: knowing that Statet = s2 and Statet`1 = s3 (in
orange to indicate it is observed), the most probable pe-
riod (in grey to indicate it is computed) is 22.

Figure 5: Example of an inference using the BN.

Comparison to Naive BN
1

In order to evaluate its performances, the combined model is
compared to naive BNs. To do so, two naive BNs integrat-
ing different expert constraints are presented. Evaluation is
done for both (1) the graph and (2) predictions, which are
compared against a ground truth.

Naive BNs Learning

”Naive” refers to the fact that the QM’s model is not known
during the learning, the main difference being that state
knowledge is not taken into account. This section presents
two versions, with different degree of the model’s under-
standing:
1. Learning is approached with no information from the

system at all. Discretization is made using quantiles (in-
stead of the system space’s values), and the structure is
constrained only so that variables from the past (Qt, Vt,
Ht) can be used to predict the future (Qt`1, Vt`1, Ht`1),
but not the contrary. This approach represents the most
naive learning, and gives an idea on how BNs handle this
kind of data without prior knowledge of the system. It is
denoted as the unguided approach.

2. A second learning is made to include more system’s
knowledge. The QM’s space’s values is used for the dis-
cretization, and the structure is forced in order to tran-
scribe the expert knowledge used in the QM. This ap-
proach is denoted as the guided approach.

Unguided Approach Seven variables are considered: six
to capture the values of the quantities Q, V and H at times t
and t ` 1, and one to capture the Time Steps. To be noted,
the Time Steps variable in this context is different from
the Periodt one presented until now: since states are not
known, time refers here to the beginning of the simulation,
and not to the time passed in a certain state. The structure

1All code used in this article are available at
https://gitlab.com/melanie.munch/qr23-submission
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is learned through a classical greedy algorithm (Chickering
2003), with the only constraint that variables at time t can
explain variables at time t ` 1, but not the contrary (tem-
poral constraints). Discretization is done such that (1) Q, V

and H are discretized in 5 quantiles; (2) Vmax and Hmax

are a 6th category in order to capture when the tank is filled;
Time Steps is not categorized to keep track of the time as
precisely as possible.

Guided Approach This approach still considers seven
variables, but handles them differently. First, discretization
is done following the QM’s space values; secondly, structure
is oriented so that additionally to the temporal constraints
forced in the naive version, it also takes into account (1) the
expert knowledge integrated in the QM (QÑVÑH), (2) the
influence of the Time Steps variable over the values mea-
sured at time t and (3) for each variable its value at time t to
predict its value at t ` 1.

Simulations

Given a database of 1000 simulations, three models are
learned using the same sample of 100 experiments:
1. Combined Model: A model learned using the method

presented in the previous section.
2. Unguided Model: A model learned using the unguided

approach presented in this section.
3. Guided Model: A model learned using the guided ap-

proach presented in this section.
The database of 1000 experiments represents the ground
truth that the learned models aim to reach.

Graph Evaluation

Result of the learning are presented in Fig.6. For the sake
of explainability, variables Q, V and H have been repre-
sented in the combined model (a), so that it can be compared
to the other structures. Since it was learned without knowl-
edge, unguided structure (b) differs the most from the QM
structure of Fig.4 (a), leading to non causal relations (e.g.,
VtÑHtÑQt). As such, the learned relation are not able to
explain the system in a causal way: it only displays correla-
tions, and cannot generate sound explanations to justify the
model’s prediction. On another hand, the guided approach
(c) presents a structure coherent with the QM. Moreover, on
the contrary of the combined structure, it directly displays
the relations between the variables, instead of having them
hidden between the states transitions. While this is an ad-
vantage in term of readability for systems with only a few
variables, this can become a hassle when considering bigger
systems.

Predictions Evaluation

Generation For each model, 1000 simulations are done
using the principle illustrated in Fig.7: starting from
the same initialization (Qt!0, Vt=0, Ht=0, Time Pe-

riod/Periodt=1), marginal laws for the next step are com-
puted (i.e., probabilistic distribution for the possible values).
Using these laws, new values for the variables Qt`1, Vt`1

and Ht`1 are drawn. If either Ht`1 takes the maximal value

(a) Combined Structure (b) Unguided
Structure

(c) Guided Approach
Structure

Figure 6: Models’ structures comparison.

or the number of time steps exceed 100, then the simula-
tion is finished. In the first case, the number of time steps is
kept; in the second, it means that the model could not reach
the end of the simulation and thus the run is incorrect. Fre-
quency of the number of time steps required to conclude the
simulation (i.e. to fill the container) are compared to the fre-
quency measured in the initial dataset.

Results Results are presented in Fig.8. The first notable
thing is that despite the fact that only 10% of the origi-
nal dataset was used to learn the models, all models have
an average time of filling close to the ground truth’s. A
Kolmogorov-Smirnov goodness of fit test is performed in or-
der to compare each distribution to the baseline: H0 means
that both distributions are identical, while H1 means they
are distinct. H1 is rejected for both combined and guided
models (with p-values respectively of 0.6 and 0.3), while it
is validated by the unguided approach (p-value"10´5). This
means that the unguided approach did not manage to capture
the underlying distribution of the dataset. On another hand,
both combined and guided are statically indistinguishable,
both having an average expectancy of time steps (i.e. the av-
erage time taken to fill the container) close to the truth’s (re-
spectively 24.3 and 23.2 against 24.7).

The main difference between combined and guided mod-
els lies in the evolution of the different values. Fig.9 shows
three independent simulation results for each model. Guided
and unguided are characterized by (1) a decorrelation be-
tween the three variables (e.g. V reaches Max value be-
fore H); and (2) impossible evolution of the values (e.g. Q

increasing). This shows that even if the guided model is
close in structure and (for this particular problem) of the
ground truth’s predictions, it fails at providing an explana-
tion grounded into the causal model. Combined model, on
the contrary, is able to provide a description of the system
which is consistent with the QM.
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Figure 7: General flowchart for the simulations. To be noted, in the case of the combined model, variables are encompassed in
the State variable and Time is replaced by the Period variable.

(a) Combined Model (24.3)

(b) Unguided Model (21.6)

(c) Guided Model (23.2)

Figure 8: Frequency of the times taken to finish the simu-
lation (average number of time step). Truth has an average
number of time step of 24.7.

Figure 9: Example of three independent simulations for each
model.

Discussion

Comparison to naive BNs has shown that grounding causal
knowledge from QM to BN’s learning results in a model able
to provide simulation close to the reality of the studied sys-
tem. This is particularly due to the distinction between Pe-

riod and Time Steps quantities: while the combined model
is able to reason only on state transitions, naive models can
only consider total times. As such, they cannot reason about
the state they are in, but only how long the simulation has
been running. In this simulation, the simplest case was con-
sidered, as only s2 had a non-constant time: s1, for instance,
always lasts one time step. Further experiments should be
done on systems with more complex state graphs (e.g. with
cycles and branching paths), in order to assess whether the
combined model can adapt. While the approach presented
in this article only requires a dataset and a QM as inputs,
more work should be done on its automation. More broadly,
it should be interesting to see how the combined model can
scale on systems with more quantities. Especially, it is im-
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portant to also take into account the challenges brought by
introducing more quantities, as some could be uncertain or
missing from the dataset: states could then be uncertain as
well, if not all quantities are known.

Another lead to explore would be to use the combine
model to assess the adequacy between a theory and a dataset.
(Kansou et al. 2017) proposes two tests to define whether a
model can be well described by a QM or not: the encom-
passment (the adequacy between the QM and the dataset)
and the sufficiency (the adequacy between the QM and the
model’s behaviour). To pass this verification, it is important
to consider technical aspects:

• The choice of time steps has an influence: if too great, it
is possible to skip some combinations of value (and thus
states) when annotating the dataset. This would result in
a model not respecting the state graph. For instance, if
passing from states takes 2 time steps (s1Ñs1Ñs2Ñ
s2Ñs3), then having a time step of 3 would lead to a
model predicting a passage from 1 directly to 3 (s1Ñs3).

• Another critical point is the computation of derivatives.
The same way the choice of time steps influences the
model’s learning, data’s sensibility can influence the
derivatives’ precision. Indeed, depending of the precision
of measurement, zero derivative can be hard to catch, as
it usually concerns one data point.

Finally, it is important to consider that the data depends on
multiple parameters not represented as quantities in the QM.
For instance, the required time to fill the container depends
on Vmax (maximal height and radius): if a model is learned
only on high and/or large containers, its predictions will not
be relevant for smaller containers.

Conclusion

In this article, a new approach of combining BNs with QM
has been presented, with the goal of improving BN’s model-
ing by integrating expert knowledge. Comparison with naive
BNs has displayed better results for the combined model
in term of prediction and explainability. In conclusion, the
resulting model is able to provide explainable answers and
simulations over an uncertain system. The learning is based
only on a dataset and the expert knowledge encompassed in
the QM, which dispenses the modeller with the prior defini-
tion of system equations.

References

Baudrit, C.; Buche, P.; Leconte, N.; Fernandez, C.; Belna,
M.; and Gésan-Guiziou, G. 2022. Decision support tool for
the agri-food sector using data annotated by ontology and
Bayesian network: a proof of concept applied to milk mi-
crofiltration. International Journal of Agricultural and En-

vironmental Information Systems, 13(1).
Bredeweg, B.; Liem, J.; Beek, W.; Linnebank, F.; Gracia, J.;
Lozano, E.; Wissner, M.; Bühling, R.; Salles, P.; Noble, R.;
Zitek, A.; Borisova, P.; and Mioduser, D. 2013. DynaLearn -
An Intelligent Learning Environment for Learning Concep-
tual Knowledge. Ai Magazine, 34: 46–65.

Bredeweg, B.; Linnebank, F.; Bouwer, A.; and Liem, J.
2009. Garp3 — Workbench for qualitative modelling and
simulation. Ecological Informatics, 4(5): 263–281.
Chickering, D. M. 2003. Optimal Structure Identification
with Greedy Search. J. Mach. Learn. Res., 3: 507–554.
Ducamp, G.; Gonzales, C.; and Wuillemin, P.-H. 2020.
aGrUM/pyAgrum : a Toolbox to Build Models and Algo-
rithms for Probabilistic Graphical Models in Python. In 10th

International Conference on Probabilistic Graphical Mod-

els, volume 138 of Proceedings of Machine Learning Re-

search, 609–612. Skørping, Denmark.
Forbus, K. D. 1984. Qualitative process theory. Artificial

Intelligence, 24(1): 85–168.
Forbus, K. D. 2011. Qualitative modeling. WIREs Cognitive

Science, 2(4): 374–391.
Forbus, K. D.; and Falkenhainer, B. 1990. Self-Explanatory
Simulations: An Integration of Qualitative and Quantitative
Knowledge. 380–387.
Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Gian-
notti, F.; and Pedreschi, D. 2018. A Survey of Methods for
Explaining Black Box Models. ACM Comput. Surv., 51(5).
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Abstract 
One of the roles of qualitative representations is to 
provide context for numerical information, making 
explicit how it is grounded in the world.  This sup-
ports tasks like quantity estimation, e.g. estimating 
the cost of a used bicycle by comparing it with sim-
ilar items.  The KNACK model (Paritosh & Klenk, 
2006) used analogical retrieval of a fixed number of 
cases to perform such estimates.  This paper de-
scribes a new algorithm, KNACK v2, which uses 
analogical generalization to provide a more robust 
notion of context for quantitative estimation.  We 
describe how KNACK v2 works and test its perfor-
mance on a dataset of country information from 
Wikidata, showing it is competitive with linear re-
gression while providing explanations.   
 

1 Introduction 
Quantity estimation is integral to our everyday lives. We 

may estimate how long it would take to commute home if we 
stop at the grocery store on the way, whether we have enough 
fuel to drive to our destination, or how much we should 
charge for our used bicycle after upgrading to a new one. 
Solving these estimation problems typically requires some 
experience with similar examples as well as domain-
knowledge about the world. 

Before setting the asking price for our old bicycle, we need 
a contextual sense of what bicycles cost in our environment. 
We might browse online listings of used bicycles or stop by 
a used bike shop in our town to get a general idea of the dis-
tribution. These serve as reference points for generating our 
own estimate, or in this scenario, asking price. 

During quantity estimation we also regularly use our do-
main-specific qualitative and quantitative world knowledge. 
For example, we know that bicycles with a sophisticated 
multi-gear system are more costly than those without one. 
The weight of the frame or the thickness of the tires may also 
be factors that influence our estimate. 

The dominant computational model for estimating quanti-
ties is multiple linear regression, but this approach has two 

drawbacks.  First, linear regression does not handle qualita-
tive information adeptly.  The classic workaround solution is 
to create one-hot dummy variables that are active when a case 
has a given feature and inactive when it doesn’t.  In our bicy-
cle example, the presence or absence of a gear-shifting sys-
tem would be represented by a 1 or a 0 in a dedicated dimen-
sion. This approach can lead to sparsity in feature vectors and 
subsequent overfitting.  The second drawback of pure regres-
sion is its lack of explainability. A regression output is simply 
an intercept and a series of coefficients for associated dimen-
sions. There is no dependency, no higher-level cognitive 
mechanism that guarantees a reasonable estimate, and no 
clear explanation for why a given estimate makes sense.  Re-
turning to our used bicycle example, negotiations over price 
often hinge on specific factors (e.g. fancier gear-shifting sys-
tem versus more wear), so an explainable model would likely 
give customers more peace of mind that they are getting a fair 
price. 

This paper describes KNACK v2, a model for quantity es-
timation based on qualitative representations and analogical 
generalization.  We start by discussing relevant background, 
including the anchoring and adjustment psychological model 
of quantitative estimation, our analogical processing models, 
and the construction of qualitative representations of quanti-
ties via CARVE (Paritosh 2004).  Then we describe the 
KNACK v2 algorithm, and an experiment using a dataset ex-
tracted from Wikidata (Vrandecic & Krotzsch 2014).  The 
experiment provides evidence that KNACK v2 is competitive 
with linear regression, but with the ability to provide expla-
nations.  We close with conclusions and future work.   
 

2 Background 
 
2.1 Anchoring and Adjustment 
 
There has been significant psychological evidence for the 
heuristic of anchoring and adjustment (Tversky and Kahne-
man, 1974). This method for quantity estimation involves 
two steps. The first step anchors an estimate by retrieving a 
relevant example from memory and using its value for that 
quantity. This retrieval can be a prototypical class instance 
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(subject to the availability heuristic (Tversky and Kahneman 
1974)) or a similar example. For instance, when estimating 
the rent for an apartment, we may start with the rent for apart-
ments of the same configuration (e.g. one bedroom) in the 
same neighborhood. Using that sample as our estimate would 
be a type of nearest neighbor sampling, but we can often be 
more accurate by utilizing adjustment. This second step in-
corporates our intuitive heuristic knowledge of the world to 
scale up or down our estimate.   
 We use two ideas in developing computational models 
based on anchoring and adjustment.  The first is the structure-
mapping theory of analogy and similarity (Gentner, 1983) to 
both find similar examples and compute how they are aligned 
with the current situation.  In structure-mapping, similarity is 
based on structured representations, including relationships 
between entities as well as attributes (aka features).  There is 
ample evidence that this model is more psychologically plau-
sible than purely feature-based approaches (e.g. Markman & 
Gentner, 1993).  Returning to the rental example, when trying 
to estimate the rent for one apartment, we may retrieve an-
other apartment—whose rent we do know—and map the two 
cases together with their relative parts, comparing configura-
tion with configuration, location with location, price with 
price, etc.  These alignable properties help provide the grist 
for adjustment: If one apartment is larger than the other, then 
that suggests its rent might be higher.  Qualitative represen-
tations provide this kind of causal information needed to 
drive adjustment.  We use qualitative proportionalities 
(Chapter 7, Forbus 2019), which describe how quantities are 
causally connected with one another.  If rent is qualitatively 
proportional to square footage, then an apartment with more 
square footage will have a higher rent, all else being equal.  
Of course, what makes these problems difficult is that all else 
typically is not equal: A small apartment in a great neighbor-
hood may be more expensive than a huge apartment in an un-
safe neighborhood.   
 This approach is broadly compatible with psychological 
evidence about component processes.  Previous studies have 
found that relational retrieval improves with domain exper-
tise (Blanchette & Dunbar 2001; Novick 1988; Gentner, Loe-
wenstein, & Thompson 2004). Similarly, the adjustment 
phase of quantity estimation gets better with expertly tuned 
heuristics and knowledge of qualitative proportionalities and 
other quantity relationships (Paritosh & Klenk 2006). 
 
2.2 Analogical Processing  
 
We draw on computational models for three processes in-
volved in analogical learning and reasoning, matching, re-
trieval, and generalization, discussing each in turn. 
 Matching is performed by the Structure-Mapping Engine 
(SME; Forbus et.al. 2017).  It takes two cases as input, both 
structured representations that include both statements about 
object attributes (e.g. being a bicycle) and relationships (e.g. 
that the basket is connected to the rear wheel of the bicycle). 
It constructs one or more mappings, each of which consists 
of three parts.  (1) A numerical score indicates the overall 
quality of the match.  This depends on properties such as the 

nested overlap in relationships, thereby capturing human 
preferences for arguments and explanations, (2) a set of cor-
respondences, indicating what objects and statements align 
with each other.  Correspondences can be used in supporting 
how an example is relevant to a situation, among other things. 
(3) A set of candidate inferences, indicating how non-aligned 
information in the base or target might be mapped onto the 
other description, based on the correspondences.  These pro-
vide conjectures and highlight salient differences between the 
two descriptions. 
 Retrieval of cases is modeled by MAC/FAC (Forbus, 
Gentner & Law 1995).  The probe is the case for which a 
reminding is sought from a case library consisting of struc-
tured representations.  For scalability, MAC/FAC consists of 
a two-stage process, both of which use map/reduce.  The 
MAC stage computes a coarse estimate of the probe with 
every case in the library, in parallel, based on content vectors.  
Content vectors are automatically constructed from struc-
tured representations, with the strength of a dimension related 
to the number of occurrences of each kind of predicate, at-
tribute, or logical function.  The dot product of two content 
vectors is an estimate of SME’s structurally grounded simi-
larity score.  The best M matches from the MAC stage are 
passed into FAC, which uses SME for its comparisons, pro-
ducing the best N matches as outputs.   

 Generalization, the process by which we naturally group 
similar cases together, is modeled by Sequential Analogical 
Generalization Engine (SAGE) (Kandaswamy & Forbus 
2012).  SAGE builds analogical models of concepts incre-
mentally, using structure-mapping as a clustering metric.  
Each model consists of a generalization pool, which can con-
tain both generalizations and outliers (Figure 1).  Given a new 
example of a concept, MAC/FAC is used to retrieve the most 
similar item, treating the pool as a case library.  If the 

 
Figure 1:  
A Sage Generalization Pool. Generalizations (groups of 
analogically similar cases) are shown in white circles, 
with individual constituent cases shown as black dots. 
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similarity score produced by SME is higher than the assimi-
lation threshold for that generalization pool, then the case and 
the item are assimilated.  If the item was an outlier, then a 
new generalization is formed by merging the corresponding 
statements.  

Generalizations also record summative statistics about 
constituent cases. For example, in a generalization composed 
of two countries, facts they share (high population, medium 
GDP, etc.) will have probabilities of 1, while facts that exist 
in only one constituent case have probability 0.5. Non-iden-
tical entities are replaced by skolems constants called gener-
alized entities.  If the item was a generalization, the merge 
process updates the probabilities for the statements based on 
overlap, and introduces new generalized entities as needed.  
At any time, the generalizations and outliers in the pool con-
stitute a disjunctive model of that concept given the data so 
far.  It is analogous to k-means clustering with outliers, ex-
cept that the clustering metric is structure-mapping and the 
number of clusters is determined automatically based on the 
data.  This ability to handle disjunctive concepts provides a 
finer-grained notion of context for reasoning, e.g. racing bi-
cycles will likely end up in different clusters from cargo bi-
cycles. 

Currently, our analogy stack (MAC/FAC, SME, and 
SAGE) is not sensitive to quantity; that is, the analogy stack 
was built primarily for cognitively plausible, qualitative rea-
soning over relational cases, rather than numerical analyses. 
In order to make analogy sensitive to attributes on quantita-
tive dimensions, we employ a model called CARVE. 

 
 
2.3 Qualitative Representation of Quantities 
 
Structure-mapping operations are not sensitive to numerical 
values.  For example, the difference between apartments 
with 700 and 705 square feet is the same to SME as the dif-
ference between apartments with 700 and 1000 square feet. 
We take this as a job for qualitative representations: In 
apartments, 5 square feet is a negligible difference.  In an 
engineering analysis of materials needed for an aircraft, five 
extra square feet can be a considerable difference.  Thus we 
argue that translation to appropriate qualitative values, in a 
task-specific manner, is a sensible and psychologically plau-
sible way to incorporate such information.   
 In Qualitative Process (QP) theory (Forbus, 1984), limit 
points are used to distinguish ranges in numerical values 
based on when the underlying causal laws change.  But what 
about situations where either it isn’t known yet which causal 
laws are relevant yet, or even what they are?  Paritosh 
(2004) proposed using distributional limit points, dividing 
numerical ranges into a discrete set of values via classic k-
means clustering.  For example, population might be ini-
tially divided into three bins, High, Medium, and Low.  
Once distributional limit points have been computed, nu-
merical facts can automatically be converted to qualitative 
statements.  For example,  
(populationOfRegion unitedStatesOfAmerica 
(UnitOfCountFn Person) 331000000) 

becomes 
(isa UnitedStatesOfAmerica (CountryTypeFn  
(MediumAmountFn CountryPopulation))) 

Where the literal value is replaced by the qualitative label 
(medium) within the broader case library context (all coun-
tries). Thus countries that are qualitatively similar in relevant 
dimensions are more likely to be retrieved. Significant differ-
ences in quantities are highlighted via candidate inferences 
generated during the mapping process. 
 CARVE (Paritosh 2004), uses k-means clustering to intro-
duce distributional limit points and then used a precursor to 
SAGE to look for useful partitionings.  At the time, the pau-
city of available data limited experimentation.  With modern 
Semantic Web data sources, that has changed.  The experi-
ments described here use the CARVE algorithm with three 
qualitative values to symbolize quantity. 

3 The KNACK v2 Algorithm 
KNACK v2 is an algorithm for quantitative estimation us-

ing analogical generalization over qualitative representations.  
It takes a stream of examples to learn analogical models via 
SAGE, as described in Section 2.2. Figure 2 describes the al-
gorithm for ingestion of new examples, and Figure 3 de-
scribes how estimations are made, given the current state of 

the generalization pool. We discuss each in turn. 
The example ingestion process (Figure 2) is straightfor-

ward.  All statements involving numerical parameters are re-
placed with qualitative statements, as per the example above.  
This has the effect of flattening the representation to some 
degree, since it is replacing relations (e.g. population-
OfRegion) with attributes (e.g.  
(CountryTypeFn  
(MediumAmountFn CountryPopulation))), which 

has the effect of making analogical retrieval sensitive to dif-
ferences in values, as desired.   
 Quantity estimation can be viewed as a form of anchor and 
adjustment.  Step 1 in Figure 3 retrieves the anchor.  As per 
Step 1(a), if nothing is retrieved, the average of Q across the 
examples in the pool is used as a fallback.  If the closest an-
chor is an outlier, then there isn’t enough information to build 
a linear regression model, so the value of Q in the outlier is 
used instead (Step 2).  Step 3 is the interesting case.  As noted 
above, qualitative proportionalities provide the kind of partial 
causal constraints that can be assembled to form a model for 
a quantity.  We assume the retrieval of relevant qualitative 
proportionalities (Step 3(a)) is done respecting the constraints 
of a QP domain theory.  Steps 3(b-d) does the adjustment, by 
constructing and using a linear regression model based on the 
examples in the retrieved generalization.  One subtlety 

Algorithm: Ingest Example 
Given example E and generalization pool GP, 

1. Convert all quantitative values in E to quali-
tative values 

2. Add E to GP via SAGE 
Figure 2: KNACK v2 Ingestion Algorithm 
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concerns missing data in examples: If an example is missing 
data, it is thrown out, and if none of the examples in I have 
relevant data, the marginal average across the pool is used 
instead as a fallback. 

The use of generalization to provide a more focused con-
text is the key innovation of KNACK v2. The original version 
of KNACK used MAC/FAC over a case library of examples, 
looking for a hard-coded number of examples—5— to use in 
model construction.  By using analogical generalization in-
stead, we are assured that the cases are all reasonably similar 
to each other, as opposed to being just the most similar that 

could be found.  Thus this algorithm scales smoothly between 
low-data situations (e.g. two examples) and high-data situa-
tions (e.g. dozens of examples).  This does raise the question 
of what should be done with generalizations that have thou-
sands or even millions of examples.   Such situations have 
never arisen, but if they do, one approach would be incremen-
tally computing more summative statistics rather than keep-
ing everything in the original cases.  

At the time of the original KNACK’s publication in 2006, 
the landscape of open-source datasets was very different. 
Prior to the machine learning boom of the 2010s, datasets for 
learning were more often smaller and experiment-specific. 
The datasets used with the original KNACK algorithm, for 
example, contained 15 cases (each case representing one bas-
ketball player). Datasets have ballooned in size since this 
time, and access is often easy and free (Forbus & Demel, 
2022).  Thus to test the scalability of the KNACK v2 algo-
rithm, we generated a new dataset using Wikidata, one of the 
largest open knowledge graphs available. 

 
1 NextKB is available at qrg.northwestern.edu, and we will 

make the country dataset available on the web as well to support 
replication. 

4 Experiment 
We generated a dataset describing information about 197 

countries, and used KNACK v2 to build models for quantity 
estimation.  We start by summarizing Wikidata and how we 
translated the data into our representations1.  Then we de-
scribe our experimental method and the results.   

 
4.1 Wikidata 

Wikidata is a collaboratively edited knowledge graph 
hosted by the WikiMedia foundation (Wikipedia, Wiktion-
ary, etc.) Utilizing an extensive distributed community of ed-
itors, Wikidata has grown to over 104 billion items at the time 
of writing.2 The open-source nature of Wikidata allows it to 
serve as a downstream aggregate of otherwise siloed data 
from various sources. For example, Wikidata contains data 
from the Google Books initiative as well as the Vatican Li-
brary, linking common entities across domains. We briefly 
describe the structure of Wikidata items. 
 Wikidata items are entities with a unique identifier (QID) 
and a set of statements concerning them. Each statement is a 
key-value pair, with the key being a property (associated with 
a unique property ID, or PID) and the value being some 
value—a quantity, another item, or multimedia like a photo. 
This structure is effectively a series of triples of the form 
<subject, predicate, attribute>. This RDF structure makes all 
of Wikidata queryable from a SPARQL endpoint.3 For exam-
ple, say one wants to find the capital of the United States. The 
United States is an item in Wikidata with the QID Q30. There 
is a capital property with the PID P36. Then all we have to 
do is query for the statement <Q30, P36 ?X> in SPARQL, 
giving us another entity, Washington D.C. (Q61). 

But statements can be more sophisticated than linking mul-
tiple items. Some predicates, like area (P2046), link an item 
to a quantity, margin of error, and a unit. (According to Wik-
idata, the United States (Q30) has an area (P2046) of 
9,826,675±1 square kilometers.) Other facts have qualifiers 
attached—between 1785 and 1790, the capital of the United 
States was New York City. Similarly, the value for a popula-
tion statement is constrained by the year when it holds true. 
Finally, most facts in Wikidata can be traced back to their 
source through citations or provenance information, increas-
ing the trustworthy of the data available. 

We queried Wikidata for 197 countries and their associated 
statements. We gathered both qualitative data, like: 

 Bordering Countries 
 Continent Membership 
 Currency 
 Bordering Bodies of Water 
 International Organization Membership 
 Language Spoken 

Along with quantitative data, such as 
 Area 
 Population 
 Human Development Index (HDI) 

2 For up-to-date statistics on items, edits, and users, visit 
https://www.wikidata.org/wiki/Special:Statistics 
3 query.wikidata.org 

Algorithm: Estimate 
Given: New example E with quantity Q to be esti-
mated, with respect to generalization pool GP 

1. Retrieve closest item I from GP, using 
MAC/FAC 

a. If no retrieval, return marginal av-
erage of Q across all cases in GP 

2. If I is an outlier, use the value of Q in I as 
the estimate. 

3. If I is a generalization, 
a. Let qprops = {qualitative propor-

tionalities constraining Q} 
b. Let a1,…,an be the antecedent 

quantities from qprops. 
c. Construct linear regression model 

from values for a1,…,an using the 
cases used to produce I 

d. Produce estimate from linear 
model, computing Q from data for 
a1,…,an from E. 

Figure 3: KNACK v2 Estimation algorithm 



 Development Index 
 Gross Domestic Product (GDP) 
 GDP Per Capita 
 Literacy Rate 
 Fertility Rate 
 Life Expectancy 
 Median Income 
 Democracy Index. 

Due to the crowdsourced nature of Wikidata4, not all cases 
are complete with every dimension. For example, no literacy 
rate was found for Mexico, and no median income found for 
Mauritius. Wikidata had only 4 of 11 possible quantitative 
facts for Monaco: area, population, GDP, and GDP per cap-
ita. This makes our estimation task more difficult but is inev-
itable in real-world situations. 

To build our dataset, facts retrieved via SPARQL queries 
were automatically translated into the OpenCyc ontology 
used in NextKB, our knowledge base.  For example, a popu-
lation fact in Wikidata looks like 

<U.S. (Q30), Population (P1082), ~331Million> 
This is translated to this CycL sentence: 
(populationOfRegion unitedStatesOfAmerica 
(UnitOfCountFn Person) 331000000) 
Since this dataset will be used for analogical estimation, 

we need to have an understanding of what it means for two 
countries to be analogically similar to one another. There are 
qualitative similarities: if they are a part of the same conti-
nent, in the same international organizations, use the same 
currency, or share cultural similarities like the language spo-
ken. There are also quantitative similarities. They may have 
similar populations or areas, or their Human Development In-
dices may both be between 0.8 and 0.9.  Consequently, we 
used CARVE to generate qualitative representations of quan-
titative dimension facts using three qualitative distinctions to 
generate facts like 
(isa Poland  
(CountryTypeFn (LowAmountFn Area))) 

(isa Spain  
(CountryTypeFn 
(MediumAmountFn CountryGDP))) 

(isa UnitedStatesOfAmerica 
(CountryTypeFn 
(HighAmountFn CountryGDP))) 

 
 
4.4 Experimental Method 
 

The dataset we built contains 197 country cases, each con-
sisting of 2 to 91 facts, with a mean of 38. Each experimental 
fold consisted of holding out 19 or 20 cases for testing while 
the model learned (generalized) the remaining ones. The as-
similation threshold for SAGE during the learning phase of 
KNACK v2 was set at 0.8, requiring strong match strength 
between a test case and a given generalization. The 

 
4 Wikidata editors often have conflicting views of correct rep-

resentations. The label for Czech Republic (Q213) has alternated 
between Czechia and Czech Republic multiple times in 2023.  

dimensions to be estimated were GDP, Human Development 
Index (HDI), and Democracy Index (DI).  The qualitative 
proportionalities involving them are shown in Table 1. 
 

DIMENSION DEPENDS ON 
GDP Population 
HDI Life Expectancy 
DI HDI 

Table 1. World knowledge is built into the model of dimen-
sional dependence. Dimensions in the right column were 
used as independent variables when regressing on a general-
ization. 
 

Measuring accuracy is subtle given the varying nature of 
these quantities.  Gross Domestic Product is an unbounded 
quantity that ranged from 39,000 to 19 trillion US Dollars. 
Accuracy for GDP was measured by distance away from 
ground-truth values, scaled by the magnitude of the ground 
truth itself. 

|truth – estimate| / truth 
where truth is the ground-truth fact, and estimate is the output 
generated by KNACK v2. This was done according to We-
ber’s law (Fechner 1966), which states that perceived simi-
larity of quantities is measured by a ratio between them, i.e. 
although 1,000 and 1,001 are the same distance apart as 1 and 
2, the former pair is judged to be closer together because the 
ratio of the two is closer to 1 than the ratio of the latter pair. 
 Accuracy for Human Development Index and Democracy 
Index were measured in mean squared error since they are 
bounded quantities. Since HDI is measured on a 0 to 1 scale, 
a 0.2 estimate for 0.3 would be considered less accurate than 
a 0.7 estimate for 0.8. 
 For all three test dimensions, 10 folds were generated that 
contained 19 or 20 held-out test cases. Accuracy was aver-
aged across every predicted case in every fold. 
 We also generated a baseline linear regression model 
across all cases. The linear regression estimator is run using 
the implementation in Python’s sklearn module, using default 
parameters. This requires vectorizing structured knowledge 
from the country cases by generating a set of features from 
the structured facts. This was accomplished by manually cre-
ating a mapping, where each quantity type is considered a 
feature, and each unique qualitative attribute (e.g. currency, 
international association membership) is represented by a 
one-hot vector. Missing quantities are imputed using Py-
thon’s impute function in the scipy module. This results in 
883 features across the 197 country cases. 

4.5 Results 
Table 2 shows the results from KNACK v2 against those gen-
erated by pure linear regression. The first run of our experi-
ment recorded accuracy only for those cases suited especially 
well for analogy; they mapped to a generalization and used 
regression to generate an estimate. The second run of our 
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experiment included accuracy for cases that mapped outside 
of generalizations—either to an outlier or to nothing—that 
fell back to a baseline of sampling within a generalization or 
using the marginal average. This was necessary for anywhere 
from 0 to 4 (with an average of 0.9 cases per fold) of the 20 
test cases for a cross validation fold. 

Pure KNACK v2 (with thrown away estimations) per-
formed better than Pure Regression for 2 of the 3 testing di-
mensions, but not significantly (P > 0.05). P-values are 
shown in the right-most column of Table 2.  
 

 Pure 
KNACKv2  
Accuracy 

KNACKv2 
+ sampling 
Accuracy 

Pure Regres-
sion  
Accuracy 

p-val 

HDI 0.004003988 0.00459702 0.00708158 0.19 
DI 2.367816143 2.63343881 2.08532303 0.64 
GDP* 15.47324807 15.2617797 60.7963312 0.18 

Table 2. KNACK results compared with KNACK and sam-
pling for a complete set of estimations. 
*GDP accuracy is normalized ( |truth – estimate| / truth ) 
 

4.6 Explainability 
One of the advantages of our methods as opposed to pure 
quantitative regression is the explainability of our models. 
The primary mechanism that provides this capability is the 
summative statistics generated by SAGE. Recall that each 
generalization will yield a unique linear regression during our 
estimation procedure, so overarching information about the 
generalization can help explain unique trend lines. For exam-
ple, when our system predicts the HDI of Belarus, we retrieve 
a generalization made up of Tajikstan, Kyrgyzstan, Armenia, 
Pakistan, Uzbekistan, and Kazakhstan. SAGE tells us these 
are all located on the Asian continent, have low (as labeled 
by CARVE) democracy indices, land area, and GDPs. Five 
of the six have low populations. Four of the six are members 
of the Central Asian Cooperation Organization. Being able to 
identify these trends and patterns is insight that other tools for 
quantitative estimation lack. 
 

5 Discussion & Future Work 
The results show that KNACK v2 is competitive with pure 

linear regression. It’s interesting to note that falling back to 
sampling an anchor country or the marginal average made the 
results slightly less accurate for HDI and DI, but made the 
prediction for GDP more accurate. This could be explained 
by cases that do not get mapped to generalizations tending to 
have GDPs close to the marginal average of all countries. 

The results show that under the right circumstances, 
KNACK v2 might be a more accurate model than pure linear 
regression. And unlike traditional linear regression, the cases 
that were used to form the estimate can be traced back to their 
source, increasing the explainability of, and potentially trust 
in, its results. 

We see four directions for future work.  First, we need to 
test KNACK v2 over more datasets. For example, Wikidata 
provides copious information about movies and their re-
leases, with qualitative and quantitative information that ap-
pears promising for analogical estimation.  Second, we plan 
to experiment with ways that systems using KNACK v2 can 
tune it to produce more relevant results. For example, agri-
cultural models of a country might focus on different aspects 
than models of its overall economy or educational system.  
This could be handled with different case construction strat-
egies and accumulating models in separate generalization 
pools.  Third, we plan to investigate the effects of incremen-
tality on estimation, e.g. how rapidly do estimates improve?  
Fourth, we plan to use KNACK v2 in a number of tasks using 
the Companion cognitive architecture (Forbus & Hinrichs 
2017), such as back of the envelope reasoning (Paritosh & 
Forbus, 2007; Bundy et al. 2013) but also in metacognitive 
reasoning within the architecture itself, e.g. estimating effort 
and utility of tasks. 
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Abstract 
This paper presents three lesson activities for upper 
secondary and higher education that focus on 
learning by constructing an interactive qualitative 
representation. By constructing the representation 
learners learn domain knowledge as well as general 
system thinking skills. The learning goals and the 
pedagogical approach are described.  

1 Introduction 
We investigate the pedagogical approach of learning by 
constructing interactive qualitative representations 
[Bredeweg et al., 2023a]. By constructing qualitative 
representations, learners can develop a comprehensive 
understanding of subject-specific systems and improve their 
generic system thinking skills [Bredeweg et al., 2023b; 
Kragten & Bredeweg, 2023]. 

In this paper, we describe the pedagogical approach of 
three lesson activities for upper secondary and higher 
education. The lesson activities are developed within the 
project Denker (https://denker.nu). The topics of the lesson 
activities are photoelectric effect (physics), thermoregulation 
(biology) and global warming (geography). Learners create 
qualitative representations using DynaLearn 
(https://www.dynalearn.eu). This learning space supports 
multiple levels at which qualitative representations can be 
constructed [Bredeweg et al., 2013]. Each successive level 
adds new features to describe increasingly complex system 
behavior. The three lesson activities presented in this paper 
are at level 5 of the Dynalearn software. The lesson activities 
were designed for learners that are already familiar with 
features of level 2 [grade 7-8, see Spitz et al., 2021], 3 [grade 
8-9, see Kragten et al., 2021] and 4 [grade 10-12, see Kragten 
et al., 2022]. 

Below, we first describe the vocabulary of qualitative 
representation at level 5 (which includes the features of level 
2, 3 and 4). This paper is dedicated to providing a 
comprehensive and detailed description of lesson activities 
that involve constructing qualitative representations at level 

5. For each lesson activity we describe the learning goals of 
the subject-specific system and explain our pedagogical 
approach by showing how the representation is constructed 
step-by-step.  

2 Qualitative Representations 

2.1 Vocabulary 
Entities can be either physical objects or abstract concepts, 
while quantities represent changeable features related to 
those entities in a specific system. Quantities have two 
characteristics: a current value and a direction of change. The 
latter is denoted as δ. In Figure 1 there are two entities, 
namely E1 and E2. E1 has a single quantity, Q1, while E2 has 
three quantities, namely Q2, Q3, and Q4. Possible values of 
a quantity are described using the notion of a quantity space, 
which represents the characteristic states of a quantity using 
a range of alternating point and interval values. Q1 has a 
quantity space that includes the values {0, +, Point, ++}, Q2 
has a quantity space with the values {0, Interval}, while Q3 
has no quantity space. 
 

Figure 1. Qualitative representation – The simulation result of state 
2 is shown. 
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Co-occurrence of values can be specified by adding a 
correspondence (C). There is a directed correspondence 
between values of the quantity spaces of Q1 and Q2 (if Q1 = 
0 then Q2 = 0). Quantities can have causal relationships with 
other quantities. There are two types of causal relationships: 
influence (I) which is the primary cause of change, due to a 
process being active, and proportionality (P) which 
propagates change. Both relationships can be positive (I+, 
P+) or negative (I–, P–). In Figure 1, there is a causal 
relationship of the type positive influence (I+) between Q1 
and Q2 (if Q1 = 0 then δQ2 = 0 and if Q1 = +, Point or ++ 
then δQ2 > 0). There is a positive proportional relationship 
(P+) between Q2 and Q3 (changes in Q2 causes changes in 
Q3). The notion of an exogenous influence can be used to 
specify a continues change for a quantity. Q1 is influenced by 
an exogenous influence of the type increasing. Inequalities 
(<, ≤, =, ≥, >) can be added to the representation to specify 
ordinal relations between quantities or values of a quantity 
space. Calculi allow qualitative calculations for operations 
such as multiplication or subtraction of values of quantities, 
resulting in the generation of a new value.  

At level 5, conditional expressions can be added to the 
representation. Conditional expressions specify behaviors 
that only occur under specific conditions. Color coding is 
used to distinguish between the conditions and consequences 
of a model. In Figure 1, the positive proportional relationship 
(P+) between Q3 and Q4 is conditional indicated by a yellow 
color. The relationship is only valid if Q1 = ++ indicated by 
an arrow with a red color. 

The qualitative representation of a system can be analyzed 
through a simulation that reveals the system's behavior and 
the direction of change of its quantities based on specified 
initial settings. To depict this behavior, a state graph (Figure 
1, RHS) is employed, illustrating the possible states of the 
system. By studying the state graph, learners can gain insights 
into how a system evolves over time and how different 
factors influence its behavior. Figure 1 shows the simulation 
result of state 2. The representation is simulated with initial 
values: Q1 = 0 and an increasing exogenous influence acts on 
Q1. The state graph consists of five consecutive states. In 
state 2 Q1 = + and is increasing (δQ1 > 0), Q2 = 0 and is 
increasing (δQ2 > 0), and Q3 is increasing (δQ3 > 0). The 
change of Q4 is not determined because the condition for the 
positive proportional relationship to be valid (Q1 = ++) is not 
(yet) met. 

2.2 Support 
In Dynalearn, students construct representations with support 
based on a norm representation. This norm-based support 
detects differences between the student’s representation and 
a predefined norm representation [Bredeweg et al., 2023a]. 
An incorrect ingredient will be highlighted in red in the 
representation and a red question mark will appear on the 
right side of the canvas. A progress bar informs the students 
about the number of ingredients still to be added. The 
scenario advisor is a function that inspects the status of the 

model before starting a simulation and flags missing initial 
and/or inconsistent settings. The built-in video support 
functions informs students how to add ingredients to the 
representation (the clips are domain independent). Learners 
are guided using a workbook to support them with 
constructing the qualitative representations. 

3 Photoelectric effect 
The topic of this lesson activity is the photoelectric effect. It 
fits well into the physics curriculum of upper secondary 
education and higher education. Understanding the 
photoelectric effect in physics education is important as it 
provides fundamental insights into the behavior of light and 
electrons, serves as a cornerstone of quantum mechanics, 
explains experimental observations, and highlights the 
historical significance of scientific discoveries. The lesson 
was developed together with a physics teacher educator. 

3.1 Subject Matter Learning Goals 
The photoelectric effect is a phenomenon in physics that 
describes the emission of electrons from a material when it is 
exposed to light or other forms of electromagnetic radiation. 
When light interacts with a material, it transfers its energy to 
the electrons within the material. A key principle of the 
photoelectric effect is that light energy is quantized into 
discrete packets called photons. As the frequency of a photon 
increases, so does its energy. If the energy of the photons is 
sufficient, it can cause the electrons to be emitted from the 
material. 

In the photoelectric effect, a crucial concept is the 
threshold frequency, which represents the minimum energy 
needed to overcome the binding forces that hold electrons 
within a material. This threshold frequency is unique to each 
specific material. When the frequency of the incident light (v) 
is lower than or equal to the threshold frequency (v0) of the 
material, no electrons are emitted. If the frequency of the 
incident light (v) surpasses the threshold frequency (v0), 
electrons are emitted. 

The energy of a photon (Ephoton) can be calculated by h∙v 
where ℎ is Planck's constant and ν is the frequency of the 
light. The kinetic energy (KEelectron) of the emitted electrons 
depends on the frequency of the incident light. The kinetic 
energy of the emitted electrons can be calculated as the 
energy of the photon minus the energy required to free the 
electron (also known as the work function Φ), so KEelectron = 
h∙v - Φ. The relationship between the kinetic energy of an 
electron (KEelectron) and light frequency (v) is shown in Figure 
2 (LHS).  

Amplitude (A) determines the brightness or intensity of 
light. If the light amplitude is kept constant, the number of 
photons being absorbed by the material remain constant. 
Consequently, the rate at which electrons are emitted from 
the material, i.e., the electric current, remains constant as well 
(Figure 2, RHS). 
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Figure 2. Photoelectric effect – Relationship between light 
frequency, (i) electron kinetic energy (LHS) and (ii) electron current 
(RHS). 
 

Increasing the amplitude of the incident light has no effect 
on the energy of the incoming photon. If the frequency of the 
light is above the threshold and the light amplitude is 
increased than the kinetic energy of the electrons remains 
constant (Figure 3, LHS). Higher amplitude light means more 
photons. This results in more electrons emitted over a given 
time period. Hence, if the light frequency is greater than the 
threshold, increasing the light amplitude will cause the 
electron current to increase proportionally (Figure 3, RHS). 

Figure 3. Photoelectric effect – Relationship between light 
amplitude, (i) electron kinetic energy (LHS) and (ii) electron current 
(RHS). 

3.2 Photoelectric effect – The Representation 
The final representation for this lesson activity is shown in 
Figure 4. The entities are Light, Material and Electrons. The 
entity Light has quantities Frequency (v) and Amplitude (A), 
the entity Material has the quantity Threshold frequency (v0), 
and the entity Electrons has quantities Kinetic energy (EK) 
and Current (I).  

3.3 Pedagogical Approach 
The first part of the lesson activity focusses the relationship 
between the frequency of incident light and the kinetic energy 
of electrons. 

First, learners create the entities Light and Electrons. The 
workbook provides an explanation regarding the nature of 
light, presenting it as a collection of photons that carry energy 
in discrete packets known as quanta. The amount of energy 
carried by these photons is determined by their frequency.  
 

Figure 4. Photoelectric effect – Complete representation. 
 
When light interacts with electrons, it can be absorbed by 
them, leading to a transfer of energy and causing the electrons 
to move. This movement of electrons results in the 
acquisition of kinetic energy by the electrons. 

Learners add the quantity Frequency (v) to the entity Light 
and the quantity Kinetic energy (KE) to the entity Electrons. 
There is a positive proportional relationship (P+) between 
these quantities. The quantity Kinetic energy (KE) has a 
quantity space with the values {0, +}. 

Learners are then instructed to set the following initial 
settings: an increasing exogenous influence acting on 
Frequency (v) and Kinetic energy (KE) is zero (0). The 
representation and simulation result of state 2 is shown in 
Figure 5.  

Figure 5. Photoelectric effect – Frequency of light and its effect on 
kinetic energy of electrons. The simulation result of state 2 is 
shown. 
 
In state 2, Frequency (v) is increases and Kinetic energy (KE) 
is positive (+) and increasing. Learners are required to 
interpret the results by answering a cloze question: “In the 
first state the electrons have/don’t have kinetic energy 
because its value is 0/+. The frequency of light decreases/is 
constant/increases and as a result the kinetic energy of the 
electrons decreases/is constant/increases. In state 2, 
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electrons have/don’t have kinetic energy because its value is 
0/+…”.  

Next, learners are introduced to the concept that electrons 
within a material possess a threshold frequency. This 
threshold frequency indicates that incident light must surpass 
a certain minimum value in order to cause the emission of 
electrons from the material. 

Learners create the entity Material and add the quantity 
Threshold frequency (v0). A calculus is created that computes 
Kinetic energy (KE) = Frequency (v) –Threshold frequency 
(v0). 
 

Figure 6. Photoelectric effect – Calculus of kinetic energy. The 
simulation result of state 1 is shown. 
 

Figure 6 shows the representation thus far and state 1 of 
the simulation result with initial settings: an increasing 
exogenous influence acting on Frequency (v), a steady 
exogenous influence acting on Threshold frequency (v0), and 
an equality (=) between Frequency (v) and Threshold 
frequency (v0). Note that, the value of Kinetic energy (KE) 
does not need to be specified as an initial setting because it is 
calculated. In state 1, Kinetic energy (KE) is zero because 
Frequency (v0) is equal to Threshold frequency (v) and 
increasing. Frequency (v) keeps increasing due to the 
exogenous influence. In state 2 (not shown), Frequency (v) > 
Threshold frequency (v) and thereby Kinetic energy (KE) is 
positive (+) and increasing. 

Learners again answer a cloze questions that requires them 
to interpret the behavior of the system. Furthermore, learners 
are presented with the formula KEelectron = h∙v – Φ and Figure 
2 (LHS). The qualitative representation constructed thus far 
encourages learners to gain insight into how this formula 
capture the relationships among these quantities. 

In the next part of the lesson, the focus is on understanding 
how the amplitude of light affects the current of electrons. 
Learners learn that the amplitude of light only influences the 
current when the frequency of the light is higher than the 
threshold frequency. Moreover, it is explained that the 
amplitude of light has no impact on the kinetic energy of 
electrons. 

First, learners add the quantity Amplitude (A) to the entity 
Light and the quantity Current (I) tot the entity Electrons. The 

quantity Current (I) has a quantity space with values {0, +}. 
Learners expand the existing calculus to include the notion 
that the value of Current (I) = value of Frequency (v) – value 
of Threshold frequency (v0). So there is only a current when 
the frequency of the light exceeds the threshold frequency. 
The effect of Amplitude (A) on Current (I) is conditional. The 
amplitude of the light only has an effect on the current if the 
frequency of the incident light is greater than the threshold 
frequency. Learners add the conditional expression: if 
Frequency (v) > Threshold frequency (v0) (shown as an 
inequality with a red color) then there is a positive 
proportional relationship between Amplitude (A) and Current 
(I) (shown as P+ with a yellow color). Note that there is no 
causal relationship between Amplitude (A) and Kinetic 
energy (KE) and also no relationship between Frequency (v) 
and Current (I). 

Learners then investigate the behavior of the system under 
different initial settings. Figure 7 shows the representation 
and the simulation result with initial settings: a steady 
exogenous influence acting on Frequency (v), a steady 
exogenous influence acting on Threshold frequency (v0), an 
increasing exogenous influence acting on Amplitude (A), and 
an inequality relating the frequency to the threshold 
Frequency (v) > Threshold frequency (v0). 

 

Figure 7. Photoelectric effect – Amplitude of light has an effect on 
the current of the electrons. State 1 of the simulation result is shown. 

 
The simulation generates one state. The frequency of the 

incident light is greater than the threshold frequency so 
electrons are emitted and have kinetic energy (Kinetic energy 
(KE) = +). The frequency is steady so the kinetic energy of 
the electrons is constant (δKinetic energy (KE) = 0). There is 
a current (Current (I) = +) because the frequency of the 
incident light is greater than the threshold frequency. The 
amplitude of the light now has an effect on current. The 
amplitude is increasing so current is also increasing (Figure 
3, RHS). 

Figure 8 shows the representation of the simulation result 
with initial settings: a steady exogenous influence acting on 
Frequency (v), a steady exogenous influence acting on 
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Threshold frequency (v0), an increasing exogenous influence 
acting on Amplitude (A), and the quality Frequency (v) = 
Threshold frequency (v0). Note how increasing the amplitude 
has no effect on the current. 
 

Figure 8. Photoelectric effect – Frequency of the light is below the 
threshold frequency therefor the amplitude of light has no effect on 
the current of the electrons. State 1 of the simulation result is shown. 

4 Thermoregulation 
This lesson activity revolves around the concept of 
thermoregulation. It is typically taught in upper secondary 
and higher education levels. Learning about 
thermoregulation in biology is important as it provides a 
foundation for understanding homeostasis, promoting human 
health, and exploring the diversity of life's adaptations to 
temperature variations. 

4.1 Subject Matter Learning Goals 
This lesson activity focuses on how the body responds to 
changes in temperature by activating heat loss or heat 
preservation mechanisms. Figure 9 shows a typical 
representation that is used in biology textbooks. When the 
body temperature exceeds a set point in the hypothalamus, 
heat loss mechanisms are activated. These include increased 
sweating, dilating blood vessels, and seeking shade as a 
behavioral response. On the other hand, if the body 
temperature drops below the set point, the body initiates heat 
preservation mechanisms. These involve constriction of skin 
blood vessels, stimulation of skeletal muscles to shiver, and 
seeking shelter as a behavioral response. Overall, this system 
operates as a negative feedback loop, with various 
mechanisms being activated above or below the set point. For 
instance, sweating becomes active above the set point, while 
shivering becomes active below the set point. However, the 
constriction and dilatation of blood vessels in the skin are 
mechanisms utilized by the body both above and below the 
set point. 
 
 

 
 
 
Figure 9. Thermoregulation – Image from biology textbook 
[Grodzinsky & Sund Levander, 2020]. 

4.2 Thermoregulation – The Representation 
The final representation for this lesson activity is shown in 
Figure 10. There are five entities: Blood, Hypothalamus, 
Skeletal muscles, Skin and Blood vessels. The entity Blood 
has the quantity Temperature, the entity Hypothalamus has 
the quantities Norm and Difference, the entity Skeletal 
muscles has the quantity Shivering, the entity Skin has the 
quantity Sweating and the entity Blood vessels has the 
quantity Blood flow.  
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Figure 10. Thermoregulation – Complete representation. 

4.3 Pedagogical approach 
The first part of the lesson activity focusses on the 
relationship between the temperature of the blood and the 
hypothalamus that compares the difference with a set point. 

First, learners create the entity Blood and add the quantity 
Temperature. They also create the entity Hypothalamus and 
add the quantity Difference with a quantity space with values 
{−, 0, +). Difference is positive proportional to Temperature. 

Figure 11 shows the representation and state 2 of the 
simulation result with initial settings: an increasing 
exogenous influence acting on Temperature and the starting 
value Difference = 0. In state 2, Difference is positive (+) and 
increasing (δDifference > 0). 

 
Figure 11. Thermoregulation – First simulation. 
 

Next, the lesson activity focusses on a more precise 
understanding of how the difference between the temperature 
of the blood and the set point of the hypothalamus can be 
calculated.  

Learners add the quantity Norm to the entity 
Hypothalamus and add a quantity space with point value {Set 
point} to it. They also add quantity space with an interval {+} 
to the quantity Temperature. Learners then create a calculus 
that computes Difference = value of Temperature – value of 

Norm. A constant exogenous influence indicates that Norm 
does not change.  

Learners add an inequality as an initial setting between 
Temperature and Norm for the calculus to have an effect 
(without this information there is no way of knowing the 
outcome of the calculus). 

Figure 12 shows the representation this far and the 
simulation result of state 1. The inequality shows that 
Temperature < Norm so Difference is negative (−). Learners 
are required to explain what happens by answering a cloze 
question: “In state 1, the temperature of the blood is lower 
than/equal to/higher than the set point of the hypothalamus 
so the difference is negative/zero/positive.”. 

 
Figure 12. Thermoregulation – Difference is calculated by 
Temperature minus Norm. The inequality shows that Temperature 
is smaller than Norm so Difference is negative (−) in this state (#1). 
 
The next part of the lesson activity focuses on the regulation 
of blood flow in the skin in response to deviation from the 
norm. 

Learners are informed that the hypothalamus plays a vital 
role in regulating the blood flow in the skin, which directly 
influences the amount of heat loss by the body. Learners 
create the entity Skin and the entity Blood vessels and add a 
configuration (skin has blood vessel). The entity Blood 
vessels has the quantity Blood flow. It is explained that when 
the hypothalamus detects a negative/positive difference than 
the amount of impulses to the muscles that determine the 
diameter of the blood vessels decreases/increases and 
thereby the blood flow decreases/increases. Learners add a 
causal relationship of the type positive influence (I+) between 
Difference and Blood flow and a negative proportional 
relationship (P-) between Blood flow and Temperature. 

Figure 13 shows the representation and state 1 of the 
simulation result with initial setting: Temperature < Norm. 
The state graph shows two consecutive states. In the first state 
Difference is negative (−) and increasing. The latter is due to 
decreasing Blood flow which has a positive effect on 
Temperature of Blood. In state 2 (not shown), Difference is 
zero (0) and Blood flow and Temperature are constant. So 
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there is a negative feedback loop working to maintain 
homeostatic balance around the set point.  

 

 
Figure 13. Thermoregulation – Blood flow has an effect on 
Temperature of the Blood. 

 
The next part of the lesson activity emphasizes the additional 
measures taken by the hypothalamus in response to 
temperature deviations from the norm, extending beyond the 
regulation of blood flow. 

Learners are explained that regulating blood flow is in 
most cases not enough to maintain a stable temperature and 
that additional measures are needed. Some of these measures 
are conditional, meaning that they are only implemented at 
specific temperature values. Learners first implement the 
shivering of the skeletal muscles as a conditional response to 
a negative difference between the temperature of the blood 
and the norm. Learners create the entity Skeletal Muscles and 
add the quantity Shivering. They are required to create a 
conditional response: if Difference = − then there is a causal 
relationship of the type negative influence (I-) between 
Difference and Shivering and a positive proportional 
relationship (P+) between Shivering and Temperature. Figure 
14 shows the representation and state 1 of the simulation 
result with intital condition: Temperature < Norm. In state 1, 
Difference is negative (−) and increasing. The number of 
impulses to the skeletal muscles will increase and thereby 
Shivering will increase which has a positive effect on 
Temperature. 

 
Figure 14. Thermoregulation – Shivering is a conditional response 
that is only applicable if the temperature of the blood is below the 
norm. 

Learners finish the representation (Figure 15) by adding 
the quantity Sweating to the entity Skin and by adding the 
condition: if Difference = ‘+‘ then there is a causal 
relationship of type positive influence (I+) between 
Difference and Sweat and a negative proportional 
relationship (P-) between Sweat and Temperature.  

Learners simulate the representation with initial setting: 
Temperature > Norm. The state graph shows two consecutive 
states. In the first state Difference is positive (+) and 
decreasing. The number of impulses to the skin will increase 
and thereby Sweating will increase which will increase heat 
loss by the skin and thereby has a negative effect on 
Temperature. Note that the other condition (Difference = −) 
is not met and that Shivering is not determined. Learners 
answer several cloze questions, e.g.: ‘If the temperature of the 
blood is above the norm than sweating will decrease/be 
steady/increase...’. 

 

 
Figure 15. Thermoregulation – Sweating is a conditional response 
that only applies if the temperature of the blood is above the norm. 

5 Global warming 
The lesson centers around global warming and is well-suited 
for a geography class. 

5.1 Subject Matter Learning Goals 
This lesson has two main learning goals. First, research 
findings indicate that learners have a limited understanding 
of carbon dioxide accumulation [Qudrat-Ullah & Kayal, 
2018]. The levels of carbon dioxide in the atmosphere are 
influenced by two primary processes: emissions by human 
activity (and natural processes like volcanic activity) and 
uptake by the biosphere, which includes processes like 
photosynthesis and oceanic absorption. Emissions contribute 
to the increase of carbon dioxide levels, while the biosphere 
acts as a natural regulator by taking in carbon dioxide from 
the atmosphere. Learners often encounter challenges in 
predicting carbon dioxide levels in the atmosphere based on 
emissions and uptake. A common misconception among 
learners is that a decline in carbon dioxide emissions will 



 

 

automatically lead to a decrease in atmospheric carbon 
dioxide levels. However, it is important to note that this is 
only true when the rate of emission is lower than the rate of 
uptake. The balance between emissions and uptake 
determines the overall impact on atmospheric carbon dioxide 
levels (Figure 16). This lesson aims to improve learners' 
comprehension in this area. 

The second learning goal aims to develop learners' 
understanding that global warming affects different regions 
of the world unequally. In this lesson, we concentrate on the 
varying effects of temperature rise on economic production. 
Research findings demonstrate that as temperatures increase, 
there is a positive effect on economic production up to a 
certain threshold, beyond which the effect turns negative 
[Burke et al., 2015]. 

Figure 16. Carbon dioxide emissions and (i) uptake (LHS), and (ii) 
the impact on atmospheric carbon dioxide levels (RHS). 

5.2 Global warming – The Representation 
The final representation for this lesson activity is shown in 
Figure 17. The entity Human activity has quantities Emission 
and Economic production, the entity Atmosphere has 
quantities CO2 and Temperature, the entity Biosphere has 
quantity Uptake. 

Figure 17. Global warming – Complete representation. 

5.3 Pedagogical approach 
The first part of the lesson activity focusses on understanding 
the effect of emissions and uptake on carbon dioxide levels 
in the atmosphere. 

Learners start by creating the entity Human actions and 
add the quantity Emissions. Next, they create the entity 
Atmosphere and add the quantities CO2 and Temperature. 
Learners add a causal relationship of the type positive 
influence (I+) between Emissions and CO2 and a relationship 
of the type positive proportional (P+) between CO2 and 
Temperature. Emissions has a quantity space with values {0, 
+}. 

Learners simulate the representation with successively 
decreasing, steady and increasing exogenous influences on 
Emissions. Figure 18 shows the representation and the 
simulation result with the exogenous influence being steady. 
Given the constant emissions, learners observe that the 
concentration of carbon dioxide (CO2) will consistently 
increase. To interpret the results, learners are required to 
answer cloze questions, e.g., “If emission is positive and 
decreasing then CO2 concentration in the atmosphere 
decreases/is steady/increases.”. 
  

Figure 18. Global warming – The effect of emission on carbon 
dioxide levels and temperature. 
 
In the next step learner create the entity Biosphere and add 
the quantity Uptake. The quantity has a quantity space with 
values {0, +} and a causal relationship of the type negative 
influence (I-) with CO2.  

Figure 19 shows the simulation result with initial settings: 
Emission is decreasing, Uptake is steady and Emission > 
Uptake. The simulation result has four consecutive states.  
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Figure 19. Global warming – The effect of emission and uptake on 
carbon dioxide levels. 

 
Learners are instructed to select the four states of the 

simulation result and to display the value and inequality 
history (Figure 20). The value and inequality history displays 
the behavior of the system to learners in a convenient way as 
they do not have to click the states in the state graph one-by-
one to inspect values, changes and inequalities. The value 
history shows that in states 1-3 Emissions is positive (+) and 
decreasing and is zero (0) in state 4 and that Uptake is positive 
(+) and steady in all states. In state 1 Emissions > Uptake, in 
state 2 Emissions = Uptake and in state 3 and 4 Emissions < 
Uptake. The value history also shows the second derivative 
of each quantity (if applicable). From this, learners can infer 
that CO2 is decreasingly increasing in state 1. In state 2, CO2 
has reached its maximum value. In state 3, CO2 is 
increasingly decreasing and in state 4 Emission = 0 and CO2 
is steady decreasing. 

Figure 20. Global warming – Value and inequality history of the 
simulation result. 

 
Learners are required to interpret the value and inequality 

histories and translate these into a line graph that corresponds 
to Figure 16. Also note that state 4 is not realistic. This 
provides opportunity for learners to the learn about the 
limitation of the representations and to think about ways to 
improve it. 

The second part of the lesson focusses on the relationship 
between temperature and economic production. It is taught 
that the effects of global warming vary by region. 
 Learners add the quantity Economic production to the 
entity Human actions and add a quantity space with values 

{Low, Optimum, High}. Learners add three conditional 
expressions to the representation. The first expression details: 
if Temperature = Low (shown as an arrow with a red color in 
Figure 21) then there is a positive proportional relationship 
between Temperature and Economic production (shown as 
P+ with a yellow color). The second expression details: if 
Temperature = Optimum then Economic production is steady 
(shown as a yellow arrow on the value 0 of the derivative of 
Economic production). The third expression details: if 
Temperature = High then there is a negative proportional 
relationship between Temperature and Economic production 
(shown as P- with a yellow color). 

Figure 21 shows the representation and state 3 of the 
simulation result with initial settings: Emissions is positive 
(+) with a steady exogenous influence acting on it, Uptake is 
positive with a steady exogenous influence acting on it, and 
Emissions > Uptake. Temperature increases in all states but 
in state 1 Economic production increases (not shown), in state 
2 it is steady (not shown) and in state 3 it decreases (shown). 
  

Figure 21. Global warming – The conditional effect of temperature 
on economic production. 

7 Conclusion and Discussion 
This study investigated the pedagogical approach of 

learning through the construction of qualitative 
representations. Three lesson activities were developed for 
upper secondary and higher education. These activities, 
conducted at level 5 of the DynaLearn software, aimed to 
enhance learners' understanding of subject-specific systems 
and improve their system thinking abilities. The importance 
and relevance of acquiring systems thinking skills are widely 
supported and emphasized in educational discourse 
[Jacobson & Wilensky, 2006; NRC, 2012]. The lesson 
activities focused on the photoelectric effect (physics), 
thermoregulation (biology), and global warming 
(geography). These topics were specifically selected because 
they require the use of conditional expressions, which align 
with the typical features of level 5 in the Dynalearn software. 
By focusing on these topics, we provided learners with 
opportunities to construct and explore qualitative 
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representations that capture the complex and conditional 
nature of these systems. 

With this paper we conclude a series of papers exploring 
the pedagogical value of interactive qualitative 
representations across different subjects in education. Our 
previous papers focused on lower secondary education (level 
2 and 3; Spitz et al., 2021; Kragten et al., 2021) and upper 
secondary education (level 4; Kragten et al., 2022). By 
incorporating qualitative representations in various subject 
areas, learners were able to develop a comprehensive 
understanding of different systems encountered in their 
classes. By engaging with qualitative representations, 
learners not only gained a deeper understanding of specific 
systems but also developed generic system thinking skills. 
This skill set is potentially transferable and can support 
learners in comprehending new systems by recognizing 
underlying principles that are often shared across domains 
[Goldstone & Wilensky, 2008]. 

The three lesson activities presented in this paper, 
developed as part of project Denker (https://denker.nu), 
exemplify the value of creating qualitative representations to 
enhance learning across diverse subjects. The project has 
successfully developed over 30 lesson activities for biology, 
physics, geography, and economics classes, ranging from 
level 2 to level 5 of the software. To facilitate easy access and 
immediate implementation, a collection of lesson activities 
ready for immediate use in the classroom can be found on the 
Dynalearn website (https://www.dynalearn.eu). 
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Abstract Approximately one third of the food 
produced globally is lost (14%) or wasted (17%) 
(FAO, 2019; UNEP, 2021). This phenomenon deserves 
full attention from governmental institutions and the 
academic community. The European Commission has 
just proposed to include food waste reduction targets 
for 2030 in its Waste Framework Directive. As two 
main areas for reduction are retail and household food 
waste, citizen panel discussions have already begun to 
understand their views on the topic.  Given these 
concerns, in this paper we consider a qualitative 
reasoning model using hesitancy to explore people’s 
emotions towards the environment with a specific 
focus on food waste. We collected data from 188 
participants in an in-person taste experiment. We 
analyze consumers’ preference towards fruit that 
comes from the supermarket or alternative sources 
such as the ‘Too good to go’ application in relation to 
their self-reported emotional reaction towards FW 
using linguistic terms. Data on emotion perception 
while throwing away food is used to calculate a 
consensus across the different fruit preference groups 
of participants. In our research, we additionally 
include gender and participants’ prior knowledge of 
the application as variables during data analysis. This 
approach using hesitant linguistic terms was used to 
unveil the most pertinent emotions related to FW and 
was able to identify which are the emotions that are 
more relevant in different groups. 

1   Introduction 

Unsustainable consumption and production patterns 
are the root cause of the triple planetary crisis: climate 
change, biodiversity loss, and pollution. The United 
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Nations' 2030 Agenda for Sustainable Development 
emphasizes 17 urgent goals (SDGs) to address these 
challenges. Food loss and waste have significant 
environmental, economic, and social consequences. 
Food systems alone contribute to 34% of total 
anthropogenic greenhouse gas emissions (GHG; CO2, 
CH4, N2O, fluorinated gases) (Crippa, 2021), with 
50% of these emissions attributed to food loss and 
waste (Zhu et al, 2023). Additionally, precious 
resources crucial for food production, including labor, 
energy, land, and freshwater, are being lost or wasted. 
Astonishingly, it is estimated that 24% of global 
freshwater, 23% of cropland, and 23% of total 
fertilizers used worldwide are being squandered 
(Kummu et al., 2012). This wastage also leads to land 
degradation through soil erosion, desertification, 
deforestation, and nutrient depletion (Rockström et al, 
2023). Disturbingly, simultaneously approximately 
800 million people suffer from hunger, and around 
30% of the global population face moderate to severe 
food insecurity in 2021(UN, 2022). 

Previous literature on FW has focused on 
different aspects of the issue such as the variables that 
affect this phenomenon. It is pivotal to understand the 
underpinnings of why consumers are willing to throw 
away food in the household as it is the main source of 
FW. De Hooge et al. (2017) run a big sample 
experiment in five Northern European countries in 
which participants had to decide between typical and 
suboptimal products of different categories. The 
results show that there are many factors in play such 
as the context of buying the products (online or at the 
supermarket) but also how suboptimal the product 
was. They also found that demographics, personality, 
and individual values affected their choices. Related 
research has been conducted in relation to potatoes in 
Spain (Gracia & Gómez, 2020) and citrus fruit in 
Taiwan (Huang et al., 2021). In a similar vein, Ponis et 
al. (2017) conducted a household survey in Greece 
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regarding the impact of different shopping habits, 
eating preferences and food management on FW. The 
difference here being that the focus was on the 
behavior of the consumer instead of the product’(s) 
characteristics.  

The FW problem is multi-faceted as it entails 
social, environmental, and economic aspects. In the 
present manuscript we have taken a multidisciplinary 
approach that combines different techniques. We ran 
an in-person taste experiment where participants were 
offered to try two kinds of apple. One coming 
supposedly from the supermarket and the other one 
from the ‘Too good to go’ application. This application 
is a well-known platform across the European Union 
where users can buy surplus food at a cheaper price. 
This second type of apple could be considered the 
suboptimal one as it is potentially not as fresh. After 
participants tried the two supposedly different apples, 
they were asked which apple they preferred and to 
answer a short survey. Our contribution is that we have 
innovatively designed an experiment to capture how 
participants’ pre-conceptions of FW affect their taste. 

We are using the fruit preference experiment in 
combination with a series of questions regarding food 
waste and environmental tendencies as a proxy to 
understand FW behavior in a young population. The 
reason why we decided to focus our research on young 
people is twofold: firstly, it has been shown that 
younger people contribute more to food waste (de 
Hooge et al., 2017) and secondly, it was easier to 
recruit young participants as they were tested in the 
university.  

In the present manuscript we have focused our 
analysis on emotional response to food waste. This 
was done because previous research highlights those 
non-cognitive variables of emotions and habits 
influence FW and there is very limited, mostly 
qualitative research on the topic (Rusell et al., 2017). 
People’s perceptions about real problems may be 
imperfect and incomplete and several studies have 
considered the use of qualitative or approximate 
reasoning to model sensory perceptions (Castro-Lopez 
& Alonso, 2019). Additionally previous work has 
focused solely on negative emotions while we have 6 
different emotions that have a negative or a positive 
connotation. We have also analyzed demographic 
information on gender as it has also been shown that 
females tend to contribute more to FW and previous 
knowledge of the application.  

The methodology used in this paper moves in two 
directions: first, analyzing differences among 
emotions when in different groups of people using a 
statistical analysis, and then using qualitative 
reasoning models including hesitant terms to find a 
central opinion of different profiles and measuring the 
consensus in each one of these groups. The 
methodology is able to capture subtle differences in 

group responses that classical statistical methods were 
not able to detect. 

The rest of this paper is structured as follows: 
Firstly, Sect. 2 introduces preliminary concepts on 
HFLTS presenting definitions of centroid and 
consensus, these basic concepts were already 
presented in a previous study (Montserrat‐Adell et al., 
2016). Section 3 introduces our experimental 
approach together with data analysis and results 
considering both approaches, the numerical statistical 
and the qualitative reasoning approach. Finally, 
Sect. 4 contains the main conclusions and lines of 
future research. 
 

2   Preliminaries 

A summary of the basic concepts related to hesitant 
linguistic term sets (HLTS) that will be referenced in 
the experimental part of the paper is presented in this 
section.  

Let 𝑆 denote a finite totally ordered set of 
linguistic terms, 𝑆 = {𝑠1, … , 𝑠𝑛}, with 𝑠1 < ⋯ < 𝑠𝑛, 
where the elements of 𝑆 are considered as the basic 
terms, and n denotes the granularity of the model. 
Aligned with the concepts introduced by Rodriguez et 
al. (2011), hesitant fuzzy linguistic term set (HFLTS) 
over 𝑆 is a subset of consecutive linguistic terms of 𝑆, 
i.e., {𝑥 ∈ 𝑆|𝑠𝑖 ≤ 𝑥 ≤ 𝑠𝑗}, for some 𝑖, 𝑗 ∈ {1, … , 𝑛} 
with 𝑖 ≤ 𝑗. We note  [𝑠𝑖, 𝑠𝑗] to this HFLTS, or {𝑠𝑖} ≡
[𝑠𝑖, 𝑠𝑖] if 𝑖 = 𝑗.  

Then, ℋ𝑆is defined as the set of all possible HLTS 
over 𝑆 excluding the empty set. In addition, we define 
the hesitancy of a linguistic term  [𝑠𝑖, 𝑠𝑗]  as 
𝒲([𝑠𝑖, 𝑠𝑗]) = 𝑗 − 𝑖 + 1. In ℋ𝑆 ∪ {∅}, the intersection 
∩ and the connected union ⊔ are defined as follows: 
 

• [𝑠𝑖, 𝑠𝑗] ∩ [𝑠𝑘, 𝑠𝑙] = [𝑠max{𝑖,𝑘}, 𝑠min{𝑗,𝑙}],  
if this HFLTS exists or ∅ otherwise. 

• [𝑠𝑖, 𝑠𝑗] ⊔ [𝑠𝑘, 𝑠𝑙] = [𝑠min{𝑖,𝑘}, 𝑠max{𝑗,𝑙}]. 
 

Note that intersection and connected union are closed 
binary operations defined on ℋS ∪ {∅}. It is not 
difficult to prove that the set ℋ𝑆 ∪ {∅}, jointly with the 
two-binary operation intersection and connected 
union, form a lattice (Amina and Azim, 2019). 

In addition, a distance between two HLTS as 
defined in Porro et al. (2022). Given 𝐻1, 𝐻2 ∈ ℋ𝑆, the 
distance between 𝐻1 and 𝐻2 is defined as: 

 
𝑑(𝐻1, 𝐻2) = 

2 · 𝑐𝑎𝑟𝑑(𝐻1⨆𝐻2) − 𝑐𝑎𝑟𝑑(𝐻1) − 𝑐𝑎𝑟𝑑(𝐻2)           (1)  

In addition, given a set of linguistic terms  
𝐺 = {𝐻1, … , 𝐻𝑘}, we define the centroid as: 
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𝐻𝐶 = arg  𝑚𝑖𝑛 ∑ 𝑑(𝐻, 𝐻𝑗)𝑘
𝑗=1            (2) 

with 𝐻𝑗 ∈ 𝐺 that is to say the element in the lattice that 
minimizes the addition of the distances to all the 
elements of the given set 𝐺.  When the set of linguistic 
terms 𝐺 come from the opinions of a group of 
individuals this element is considered as the central 
opinion. The central opinion is the hesitant term that is 
most representative of all the opinions in the group. It 
is not necessarily one of the individual opinions, but it 
is able to capture global uncertainty in responses. Note 
that in some cases, the centroid is not a unique element 
Finally, the consensus among all 𝐺 elements is 
computed by means of: 
 

                𝛿(𝐺) = 1 − ∑ 𝑑(𝐻𝑐,𝐻𝑖)𝑘
𝑖=1

𝑘(𝑛−1)
                           (3) 

This consensus degree proposed by Montserrat‐Adell 
et al. (2016) is used to quantify the opinion agreement 
among a set of individuals. The consensus 
complements the centroid as it shows the polarity of 
the opinions of the group. A small consensus implies 
low agreement among all the individuals in contrast to 
a large consensus where there is considerable 
agreement. This will allow us to compare the relevance 
or impact of two different aggregate opinions.  
In this paper the individuals are the participants of the 
experiment, the variable of analysis will be the 
emotions, and the opinion are with respect to the 
emotions. 
 
3   Experimental approach 

3.1   Participants 

A total of 181 participants were tested (Mean age = 19, 
SD age = 1, female = 97). An additional 5 participants 
were tested but discarded from the final sample due to 
technical error (n=5) and failure to complete the whole 
study (n=2). Participants were undergraduate students 
from the ESADE Business School and were given 
extra-credit scores as compensation for their 
participation. The present experiment was approved 
by the Research Ethics committee at ESADE 
(009/2023), and all data were treated confidentially. 
All participants signed a consent form before taking 
part in the experiment. 
  
3.2   Materials 

In the spirit of sustainability, we used a local Catalan 
variety of apples (Golden Empordà) for the 
experiment from a nearby market. The fruit was 
always freshly cut, no more than 10 minutes before the 
arrival of the participants. The apples were first peeled 
and then cut using an apple cutter to guarantee equal 
slices(see figure 1). 

3.3   Paradigm/Experimental Procedure  

We used an adaptation of the testing paradigm used in 
Sörqvist et al., (2013). This type of paradigm is 
typically used in the context of taste experiments. 
Deception is used given that the same product is used 
but labelled differently when the research question is 
on the drivers behind a phenomenon and not the 
products themselves (e.g. Liem et al., 2012 for soup). 
Participants were tested in a soundproof room at the 
Decision Lab located at the ESADE Sant Cugat 
Campus. They sat in a chair facing a table where two 
transparent bowls were placed containing the apple 
slices. Participants were asked to give their consent by 
signing a form and were asked whether they had any 
food allergies. Then, the experimenter asked if they 
had any previous knowledge of the 'Too good to go' 
app. Irrespective to their response, the experimenter 
gave the same brief description to all participants in 
order to make sure they all had a basic understanding 
of the source of the fruit. Participants were then asked 
to try the fruit. The experimenter labeled each bowl 
(supermarket/'too good to go') and offered the 
participants as many slices as they fancied to have a 
concrete idea of the taste of the apple. They were 
instructed to have some water between the two 
tastings.  The order and side of presentation of the two 
kinds of apple was counterbalanced across 
participants. Following the tasting, they were guided 
to an adjoining room where a Microsoft Surface Tablet 
equipped with a keyboard was placed. Participants had 
to answer a series of questions privately using a survey 
on Qualtrics. This setting was chosen to reduce social 
biases based on which participants felt pressured to 
answer the desirable choices according to society. 
They had to choose which apple they preferred. They 
were given three choices: Supermarket, 'Too good to 
go' or both. Participants were asked to rate how they 
feel when throwing away food on a scale from 1 (Not 
at all) to 5 (Very much) allowing multiple answers per 
emotion, using the six basic emotions: angry, ashamed, 
happy, indifferent, guilty and sad and other questions 
on their behavior concerning FW and the environment.  
Lastly, we also asked them to fill in some basic 
demographic information on their gender (Female, 
Male, Non-binary/Third Gender, Prefer not to say), 
age and previous familiarity with the ‘Too good to go’ 
app. These variables are included in a bigger project 
that contains more questions on the profile of the 
participants. 
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Figure 1.  Experimental setting. The two alleged distinct apples 
were placed in two transparent bowls in front of the participants. 

4   Data analysis  

We analyzed the data on emotions related to food 
waste. Participants’ evaluations were analyzed using 
two different approaches: 
  
4.1 Statistical Approach 

The evaluations of participants in relation to the six 
emotions (angry, ashamed, guilty, happy, indifferent, 
and sad) were treated as numerical values ranging 
from 1 to 5. Answers that included hesitancy, i.e., more 
than one value per emotion were averaged. For 
instance, if a participant answered that they felt 
ashamed 2-5, then these range was replaced by their 
mean which is 3.5. These values were submitted to a 
mixed-ANOVA as the dependent variable. The type of 
Emotion was introduced as a within participant factor. 
Three factors were introduced to the ANOVA as 
between: Fruit Preference (Both, Supermarket, Too 
good to go), Gender (Female, Male) and Previous 
Knowledge of ‘Too good to go’ (Yes, No). The 
ANOVA included the main effects of these factors but 
also their interaction. 
 
4.2 Qualitative Reasoning Approach 

The evaluations of participants in relation to the six 
emotions (angry, ashamed, guilty, happy, indifferent, 
and sad) were treated as linguistic labels considering 
the opinions from a lattice of HFLTS with granularity 
5 where the basic terms were S = {s1, … , s5}, with 
s1 < ⋯ < s5. Answers could include basic terms or 
hesitancy. In this approach, if a participant answered 
that they felt ashamed 2-5, we considered the HFLTS 
as [s2, s5] to maintain the hesitancy given in the answer. 
Using different levels of precision in the linguistic 
terms allows us to capture the hesitancy that is inherent 
in peoples’ emotions. Then to define groups among 
participants we consider two partitions. The first 
partition was constructed from the values of Fruit 
Preference (Both, Supermarket, Too good to go) and 
Gender (Female, Male). The second partition was 
constructed from the values of Fruit Preference (Both, 

Supermarket, Too good to go) and Previous 
Knowledge of ‘Too good to go’ (Yes, No).  Twelve 
groups were defined and emotions among these groups 
were compared. To this end, the centroid and 
consensus were computed and differences among 
groups were considered following equations (2) and 
(3).  
 
5   Results 

Out of the 181 valid participants, 70 (38%) had no 
apple preference as they chose both apples, 63 
participants preferred the ‘Too good to go’ apple (34%) 
and 48(27%) preferred the Supermarket apple. Out of 
the 181 participants, 97 identified as Female and 125 
participants had previous knowledge of ‘Too Good to 
go’. 
 
5.1 Statistical Approach 

A Mixed design ANOVA has several assumptions that 
should be met. In the presence of multiple factors, we 
checked for approximate normality of the residuals of 
the model using a qqplot. The data did not appear to be 
skewed after visual inspection. Levene’s test was used 
to check for homogeneity of variance because of the 
between-subjects design. Only one violation was 
found between males and females for the emotion 
‘happy’ (F (1,178) = 4.67, p = .032). 
A significant effect of Emotion was found (F(3.35, 
566.13) = 119.20, p < .001, ηp

2 = .41) (see table 1 for 
descriptives). Meaning that the evaluations to the six 
emotions regarding food waste were different. This is 
an expected finding as one would expect low values 
for happy and indifference while higher values for 
angry, ashamed, guilty and sad. The interaction 
between Emotion and Previous Knowledge (see 
Figure 2) was also significant F(3.35, 566.13) = 3.51, 
p = .012, ηp

2 = .02. Lastly, the interaction between 
Emotion and Gender (see Figure 3.) was also found 
statistically different F(3.35, 566.13) = 3.75, p = .008, 
ηp

2 = .02. We performed post-hoc analysis on the 
statistically significant interactions. Due to the very 
high number of comparisons (sixty-six in each case), 
we decided to not add them in the main paper as they 
are not directly relevant to the hypothesis. Overall, 
most of the comparisons were significant (please see 
figure 2 and figure 3 for visual comparisons).The main 
effect of Fruit Preference, Gender, or Previous 
Familiarity in addition to the rest of the interactions 
not mentioned above did not reach statistical 
significance. 
 

Table 1. Descriptive summary of the main effect of Emotion 
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Figure 2. Mean evaluations of the six emotions while throwing 

away food and their error bars (Fisher’s Least Significant 
Difference was used to enable within-Ss comparisons) are shown. 
The red line shows the values for the people who had no previous 
knowledge of ‘Too good to go’, while the blue one stands for the 

people who have previous knowledge. 

 
Figure 3.  Mean evaluations of the six emotions while throwing 

away food and their error bars (Fisher’s Least Significant 
Difference was used to enable within-Ss comparisons) are shown. 
The red line shows the values for the people who self-identified 
themselves as Female, while the blue one stands for the people 

who self-identify as Male. 
 
5.2 Qualitative Reasoning Approach 

Differences among emotions were found between the 
centroids with respect to the groups. In the first 
partition, differences between male and female were 
detected for all emotions except happy. For example, 
with respect to the emotion angry, males who preferred 
the Supermarket product are represented by a centroid 
of [2,2]. This indicates that their central opinion is a 2 
when considering the scale from 1 (Not at all) to 5 
(Very much) and it does not reflect any hesitancy when 
considering the opinion of the group as a whole. In 
contrast, females who preferred the Supermarket 
product are represented by a centroid of [2,3], 
indicating that their central opinion ranges from equal 
to slightly higher than that of males with the same 
produce preference. As their central opinion is formed 
by a range, it captures the hesitancy in the opinion of 
the group.    

 
Table 2. Comparison of centroid emotions (partition 1) 

 

In the second partition, differences between Too Good 
To Go familiarity were detected for all emotions 
except happy and guilty.   
 

Table 3. Comparison of centroid emotions (partition 2) 

 
Finally, we computed the consensus corresponding to 
each group and emotion. In both partitions, we 
obtained values greater than 0.7 which is considered to 
be a high consensus given the granularity. Note that the 
consensus is considered from [0,1], therefore, this 
value indicates that there is little polarity in the 
opinions. 
 
6   Conclusions and Future Research 

There are several crucial outcomes shown in this 
paper. First of all, comparing the different results 
obtained when using classical statistics, we detected 
the tests were not able to find differences across the 
distinct preference groups (supermarket, 
supermarket/too good to go, to go to go) based on their 
emotional evaluations, whereas with our analysis 
based on qualitative hesitant terms it was possible. 
Secondly, both types of analyses were able to replicate 
previous findings on FW, since we found differences 
based on gender in relation to emotional responses. We 
have also extended previous work on FW since we 
investigated the interplay between previous 
knowledge of ‘Too good to go’ or gender identity on 
emotional valence. This approach has not been taken 
before as far as we know. We found that participants 
who have had previous knowledge of the ‘Too good to 
go’ app or are Female are more likely to rate higher in 
the negative emotions and lower in indifference.  
Thirdly, the combination of experimental methods 
with qualitative research is an approach that allowed 
us to gain a more nuanced understanding of the 
emotional issues connected to FW by separating 
perception from biased thought and connecting the 
resulting preference groups to salient emotions.  
Finally, we applied the interdisciplinary approach to 
the field of FW. This work represents the initial results 
of our efforts to comprehensively understand the 
drivers, emotional aspects, behavioral patterns, and 
cognitive factors connected to food waste. We believe 
these findings pave the way for further exploration and 
might have practical implications for policy. 
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Abstract

Today, Cyber-Physical Systems (CPS) are often used in
safety-critical situations. More and more, Artificial Intelli-
gence (AI) and especially data-based methods, i.e. Machine
Learning (ML), are used to increase the adaptability of sys-
tems. This immediately leads to a security risk, since data-
based methods usually learn a black-box model (e.g. neu-
ral network or reinforcement learning). To still use these AI
methods for safety-critical systems, like anomaly detection,
optimisation or reconfiguration tasks, a supervision tool is
needed.
In order to enable safe operation of data-based ML algorithms
and to make statements about the stability of the system we
present an implementation of qualitative monitoring of the
system behaviour in the context of reconfiguration. This leads
to the next problem, as a qualitative state prediction tends to
branch infinitely for complex systems. Our approach limits
the state prediction to the states with immediate impact. To
achieve this goal and to visualise the effects for a supervi-
sion task a virtual structure similar to decision trees is imple-
mented to generate an overview of the upcoming predicted
system states. In addition, the behaviour of the system vari-
ables is extracted from the qualitative states in order to deter-
mine the risk of a predicted state.
In summary, this algorithm acts as an independent supervi-
sion agent for various AI/ML algorithms and alerts when
risks are detected during operation. We can show that dif-
ferent reconfiguration options for a CPS with abnormal be-
haviour can be successfully evaluated in order to transfer the
CPS as safely as possible to a new state.

1 Introduction

Cyber-Physical Systems (CPS) are very prevalent in our
modern times, as the integration of microcomputers and
other advanced technology offers a significant impact for
a systems computational and communicative capabilities,
see (Baheti 2011) and (Wolf 2009). To improve their per-
formance a high level of technical expertise is required,
which is often associated with high costs. Therefore, Ma-
chine Learning (ML) algorithms are often used for optimi-
sation tasks based on existing data sets. However, once AI
and data-based modelling determine the way a system oper-
ates, we lose predictability. This issue is of utmost impor-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tance because AI solutions, particularly data-based meth-
ods like many ML algorithms, typically create black box
models based on given data (Tjoa and Guan 2021) and
(Wan et al. 2021). When a system’s behaviour is solely de-
termined by measurement data, it cannot be fully defined.
In safety-critical applications, this poses significant risks
as infallibility cannot be verified. Although some solutions
based on ML approaches, such as the Safety+AI approach
of (Gheraibia et al. 2019), have been researched, we aim to
focus on qualitative reasoning instead.

”Reasoning about, and solving problems in, the phys-
ical world is one of the most fundamental capabilities
of human intelligence and a fundamental subject for
AI.”

These words of Bredeweg (Bredeweg 2003) show very
well our motivation for our approach. Our goal is to design
a supervision agent that is able to monitor the behaviour of a
system and to estimate the consequences of AI interventions.
In theory an extensive numerical simulation would be able
to evaluate those consequences very accurate, but especially
for CPS, which combine computational science with engi-
neering disciples this is not a trivial task and such a simula-
tion is often not available. For this purpose, we investigate
the possibility of using qualitative system models, based on a
general system description, instead of complex simulations.

The benefits of such a prediction approach are examined
in the joint project (K)ISS1. The aim of the project is to mon-
itor the safety-critical life support system of the ISS module
COLUMBUS. We aim to reconfigure the system by activating
redundant components based on detected faults, ensuring ef-
fective recovery. To validate the reconfiguration process and
assess different AI decisions, we successfully implement our
approach for a supervision agent.

In section 2 we will explore general concepts related to
qualitative system representations, and then in section 3 we
will present our solution based on qualitative reasoning. The
application of this will be in section 4 using a simulated en-
vironment. Finally, we will conclude this work in section 5
and provide an outlook on future tasks and challenges.

1(K)ISS is part of dtec.bw®, see Acknowledgements for fund-
ing information
https://dtecbw.de/home/forschung/hsu/projekt-kiss
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2 State of the Art

Before our solution is presented in section 3, we will first
present a general overview of current approaches and ex-
plain their shortcomings, which we encountered during our
research.

Safety Analysis of AI and the Shortcomings of

Data-Based Models

As long as system measurement data is available the be-
haviour of a CPS can be learned. A basic application is
to learn and formulate this behaviour in form of a timed
automaton. As an example for how a automaton can be
learned, we look at the algorithm of HyBUTLA, presented
by (Niggemann et al. 2021). This algorithm constructs a
timed automaton, which can be learned from system mea-
surements, to describe the behaviour of a system, see Fig-
ure 1. In general the steps to learn the behaviour of such a
system can be described with:

0: Record and synchronize the signals of the CPS.
1: Generate a list of discrete events.
2: Construct a tree based on the recorded events.
3: Simplify the tree by merging similar nodes.

The BUTLA algorithm, which depends on positive data
examples, still has shortcomings. In certain cases, anomalies
can occur that are not identified or are incorrectly identified.
This happens because the data of error cases is not available
and therefore there is a deficit of information.

Network

Controller Controller

Production Plant

Step 0:
Network
Measurements ……

…...
…....

Synchronized
Signals

Model
(Hybrid Timed Automaton)

Step 1:
Event generation ……

…...
…....

Synchronized 
Signals +

Events

Step 3:
State merging

Events ∑

Prefix Tree
Acceptor (PTA)

Step 2:
PTA construction

Figure 1: General concept of learning a timed automaton,
the steps refer to the HyBUTLA algorithm, see (Niggemann
et al. 2021)

Other data-based solutions, like many different ML algo-
rithms, are commonly used, but their black-box nature hin-
ders understanding and verification, especially of their inter-
nal workings - see (Tjoa and Guan 2020). The idea to trans-
late and encode the behaviour of those AI models is part
of the research of Explainable Artificial Intelligence (XAI).
But most approaches of XAI are not universally valid. In-
stead, methods like saliency maps help with specific use
cases like image recognition, but are more difficult to apply
to decision process models. They can be used, but even if a
correlation between input and output can be established, the
result is by far not sufficiently precise enough to determine

the internal decision process. Conventional algorithms such
as decision trees, which do not operate on the same basis as
AI algorithms, are much more reliable. But as shown in the
work of (Wan et al. 2020), they lack in performance. They
have shown the accuracy of decision trees in comparison to
neural networks in image detection is behind by up to 40%.

Our approach emphasises the importance of decision tree
reliability and combines it with qualitative reasoning for the
safety assessment algorithm.

Qualitative Reasoning based on QSIM

In contrast to data based models, we can describe a sys-
tem instead by its qualitative behaviour. The qualitative be-
haviour of a system is based on available system knowledge,
which also grants information about non-measurable states.
A promising concept about qualitative description of sys-
tem behaviour was presented by (Kuipers 1986) in the pa-
pers about the QSIM algorithm. The used notation has been
recognised by various scientists (Simon 1991; Say and Kuru
1996; Trave-Massuyes, Ironi, and Dague 2003), which is
why we will also use its notation in this paper to describe
a qualitative system.

The theory behind QSIM is to mimic the differential equa-
tions of classical systems with qualitative differential equa-
tions (QDE). A QDE would describe how a qualitative state
can change. For each parameter P (which is basically a sys-
tem variable) the qualitative state QS would be defined at a
qualitative point in time ti in the form of a tuple consisting
of a discrete qualitative value and the direction of change.
An example is given with:

QS(P, ti) = →val, dir↑ (1)

The discrete value val can be defined as a single point
value or as a pair of values specifying an interval in which
the current qualitative value lies. In order to capture the
change of a state, it is assigned an additional direction of
change dir, which can take one of three variants: steady, in-
creasing or decreasing. In addition, there is a discrete range
of values for each parameter called the quantity space, which
contains all known discrete values of that parameter - known
as landmark values. To include multiple qualitative states in
this kind of formulation a set F containing multiple param-
eters F = {Pi, ...} can be created. Based on this a whole
system can be defined by QS(F, ti).

To represent the QDE, which define the qualitative be-
haviour of a system, a set of constraints is needed, each lim-
iting the possible transitions of the qualitative states opf the
parameters. A comprehensive list is shown in Table 1. To
depict a more complex ordinary differential equation, the
equation can be separated in multiple elementary functions,
which can then be translated in qualitative constraints. In
some cases a constraint might change if the system reaches
or leaves a set operating point. This can be handled by defin-
ing restrictions, which define which constraints apply for a
given set point. A geometric function such as the sine can
represent its cyclic effect with restrictions and alternating
between M+ and M- constraints.
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ADD(X,Y, Z) Z(t) = X(t) + Y (t)
DERIV(X,Y ) dX/dt = Y (t)
M+(X,Y ) X(t) = f(Y (t)), where f

→
> 0

M-(X,Y ) X(t) = f(Y (t)), where f
→
< 0

MINUS(X,Y ) X(t) = →Y (t)
MULT(X,Y ) Z(t) = X(t) ↑ Y (t)
CONST(X) X(t) = constant value

Table 1: List of Qualitative Constraints, complemented ver-
sion of (Say and Kuru 1996)

Qualitative reasoning, similar to QSIM, has been re-
searched and developed in the field of discrete model
diagnosis. These approaches are often specific to cer-
tain toolboxes and proprietary applications, see (Williams
et al. 2003; Struss and Price 2003). The fundamentals are
widely known and were the focus of multiple research pa-
pers (de Kleer and Brown 1984; Dvorak and Kuipers 1989;
de Kleer 1993), but since the year 2000 the application of
qualitative simulation shifted. The numerical simulations
became more reliable thanks to the increased computing
power of computers, and the qualitative analyses were used
more for the theoretical discussion of abstract systems and
interrelationships, such as the effects on the population of
species in (Salles and Bredeweg 2006).

In (Bredeweg 2003) the main issues and some open tasks
of qualitative simulation back in 2003 were highlighted, par-
ticularly the modality of qualitative systems. On the one
side this modality allows users to create diverse model li-
braries, which can be reused in different ways, but on the
other hand each qualitative analysis needs a different degree
of abstraction and detail and a uniform system did not exist
back then. This problem continued with a lack of integra-
tion in standard engineering and research tools. In (Klenk
et al. 2014) this problem got tackled by combining the us-
age of Modelica models with the ideas of qualitative reason-
ing. They achieved the goal to generate the qualitative model
mapped upon existing modelica models, which negates the
need for an additional modelling step. On the other hand we
transferred the principles of QSIM and QDEs into the mod-
ern programming language python, which is especially well
used in the machine learning community as another imple-
mentation. In this paper we will not further expand on the
topic of implementation, but instead focus on the concept
how this qualitative description can be used to evaluate the
behaviour of a system. Still we are taking a custom take on
the implementation to focus the constraints more on system
dependencies instead of ideal QDEs.

Identification of Anomalies and Faults

For the sake of completeness, the need for identification and
diagnosis of errors should be noted. One may assume that
a failure is feasible via the QDEs defined above, but their
algorithm, depending on implementation, cannot deduce the
source of a defect. Still the underlying fundamentals of ne-
glecting a specific mathematical model can be applied as
well.

The work of (de Kleer and Williams 1987) shows how

the shift of model-based diagnosis shifted from specific fault
models towards the tracking of an inconsistent behaviour as
indicator of a fault. Based on this, there are various alterna-
tive methods for detecting anomalies and faults that do not
even require a mathematical model, as CPS usually provide
a comprehensive database. These data-based algorithms can
be evaluated as multi-time variant data sets and serve as a ba-
sis to describe the system behaviour of the plants from obser-
vations. Based on this data, it is then possible to create data-
based models such as the Univariate Fully-Connected Au-
toEncoder (UAE), whose good performance was described
by Garg et al. (Garg et al. 2022). However, their limitations
were also pointed out, as these solutions are often limited
to a specific use case, for example the UAE’s performance
decreased when used for a system with multiple operating
states.

Still those algorithms perform well and there is no need
to apply an additional supervision layer on top. In the later
context, we assume that the identification of an anomaly and
the diagnosis of faulty system components is available as a
basis for the reconfiguration task.

3 Solution

In this section, we address implementing a qualitative mon-
itoring agent for a CPS. We’ll explain the generated input
during reconfiguration, the use of QSIM basics in our super-
vision agent, and risk evaluation for predicted states. This
guides the selection of a reconfiguration option with the low-
est expected risk.

Assumptions for this paper: The system is faulty, but the
cause is diagnosable and faulty components got detected.
We aim to find a reconfiguration that adjusts the system
structure to return to a safe workspace.

Reconfiguration

Generally, the goal of the supervision layer is to identify
those possible configurations of the system that yield a safe
and stable system. The actual identification of possible, valid
configurations is typically performed by a reconfiguration
program. Here, we would like to present the implemented re-
configuration algorithm AutoConf in brief, which is detailed
and applied to ECLSS by (Kelm et al. 2022).

AutoConf, a qualitative model-based reconfiguration al-
gorithm using Satisfiability Theory (SAT), was recently pre-
sented by Balzereit and Niggemann (Balzereit and Nigge-
mann 2022). It can be used for the reconfiguration of hybrid
systems and is divided into two main steps. In the first step
a logical formula which represents the reconfiguration prob-
lem is created. In the second step, this formula is solved by
a SAT solver.

The first step in creating the logical formula, known as the
qualitative system model (QSM), involves generating causal
graphs G that define the relationships between inputs and
system states, e.g. a qualitative description of system dy-
namics. The inputs, represented as binary values (e.g., valve
opened or closed), are denoted as B = bbb1, ..., bbbk. The causal
graph is divided into positive (G+ = (V,E+)) and negative
(G↑ = (V,E↑)) subgraphs, indicating their influence on
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state variables. The nodes in the graphs include states and
inputs (V = xxx1, ...,xxxn, bbb1, ..., bbbk), while the edges in the
positive graph E

+ represent significant state increases when
inputs are activated. The negative graph E

→ represents sig-
nificant state decreases.

Next, the algorithm encodes the causality into proposi-
tional logic by using symbols (lowxi and highxi ) to repre-
sent state limits. These symbols indicate whether a state is
below the lower limit or above the upper limit and, conse-
quently, imply the activation or deactivation of certain in-
puts. Binary logical connectives (implication [→], negation
[¬], conjunction [↑], and disjunction [↓]) are used to formu-
late constraints. For instance, if a reservoir exceeds its limit,
the formula implies either opening an outflow or closing an
inflow.

In the second step, a logical SAT solver is employed to
solve the logical formula, utilising logical reasoning. If the
formula is satisfiable, it means there exists an assignment
of input variables that satisfies the formula. This assignment
corresponds to the new configuration required to achieve a
valid system state within a specified reconfiguration time
!trcfg . If the formula is not satisfiable, a reconfiguration
is not possible, and the system may need to be shut down.

Generally there are multiple valid configurations that are
solutions of the reconfiguration problem, which can be it-
erative listed by negating the previously found solution and
searching for another solution. To identify the best solution,
e.g. the solution with the lowest risk of instability, a super-
vision layer is required.

Qualitative Supervision

To assure a safe operation of safety-critical systems during
after a detected fault, the reconfiguration needs to be eval-
uated to prevent malfunctions. Therefore we want to de-
sign an supervision agent, to monitor the qualitative conse-
quences of such actions.

Previously we presented the QSIM algorithm by (Kuipers
1986) and described how it can be used to abstract the be-
haviour of a system. In contrast to QSIM we added the F+
and F- functions. These function behave similarly to the M+
and M- functions in the original, but additionally investigate
the dependencies of 0-values. The added F+ and F- func-
tions are not monotonously increasing or decreasing func-
tions, but allow a saddle point behaviour at a discrete value
of ↔0↗. This is due to the fact that the dependencies on the
input configuration represent a dependency on binary val-
ues, which can be implemented more efficiently by allow-
ing a steady 0-value. In the case a system component is not
needed and therefore shutoff, the function can be deactivated
and then take on the classical M+ or M- behaviour once the
component is reactivated.

The qualitative variables are initialised at t0 in the form
of:

QS(Pi, t0) = ↔val, dir↗
val ↘ [0, too low, low, norm, high, too high,+≃]

dir ↘ [dec, std, inc]
(2)

The qualitative values val of those variables are discretised
measured values, which are categorised as low, norm or
high depending on the known limits of their working range
or too high and too low if the boundaries are exceeded. Ad-
ditionally, their current change of direction is depicted with
dir - increasing, steady or decreasing.

Combining qualitative findings with reliable system rep-
resentation allows us to use a decision tree structure to un-
derstand system behaviour. We introduce the Qualitative
Analysis Tree (QuAT) for this purpose. A simplified exam-
ple is illustrated in Figure 2. Starting from an initial quali-
tative state 0, we assess its constraints to find possible tran-
sitions (e.g., a and b). As transitions occur, new qualitative
states emerge, and their constraints are evaluated for prede-
cessor states. If a transition leads to a steady state or de-
tects a risk (e.g., transition b), further evaluations cease. The
topic of risk assignment will be covered in the upcoming
subsection. Nonetheless, to predict the comprehensive sys-
tem state, we also consider subsequent states of successors,
as they might appear deceptively safe, as seen in Figure 2
(0 → a → 1 → d → Risk).

If each successor state is evaluated we would obtain a
qualitative description of the entire system like the original
QSIM application. However, this approach becomes incred-
ibly complex due to its combinatorial nature. To address this
challenge, we reduce the number of iterations for our qual-
itative evaluation. Predicting the behaviour over a short ab-
stract time horizon can still be highly effective, as each dis-
crete qualitative time-step represents a specific event or a
significant change of parameter values. Long-term analysis
often isn’t necessary as short-term defects have more seri-
ous consequences that require immediate prevention. Any
negative long-term effects can be corrected with ongoing re-
configuration inputs.

The supervision agent’s goal isn’t finding optimal transi-
tions but spotting safety-critical states after transitions. At a
minimum, the next states, including all possible transitions,
are analysed.

Validation of Analyzed States

Once the system’s behaviour can be qualitatively analysed,
it allows for evaluating its behaviour as a predictive model
for future steps. By performing the qualitative algorithm for
each discrete event, the upcoming behaviour can be anal-
ysed. As mentioned before we can create a QuAT whose
tree structure consisting of successor states allows us to de-
termine the qualitative system behaviour in the next discrete
time points. Valid transitions can be assigned a positive score
based on the operating range of each parameter, indicating
that those states are considered acceptable.

But how is this score defined? The operating range for
each variable is known and therefore we can estimate if a
qualitative value becomes too high or too low. If these pa-
rameters exceed predefined safety limits, they are identified
as risky states. Predicted states, which direction of change
is not steady pose a minor risk as they, potentially lead to
limit violations later on. By combining the evaluation of the
qualitative values and their direction of change, a risk score
can be estimated and assigned to each state.
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Figure 2: Exemplary QuAT for the representation of how
supervision of system states is carried out. Each positional-
state is represented with a box and roman numerals, while
the possible transitional-states are marked with circles and
small letters. States which oppose a risk are shown in orange.

If further insights into the system are available and the
risks associated with the interaction of specific parameters
are known, these effects can be easily detected based on
the qualitative state descriptions. Interdisciplinary effects
should be considered when creating the qualitative state con-
straints. Similar to backpropagation in a neural network, risk
estimations can be applied to predecessor states, enabling
the assignment of a validity score to the entire QuAT, as
during the creation of a QuAT the intermediate states can’t
be fully evaluated without knowledge about how their child
states behaviour.

Algorithm 1 demonstrates an implementation example.
Predefined qualitative system descriptions and system mea-
surements are essential to define the initial qualitative state
(Line 1-2). This includes the assignment of measurements to
known qualitative discrete quantities, but also the represen-
tation of the system intervention that is to be studied. The
current state undergoes qualitative simulation (Line 3-8) un-
til the prediction horizon is reached or a steady state is at-
tained. Analysed states are then organised into a tree struc-
ture, illustrating the system behaviour (Line 9). The risk as-
signment (Line 10-16) follows two main steps: Firstly, the
tree is evaluated in a bottom-up manner, starting with the
risk estimation of the leaf nodes. Afterwards their predeces-
sors are updated primarily by their successors’ risk. Once
evaluation of all qualitative states is completed, the output
contains the risk analysis of the current state’s transition
(Line 17).

The output of the safety assessment can depend on the
use-case. One option would be to return the estimated risk
for the current possible transitions, to validate if a specific
transition should be avoided. Alternatively, the whole tree
with the updated risk scores can be returned to present the
system engineers a current overview of the system and its

Algorithm 1 Safety assessment based on qualitative risk as-
signment
Input: Current data of the system
Model: Qualitative system description, based on set F
Output: Risk-analysis of transitions

1: Discretize input data.
2: Initial qualitative state QS(F, t0) is set as QS(active).
3: while qualitative prediction do

4: Analyze successor states of QS(active).
5: Add all valid states to ActiveList.
6: remove QS(active) from ActiveList

7: set next state from ActiveList to QS(active)
8: end while

9: → create Tree, with nodes of all qualitative states
10: for each state in Tree in bottom-up order do

11: if state is leaf node then

12: Assign estimated risk
13: else

14: Update risk, based on successor nodes
15: end if

16: end for

17: return risk and qualitative behaviour

upcoming behaviour. The latter case is particularly impor-
tant in situations where multiple safety-critical states are
identified, requiring operators to navigate the system during
challenging operations.

4 Application in Safety Assessment and

Supervision of AI Solutions

This section covers the application of the monitoring agent
for a CPS, here the COLUMBUS module of the ISS. The
knowledge about upcoming system states, especially in
terms of the assessed risk, is essential for a safe and secure
operation.

CPS System Description - ISS Columbus ECLSS

The COLUMBUS module is the biggest contribution of the
European Space Agency (ESA) to the International Space
Station. Its purpose is to serve as a unique platform for dif-
ferent fields of research: Human physiology, biology, funda-
mental physics, material sciences and fluid physics. Further-
more, external experiment facilities allow the long-term and
non-perturbed observation of the Earth and the universe. The
European laboratory is operated by the COLUMBUS Control
Center at the German Space Operations Center nearby Mu-
nich (Doyé 2012).

The most critical and vital system of the COLUMBUS
module is the Environmental Control and Life Support Sys-
tem (ECLSS), whose topology is shown the process flow
diagram in figure 3. It consists of a supply (ISFA) and return
(IRFA) fan assembly, a redundant pair of cabin fan assem-
blies (CFA 1/2), a temperature control valve (TCV), which
distributes the airflow into two redundant cooling and con-
densation cores (Core 1 and 2) within the condensate heat
exchanger (CHX) to cool and dehumidify the air.
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Figure 3: Cabin Loop of ISS ECLS-System by (Doyé 2012)

The airflow is then channelled into the cabin, where it
mixes with the cabin air. To refresh the air and ensure smoke
detection, a minimum volumetric flow rate has to be passed
by the smoke detectors (SD 1/2) and is returned by the ISFA
and recycled in part through the CFAs. The thermal control
system (TCS) is composed of the Cores, the coolant and ex-
ternal heat exchangers and is controlled by the redundant
cabin temperature control units (CTCU 1/2).

Additionally, there are multiple sensors, measuring the
volumetric airflow (AFS), pressure differentials across fans
and filter (!P or DPS), partial pressure of O2 and of CO2

gas (PPOS/PPCS), cabin temperature (CTS 1-6), humidity
(HS 1/2) and the total pressure (TPS 1-4).

Reconfiguration of a Fault Case

Consider the following hypothetical failure case for illustra-
tion purposes: An accident occurs in the COLUMBUS mod-
ule during an experiment, resulting in the failure of Cool-
ing Core 1. The cabin’s pressure has increased beyond the
threshold due to gas leakage, and the hatch has been closed
after the accident. The initial system state before reconfigu-
ration is represented by

xxx
0 = [Tc,ωc, V̇AFS , pc]

T

= [303K, 0.50, 500m3
/h, 103.5→ 103 Pa]T

and the input configuration by

bbb
0 = [bISFA, bIRFA, bCFA1 , bCFA2 , ...

bTCV1 , bTCV2 , bC1 , bC2 ]
T

= [1, 0, 0, 1, 1, 0, 1, 0]T .

(3)

We thus have only ISFA, CFA2 and one cooling branch
(TCV1, C1) activated, which corresponds to the default con-
figuration, where the used air is returned over the hatch
opening.

We also find, by an underlying fault diagnosis algorithm,
that two actuators have failed. The health state is given by

hhh
0 = [1, 1, 1, 0, 1, 1, 0, 1]T . (4)

Using the causal graph, the reconfiguration algorithm
classifies the inputs into inflows and outflows. These are

then transformed into a logical set of formulas using Auto-

Conf ext. The formulas aim to answer the question:
Which inputs do I need to open or close to bring the
corresponding state within acceptable bounds?

An excerpt of the logical formula demonstrates the implica-
tions of a high temperature, where either one of the cooling
cores (b7 or b8) or the ISFA fan (b1) need to be activated:

It shows the implications of a high temperature, which are
to switch on either one of the cooling cores (b7 or b8) or to
switch on the ISFA fan. The negation of the pre-reconfigured
inputs (b0) excludes inputs that are already reconfigured. Ac-
tuator dependencies and internal flow structures are also in-
cluded in the logical formula.

The logical formula is then checked for satisfiability us-
ing Z3. If it is satisfiable, a model (input assignment) that
satisfies the formula can be obtained. In this fault case, the
formula is satisfiable, and the algorithm proposes a new in-
put configuration to recover the system:

bbb = [1, 1, 0, 0, 0, 1, 0, 1]T . (5)
By activating the ISFA and the second cooling branch

(TCV2 and C2), the pressure can be reduced, and the tem-
perature can be lowered. Note that there exist multiple valid
configurations (e.g. CFA1 could also be switched on). If the
logical formula is not satisfiable, the system is shut down.
Alternatively, constraints can be relaxed to lower the system
requirements and prioritize certain state variables. The out-
put is then presented as a list of possible configurations that
solve the logical formula, the supervision agent will then se-
lect the safest system intervention.

Supervision of the Reconfiguration

The reconfiguration evaluates the current system state and
determines a possible system configuration on the basis of
the system’s stability status, which is intended to bring the
system to a stable state in the event of an anomaly. This pro-
cedure was described before using the system pressure and
the cabin temperature as examples. As long as the logical
formula can be solved with the AutoConf ext algorithm, sev-
eral alternative configurations in the form of equation 6 can
usually be determined. All of them can remedy the anomaly
that has occurred as they solve the logical formula presented
in the reconfiguration approach.

bbb0 = [10001000]T

bbb1 = [11001000]T

bbb2 = [01101000]T

bbb3 = [00100100]T

bbb4 = [01100101]T

(6)

The next step is to select the most suitable system config-
uration. For this purpose, we use the qualitative evaluation
procedure to determine the risk of the possible consequen-
tial states and to select the safest variant. In our application
case we concentrate on the creation of the model on the ba-
sis of simplified system dependencies, because these can be
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derived from the system representation, see figure 3. This
approach of using the knowledge of the system structure as
a basis is always possible independent of the data basis and
the existence of any simulation. With this knowledge we can
formulate simplified qualitative equations for each state of
equation 3 in the form of:

Tc = +TAct → TISFA → TC1||C2

ωc = +ωAct → ωISFA → ωC1|C2

V̇AFS = +V̇ISFA → V̇IRFA

pc = +pISFA → pIRFA

(7)

The equations 7 still need to be converted to the QSIM
notation to be used for qualitative evaluation. Therefore we
define the qualitative behaviour of the system based on its
constraints and introduce auxiliary variables. the qualitative
constraints are then shown using the example of the cabin
temperature Tc in equation 8:

F
→(TISFA, bISFA),

F
→(TCHX , bC1||C2),

F
+(TAct, Activity),

ADD(TISFA, TCHX , TnSum),

ADD(TAct, TnSum, Tc)

(8)

In this case, the temperature Tc can be understood as the
sum of the negative and positive effective parameters. On
the one hand, the astronauts’ activity lead to an increase in
temperature, and on the other hand, the colder supply air
through the ISFA and the cooling core work against it.

Finally if all qualitative system equations are defined, the
list of reconfiguration options can be tested and validated.
Based on current system data the qualitative variables can be
initialised and the algorithm 1 can be executed. The QuAT
which was introduced before can’t be utilised for the vi-
sualisation of the system, because it is far too complex to
present the results here in this place as it contains thousands
of states. Instead the Table 2 shows a validation of the differ-
ent reconfiguration options. For each of the state variables,
which were defined in equation 3, we can create their own
QuAT and analyse the predicted risk for each reconfigura-
tion option. Overall this allows an estimation of how a spe-
cific configuration affects the different state variables and
therefore an initial guess on which reconfiguration to apply.
The total risk assumptions can be compared to suggest the
option with the least transitions into risky operations.

An experienced operator might favour a configuration
with a better performance for one specific state, based on the
current fault diagnosis, but we select the option with mini-
mal expected overall risk. In this case reconfiguration op-
tion bbb3 is considered optimal with the least totaled calculated
risk. It performs well because the states V̇AFS and pc are not
directly affected by the configuration changes and therefore
exist in a steady state without further disturbance, and there-
fore without any expected risk. It is arguable whether the
qualitative equation of V̇AFS defined in equation 7 should be

Tc ωc V̇AFS pc

bbb0 42 42 33 38
bbb1 42 42 44 44
bbb2 34 34 38 33
bbb3 34 34 5 5
bbb4 42 42 38 33

Table 2: Risk score calculation for each reconfiguration op-
tion bbbi based on the QuAT.

affected by the fanspeed of the CFA1 or CFA2, but as long
as the cabin door is shut, the circulating air is only defined
by the supply (ISFA) and return (IRFA) fan assemblies.

Measuring the effectiveness of qualitative state predic-
tions is still an ongoing task in the project, but in its cur-
rent form the supervision tool grants important insights by
ranking the available reconfiguration options. For a given
accident or failure multiple reconfiguration options can be
identified, but in order to explicitly propose a solution and
pave the way for autonomous deployment, a decision pro-
cess must be integrated. By assessing the risk of upcoming
qualitative states the decision can be forced to priories the
well-being of the astronauts and a secure operation of the
life support system.

5 Conclusion and future work

We present a novel approach that combines the fundamen-
tals of qualitative system description with applications in ar-
tificial intelligence and system control theory. Our concept
of qualitative prediction allows for the construction of an ab-
stracted model based on fundamental knowledge of cause-
effect relationships, enabling the prediction of complex sys-
tem behaviour. Risk estimation plays a crucial role in se-
lecting the appropriate configuration to recover from unin-
tended system behaviour. However, the algorithm’s perfor-
mance currently hinders its application to systems with low
response time. The combinatorial explosion of possible suc-
cessor states is a computationally intensive task even with
the proposed depth limitations. The operation time depends
on factors such as the number of evaluated configurations,
required depth, and the level of model detail. In our case the
simplified qualitative equations in 7 analysed 2066 states in
less than 30s, increasing the amount of reconfiguration op-
tions to 10 increased the evaluation time to about 100s for
roughly 7700 states and adding an additional state variables
like the pressure at the first intersection increased the evalu-
ation time to about 240s. Of course the evaluation time de-
pends on the used hardware, but the tendency is clear: Opti-
misation is necessary to improve the algorithm’s efficiency.

The generation and definition of qualitative equations
still requires expertise, and a poorly constructed model can
limit overall functionality. Additionally, the abstract nature
of qualitative solutions can pose challenges when convert-
ing them back into numerical contexts. To address these
issues, the work of Say (Say and Kuru 1996) and Nigge-
mann (Niggemann et al. 2021) shows promise in includ-
ing system identification and merging of learned system
behaviours, respectively. Incorporating these advancements
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into our approach of constructing the qualitative analysis
tool (QuAT) can enhance its capabilities. To build upon these
ideas it might be worthwhile to include data based concepts
to set probabilities for the state transitions to account for
normal behaviour and the most probable transitions. This
could help to predict the risk of an action more accurate,
or rather to help to identify planned and safe transitions.
On the other hand the probability for failures and anoma-
lies can’t be based on data-sets, if those issues only occur in
rare instances especially if the supervision tool is meant to
supervised data based methods.

Furthermore, the presented qualitative evaluation can be
used in other tasks. The evaluation of predicted system states
is of particular interest in the task domain of approaches
based on neural networks. In this context, we want to re-
search the possibility to apply the qualitative reasoning to
reinforcement learning by integrating the prediction of ex-
pected system states as action masking in internal reward
policies. With this approach risky actions will be avoided
during training. By doing so, we hope to optimise the learn-
ing behaviour and drastically reduce learning effort.
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Abstract

In analogy to using an LLM to generate a story
on some topic, or Dall-E to generate an image,
we can use LLMs to design a physical system to
achieve a function. A system such as ChatGPT
isn’t a great designer, but it has two significant ad-
vantages. First, the designs it produces are approx-
imately correct and thus we can use it as a start-
ing point for developing a practical design. Sec-
ond, it has a vast amount of knowledge about phys-
ical domains and is not limited to one domain. All
other design tools have severe domain limitations.
In short, it is an extremely general but sloppy de-
signer. In this paper we show how the sloppy de-
signs produced by ChatGPT can refined to produce
practical designs.

1 Design experiment methodology
For all our design experiments we start with a known design
(e.g., low-pass filter, power-train, op-amp) and construct a
data set by simulating its behaviors over time that character-
ize its function. For example, for a low-pass filter we simu-
late its behavior at a frequency within its pass-band, and out-
side of it. We provide those input/output sequences to our
automated designer to construct a system which produces the
same input/output sequences. There are often multiple ways
of achieving the same input-output behavior, so the designed
system may not have the same topology or parameters as our
original system. We are not trying to recreate the original de-
sign, but rather to automatically construct a design which be-
haves in the same way. There are usually an infinite number
of ways a desired function can be achieved. Our approach
finds a simpler one simply because the LLM [Devlin et al.,
2019] will typically find simpler ones.

An immediate challenge to using ChatGPT [Roumeliotis
and Tselikas, 2023] is that it has a poor grasp of mathematics.
Hence, we use ChatGPT only to generate a topology of com-
ponents. ChatGPT cannot assign parameter values to compo-
nents. That task is left to an optimizer which picks values for
component parameters such that the function of the system is
achieved.

2 Low-pass filter
Consider designing a low pass filter. A low pass filter is a
circuit which reduces the high frequencies in the input sig-
nal and passes through unaltered low frequencies (hence the
name). Figure 1 is a simple example of a low-pass filter.
To construct the input-output data set let R = 1K⌦ and

Figure 1: Low pass filter

C = 0.1µF . With those values the circuit has a cutoff fre-
quency of approximately 1.6KHz (the frequency at which
there is 3db loss in amplitude. To frame our experiment we
simulate our circuit at f = 1KHz and f = 2KHz. Assume
the load impedance is 10K⌦. We then simulate the low-pass
filter to construct two sequences of input/outputs. The out-
put voltage time series corresponding to a sinusoidal input at
1KHz and 2KHz frequencies are shown in Figure 2. These
time series will serve as ground truth for the design challenge.

3 Modelica and ChatGPT
We use Modelica [Fritzson, 2004] as our primary modelling
tool. Modelica consists of a modeling language and a simu-
lator so that we can test any designs that are discovered. The
ChatGPT training set includes enough Modelica models that
we can use ChatGPT 4.0 directly. We first construct a prompt
which includes the library of Modelica components to choose
among, the interface of the desired system, and the natural
language description of the desired function. In order to de-
sign the low-pass filter we provide ChatGPT 4.0 the following
prompt:
Here i s a l i b r a r y o f Model ica components :
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Figure 2: Output voltage for a sinusoidal input voltage 1KHz and
2KHz frequencies.

model Model ica . E l e c t r i c a l . Analog . B a s i c . C a p a c i t o r
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . P o s i t i v e P i n p ;
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . N e g a t i v e P i n n ;

end Model ica . E l e c t r i c a l . Analog . B a s i c . C a p a c i t o r ;

model Model ica . E l e c t r i c a l . Analog . B a s i c . Ground
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . P in p ;

end Model ica . E l e c t r i c a l . Analog . B a s i c . Ground ;

model Model ica . E l e c t r i c a l . Analog . B a s i c . I n d u c t o r
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . P o s i t i v e P i n p ;
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . N e g a t i v e P i n n ;

end Model ica . E l e c t r i c a l . Analog . B a s i c . I n d u c t o r ;

model Model ica . E l e c t r i c a l . Analog . B a s i c . R e s i s t o r
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . P o s i t i v e P i n p ;
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . N e g a t i v e P i n n ;
Model ica . Thermal . H e a t T r a n s f e r . I n t e r f a c e s . H e a t P o r t a h e a t P o r t ;

end Model ica . E l e c t r i c a l . Analog . B a s i c . R e s i s t o r ;

model Model ica . E l e c t r i c a l . Analog . I d e a l . IdealOpAmp3Pin
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . P o s i t i v e P i n i n p ;
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . N e g a t i v e P i n i n n ;
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . P o s i t i v e P i n o u t ;

end Model ica . E l e c t r i c a l . Analog . I d e a l . IdealOpAmp3Pin ;

Here i s t h e i n t e r f a c e f o r a low p a s s f i l t e r :

model t w o p o r t i n t e r f a c e
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . P o s i t i v e P i n p i n ;
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . N e g a t i v e P i n n i n ;
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . P o s i t i v e P i n p o u t ;
Model ica . E l e c t r i c a l . Analog . I n t e r f a c e s . N e g a t i v e P i n n o u t ;
end t w o p o r t i n t e r f a c e ;

Connect components from t h e l i b r a r y i n t o a wel l�formed
Model ica model t o c r e a t e a low p a s s f i l t e r t h a t e x t e n d s
t w o p o r t i n t e r f a c e . Name t h e Model ica model ‘ ‘ l o w p a s s f i l t e r ’ ’ .

ChatGPT outputs the following Modelica code:
model l o w p a s s f i l t e r ”Low Pass F i l t e r ”

e x t e n d s s t e p f u n c t i o n t e s t ;

Model ica . E l e c t r i c a l . Analog . B a s i c . R e s i s t o r
R1 (R= 1 0 0 0 ) ;

Model ica . E l e c t r i c a l . Analog . B a s i c . C a p a c i t o r
C1 (C=1e�6);

e q u a t i o n
c o n n e c t ( p i n , R1 . p ) ;
c o n n e c t ( R1 . n , C1 . p ) ;
c o n n e c t ( R1 . n , p o u t ) ;
c o n n e c t ( C1 . n , n o u t ) ;

end l o w p a s s f i l t e r ;

We will address the fact that the indicated parameters are
incorrect for the task. ChatGPT cannot find correct parame-
ters even if they exist because it understands so little about

equations. We have built a simple automatic renderer for
Modelica models, Figure 3 is drawn by our renderer, not
ChatGPT. Hence, the drawings appear awkward.

Figure 3: Low pass filter

4 Generate and Test
Figure 4 illustrates our approach to using ChatGPT in design.
Once we have a Modelica model topology, we use the Sizer to

Figure 4: Ideal Framework: ChatGPT constructs a Modelica topol-
ogy from the requirements and and optimization is used to determine
the exact parameters needed. If no parameters can be found for that
topology that achieve the desired function, the generate and test loop
continues.

determine the values of the parameters so that the input/out-
put sequences match as closely as possible (through optimiza-
tion).

We use Dymola to convert the Modelica model into an
FMU. We then use a gradient-free descent method (Powell) to
determine the best values for the parameters. We optimize the
parameters against the desired input-output function data set.
Thus we use ChatGPT to determine a topological model from
specifications written in English, and continuous optimiza-
tion to determine the parameters of the topology that match
the requirements. In the case of the RC circuit, only the prod-
uct RC is relevant, thus the optimizer can find various val-
ues for R and C, depending on the initial conditions of the
algorithm. For example for one run with random initial con-
ditions in [0, 1] and 1KHz input frequency, the Sizer finds
R = 0.00969⌦, C = 0.01041F . Their product is roughly
10�4, which is exactly the product of the R,C parameters
for the ground truth case.

Note however that ChatGPT will not always generate
topologies for which the Sizer can find any appropriate val-
ues for the system parameters. For example, in the case of
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a purely resistive circuit, the Sizer will never find correct pa-
rameters that can match the ground truth. Worse, the models
ChatGPT constructs can be syntactically incorrect. These er-
rors occur because LLMs are not general AIs and make many
mistakes. The surprise is more than ChatGPT can often find
almost correct designs.

Since ChatGPT is stochastic, every invocation of ChatGPT
often yields a new topology. Therefore, one could just keep
on calling ChatGPT over and over again until, hopefully, it
comes up with a valid topology. This obviously yields very
poor performance. Figures 5 and 6 show two faulty topolo-
gies ChatGPT generates.

Figure 5: Bad low pass filter. This has a disconnected input and its
output is always 0. It attenuates all frequences.

Figure 6: Another bad low pass filter. This one is syntactically cor-
rect, but output is always 0. It attenuates all frequences.

5 Generate and Repair
Instead of taking a pure “generate and test” approach, we
could try to repair the designs that are syntactically invalid
or that do not have the proper behavior.

One way to try to repair the designs would be to ask Chat-
GPT to redesign a faulty design given some information of
what was wrong with it. We did some experiments to try this
out. Since ChatGPT is stochastic, it was hard to tell whether
the new information made a difference. So we tried each re-
pair ten times both with and without the new information. For
a few repairs it was more likely to produce a good design with

the new information, but for most repairs there was no differ-
ence. In this case, using ChatGPT for repair was effectively a
“generate and test” approach.

To perform our experiments we introduce a 3rd module
to our framework. The repair module detects whether there
is some simple syntactic reason the Modelica topology pro-
duced by ChatGPT cannot function. (It also checks for dupli-
cate topologies.) It then attempts to repair the topology with
a a simple local transformation. This is much less expensive
than starting the Modelica optimizer. Figure 7 is the frame-
work we use in our experiments.

Figure 7: More efficient framework which repairs syntactically in-
correct Modelica topologies.

Although we could have the repair module generate a se-
quence of designs to test, we instead have the repair module
generate a model that represents a space of designs where the
different design choices are represented by switches. Cur-
rently, we generate a sequence of designs to test from the
space of designs, but in the future we hope to use ATMS[de
Kleer, 1986] reasoning to search the space more efficiently
than by using exhaustive enumeration.

The first thing that the repair module does is repair syn-
tactically invalid models. For instance, ChatGPT sometimes
leaves out the ‘equation’ keyword from the model. The re-
pair module detects this and inserts an ‘equation’ keyword
between the components and the connections.

The next thing the repair module does is to look for pos-
sible topological errors such as disconnected ports (Figure 5)
and positive ports connected to ground (Figure 6). For each
possible error, it generates a range of alternatives. For in-
stance, it converts Figure 5 into Figure 8, and Figure 6 into
Figure 9.

Once we have a repair space, we can generate candidate
designs by enumerating switch values that are consistent with
the ‘oneof’ constraints and passing the resulting design to the
Sizer to determine optimal parameter values. Figures 8 and 9
contain valid low-pass filter designs, so this process produces
a successful design in these cases.

6 Design of a Power Train
The Modelica Standard Library (MSL) contains an extensive
collection of power train components. Figure 10 illustrates a
simple vehicle power train. This model has a simple model
of the road and driver.

The input-output function we desire is produced by a sim-
ulated driver (Figure 11).

The following ChatGPT prompt generates powertrain
topologies.
Here i s a l i b r a r y o f Model ica components :

model Model ica . Mechanics . R o t a t i o n a l . Components . Brake
Model ica . Mechanics . R o t a t i o n a l . I n t e r f a c e s . F l a n g e a f l a n g e a ;



Figure 8: Repair space for Figure 5.

Figure 9: Repair space for Figure 6.

Model ica . Mechanics . R o t a t i o n a l . I n t e r f a c e s . F l a n g e b f l a n g e b ;
Model ica . B locks . I n t e r f a c e s . R e a l I n p u t f n o r m a l i z e d ;

end Model ica . Mechanics . R o t a t i o n a l . Components . Brake ;

model P o w e r t r a i n . Components . C h a s s i s
Model ica . B locks . I n t e r f a c e s . R e a l O u t p u t speed ;
Model ica . Mechanics . T r a n s l a t i o n a l . I n t e r f a c e s . F l a n g e a f l a n g e a ;
Model ica . Mechanics . T r a n s l a t i o n a l . I n t e r f a c e s . F l a n g e a f l a n g e b ;
Model ica . B locks . I n t e r f a c e s . R e a l I n p u t g r a d e ;

end P o w e r t r a i n . Components . C h a s s i s ;

model Model ica . Mechanics . R o t a t i o n a l . Components . C l u t c h
Model ica . Mechanics . R o t a t i o n a l . I n t e r f a c e s . F l a n g e a f l a n g e a ;
Model ica . Mechanics . R o t a t i o n a l . I n t e r f a c e s . F l a n g e b f l a n g e b ;
Model ica . B locks . I n t e r f a c e s . R e a l I n p u t f n o r m a l i z e d ;

end Model ica . Mechanics . R o t a t i o n a l . Components . C l u t c h ;

model P o w e r t r a i n . D r i v e r . D r i v e r
Model ica . B locks . I n t e r f a c e s . R e a l I n p u t a c t u a l S p e e d ;
Model ica . B locks . I n t e r f a c e s . R e a l O u t p u t g e a r ;
Model ica . B locks . I n t e r f a c e s . R e a l O u t p u t c l u t c h ;
Model ica . B locks . I n t e r f a c e s . R e a l O u t p u t g a s P e d a l ;
Model ica . B locks . I n t e r f a c e s . R e a l O u t p u t b r a k e P e d a l ;

end P o w e r t r a i n . D r i v e r . D r i v e r ;

Figure 10: A working powertrain

Figure 11: Desired power train behavior

model P o w e r t r a i n . Components . Engine
Model ica . B locks . I n t e r f a c e s . R e a l I n p u t p e d a l ;
Model ica . Mechanics . R o t a t i o n a l . I n t e r f a c e s . F l a n g e b f l a n g e a ;

end P o w e r t r a i n . Components . Engine ;

model P o w e r t r a i n . Components . GearBox
Model ica . Mechanics . R o t a t i o n a l . I n t e r f a c e s . F l a n g e a f l a n g e a ;
Model ica . Mechanics . R o t a t i o n a l . I n t e r f a c e s . F l a n g e b f l a n g e b ;
Model ica . B locks . I n t e r f a c e s . R e a l I n p u t g e a r ;

end P o w e r t r a i n . Components . GearBox ;

model P o w e r t r a i n . D r i v e r . RoadGrade
Model ica . B locks . I n t e r f a c e s . R e a l O u t p u t g r a d e ;

end P o w e r t r a i n . D r i v e r . RoadGrade ;

model P o w e r t r a i n . Components . S i m p l i f i e d w h e e l R o a d
Model ica . Mechanics . R o t a t i o n a l . I n t e r f a c e s . F l a n g e a f l a n g e a ;
Model ica . Mechanics . T r a n s l a t i o n a l . I n t e r f a c e s . F l a n g e b f l a n g e a 1 ;

end P o w e r t r a i n . Components . S i m p l i f i e d w h e e l R o a d ;

Connect components from t h i s l i b r a r y i n a wel l�formed Model ica model
t o c r e a t e a d r i v e t r a i n .
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7 Generate and Behavioral Repair
ChatGPT 4.0 mostly generates bad topologies which are not
repairable with the syntactic techniques just outlined. The
Sizer does not find parameters which yield a correct function
for any of the repairs. Three such bad designs are: Figures
12, 13, and 14.

Figure 12: Problems: Brake output should be connected to
wheelRoad, not chassis. Rotational flanges should not be con-
nected to translational flanges. Missing a connection between
driver.brakePedal and brake input.

Figure 13: Problems: Brake input is connected to wheelRoad instead
of output. Clutch is connected to wheelRoad instead of brake input.
roadGrade is connected to chassis.flange b (wrong type)

Figure 14: Problem: Missing brake

Consider the design in Figure 14. There is nothing in the
design structure to indicate that the brake is missing. The
problem only shows up in the behavior. In the ideal behav-
ior, we see that when the brake pedal is pressed, the vehicle
sharply decelerates (see Figure 11). This can be seen more
clearly in Figure 15, where the extraneous variables have been
removed.

Figure 14 doesn’t use the brake pedal, so that is a clue. But
what should the brake pedal be connected to? How do we
know to add a brake?

Figure 15: Behavior of brake pedal in power train

One way to determine that we are missing a brake is to
look at the qualitative behavior of the brake pedal versus the
speed in Figure 15. When the brake pedal is zero, then the
speed can be positive or zero, and the first derivative can be
positive, negative, or zero. However, when the brake pedal
is positive, then the speed is always decelerating. So we can
look for a component in our library that has that behavior.

Each component in the library has a unit test that exhibits
the behavior of that component. The unit test for the brake is
shown in Figure 16 and its behavior is shown in Figure 17.

Figure 16: Unit test model for brake

Although it is not easy to see in Figure 17, the output
variable starts decelerating when the input variable is (very
slightly) positive. So this suggests that adding a brake might
repair Figure 14. The first step to adding Figure 16 to Figure
14 is to convert the design by replacing the unit test scaffold-
ing with the power train scaffolding. This produces Figure
18.

The next step is to merge Figure 18 and Figure 14. There
are many ways to merge these two designs. If we assume
that linear designs tend to remain linear, and that duplicate
components are shared, then we can use code to zipper the
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Figure 17: Behavior of brake unit test

Figure 18: Brake unit test converted to power train

designs together to produce the power train in Figure 19.
We can also ask ChatGPT to merge the two designs

through the following prompt:
Here a r e two Model ica models :

w i t h i n P o w e r t r a i n ;
model v e h i c l e 1

P o w e r t r a i n . D r i v e r . RoadGrade roadGrade ;
P o w e r t r a i n . D r i v e r . D r i v e r d r i v e r ;
P o w e r t r a i n . Components . Engine e n g i n e ;
Model ica . Mechanics . R o t a t i o n a l . Components . C l u t c h

c l u t c h ( mue pos =[ 0 , 0 . 3 ] , peak = 1 . 1 , cgeo = 0 . 1 7 6 , fn max = 6 9 7 3 ) ;
P o w e r t r a i n . Components . S i m p l i f i e d w h e e l R o a d

s i m p l i f i e d w h e e l r o a d ( v e h i c l e m a s s =1520 , r a d i u s = 0 . 3 ) ;
P o w e r t r a i n . Components . C h a s s i s c h a s s i s ( v e h i c l e M a s s = 1 5 2 0 ) ;
Model ica . Mechanics . R o t a t i o n a l . Components . Brake

b r a k e ( l o c k e d ( f i x e d = t r u e , s t a r t = t r u e ) ,
mue pos = [ 0 , 0 . 3 ] , fn max = 2 9 3 2 0 0 . 0 ) ;

e q u a t i o n
c o n n e c t ( e n g i n e . f l a n g e a , c l u t c h . f l a n g e a ) ;
c o n n e c t ( d r i v e r . c l u t c h , c l u t c h . f n o r m a l i z e d ) ;
c o n n e c t ( d r i v e r . ga sPeda l , e n g i n e . p e d a l ) ;
c o n n e c t ( s i m p l i f i e d w h e e l r o a d . f l a n g e a 1 , c h a s s i s . f l a n g e a ) ;
c o n n e c t ( roadGrade . grade , c h a s s i s . g r a d e ) ;
c o n n e c t ( d r i v e r . a c t u a l S p e e d , c h a s s i s . speed ) ;
c o n n e c t ( d r i v e r . b r a k e P e d a l , b r a k e . f n o r m a l i z e d ) ;
c o n n e c t ( b r a k e . f l a n g e a , c l u t c h . f l a n g e b ) ;
c o n n e c t ( b r a k e . f l a n g e b , s i m p l i f i e d w h e e l r o a d . f l a n g e a ) ;

end v e h i c l e 1 ;

w i t h i n P o w e r t r a i n ;
model v e h i c l e 2

P o w e r t r a i n . D r i v e r . RoadGrade roadGrade ;
P o w e r t r a i n . D r i v e r . D r i v e r d r i v e r ;
P o w e r t r a i n . Components . Engine e n g i n e ;
Model ica . Mechanics . R o t a t i o n a l . Components . C l u t c h

c l u t c h ( mue pos =[ 0 , 0 . 3 ] , peak = 1 . 1 , cgeo = 0 . 1 7 6 , fn max = 6 9 7 3 ) ;
P o w e r t r a i n . Components . GearBox gearBox ;
P o w e r t r a i n . Components . S i m p l i f i e d w h e e l R o a d

s i m p l i f i e d w h e e l r o a d ( v e h i c l e m a s s =1520 , r a d i u s = 0 . 3 ) ;
P o w e r t r a i n . Components . C h a s s i s c h a s s i s ( v e h i c l e M a s s = 1 5 2 0 ) ;

e q u a t i o n
c o n n e c t ( e n g i n e . f l a n g e a , c l u t c h . f l a n g e a ) ;
c o n n e c t ( c l u t c h . f l a n g e b , gearBox . f l a n g e a ) ;
c o n n e c t ( d r i v e r . gear , gearBox . g e a r ) ;
c o n n e c t ( d r i v e r . c l u t c h , c l u t c h . f n o r m a l i z e d ) ;
c o n n e c t ( d r i v e r . ga sPeda l , e n g i n e . p e d a l ) ;
c o n n e c t ( gearBox . f l a n g e b , s i m p l i f i e d w h e e l r o a d . f l a n g e a ) ;
c o n n e c t ( s i m p l i f i e d w h e e l r o a d . f l a n g e a 1 , c h a s s i s . f l a n g e a ) ;
c o n n e c t ( roadGrade . grade , c h a s s i s . g r a d e ) ;
c o n n e c t ( d r i v e r . a c t u a l S p e e d , c h a s s i s . speed ) ;

end v e h i c l e 2 ;

Merge t h e s e two m o d e l i c a models t o p roduce a new Model ica model
named v e h i c l e w i t h i n P o w e r t r a i n .
The new Model ica model s h o u l d r e p r e s e n t a d r i v e t r a i n .

This sometimes produces Figure 19.

Figure 19: A valid powertrain generated by ChatGPT.

We can extend this qualitative behavior analysis to the
other components in the library. For instance, the unit test for
the engine is shown in Figure 20 and its behavior is shown in
Figure 21.

Figure 20: Unit test model for engine

When the engine pedal is zero, the output can be zero or
positive and the first derivative can be positive, zero or neg-
ative. However when the engine pedal is positive at around
3 seconds, the output is accelerating. This suggests that the
engine acts as an accelerator.

The unit test for the clutch is shown in Figure 22 and its
behavior is shown in Figure 23.
When the clutch input is zero, then the output is zero. When
the clutch input is positive then the output is positive and ac-
celerating. This suggests that the clutch acts as an accelerator
or as an on/off switch.

The unit test for the gear box is shown in Figure 24 and its
behavior is shown in Figure 25.
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Figure 21: Behavior of engine unit test

Figure 22: Unit test model for clutch

Figure 23: Behavior of clutch unit test

When the gear box input is zero, then the output is zero.
When the gear box input is positive, then the output is pos-
itive and accelerating. When the gear box input is 2, then
the average output is higher than when the gear box input is
1. This suggests that the gear box is acting as some sort of
selector.

The qualitative behaviors of the brake, engine, clutch, and
gear box can be detected in the desired behavior in Figure 11.
This suggests that all of these components are necessary to

Figure 24: Unit test model for gearbox

Figure 25: Behavior of gear box unit test

make a power train. If a candidate design is missing one of
these behaviors, then it is worth trying to add the correspond-
ing component.

This sort of qualitative analysis of component behavior can
be extended to multi-component behavior as well. It works if
a library of known designs has designs with qualitative be-
havior that can be detected. If a qualitative behavior is in the
target behavior but not in a candidate’s behavior then we can
try adding the known design with that behavior to the candi-
date design. If a candidate design has a qualitative behavior
that the target design does not have and the candidate has a
known design with that behavior embedded in it then we can
try deleting the known design from the candidate design.

8 Conclusion
The Sizer algorithm can be surprisly expensive and numer-
ical simulation is often fragile within the optimization loop.
Therefore, it makes more sense to qualitatively simulate ev-
ery design before attempting to find the values needed for the
parameters. [Klenk et al., 2012].

This paper has illustrated that ChatGPT can be a powerful
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tool as part of a automated design process. In future work
we plan to perform experiments on a wide variety of design
problems and determine how large a space of designs can be
covered. Introducing more QR promises to greatly speed up
the search for possible designs.
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Abstract 
One of the signature properties of commonsense reasoning is 
its breadth.  Qualitative domain theories have been success-
fully built both by hand and by learning for small sets of phe-
nomena, but scaling remains an issue.  This paper describes 
an approach to achieving breadth by leveraging a large com-
monsense ontology.  The idea is that a small set of concepts 
in the ontology corresponding to continuous processes and 
event types are identified, called anchor concepts.  The sub-
classes of these anchor concepts form specializations of pro-
cesses and types of events which then provide the desired 
breadth, e.g. that snowboarding is a form of motion.  Pre-ex-
isting role relations for concepts of events and processes pro-
vide information about participants for QP model fragments 
and encapsulated histories.  We show how this approach pro-
duces partial information about a broad range of continuous 
processes and event types.  Rather than the usual carefully 
curated and bounded domain theories used in QR for model-
ing scientific and engineering reasoning, this approach to 
building domain theories is more open-textured.  For exam-
ple, the surface over which snowboarding occurs is usually 
snow and/or ice, something not currently stated in the ontol-
ogy.  The idea is that the rest of the specifications for any 
particular subclass of process will need to be completed by 
other means, e.g. instruction, experimentation, or hand-engi-
neering. 
 

Introduction 
One of the original motivations for qualitative reasoning 
was to support commonsense reasoning.  Even when the 
focus of QR is scientific or engineering reasoning, one of 
the jobs of qualitative models is to help in model formula-
tion.  Model formulation involves mapping from the unruly 
open everyday world to the tightly constrained formalisms 
often used in professional reasoning.  For AI systems to be 
as helpful as a person in model formulation, they must 
have a reasonable understanding of the everyday world.  
Most qualitative domain theories have been generated by 

 
1 By contrast, in the situation calculus, each situation is indeterminant tem-
porally but spatially unbounded, which is a source of the frame problem. 

hand.  Hand generation has been effective for many aspects 
of professional knowledge (e.g. aspects of physics, engi-
neering thermodynamics, chemical engineering), but is 
daunting when considering the range of everyday phenom-
ena.  After all, people – with sensorimotor systems and 
learning abilities that are far more data-efficient than to-
day’s ML – take a decade or two to achieve broad com-
monsense knowledge, gleaned from a combination of di-
rect experience and cultural inputs, including direct in-
struction.  Progress has been made on building out 
knowledge bases using learning by reading, but most ap-
proaches require simplified text.  Large language models 
should be useful in helping to expand the range of texts 
that can be processed.  However, LLMs make poor 
knowledge bases for two reasons.  First, their exposure to 
language is not grounded in the everyday world.  Second, 
their success criterion is generating statistically plausible 
text, not correct reasoning.  As the confabulation problems 
with LLMs show, these are at best only correlated.  Hence 
we, like many others, continue to focus on using 
knowledge graphs as knowledge bases.  Fortunately, there 
are now multiple large knowledge graphs such as Wikidata 
(Vrandecic & Krotzsch, 2014) that can provide broad 
knowledge (Forbus & Demel, 2022).   
 One of our hypotheses is that qualitative process theory 
captures aspects of natural language semantics (Forbus, 
2019).  One consequence of this hypothesis is that the un-
derlying ontology in a commonsense knowledge base 
should in part reflect representational concerns relevant to 
qualitative reasoning.  The everyday world includes many 
patterns of behavior that we can think of in terms of spatio-
temporal units, the idea of histories introduced by Hayes 
(1985).  Histories for objects are temporally extended but 
spatially bounded1.  Histories are often defined in terms of 
the kinds of behavior happening in them.  For example, 
one can think of filling a coffee cup or a swimming pool 
(or a basement).  Filling can be accomplished by pouring 
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from a pot in the case of a coffee cup, or pouring from 
buckets or a hose in the case of a swimming pool.  These 
episodes are often delimited by qualitative changes in 
properties, e.g. for filling, the amount of fluid in the con-
tainer being filled should be increasing during that episode.  
Histories can be hierarchical, e.g. filling a swimming pool 
using buckets will involve many filling/emptying of buck-
ets, the emptyings of which all contribute to the filling of 
the swimming pool.  The ability of qualitative representa-
tions to help segment perceptual information suggests that 
an important component of human commonsense 
knowledge is a broad vocabulary of descriptions of such 
types of events.  Such events play a role in professional 
reasoning, since analyses are often couched in terms of 
them.  Determining when to fire retro-rockets in a Mars 
lander, for example, requires conceptualizing the relevant 
part of its motions as a descent involving gravity, and solv-
ing for a firing time that will enable the lander to touch 
down safely.  Event descriptions help provide boundary 
conditions, like the landing site and the desired speed on 
landing.  Encapsulated histories in QP theory have been 
used to provide qualitative and quantitative models for 
such events that can be used in professional reasoning (e.g. 
Klenk & Forbus, 2009).  Encapsulated histories can be 
learned via analogical generalization over descriptions of 
behaviors (Friedman & Forbus, 2008;2009).  However, this 
has only been done for a small number of types of events.   
 Histories describe what is happening, but they do not ex-
plain why it is happening.  QP theory introduced a notion 
of continuous process that provides a model for causal 
mechanisms in continuous domains.  Pouring and filling in 
the examples above, for instance, would be explained in 
terms of a liquid flow process.  The effects of such pro-
cesses are compositional, so that models for specific sys-
tems can be formulated by combining them.  Consider for 
example pouring water into a leaky bucket.  There is a flow 
of water in, and a flow of water out – the intended flow and 
the leak are both explained in terms of the same type of 
continuous process.  But whether or not the bucket is fill-
ing or not depends on the relative rates of the two flows.  
Thus the flows explain the filling episode.  The everyday 
world contains many kinds of phenomena that we think of 
as continuous processes, such as motion, flows, phase 
changes, and so on.  These general processes manifest in 
many ways.  For example, motion can involve projectile 
motion through the air or empty space, moving along a sur-
face, or various forms of water falling from the sky (e.g. 
rain, snow, hail).  Hand-engineering model fragments for 
the full range of processes that manifest in our everyday 
world from scratch is daunting.   

How can we leverage a broad commonsense ontology to 
build a commonsense QR domain theory?  (Or, alternately, 
how to we bring the fruits of QR into efforts to ontologize 
commonsense knowledge?)  Suppose we can identify 

within an ontology a set of high-level event types and pro-
cesses that can serve as anchor concepts for a QP domain 
theory.  That is, an anchor concept inherits from the con-
cept of a type of encapsulated history or continuous pro-
cess expressed in QP theory (e.g. motion), such that all of 
its more specialized concepts are aptly characterized by 
that domain theory construct.  This provides a way of using 
the broad ontology to leverage well-engineered domain 
theory components.  Moreover, if the ontology has map-
pings to natural language, then that ontology can be used in 
communicating with human partners, another requirement 
to achieve human-like model formulation. 
 This paper reports on work in progress exploring the use 
of a broad commonsense ontology to build a QP domain 
theory for commonsense reasoning.  We start by summa-
rizing the relevant background: aspects of QP theory and 
the NextKB knowledge base we are using. Then we dis-
cuss the issues involved in integrating QP theory with a 
broader domain theory, including processes versus events 
and continuous versus discrete levels of representations.  A 
mapping of a small QP domain theory to NextKB is de-
scribed next, demonstrating that this approach enables the 
range of phenomena that can be discussed to be considera-
bly magnified.  Finally, we discuss conclusions and future 
work. 

Background 
Qualitative process theory postulates continuous processes 
as the mechanisms for change in systems governed by con-
tinuous parameters.  This model breaks down in some do-
mains, e.g. analog electronics is better modeled by a com-
ponent-centered ontology (de Kleer, 1984), and does not 
capture many of the spatial properties of motion (Forbus et 
al. 1991).  Nevertheless, it appears applicable to a broad 
range of everyday phenomena.  Recall that a QP domain the-
ory consists of a set of schema, called model fragments, 
which can be instantiated to assemble models for particular 
scenarios and systems.  Model fragments are specified by 
participants which indicate the kinds of entities it can be in-
stantiated on, conditions which indicate when an instance of 
that model fragment is active, and consequences which are 
statements that hold for any time in which the conditions are 
true.  Continuous processes are a subclass of model frag-
ment that have direct influences, i.e. partial specifications of 
the derivative of some quantities of its participants, such that 
making a closed world assumption over the set of instanti-
ated continuous processes specifies (qualitatively) the deriv-
atives of those parameters.   
 As noted above, the consequences of processes hold at 
every instant within an interval over which that process is 
acting.  To describe the cumulative effects of such processes 
requires histories for the objects affected, as per our example 
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of filling a bucket earlier.  To provide causal and mathemat-
ical constraints on episodes of histories, QP theory also pro-
vide a formalism for encapsulated histories, which can ref-
erence the temporal and spatial aspects of the episode they 
describe.  These schemas are applied like model fragments, 
in that they have participants, conditions, and consequences.  
The consequences can be qualitative, e.g. the distance trav-
elled in an episode of motion is qualitatively proportional to 
the time travelled.  The consequences can also be quantita-
tive, e.g. an equation describing distance travelled as a func-
tion of initial velocity and constant acceleration.   
 QP theory can be formalized in a variety of ways.  Here 
we use an implementation grounded in the NextKB 
knowledge base, which is summarized below.  This imple-
mentation has been used in several previous experiments 
and its details are not relevant for understanding this paper. 
 The NextKB knowledge base is an open-license resource 
being built at Northwestern University to support research 
in knowledge-rich AI and cognitive science.  It builds on 
Cycorp’s OpenCyc ontology, which provides a massive set 
of formally represented concepts and relationships.  Open-
Cyc is an open-license subset of the Cyc ontology.  Concepts 
are formally represented by collections, which can intui-
tively be considered as sets.  For example, the collection 
Container represents all of the containers that there are, have 
been, will be, or might be.  The relationship isa indicates that 
an individual can be considered an instance of that concept, 
e.g. (isa KenCollegeMug Container).  There are inheritance 
relationships between concepts. The genls relation indicates 
inheritance between collections, e.g. (genls Liq-
uidStorageTank Container) indicates that things which are 
storage tanks for liquids are also containers. There are also 
inheritance relationships among predicates, e.g. (genlPreds 
containerEntered toLocation) indicates that containerEn-
tered implies toLocation holds between its arguments.  The 
OpenCyc ontology is more expressive than most.  For ex-
ample, type-level predicates enable it to express higher-or-
der statements, and modal operators (e.g. knows, beliefs) are 
included.  This makes formalizing many concepts substan-
tially easier than less-expressive ontologies.  For example, 
(behaviorIncapable P1 SolvingAProblem thingAnalyzed) 
indicates that the problem P1 cannot be solved.  There are 
many consistency constraints in the ontology.  For example, 
disjointWith indicates that an instance of one collection can-
not be a member of the other, e.g. (disjointWith Herbivore 
Carnivore).  There are type constraints on arguments, arity, 
and the range of logical functions.   
 Some form of context mechanism is crucial for any rep-
resentation system capable of considering alternative quali-
tative states, alternate perspectives in modeling (e.g. Falken-
hainer & Forbus, 1991), or alternate domain theories.  Open-

 
2 https://www.qrg.northwestern.edu/nextkb/index.html 

Cyc uses microtheories to provide a mechanism for con-
texts.  Every fact holds in one or more microtheories.  Mi-
crotheories inherit from each other via the genlMt relation. 
For example, (genlMt HumanSocialLifeMt HumanActivi-
tiesMt) indicates that every fact believed in HumanActivi-
tiesMt is also believed in HumanSocialLifeMt.  Inheritance 
in all cases is monotonic. There are non-monotonic predi-
cates to express dependence of some conclusions on the ep-
istemic state of the system, e.g. believing something because 
one cannot infer its negation is a strategy that can be ex-
pressed and localized, rather than “wiring in” negation by 
failure as a global policy.   
 We distilled NextKB’s ontology from the four available 
versions of OpenCyc.  NextKB2 includes over 82,000 col-
lections, 26,000 relationships, 5,000 logical functions and 
700,000 facts.  We note that this is a small subset of the Cyc 
ontology, as found in the commercial version of Cyc and in 
ResearchCyc, both of which also have massively more axi-
oms constraining the concepts and relationships in the on-
tology as well as a powerful reasoning engine that supports 
useful commonsense inferences complete with explanations 
based on dependency traces. For example, ResearchCyc can 
conclude that Earth cannot run a marathon, because no in-
animate object can.   We used the ResearchCyc knowledge 
base productively for a long time, but finally switched to 
OpenCyc to support dissemination and replication of our 
work.   
In addition to OpenCyc contents, NextKB contains exten-
sions for qualitative reasoning, including both QP theory 
and qualitative spatial reasoning, as well as visual/spatial ca-
pabilities used in CogSketch, our high-level vision system 
and sketch understanding system (Forbus et al. 2011; Forbus 
& Lovett 2021).  Reasoning in these extensions is often con-
ducted via procedural attachments to predicates, for effi-
ciency.  Analogical reasoning and learning is handled simi-
larly.  NextKB also has substantial natural language re-
sources for English.  It has a large lexicon, derived in part 
from a public-domain version of Webster’s dictionary.  Its 
semantics are organized using FrameNet frames, which 
have been mapped by hand to concepts in the OpenCyc on-
tology.  FrameNet thus serves as a bridge between words 
and OpenCyc concepts.  The lexicon has over 190,000 
words and over 69,000 semantic translations.  As noted 
above, AI assistants that help in model formulation need 
such broad language coverage, in order to communicate 
with their human partners.   

107



 

Ontological Grounding for Processes 
All commonsense ontologies include some notion of event.  
Figure 1 shows how the general concepts of events and types 
of processes are related in the OpenCyc ontology. Generally 
there is a notion of sub-events, e.g. a wedding ceremony 
might include guests arriving, the exchange of vows, and 
merry-making.  Processes are often represented in a similar 
way, with the difference being that the same properties are 
true of all of the sub-intervals within an occurrence of that 
process.  This is compatible with the QP theory notion of a 
process being active whenever its conditions hold.  Whether 
or not a phenomenon is treated as continuous or discrete de-
pends on the granularity used in its description.  A robust 
commonsense ontology must be able to support multiple 
levels of granularity, and OpenCyc does a reasonable job of 
this.  For example, OpenCyc treats walking as a process, 
which is useful for estimating things like distance covered 
and effort expended.  But it also provides support for de-
scribing the particular movements of legs up and down, dis-
crete events within walking that are useful for purposes of 

physical therapy, for example.  Another example is Open-
Cyc’s concept of PrecipitationProcess, which is viewed as 
continuous, even though at a finer granularity, the move-
ment of each raindrop or piece of hail can be viewed as a 
discrete event.  Prior qualitative reasoning research has in-
termingled continuous and discrete perspectives in a similar 
way.  For example, Rickel & Porter (1994) used time-scales 
in multiple perspective modeling of biological phenomena, 
given a particular time-scale of interest, their domain theory 
treated slower phenomena as exogenous constraints and 
quicker phenomena as functional connections. 

 
Figure 1: Partial view of the OpenCyc upper ontology showing where events and process types are grounded.  It contains over 
82,000 such concepts. 
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 Concepts describing processes form natural anchor  
points for QP-style continuous processes.  That is, QP-style 
continuous processes are formalized as collections, and ex-
isting elements in the ontology inherit from them, thereby 
inheriting their schema.  Figure 2 illustrates. However, not 
all commonsense processes are aptly described as continu-
ous processes in the QP theory sense.  For example, the con-
cept of ProcessType in OpenCyc combines Tempo-
ralStuffType (thereby capturing the idea that the subinter-
vals are the same) and DurativeEventType (thereby captur-
ing the idea that occurrences of processes take time) and has 
654 instances.  Some of these are nicely expressed by QP 
theory, such as FluidFlow-Translation and PrecipitationPro-
cess.  Many others are not, including InternetSearching and 
IgnoringSomething.  The difference is whether there are 
continuous parameters that aptly characterize the changes 
within an occurrence of a process. Uniformity in subinter-
vals does not necessarily imply the existence of such param-
eters.  Sometimes there are metaphorical extensions that can 
be applied.  For example, an Internet search might be char-
acterized in terms of progress towards the information-seek-
ing goals for that search, or a decision-maker’s thinking 
reaching a level of certainty about an action they are con-
templating.  We will not consider such metaphorical exam-
ples further here, but return to them in proposed future work 
below. 

 Linking QP continuous processes and encapsulated histo-
ries also requires linking the relationships that specify the 
participants for a model fragment.  In English, for example, 
the subject of a motion verb indicates the object that is mov-
ing.  The NextKB resources provide objectMoving as a re-
lationship which formalizes this notion, enabling NLU sys-
tems to propose it as a possible meaning.  Other spatial prep-
ositions capture properties of an episode of motion.  The 
spatial prepositions “from” and “to” can indicate the start 
and end of a motion, with “along” or “via” indicating its 
path.  For example, From-TheWord has semantic transla-
tions that includes startOfPath (a spatial interpretation), in-
tervalStartedBy (a temporal reading), and from-Generic (a 
more abstract version that includes the other two, but also 
the giver of a gift).   

Analysis: Anchor Concepts in OpenCyc 
To explore these ideas, we used pre-existing model frag-
ments and encapsulated histories from QP domain theories 
for exploring the roles of qualitative reasoning in elementary 
school science tests (Crouse & Forbus, 2016), for learning 
textbook problem solving via cross-domain analogies 
(Klenk & Forbus, 2013), and some classic QP domain theo-
ries (Forbus, 1984).  The goal is to estimate two properties: 
(1) How much leverage does the ontology provide us, in 
terms of additional phenomena covered? (2) Do the anchor 

(in-microtheory PrecipitationQPMt) 
 
(genlMt PrecipitationQPMt ScienceTestCollectorQPMt) 
(genlMt ScienceTestInferenceQPMt PrecipitationQPMt) 
 
;; model fragment definition 
(isa NaivePrecipitationProcess QPProcessType) 
(comment NaivePrecipitationProcess 
  "Precipitation occurs when a liquid is in exposed to the air and its temperature is less than boil-
ing point but greater than its freezing point. The result of the process is that the liquid vaporizes 
into an atmosphere.") 
 
(mfTypeParticipant NaivePrecipitationProcess ?liquid LiquidTangibleThing liquidOf) 
(mfTypeParticipant NaivePrecipitationProcess ?sub ChemicalCompoundTypeByChemicalSpecies substanceOf) 
(mfTypeParticipant NaivePrecipitationProcess ?atmosphere GaseousTangibleThing atmosphereOf) 
(mfTypeParticipantConstraint NaivePrecipitationProcess (substanceOfType ?liquid ?sub)) 
(mfiReverseConsequenceOf NaivePrecipitationProcess (and (isa ?rain RainProcess) 
                                                        (products ?rain ?liquid))) 
(mfTypeCondition NaivePrecipitationProcess (qGreaterThan 
                                            (AmountOfFn ?sub Liquid-StateOfMatter ?atmosphere) 
                                            SaturationPoint)) 
(mfTypeBiconditionalConsequence NaivePrecipitationProcess (hasQuantity ?self 
                                                           (PrecipitationRateFn ?self))) 
(mfTypeConsequence NaivePrecipitationProcess (qprop (PrecipitationRateFn ?self) 
                                                    ((QPQuantityFn Temperature) ?liquid))) 
(mfTypeConsequence NaivePrecipitationProcess (i+ (AmountOfFn ?sub Liquid-StateOfMatter ?liquid) 
                                                 (PrecipitationRateFn ?self))) 
(mfTypeConsequence NaivePrecipitationProcess (i- (AmountOfFn ?sub Gaseous-StateOfMatter ?atmosphere) 
                                                 (PrecipitationRateFn ?self))) 
 
;;; Anchor process 
(genls PrecipitationProcess NaivePrecipitationProcess) 

Figure 2: Example of a QP-style process anchored to the OpenCyc ontology 
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concepts provide connections to language that can be ex-
ploited by cognitive systems?  To estimate leverage, we ex-
amine the subclasses of the anchor concepts.  How many are 
there, and are they all reasonable?  To estimate language 
coverage, we count the number of lexical items connected 
to the conceptual space covered by the anchor concept.   
 Table 1 shows the results for number of subclasses and 
words for reasonable anchor concepts for a set of pre-exist-
ing model fragments3.  The anchor concepts were chosen to 
maximize applicability of the model fragment to the sub-
classes.  This was straightforward for a number of model 
fragments, in particular, the basic processes involving flu-
ids, heat, and phase changes.  For example, the subclasses 
of liquid flow include DrinkingEvent and hence the words 
“drink”, “imbibe”, “quaff”, “slurp” and “swill”, among oth-
ers.  For heat flow, the subclasses include various forms of 
cooking (baking, barbecuing, steaming, roasting, and grill-
ing).  Not everything in the ontology is commonsense, e.g. 
the subclasses here include some ways that heating is used 
in semiconductor manufacturing, as well as global warming. 
This ability to expand to incorporate professional 
knowledge is a major advantage of starting with a broad on-
tology, and should simplify model formulation. 
 There are cases where the model fragments are somewhat 
too specific compared to the anchor process.  Precipitation 
is an example: The model fragment concerns liquid leaving 
the atmosphere (as shown in Figure 2), whereas the Precip-
tationProcess includes HailStormProcess, where what 
comes from the sky is ice. This could be resolved either by 
choosing a more specific subclass (e.g. RainProcess) or by 
slightly generalizing the model fragment.  This issue comes 
up most strongly in motion, where there are general proper-
ties that hold (e.g. an episode in a motion history has a start, 
end, and velocity – motion that returns to its starting point is 
included) but also additional complications due to particular 
conditions, such as friction when sliding or gravity for pro-
jectiles.  This has suggested ways to refactor our QP domain 
theories, i.e. to introduce encapsulated histories using purely 

 
3 We do not describe anchoring encapsulated histories to the OpenCyc on-
tology because our existing encapsulated histories, being developed later, 

qualitative mathematics for very abstract concepts of pro-
cesses, to better capture the commonsense inferences that 
they license.  
 Motion is especially prolific.  The 355 subclasses include 
things like snowboarding, flying by flapping wings, and 
parkour in addition to more traditional concerns of QR like 
projectile motion and sliding.  It should be noted that in the 
ontology, PreciptationProcess entails motion, hence the 
words for that process and its specializations are a (small) 
subset of the words that refer to types of motion.  Some of 
these subclasses have additional entailments over the basic 
QP model of motion, e.g. sliding entails the possibility of 
friction, and flying by flapping wings entails the use of en-
ergy supplied by the organism/artifact locomoting that way, 
as do walking and running.  These additional distinctions 
could be captured by model fragments that elaborate mo-
tion, anchored to those concepts.  For example, Flying-Flap-
pingWings is a subclass of LocomotionProcess-Animal, so 
the common need for energy to accomplish locomotion, by 
whatever means, can be expressed once anchored on Loco-
motionProcess-Animal and also inherited.   
 We note that anchor concepts for some of the categories 
used in the participant constraints for model fragments are 
easily found, but others are not.  An easy case is the general 
concept of container.  The concept as used in these model 
fragments is reasonably captured by the collection Con-
tainer, which has 2,787 subclasses and 1,757 words, alt-
hough it includes many subclasses that someone might not 
usually think of in this way, e.g. dance clubs, airplane cab-
ins, and a gigantic list of types of cars. 
  By contrast, it is difficult to find an anchor concept for the 
general concept of physical object (Physob, in classic QP 
domain theories).  The closest is PartiallyTangible, which 
includes 42,339 subclasses, including things like butterflies 
and stores, but also concepts that are poor fits, such as the 
space under coffee tables.  Similarly, concepts like thermal 
or volumetric objects, regularly used in compositional mod-
eling for engineering domains, are not distinctions that the 

were already integrated with OpenCyc because it is a subset of Re-
searchCyc.   

Phenomena Model Fragment Type Anchor Sub-
classes 

# Words 

Liquid flow LiquidFlowProcess LiquidFlowEvent 26 15 
Heat flow HeatFlowProcess HeatingProcess 44 50 
Boiling BoilingProcess Boiling 5 3 
Evaporation Evaporation Evaporation 0 1 
Precipitation NaivePreciptiationProcess PreciptationProcess 14 21 
Floating ObjectFloatingInFluid FloatingInASubstance 34 14 
Motion Motion Movement-TranslationProcess 355 170 

 
Friction FrictionBetweenSolids FrictionProcess 21 22 

 
Table 1: Anchoring QP model fragments in NextKB 
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OpenCyc ontology designers were concerned with.  For 
such cases, it is straightforward to add the desired concepts 
to the ontology and incorporate subclasses of PartiallyTan-
gible as appropriate.  Moreover, such decisions can be in-
crementally learned from examples (Klenk et al. 2008).    
 So far we have looked at how much language coverage is 
added by anchoring QP constructs into the OpenCyc ontol-
ogy.  Are there words that are relevant to QP constructs that 
are not covered by anchor concepts?  Yes.  The exact num-
ber is hard to calculate, since it requires examining all of the 
lexicon.  But, for example, the word “flow” uses FluidFlow-
Translation, which includes both liquid and gas flow as sub-
classes.  The QP models could be re-factored into a general 
fluid flow process with model fragments for liquids and gas-
ses being model fragments specializing that one, or a system 
seeking to construct a qualitative model from a natural lan-
guage description could gather candidate model fragments 
from subclasses of the mapped concept.   

Conclusions and Future Work 
The breadth of commonsense is a daunting challenge for 
qualitative reasoning.  This paper argues that using a large-
scale commonsense ontology (OpenCyc) that is tied to lan-
guage (via NextKB) can help provide such breadth.  The 
ability to find anchor concepts for model fragments and en-
capsulated histories from previous efforts is encouraging.  
The broad convergence in conceptual structure which makes 
FrameNet and OpenCyc mappable in the first place suggests 
that these commonalities are likely to be found in other re-
sources, informed by the same cultural constraints.  How 
this would vary given different cultures is a fascinating 
question.  For example, how information is packaged into 
verbs varies across languages.  In English one might say 
“The bottle floated into the cave” but in Spanish one would 
say the equivalent of “The bottle entered the cave, floating.”  
Will those differences lead to cross-cultural differences in 
qualitative models?   
 We plan three lines of future work.  First, we plan to re-
factor the QP model fragments and encapsulated histories to 
provide some of the intermediate representations that are 
currently missing, as well as use the ontology to help deter-
mine gaps where additional coverage is needed.  Second, we 
plan to use this augmented domain theory to explore the 
construction of high-precision mental models during learn-
ing by reading, in order to learn new domain theory con-
structs and to solve problems expressed via language and 
sketching.  Third, we plan to examine whether extending QP 
domain theories to more metaphorical uses supports infer-
ences consistent with human metaphors (Lakoff & Johnson, 
1981). 
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Abstract 
The proposal is related to Goal 6 of the SDGs, 
“Clean water and sanitation”. The general goal of 
the proposal is promoting the establishment of facil-
ities for water treatment, improving their scientific 
and technical foundations, and providing education 
and advice to local operators of plants, which might 
be non-experts. This is meant to be achieved by a 
web-based decision support system (DSS) that con-
tains a repository of formal representations of treat-
ment technologies and relevant natural processes 
and, based on them, an environment that supports 
different tasks, such as the design and operation of 
treatment systems. 

Problem Addressed: Access to Drinking Water 
In its resolution 70/1 “Transforming our world: the 2030 
Agenda for Sustainable Development” [UN70/1, 2015], the 
UN general assembly committed to “the human right to safe 
drinking water” and established as part of Goal 6 “Clean wa-
ter and sanitation”: “By 2030, achieve universal and equi-
table access to safe and affordable drinking water for all”. 
Here, “all” means 100 % of the people living on this planet. 
 In 2018, the general assembly emphasized in its resolution 
73/226 [UN73/226, 2018] “that water is critical for sustain-
able development and the eradication of poverty and hun-
ger”, but had to note “that the world is not on track to achieve 
water-related Sustainable Development Goals and targets at 
the global level by 2030 at the current rate of progress”.  
 The Sustainable Development Goals Report 2022 [SDG re-
port, 2022] reviews the progress achieved in the 2030 
Agenda. Regarding Goal 6, it reports: “The proportion of the 
global population using safely managed drinking water ser-
vices increased from 70 per cent in 2015 to 74 per cent in 
2020. Still, 2 billion people were without such services that 
year, including 1.2 billion people lacking even a basic level 
of service. … At the current rate of progress, the world will 
reach 81 per cent coverage by 2030, missing the target and 
leaving 1.6 billion people without safely managed drinking 
water supplies” ( p. 38). It concludes that “To reach universal 
coverage by 2030, current rates of progress would need to 

increase fourfold”, and that “Achieving these targets would 
save 829,000 lives annually.” 
Not surprisingly, suffering from this situation is not evenly 
distributed over the planet. The report states that “Eight out 
of 10 people who lack even basic drinking water service live 
in rural areas, and about half of them live in LDCs.” (LDC: 
Least developed countries) – a conflict with the Leaving No 
One Behind (NLOB) action framework which declares 
Equality and Non-Discrimination at the Heart of Sustainable 
Development [LNOB, 2016].  
As a consequence, improving the situation and speeding up 
the progress towards the 2030 goal has to focus on rural areas, 
exp. in the LDCs. Reaching the goal requires a number of 
actions, such as regulations and technological solutions that 
help to prevent pollution, improve water harvesting, reduce 
excessive freshwater withdrawal, water-use efficiency, and 
establish a nexus of water, energy, and food production. The 
problem is not simply access to a sufficient quantity of water, 
but to safe drinking water (or water for other purposes, such 
as irrigation), facilities for water treatment are needed. Esp. 
in rural areas, treatment facilities have to be distributed and 
run locally to avoid problems in transporting water over long 
distances.  
An obstacle to establishing a larger number of treatment 
plants in places where they are most urgently needed is, be-
sides the lack of financial resources, that in LDCs and esp. 
their rural areas, there may be a lack of expertise in designing, 
building and operating such plants. Even though there may 
be some standard technology available, there could be a need 
for adaptation to specific local conditions. Also, when facing 
disturbances of the plant operation, less experienced opera-
tors may need support.  
In line with the LNOB policy “Cooperate in technology 
transfer to promote greater equality”, our proposal is to de-
velop an intelligent decision support system (DSS) ([Dhar-
Stein, 1997], [Sanchez-Marre, 2022]). Such systems have 
been built for several domains, including water treatment 
([Poch et al., 2012], [Mannina et al., 2019]). Our proposal 
aims at making technological knowledge and scientific re-
sults more accessible, improving the transfer of experience 
and best practices to other locations, and providing problem 
solving algorithms that support or automate the performance 
of various tasks during the life cycle of water treatment facil-
ities.  
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Targeted AI Contributions  
The general goal of the proposal is promoting the establish-
ment of facilities for water treatment, improving their scien-
tific and technical foundations, and providing education and 
advice to local operators of plants, which might be non-ex-
perts. This is meant to be achieved by a web-based decision 
support system (DSS) that contains 
 a repository of formal representations of treatment tech-

nologies and relevant natural processes and, based on 
them,  

 an environment that supports different tasks, such as the 
design and operation of treatment systems. 

In contrast to other decision support systems in the area of 
drinking or waste water treatment that provide support to con-
trolling and troubleshooting special (standard) kinds of treat-
ment plants (activated sludge, constructed wetlands, …)(see 
[Poch et al., 2012], [Mannina et al., 2019]), our aim is to 
cover a wide range of combinations of different technologies 
and process steps and, in particular, to support the task of con-
figuring solutions tailored to particular conditions and re-
quirements, rather than taking the plant structure as given.  

The Knowledge Repository  
In the proposed project, we take a model-based approach 
([Heller-Struss, 2002], [Wotawa et al., 2010]): expert 
knowledge about the water treatment domain is not repre-
sented in terms of verbal descriptions, data charts etc. but in 
the form of models, i.e. executable formal expressions. These 
models are not describing complete treatment systems, but, 
in a reductionist way, individual process steps in a context-
free manner, stating their preconditions and inputs and their 
outcome, i.e. some cause-effect relation. This way, such 
model fragments can be assembled (automatically or manu-
ally) to form a plant model. In addition, the repository has to 
comprise models of the natural (physical, chemical, biologi-
cal) phenomena that occur and have an impact on the perfor-
mance of the systems, including ones that might disturb or 
prevent the proper operation of a plant. Finally, descriptions 
of possible human interventions (such as changing the 
amount of added substances) can be part of the repository. 
In the project, we build on a previously developed theory and 
prototype ([Heller-Struss, 2002], [Roque et al., 2003]) which 
adopted the approach of process-oriented modeling [Forbus, 
1984]. The model fragments (“process types”) in the reposi-
tory are considered to be the elementary phenomena in the 
domain, in particular, treatment steps and natural processes 
that may occur intentionally or due to abnormal conditions in 
the plant. A process is represented as a pair of conditions and 
effects, which both contain assertions about structural as-
pects, i.e. existing objects and their relations (such as parti-
cles of a certain kind contained in the water), and about re-
sulting restrictions on quantities associated with the objects 
(e.g. the concentration of a substance is reduced to zero). 
Turning the informal semantics of a process, namely that the 
effects will be established whenever the preconditions are 
satisfied, into logic, a process becomes an implication: 

StructuralConditions    QuantityConditions      
     StructuralEffects    QuantityEffects, 

QuantityEffects can contain special expressions, called influ-
ences, that capture the impact of a process on the dynamics 
of the systems, i.e. how quantities change, but, nevertheless, 
are beyond the expressiveness of differential equations. In an 
approximate way, influences specify a partial derivative of a 
quantity. The actual change of a quantity can only be deter-
mined when all influences on it have been determined (which 
involves a closed world assumption; see [Heller, 2001]. 
for details).  
Assembling a model of a system from instantiated process 
types in the repository requires that their representation uses 
a particular ontology, which is the second ingredient of the 
repository. Otherwise, expressions in effects and conditions 
could not be matched, e.g. to detect that one process triggers 
another one or that several processes affect the same quantity. 
This ontology has to introduce types of objects, their charac-
terizing quantities along with the respective domains and 
types of relations between objects, specifying their signature 
in terms of object types and their properties, e.g. being sym-
metric.  

Example 
In the water treatment domain, the involved types of objects 
include 

- water containers, basins etc. 
- devices, such as valves, pumps, and mixing devices  
- water bodies: inflow/outflow, water in containers 
- ingredients of the water, like organic matter, dis-

solved substances, pollutants 
- substances added during the process (oxidation 

agents, coagulants, …). 
The relations are mainly needed to express 

- connectivity of containers/water bodies 
- component connections 
- containment in water bodies (suspended_in, dis-

solved_in). 
Typical types of quantities involved in the description of 
conditions and effects are 

- attributes of water bodies (pH, temperature, , …) 
- attributes associated with relations, mainly concen-

tration specifying a containment relation. 
As a side note, a design decision has to be taken whether to 
represent the water ingredients explicitly as objects and tie 
their concentration to the containment relation or to represent 
the various concentrations just as quantities associated with 
water bodies (refer to the challenges section of this paper). 
The various kinds of process steps fulfill mainly the task of 
removing particular unwanted elements from the water or 
modifying them, usually in a sequential manner as depicted 
in Figure 1.  
Process-oriented models of the steps have to capture the 
transformation of the water, relating the types of input prop-
erties with those of the output. Since conditions and effects 
of different processes refer to the same features of water, they 
can capture the treatment by the entire plant.  
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To illustrate the above, we consider the removal of colloidal 
particles (with a size between 0.001 mm and 0.01 mm), which 
can be carried out by the sequential steps of coagulation, floc-
culation, and sedimentation (refer to Figure 1). (Also, larger 
parts, up to 0,1 mm, may be treated here). 
In the first step, coagulants (e.g. ferric sulfate or aluminum 
chloride) are added with the effect of neutralizing the charges 
of the particles. Thus, repelling forces between them are elim-
inated which enables the step of flocculation: under the influ-
ence of mixing devices (which have to be run with an appro-
priate speed) the discharged particles collide and aggregate to 
form larger and heavier flocs, which, in the sedimentation 
step, sink to the ground and are, thus, extracted from the flow 
of water.  
In a simplified description of the process types, the precondi-
tions of the coagulation process include the incoming water 
body and the contained colloidal particles with a particular 
concentration (zero or positive) and the added coagulant, 
while the effects specify (ideally) a zero concentration of 
(charged) colloidal particles in the outflow and uncharged 
particles contained with a concentration equaling the concen-
tration of the incoming colloidal particles. Of course, all other 
objects contained in the water inflow will remain unaffected 
and simply transported to the output. Implementing this triv-
ial, but essential feature turns out to be an instance of the in-
famous frame problem and is actually a challenging task, as 
discussed in the respective section. 
The effects of the flocculation process include a zero con-
centration of discharged particles and flocs, whose concen-
tration (qualitatively) equals the concentration of the incom-
ing particles, with properly working mixers also in the pre-
condition. Note, if (mis)behavior of involved devices, such as 
the mixers in flocculation (or their power supply and so on) 
are to be considered, e.g. in trouble shooting, we need to em-
bed behavior models of components in the process-oriented 
modeling paradigm (again, refer to the challenges section). 

A sedimentation process has larger particles (including e.g. 
clay, silt, etc., but also flocs) in its input, and the effects spec-
ify that the concentration of particles with a higher specific 
weight compared to water in the output will be zero, while 
the amount of the sediment is increased or stable (which may 
by modified by a removal process). Particles with a lower 
specific weight will just be moved from input to output. This 
context-independent representation of the process allows us 
to use it in a flexible way. For instance, in practice it is also 
used before the coagulation step.  
This way, the repository contains elements whose combina-
tion yields an executable model. It differs from other simula-
tion systems, because it potentially expands its structure by 
including process instances that are entailed by others.   
It forms a firm theoretical and technical basis for various task-
specific tools which support problem solving with different 
degree of automation, as outlined in the following sections. 

Plant Design  
There is a well-established set of treatment steps and a fairly 
standard mainly linear arrangement of these steps to form a 
treatment plant. Its individual treatment steps are captured as 
process types in the repository. In addition, there other types 
of treatment systems (e.g. constructed wetlands, delivering 
purified, but non-potable water) and more advanced technol-
ogies, such as membrane processes. For a particular area and 
application, designing a proper system means deriving a se-
lection and arrangement of process steps that reflect the spe-
cific characterization of the incoming water and the opera-
tional conditions, as well as a set of requirements on the qual-
ity of the output water.  
In our solution, this means finding a combination of elements 
from the repository that transforms the input into the output. 
Based on the cause-effect representation of the process types 
in the repository, the DSS can assist manual design by a hu-
man in offering candidate processes whose effects imply 
(some of) the output requirements.  
When given the structure of a designed system, S, and a spec-
ification of the input and the contextual conditions (such as 
ambient temperature), INPUT, the DSS can create a system 
model MODEL(S, INPUT) as a collection of processes. Note 
that it has to be “causally complete” in the sense that it does 
not only contain the intended process steps of S, but also all 
processes that are triggered by them under the specified IN-
PUT (recursively). I.e. the DSS constructs the “deductive 
hull” of the causal structure given the repository and, thus 
helps to reveal potential unwanted “side-effects”.  
If the intended operation is specified by a set of requirements, 
GOALS, which are usually restrictions on the output water 
(thresholds for concentrations of substances, etc.), the DSS 
can check whether the designed system solves the task, i.e. 
the GOALS are entailed by the model: 

MODEL(S, INPUT) ⊨ GOALS         (1) 
Since the repository is considered to be complete, i.e contains 
all available water processing steps as well as natural phe-
nomena relevant to the domain design proposals could, in 
principle, also be automatically generated by the DSS, which 

Figure 1 A typical treatment plant (Source:Drewes, Lecture 
Notes “Advanced Water Treatment Engineering and Re-

use”, TUM 2021) 
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may be less complex than expected, because the search is fo-
cused by both INPUT and GOALS. This may generate novel 
solutions, which, however, may be unintuitive or violating re-
strictions that cannot be expressed in the repository or in 
GOALS (e.g. because they are related to structural aspects 
and not local w.r.t. individual steps). Therefore, the first case 
studies will aim at interactive solutions.  

Trouble Shooting  
We assume that a system, S, that is deployed has been 
properly designed, which means if all elements of the plant 
work as expected and the contextual conditions stay within 
the anticipated range, the intended effects will be accom-
plished, which is expressed by (1) in the previous section. 
Observations of the actual system performance, OBS, may 
indicate a deviation from the expected operation, which is de-
tected by the DSS as a contradiction between the assumption 
of the nominal INPUT and the system working according to 
MODEL(S, INPUT) and OBS:  

MODEL(S, INPUT)  OBS ⊨        (2) 
For an operator, the task may then be identifying the cause 
behind the deviation from nominal behavior, if this is consid-
ered significant. In the DSS, this means hypothesizing  
 an unanticipated INPUTf  (e.g. pH outside the expected 

range) that triggers unwanted or inhibits intended pro-
cess steps, and/or  

 a fault in the structure, Sf, (e.g. a valve being stuck, or a 
mixing device without power) which impairs the nomi-
nal operation. 

Finding such causes, which we call situation assessment, 
can be guided by the repository by checking whether precon-
ditions of expected processes could be invalidated or hypoth-
esizing additional influences created by processes whose pre-
conditions are satisfied unexpectedly (and then. perhaps, re-
cursively searching for reasons for this).  
As for design, the DSS may just be supportive to a human 
analyst in offering elements from the repository that might be 
involved in the disturbance. Alternatively, it might itself gen-
erate solutions and offer them to the operator for assessment 
(there will often be several potential explanations). The foun-
dation for this are consistency-based diagnosis techniques, 
that were first developed for finding component faults [de 
Kleer-Williams, 1987] and then extended to process-oriented 
models ([Collins, 1993], [Heller, 2001], [Struss, 2008]). An 
illustrative example is presented in [Heller-Struss, 2002], 
[Struss 2020]. 
In any case, the criterion for a solution, i.e. a pair (Sf, INPUTf) 
is that the hypothesized modification is consistent with the 
observations: 

MODEL(Sf, INPUTf)  OBS ⊭        (3) 
which, again, can be automatically checked by the DSS. 
Although this indicates the plant operates in an unexpected 
way, this does not necessarily imply that the GOALS cannot 
be achieved (The behavior could be simply unexpected, but 
not harmful). This can be done again by the DSS in a model-
based way by checking whether the result of situation assess-
ment (definitely or possibly) violates the GOALS: 

MODEL(Sf, INPUTf)  GOALS ⊨       (4) 
or, weaker, 

MODEL(Sf, INPUTf)  GOALS ⊭      (5) 
This means fault detection can be performed by the system, 
esp. in cases where not all GOALS are monitored explicitly 
continuously.  

Intervention Proposal 
If a (potential) violation of requirements has been detected in 
the previous step (by (4) or (5), remedial actions may need to 
be carried out that trigger a mitigation of the negative impact 
and/or a re-establishment of the proper performance. Actions 
that can possibly be carried by an operator can be included in 
the repository in a smooth way be representing them as pro-
cesses that have a described effect, but no preconditions other 
than the decision to carry them out. It turns out that determin-
ing appropriate actions is similar to situation assessment (and 
can use the same algorithm), but aiming at consistency with 
GOALS, rather than with OBS(see (6) below).  
The first question to be answered is which GOALS may re-
quire corrective actions. This can be answered by the DSS as 
a result of the checks (4) or (5), which will not only derive an 
inconsistency with the entire set, but with individual require-
ments. This determines a starting point and focus for search-
ing the repository.  
In an interactive solution, the DSS is able to identify active 
processes in the model that have an impact on the deviation 
from a violated goal and also ways to weaken or strengthen 
this impact by manipulating its input. Furthermore, it can 
identify process types from the repository that might have ef-
fects that counteract the deviation when introduced, e.g. an 
oxidation process reducing the concentration of dissolved 
iron which exceeds a certain threshold. Usually, actions will 
affect quantities only via a causal chain of triggered (natural 
or technical) processes (e.g. the action may be opening a 
valve, which triggers a flow of chlorine into the tank, which 
starts an oxidation process, which reduces the iron concentra-
tion).  
Like in design, the DSS is able to apply the criterion for a 
solution, i.e. a set of interventions, ACTIONS, which, when 
applied to Sf promises to re-establish the GOALS: 

MODEL(Sf, INPUTf   ACTIONS) ⊨ GOALS’  (6) 
which in a way shows intervention proposal as a form of re-
design.  
An important remark is that, in this step, we deliberately refer 
to a modified set of GOALS’. This reflects the fact that if a 
continuous quantity has a value that violates a certain require-
ment, it will do so for a while. Actions usually cannot cause 
discontinuous changes, and, hence, cannot be consistent with 
the original goal, but, rather, replaced by a restriction on its 
derivative in order to bring the magnitude into the proper 
range -  ultimately. 
On the other hand, the non-violated goals should be main-
tained, such that the check (6) can reveal if proposed actions 
restore some goals, but have side-effects that violate others.  
As for the other tasks, the DSS functions can be exploited on 
demand as a support to a human, but also as a completely 
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automatic search for a solution (see [Struss 2020] for an ex-
ample), which will terminate, because the repository and the 
set of objects is finite, unless a modeling fault allows for the 
unbounded creation of object instances. 

Education and Training 
The knowledge captured by the repository and the functions 
that perform reasoning on its basis can support the education 
of non-experts in several ways.  
The simplest form of supporting education is retrieval from 
the repository, e.g. by searching for processes that have an 
impact on particular characteristics of the processed water. 
This is actually planned to be the first function to be realized 
in the project, because it provides a benefit right away and is 
also necessary for populating and debugging the repository. 
Beyond this, by supporting a What-if analysis, the DSS 
would critically analyze design activities of students and 
trouble shooting and corrective actions in hypothetical situa-
tions by plant operators.  

Explanatory Capabilities 
In particular, for educational purposes, it is important to note 
that the DSS does not just offer a solution or deny a proposed 
one, but can generate comprehensible explanations of its 
results and judgements. This is due to the fact that the model 
has a causal structure, as opposed to, for instance, a numerical 
simulator that can only generate data (sequences) based on 
equations.  
For instance, if a design is refuted due to the violation of re-
quirements, the DSS cannot only identify the violated goals, 
but also display the underlying causal structure (or the lack 
of such a structure). If an intervention is proposed, the system 
can explain in what way it contributes to achieving the goals 
in terms of a causal chain.  

Challenges for AI Research  
Building the envisioned DSS comprises a number of software 
engineering tasks regarding a web-based, multi-lingual solu-
tion, editors and GUIs, data storage for individual applica-
tions, etc.  
Beyond this, producing a useful and useable tool, raises num-
ber of issues challenging AI, some of which are instances of 
more general and classical AI problems, which, however, 
need to and can be solved in the context of the special ap-
proach followed in the project.  Our work can build on previ-
ous and ongoing research and some prototypical solutions 
and case studies ([Roque et al., 2003], [Struss-Selvamani, 
2022]). Currently, the foundation for the repository is devel-
oped in a joint project of researchers and students from the 
Technical University of Munich and the Vellore Institute of 
Technology in Chennai. 
These activities have shown the principled feasibility of the 
approach, but also highlighted a number of limitations and 

problems that need to be addressed – not for the sake of aca-
demic merits, but in order to be able to deliver a tool that pro-
vides real support in practice. We discuss what we consider 
to be the most important ones, in the order of urgency as we 
assess it at this stage. Indeed, one of the first tasks of the pro-
ject will be producing a pragmatic plan for tackling them, in 
balancing the benefit w.r.t. the project objectives, i.e. ulti-
mately measurable progress regarding SDG Goal 6, and the 
feasibility of obtaining a working solution in due time. 
 Integration of Component-oriented and Process-ori-

ented Modeling: While the dynamics of the treatment 
plant can be essentially represented by the combination 
of certain process steps, the structure of the plant is de-
scribed by a number of components, such as containers 
and pipes, and the performance of the processes depends 
on the functioning of components like valves, mixing el-
ements, etc. Hence, we need a systematic and seamless 
integration of component-oriented and process-oriented 
modeling and diagnosis (A proposal for such an integra-
tion is presented in [Struss-Selvamani, 2022]). Such a 
representation is mandatory for trouble shooting, be-
cause component failures may be the root cause of a mal-
function of the plant. In design and education activities, 
it will usually be assumed that all elements function cor-
rectly and an explicit representation of components will 
be dispensable (unless the response of the system under 
a fault is to be analyzed in order to assess its resilience).  

 The Frame Problem: A fundamental classical AI prob-
lem is raised in our context due to very practical require-
ments on how to represent the process steps in the treat-
ment, which usually involve transportation of water from 
input to output. Such a step transforms only certain in-
gredients of the water while leaving others unaffected 
and transporting them to the output. What we would like 
to express in a formal way is “the step transforms ingre-
dients a, b, c to a’, b’, c’, and all others are transported 
unchanged to the output”. The problem lies in represent-
ing “all others”. Although the ontology will capture what 
can potentially be contained in water, listing them as be-
ing simply transported by the water flow would not only 
lead to large models of process steps that have to deal 
with many ingredients that are not relevant in a particular 
problem, it is not feasible, if we consider that the ontol-
ogy will evolve and that, for instance, adding new sub-
stances would require to modify all process types. We 
need to find not a general solution to the frame problem, 
but a manageable one in the restricted context of our ap-
proach.  

 Boundary of a Model and the Reasoning: Constructing 
the system model in a “causally forward” direction 
means iteratively including newly triggered process in-
stances and their effects. For a well-defined process type 
repository which does not allow loops in creating new 
object and relation instances, this process will always 
terminate. Trouble shooting and intervention proposal, 
however, include expanding the model in a “causally 
backward” direction (perform abductive reasoning). The 
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underlying algorithm, after having found a cause, will at-
tempt to find a cause for it, and, hence, tends to be un-
bounded, chaining “why?” questions as children often 
do. It will terminate if there exist no process types whose 
instances provide a causal account, and will declare the 
model as inconsistent. Our current solution addresses 
this problem by allowing some elements to be “introduc-
ibles”, i.e. they do not require a causal explanation in the 
model.  However, the problem arises how to determine 
the introducibles.  It will usually be impossible to expect 
a user to define them in a comprehensive way before-
hand. After all, this would require anticipating the poten-
tial causal explanations generated by the DSS. The only 
feasible solution appears to be an interactive one, where 
the user decides on the fly, whether or not something 
needs further causal analysis. 

 Temporal Reasoning: The current solution supports 
only snap-shot-like analysis, i.e. it assumes that for a par-
ticular situation, a causal explanation can be constructed 
within a (qualitative) temporal snapshot. More techni-
cally, the analysis does not go backward beyond integra-
tion steps. If they are included, there could be concurrent 
changes in the system, and different orders of their tem-
poral occurrences would have to be considered. The re-
sulting complexity may render the analysis (practically) 
intractable. Similarly, the generated interventions are 
currently only collections of actions, executed in paral-
lel, rather than in a particular order or a certain point in 
time.  

 Focused Reasoning: The automatic composition and 
analysis of a model aims at being comprehensive and, 
hence, will often include aspects and causal interdepend-
encies that are relevant for solving a particular problem; 
overcoming this deficiency requires mechanisms for fo-
cusing. A number of problems studied in the AI fields of 
reasoning about actions and time and planning need to 
be solved – not in principle, but in the context of the cho-
sen model-based approach.  

 Human-Machine Interaction: the creation of the repos-
itory and its underlying ontology requires support to non-
AI users in displaying their content in a natural, compre-
hensible way and allowing navigation through it. Also, 
generating explanations of solutions or inconsistencies 
and deficiencies is non-trivial, because it has to avoid ex-
cessive detail and address the user’s view on the problem 
and systems. Semi-automatic solutions that involve hu-
man decisions at certain steps do not reduce, but empha-
size the problem, because the user needs to be provided 
with information about the internal state of the problem 
solving.   

Project Schedule 
Our proposal aims at a contribution to speeding up the estab-
lishment of clean drinking water facilities. Given that activi-
ties related to this goal are significantly behind the schedule 
of SDG, the project cannot be run in a way, that it works on 
solving research problems for a while and after several years 

delivers a tool (or not). It has to be run like some kind of an-
ytime algorithm, i.e. produce first results quickly that already 
have a practical impact and over time deliver a sequence of 
tools each of which adds to the functionality of the DSS. The 
ultimate criterion for planning this has to be the impact on the 
number of people who get access to safe drinking water as 
early as possible.  
Therefore, in a first planning phase, the project has to  
 determine a focus on treatment technologies that are ex-

pected to be the easiest available and most effective ones 
for the targeted regions and conditions  

 assess the time needed to develop the various DSS func-
tions, distinguishing between different features, esp. 
concerning the degree of automation.  

 produce a project schedule based on a combination of the 
two criteria 

 define appropriate case studies that allow to assess the 
respective solution. 

Obviously, the first tasks to be carried out are the realization 
of the representation of the repository along with editors 
and retrieval functions as well as creating the software engi-
neering foundations for the web-based solution. Actually, the 
former has already been started in the mentioned collabora-
tion of the Technical University of Munich and the Vellore 
Institute of Technology. 
The result is a prerequisite for the domain experts’ task of 
populating the repository, but also allows to use it for educa-
tion and training purposes.  
With respect to other DSS functions, reflecting the feasibility 
of solutions, we currently propose to continue by realizing the 
design support function in an application where the user 
configures a plant based on the retrieval of process steps, and 
exploits the DSS for checking the result (according to (1) in 
section 2.2). The justification for this is that this solution re-
quires only having the system build the model in the “caus-
ally forward” direction, i.e. collecting the impact of the pro-
posed structure, and then checking its consistency with the 
requirements. In contrast, letting the DSS search for a solu-
tion, involves searching in the “causally backward” direction,  
is more complex and will require interaction with the user. 
A similar argument applies to the trouble shooting task: a 
user could generate hypotheses about causes for behavior de-
viations which are then checked by the system. However, re-
trieving reasonable hypotheses is certainly more difficult for 
the user than selecting water treatment steps from the reposi-
tory. Therefore, the user would benefit from the system ex-
tracting more information from the model of the misbehaving 
system, which lets this task appear more difficult than design. 
Finally, intervention generation could also be driven by the 
user exploring the impact of hypothetical actions. However, 
this requires the result of situation assessment and also an ap-
propriate representation of actions in the repository.As a re-
sult, we obtain an order of the high-level tasks. Please, note 
that the implementation of the algorithms solving the differ-
ent tasks share a significant amount of software, in particular 
the automatic model configuration and the consistency check. 
There are at least two dimensions that guide the expansion of 
the achieved results: 
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 Growth of the repository: start with the commonly 
available and effective technologies, then for trouble 
shooting add disturbances and/or add more technologies, 
for intervention proposal add actions to the repository 

 Degree of automation: from user driven problem solv-
ing to more autonomously generated (partial) solutions. 

Summary 
The work on the proposed project does not start from scratch, 
and some development activities have already started. How-
ever, it needs additional resources to be able to contribute 
have an impact on progress regarding SDG Goal 6 in reality. 
This holds, in particular, for the acquisition of domain exper-
tise and opportunities for carrying out realistic case studies in 
order to be able to focus the work on accomplishments that 
are needed and effective.  
The project is intended to be very focused. Regarding the ap-
plication, it will first consider drinking water treatment. We 
anticipate that much of the principled solutions can also be 
applied to waste water treatment. With respect to the methods 
and techniques applied, the first solutions will be exclusively 
exploit process-oriented modeling and problem solving. In 
the future, other techniques may be applied, for instance case-
based reasoning (e.g. for proposing an initial design), data 
analysis and abstraction (to feed the high-level representation 
used in the DSS), or numerical modeling. 
While there are still problems to be solved by, we are confi-
dent that we can nevertheless produce a sequence of results 
that promote the establishment and improved operation of 
treatment facilities with increasing power.  
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