
Unsupervised Analysis of the Voynich Manuscript

Peter Bloem, 0168491

3 Juli 2006

abstract

The aim of this project is to research the possibilities of applying unsupervised learning
techniques for natural language and other sequential data to undeciphered texts and
manuscripts. The undeciphered text used is the Voynich Manuscript, a mysterious book from
the 15th or 16th century that is written in an unknown script. Some methods that could be
applied to manuscripts such as these will be discussed. Furthermore, the results of applying
some of these techniques to the text of the manuscript will be discussed.

Introduction

The field of computational natural language learning can be roughly divided into two areas;
supervised learning and unsupervised learning. The former requires some kind of meta-data to
be supplied with the natural language data that it learns from, which it will then learn to
produce on its own for unseen natural language data. For instance, from a large corpus of
words that have been tagged with their linguistic class (noun, verb, etc), a POS tagging
algorithm can learn to tag new text in the same way. Similarly from a large set of sentences
with parse trees based on some grammar, an algorithm can learn to construct parse trees or
even grammars for sentences that do not occur in the dataset. The main drawback to this
approach, of course, is that the original data to train the algorithm will have to be produced by
hand. Tagging all word of a corpus, or parsing all sentences by hand is an arduous task that is
not always feasible (especially for small languages). A second, more idealistic concern, is that
this method of language learning falls somewhat short of
the original goals of Artificial Intelligence. If humans are
able to learn language by example, that means that most of
the structures present in language can be retrieved from it
without any meta data and algorithms should be able to
detect it. Methods that find structure in language without
any other data than the raw language are known as
unsupervised methods. An added benefit of unsupervised
systems is that they can often detect structure in other
sequential data as well. Some of these systems have been
successfully applied to music, DNA and protein sequences.

Most research into unsupervised learning of sequential data
focuses on datasets that have some known structure, so that
the performance of the algorithm can be easily evaluated by
comparing detected structures, to already known ones. One
of the benefits of systems like these, however, is that they
can be applied to data with truly unknown structure, to gain
insight into the nature of the data (as opposed to using the
systems to simply parse new data automatically). One of
the more extreme examples of this kind of data, would be
undeciphered manuscripts of an unknown nature. There are
several manuscripts (often written hundreds of years ago)
that are composed of some language-like sequence of

Figure 1: A page from the Voynich
Manuscript depicting tiny naked
women bathing in bizarre
balneological constructions.

characters, but have so far defied any attempt at translation. Examples are the Rohonczi
codex, thought to have been created in the early 16th century, or the Codex Seraphinianus, an
artistic creation from the 1970's.

The most famous of these, however, is undoubtedly the Voynich Manuscript. Named after
Wilfrid M. Voynich, who discovered it in 1912, the manuscript has resisted attempts at
decipherment by cyptographers and linguists of many periods, including a group of US
codebreakers during World War II. The manuscript contains roughly 200 000 characters, in an
unknown script. It is written from left to right, without punctuation marks and richly
illustrated with crude drawings of unknown plants, the signs of the zodiac, astronomical
diagrams, and naked bathing women, in complex 'plumbing' structures.

Unsupervised systems for learning natural language would be great tools for the analysis of
texts like the Voynich manuscript, since systems like these can discover great hierarchical
structure in texts, using just the raw data. This project aims to research some of these
possibilities. The main procedures that will actually be used on the manuscript are MEX and
Adios.

MEX is an algorithm that can discover notable subsequences in sequential data. It can for
instance, with reasonable accuracy discover words in a text in which the spaces have been
omitted. Since it has been questioned whether the spaces that separate the words in the
Voynich Manuscript can be trusted as the true delimiters of the text, MEX can help in
identifying other meaningful ways of tokenizing the Voynich Manuscript.

Adios (Automatic Distillation of Structure) is a system that uses MEX to discover hierarchical
structure in a text, similar to parse trees based on rewrite rules. The structures that Adios
comes up with in the Voynich text
can be used to compare the text to
other languages and sequential
structures (by preforming Adios on
them as well) in hopes of gaining
further insight into the nature of the
text. One of the advantages of Adios
for this kind of approach, is that
Adios can generate a histogram of
how sequences are broken up into
various types of patterns. Using these
histograms, a dendrogram can be
calculated for texts in various
languages showing how closely they
are related. With this approach, we
can calculate the 'distance' between
the text we are analyzing and several
known languages, which can be a helpful clue to the nature of the text.

Figure 2: This dendrogram was computed by Solan et
al. [2005] by computing the euclidean difference
between pattern spectra for several corpora. It clearly
show the expected linguistic classification for the
languages. The corpora use where six translations of
the Bible.

Chinese
Spanish
French
English
Swedish
Danish

A short overview of the Voynich Manuscript

The manuscript was discovered by book collector Wilfrid M. Voynich in 1912. Since that
time, the history of the manuscript has been researched extensively. It can be traced back as
far as Emperor Rudolf II of the first German Empire, who apparently acquired it for 600
ducats.

In the 17th century the manuscript was in the possession of Georg Baresch, an obscure
alchemist from Prague. Baresch enlisted the help of Athanasius Kircher, a famous scholar
from that time, to decipher the manuscript. Kircher was especially famous for deciphering the
Egyptian hieroglyphics (though his translations have now mostly been refuted). Kirchers
response is unknown, however it is known that Kircher attempted to acquire the manuscript.
Baresch wouldn't part with it, but when Baresch died, the manuscript passed to his friend
Johannes Marcus Marci, who promptly sent it to Kircher. The letter that Marci sent with it is
still attached to the manuscript.

For the 200 years following this exchange the manuscript was
(probably) kept with the rest of Kircher's personal
correspondence at the library of the Collegio Romano
University. In 1870, when the forces of Victor Emmanuel II of
Italy annexed the papal state the book was moved to the private
collection of then rector magnificus Petrus Beckx to keep it safe.

In 1912, when the Collegio Romano sold part of its collection,
Voynich acquired the manuscript along with 30 others.

Proposed Solutions & Hypotheses

Since its discovery by Voynich there have been many theories
about the nature of the Manuscript, and some (refuted) claims of
translation.

Encryption

One popular hypothesis is that the text is an encrypted form of
some western language. However, any proposed encryption
method would have to account for the odd statistical properties
of the manuscript. Similar theories have been proposed that suggest steganography, a
technique that creates a mainly meaningless text, with the true message hidden in seemingly
insignificant details.

Artificial Language

Another way to explain the odd characteristics of the manuscript is the theory that it was
written in some constructed language. The earliest known examples of such languages fall in
the 17th century, but it is always possible that they were in use before that period. A category

Figure 3: Rudolf II, (1552-
1612), Emperor of the Holy
Roman Empire and earliest
known owner of the Voynich
Manuscript.

based philosophical language, where each word is a path down a classification tree, with each
suffix a subcategory, would account for the strange structure of the words and the high
repetition.

Hoax

All students of the Voynich Manuscript have had to consider the possibility that there is no
deeper meaning behind the text, that the manuscript is a simple fabrication, used perhaps to
con Rudolf II out of 600 ducats. Most serious students of the manuscript have reached the
same conclusions, namely that there are structures in the text that are not necessary for a
fabrication. However, considering the lack of success in deciphering the text and the odd
nature of the illustrations, this option cannot be easily dismissed.

Glossolalia

The repetitious text, and the seeming lack of any word level structure are quite similar to the
text that is produced by people 'speaking in tongues'. The possibility of the manuscript being
transcribed glossolalia (or perhaps even a form of written glossolalia) has been suggested
more than once, but since large sets of reference material of transcribed glossolalia are scarce,
this theory is difficult to follow up on.

Unsupervised Natural Language Processing

Before resorting to the more complicated unsupervised learning algorithms, there are several,
more simple techniques, that are used often in both linguistics and cryptanalysis, that can
show a great deal about the nature of a text.

Simple Statistics

Some basic statistics are often enough to crack the simplest of codes. For instance, a
substitution cipher (a code where every character is simply replaced with another, such as a=b
b=c, c=d, etc) can be easily cracked by counting the frequency of each character. This can
then be matched to the frequencies of characters in the original language, and the message can
be decoded. If the original language is not known, simple statistical methods can also help
greatly to determine it. A distribution of word lengths in the text can be matched to word
length distributions from known languages to find the original language (provided that the
encryption method didn't alter the distribution).

N-grams and Entropy

Like determining character frequencies, word frequencies can help to match a text to some
known language. The most frequent words, their lengths and the way they occur in the text
can be compared to known other texts in hopes of finding notable similarities or differences.
If, instead of single words (or characters), the frequencies of all sequences of tokens with
some length n (n grams) are counted, this gives the cryptanalyst some information on word

order. For instance, if a trigram is created (all frequencies of all 3-token combinations are
counted) it can be used to estimate p(word3| word1 word2), that is, the probability that word3
follows word1 and word2 (in other words, the probability of encountering word3, if word1
and word2 have just been encountered). These probabilities can, as always, be matched to
those of known languages, but they can also be used to calculate the entropy of the text.

Entropy can be seen as a measure of the randomness of a sequence. Natural language is a
'random' sequence, since we can not perfectly predict next word or character in some
sequence, but it is not perfectly random, since we do know that some words or characters are
more likely to occur. This 'degree of randomness' can be measured by calculating the entropy
of a sequence. The basic formula for calculating the entropy H is as follows:

H=−∑i
p i log 2 pi 

Where p(i) is the probability of encountering token i of all n possible tokens (this can be
estimated by dividing the number of times token i occurs by the total number of tokens in a
corpus). This value can also be seen as a measure for how much information each new token
gives the reader (or how many bits would be needed minimally to encode the token).

However, once we've already encountered tokens, the probability of what token can come next
changes. (for instance, if we've encountered the word “the”, then “table” is a more likely
choice for the next word than “a”, whereas without any knowledge of preceding tokens, “a”
would be the more likely choice).

To calculate the entropy of a text based on already encountered tokens we apply the same
principle, but instead of summing over all possible values of p(i), we sum over all possible
values of p(i| j), to calculate the first order entropy (based on one previous token):

H=−∑ j
p j ∑i

p i∣ j log 2 pi∣ j 

A general formula for the m-th order entropy then becomes:

H=−∑i1
p i1∑i2

pi 2∣i1 ...∑im
p im∣i1, i2, ... ,im∑im1

p im1∣i1, ... , im log2 p im1∣i 1,... , im

The first or second order entropy of a text can give an analyst a great deal of information on
the structure of the underlying text.

Automatic induction of Parse Trees

When all these methods fail to produce results that are useful enough to decipher the text,
more sophisticated unsupervised techniques can be used, for instance to determine the
grammatical structure of the sequence. Since the work of Noam Chomsky, linguists have
modeled sentences and grammar as parse trees derived from rewrite rules. Consider, for
instance, the following grammar:

S NP VP
NP DET N
VPV
DET  the
N man
N woman
V walks
V  dances

By 'rewriting' the sentence symbol S with NP VP, NP with ADJ N and so on until all classes
have been replaced with words, new sentences can be generated or existing sentences can be
'parsed' in to a tree structure.

Several sentences can be parsed by this grammar, each with it's
own tree. In this manner linguists have constructed large and
complex grammars that are meant to be able to parse as much of
a language while dismissing as many linguistically incorrect
sentences as possible.

Unsupervised algorithms for learning grammars can automate
this process of distillating grammars from large samples of
natural languages. Two such methods, ABL and Adios, will be
discussed.

ABL

Alignment-Based Learning (ABL) was developed by van Zaanen in 2000. The algorithm
works by comparing every sentence in a corpus to every other sentence. Comparing two
sentences to one another it tries to find constituents (nodes in the parse tree), based on the
principle that a constituent can be replaced by another constituent of the same kind, without
rendering the sentence grammatically incorrect. For instance in the sentence “The man walks”
the noun-phrase The man can be exchanged for A beautiful woman, and the sentence would
still be correct. Reversing this principle, if a group of subsequences (parts of sentences), can
be replaced by each other, they are constituents of the
same kind. For instance, if the algorithm compares the
sentence What is a family fare? to the sentence What is
the payload of an African swallow?, it determine that the
phrases a family fare and the payload of an African
swallow can be interchanged, and are therefore
constituents of the same kind (noun phrases).

Of course not all two sentences can be aligned this
cleanly, as figure 5 shows. In cases such as these, where
the alignment is ambiguous, the edit distance algorithm
by Wagner And Fischer (1974) is used. This algorithm

Figure 4: A simple parse tree.

S

NP VP

Det N V
Theman walks

Figure 5: Three different ways to
align three sentences, with option
three as the preferred alignment.

finds the minimum number of operation needed to get from one sentence to the other, where
allowed edit operations are the insertion, deletion or substitution of a word. Those places in
the sentence where no operation was applied, contain the identical words and the rest are
constituents.

While results for ABL are certainly impressive, one major problem in using ABL to analyze
manuscripts such as the Voynich Manuscript is that it relies very heavily on the sentence as a
unit. Because it starts with the sentence constituent and works its way down the parse tree, the
sentences need to be correctly delimited, or the algorithm is useless. Of course, the Voynich
Manuscript and most manuscripts like it, lack any kind of clear punctuation marks, which
means that sentence ends aren't easily detectable. One solution would be to delimit the text
with the paragraph ends, which could combine several sentences into one, but it would ensure
that no sentences are cut of. The problem with this approach is that a very large corpus of
sentences (or rather, paragraphs) would be needed to be able to match constituents, and the
Voynich Manuscript is a small corpus as it is.

Another approach altogether would be to apply ABL at the character level, using word ends
for sentence delimiters. Applied to English, such an approach would yield at least some
structure. Consider for instance the words “walking” and “dancing”. Applying ABL to these
would determine 'walk' and 'danc' to be constituents. Since the words of the Voynich
Manuscript seems to be much more structured than those of English (eg. most characters only
occur in specific places in a word), ABL should be able to derive a very distinct structure
from the Voynich Manuscript at the character level.

Considering the problems described above, the application of ABL to the Voynich Manuscript
is left as future research.

Adios

Adios was developed by Solan, Horn, Ruppin and Edelman and was first presented in 2002.
The algorithm consists of two parts. The first part is MEX, which detects sequences of tokens
that are notable (like words, or parts of words at the character level, or common phrases like
“in spite of”, at the word level). The second part, Adios, makes use of MEX to detect words
that often occur in the same context (using the same principle of interchangeable constituents
as ABL) and creates a new 'token' for those tokens, which takes their place. Applying this
principle multiple times creates a tree of tokens
which, contrary to ABL, grows bottom up.

MEX

MEX and Adios both operate on the same
datastructure, which is constructed as follows. A
graph is constructed, with at each node (or
vertex), a token from the corpus. Each sentence
in the corpus is then drawn as a path along the
graph. This creates a graph with directional
edges, that can be cyclical, and in which edges
from one node to itself are allowed. Two special
nodes are also created to mark the beginning and

Figure 6: A simple example of the graph that
MEX and Adios operate on. In this case, the
letters are used as tokens and several words
are marked out as paths on the graph.

NA

M

P I

J

end of each node (this is not strictly
necessary. but it can be helpful).

This graph is then used to find notable
sequences of tokens, which we call motifs
or patterns. Informally, we can describe a
motif as a sequence of tokens that has a lot
paths following it, with a sudden drop in
the number of paths at both ends of the
sequence. Mathematically speaking,
however we will not base the definition
directly on the number of paths, but on a
Markov model of probability. Normally a
Markov probability like p(n|joh) (the
probability of encountering n, given that j,
o, and h have been encountered in that
order already) would be calculated with a
4-gram. However, using our graph we can
easily estimate this probability counting
the number of paths for j to n, through o
and h and dividing it by the number of paths from j to h, through h. Thus for any sequence (e1;
en)(which is shorthand for e1, e2, e3, ..., en) we can define the forward moving probability:1

PF e1 ;en= pen∣e1, ...en−1=
l e1 ;enn
l e1 ; en−1

and the backward moving probability:

PB e1 ;en=p e1∣en ,... e2=
l e1; enn
l e2 ; en

Where l(s) stands for the number of paths that follow sequence s. Thus, the forward
probability defines the probability of encountering some token after encountering some
sequence of tokens, and the backward probability of encountering some token before a
sequence of tokens (moving backwards through the text). For a sequence of one token, the
probability is:

PF e1=PB e1= pe1=
l e1

∑e i
l e i

We want to define the beginning and end of a motif as sudden drops in the forward and
backward probability (a drop in backward probability defines the beginning, a drop in forward
probability the end). We define the drop between the second-to-last token in a sequence and
the last token, based on the full sequence, as:

1 The creators of Adios called this right and left moving probability. Since not all sequences move from left to right, I
found it more intuitive to adopt this terminology.

Figure 7: A schematic representation of how motifs
are detected along a path (e1 to e6 in this case). At
e6, a lot of paths diverge from the path we're
following, causing the forward probability to drop.
between e2 and e1 the backward probability drops
in the same way. Between these two drops a motif is
defined.

e1 e2 e3 e4 e5 e6

PF

PB

MOTIF

DF e1 ;en=
PF e1 ;en

P F e1 ;en−1
DBe1 ;en=

P Be1 ;en
PB e1 ; en−1

We require these drop strengths to be below a certain threshold n (between 1 and 0, usually
around 0.65), to be considered as start and end points for the motifs.

Since we are at times dealing with very small samples (only several paths crossing a node), we
need to make sure that th data we have could not represent a drop incidentally, that is, against
the odds. To determine this we calculate the significance of the drop. We assume that

PF e1 ; en
PF e1 ;en−1

≥n  P F e1 ;en−1≥n PF e1 ;en

That is, our drop is not stronger than our threshold and we calculate the probability of getting
the numbers paths that we got. We require this probability to be smaller than some value a
(usually around 0.01). The method for determining the significance is described by Solan et al.
(2004).

With these definitions we can begin our search for motifs. For every path that we have, we
find all forward and backward drops along the path. In order to do this we check all the
sequences along the path from all possible positions i to all possible positions j. (Note that this
describes all forward sequences, all backward sequences and all single token sequences). For
all the sequences s we calculate the probabilities PF/D(s).

Since all these sequences start at some point along the path and end at some point along the
path, we can plot the probabilities in a square matrix, where the column number j determines
the start point and the row number i determines the end point:

M ij={P F e i ;e j if i j
P Be j ; ei if i j
P e i if i= j

Written out explicitly, M looks like this:

M={
pe1 p e1∣e2 pe1∣e1 e3 ⋯ pe2∣e1e3 ...ek 

p e2∣e1 pe2 pe2∣e3 ⋯ p e2∣e3 e4. .. ek 
p e2∣e1 p e2∣e1 p e3 ⋯ p e3∣e4e5. .. ek 

⋮ ⋮ ⋮ ⋮ ⋮
pek∣e1 e2. .. ek−1 p ek∣e2e3. .. ek−1 p ek∣e4 e5. .. ek−1 ⋯ p ek 

}
In this matrix we can now easily mark the significant drops between vertically adjacent cells.
What we are looking for to create a motif is a DF(Sf) and a DB(Sb), such that the sequences Sf

and Sb used to calculate the drop overlap and the backward drop comes before the forward
drop. Out of all possible motifs that satisfy these requirements, the one for which the average
of the significances of both drops is lowest is returned.

In applying this procedure to the Voynich manuscript, one change can be made to the
algorithm. Since we are not using Adios (yet) to apply the procedure continuously to a

changing graph and just want the motif, and since we have a relatively small corpus (and thus,
will want all the information the procedure can retrieve from it), instead of using just the
leading motif for each path, we extract all motifs that are significant. In fact, extracting just
one motif per path is rather arbitrary in general, as one path may contain many interesting
motifs, whereas others may only contain one barely significant motif. By returning all motifs
we can be sure we're not overlooking anything.

Distillation of Structure

After the initialization of the graph, Adios goes through three stages to distill the grammar
from the corpus.

1. Pattern Distillation

For all paths, MEX is performed to find the leading motif in the path, called P. A new Vertex
is then created for P, and the graph rewired, so that paths that crossed P will now cross the
new vertex instead.

2. Generalization, first step

A context window is defined as a sequence of L nodes along a path (L being a parameter of
the algorithm, usually set at around 3 to 5). A slot is then defined as one of the nodes in the
context window. A generalized search path is then defined as all paths through the nodes of
the context window, with the exception of the slot (note: the generalized path is thus as long as
the context window and branches into several different nodes at the slot). MEX is then
performed on the generalized search path, to determine the leading motif along it.

From all possible slots in all possible context windows on all paths in the corpus, we
determine a generalized search path and a leading motif. The leading motif P from all searches
is selected, and an equivalence class containing those vertices that appeared at the slot in the
generalized search path. A new vertex is now created, like in the first step, that replaces the
nodes in P on all those paths that fully crossed P.

3. Generalization, bootstrap

We once again define a context window on a path and a slot j in the context window, as in the
previous step. This time, however, we compare the vertices encountered at j to all existing
equivalence classes finding the one that has the greatest overlap E(j) (returning none if the
overlap is below a threshold w, usually 0.65).

For this slot and its equivalence class we go through all the vertices in the context window
except the slot, defining the as a new slot, k. We check all the paths going through the context
window, k and the equivalence class E(j) (or the vertex j, if no equivalence class was
returned), creating a reduced generalized search path.

MEX is performed on this search path to extract its leading pattern. For the leading P of all
searches, an equivalence class is constructed for its slot k (unless it overlaps perfectly with
E(j)), a new vertex is again created for P, and the graph is rewired.

Step 3 is then repeated until no further significant patterns can be found.

Application to the Voynich Manuscript

Both MEX on its own and Adios can be useful in analyzing the structure of texts like the
Voynich Manuscript. The motifs that MEX returns can be analyzed in various way to compare
them to those that are extracted from corpora in other languages. A second possibility is to re-
tokenize the corpus with the motifs (rather than the original word based tokenization). In the
case of the Voynich Manuscript, doubt has risen whether the words can be trusted as tokens
(especially with regards to the high second order entropy). A way to circumvent this would be
to disregard the spaces and retokenize the corpus with MEX motifs. If the same method is
performed on a corpus in a second language, the language can be compared to that of the
manuscript (in terms of entropy, token length, etc.) without having to rely on the Voynich
words.

The relevance of the Adios algorithm needs little explanation. Revealing the inner structure of
texts such as these can be considered the holy grail of their analysis. Of course the distilled
structure still needs to be compared to the results over other corpora in order to give them
meaning, but a deeper general structure than a grammar is difficult to imagine.

Results

MEX

At the character level, MEX performed quite well, returning around ten thousand motifs for
corpora the length of a 200 page paperback. As wonderful as such large amounts of data are,
they also mean large amounts of time in analyzing. On the surface differences between the
sets of motifs and their attributes are hard to find. Most collections have roughly the same
averages and the same distributions in terms of motif length, significance and weight (the
strength of the drops in probability). Because the work required to thoroughly analyze the data
falls outside the scope of the project, presented here are only a quick overview of the data and
some immediately apparent differences.

The tables for Voynich A and Voynich B clearly show very different motifs for both
languages. In fact the overlap for the top 1000 motifs (by weight) for both texts is only 15%.
However, from the results on the French corpus, it can be seen that the subject matter can have
quite an influence on the resulting motifs; parts of the name 'Passepartout' (one of the
characters from “Around the world in 80 days”) occur several times in the top 20. Motifs
which would obviously not be found in other French corpora. So from these results, we can
only conclude that vms A and vms B are different, to find out whether this is caused by some
structural difference or simply a difference in subject matter would require some further
analysis.

Table 1: This table shows the top 20 motifs (sorted by weight) for various languages.
The numbers below the language names represent the number of motifs for that
particular corpus, and the length of the corpus in kilobytes. The French corpus used is
the original version of Around the world in 80 days by Jules Verne, The English corpus
is Frankenstein by Mary Shelly. The column labeled bible contains the results for the
King James bible, cut off to make it roughly the same length as the Voynich Manuscript.
The columns labeled vms A and vms B show the motifs for a certain way of dividing the
manuscript in two parts according to strong statistical differences in the text. The last
column shows the results for the entire manuscript

french english bible vms A vms B vms full
(10661 / 393 kb) (12025 / 404 kb) (6259 / 239 kb) (2646 / 67 kb) (8644 / 141 kb) (14325 / 227 kb)
ssepar th andhe ai ka dyc
eparto andthe th ii cheody ota
heures hic andof daii edyqokedy or
ileas tio andbe cheol ote oloka
ssepa re he okch keedyote edyqokedy
separ which osephara okcho kai ino
ou no harand cth olsh okedych
le thatio hara rcho heolch ka
an edfrom un iinshe inch ii
hile ounder ofth sho she dyq
leme compass hear chyqo airo keeol
de from eland dai eeych hck
nsle thatthe halso otcho ched okch
asfo ngthe thou che yqo tch
rtou place hold aiincho ckh otar
endan anda herand ctho ai eolshedy
eu ofthis years cph aiinqo eyq
elle andby shall otch dylsh oteodych
ati enight osep olcho aiinokeedyq yqo

At the character level, the Voynich language produces more motifs than an English corpus of
similar length. This seems to suggest more structure at the character level than is seen in most
western languages. This idea is backed up by analysis of the character level entropy and
several proposed character level grammars and finite state machines, that were successful in
describing very large percentages of the manuscript.

To test the validity of these finds and the MEX implementation itself, it was also tested on the
decimals of pi (roughly 400 kb's worth), which, as would be expected, returned no motifs.

At the word level MEX fails to find any motifs. The finds in other languages range from 44 on
French to 1 on Latin. Since (like Latin) the Voynich Manuscript has a very high first and
second order word entropy, these results are not surprising. As First or higher order entropy
can be interpreted as a measure for how well a text can be modeled as a set of Markov
probabilities (the lower the entropy the better) and MEX basically works by modeling the text
as a set of (variable order) Markov probabilities, it's clear that MEX won't do well on texts the
a high second order entropy. One additional conclusion that we can draw from this result is
that entropy orders higher than second would be very unlikely to be any lower. MEX
calculates Markov probabilities of very high orders (the length of the path), and failed to find
any significant pair of overlapping drops.

Adios

Since an actual implementation and in depth study of Adios and its behavior lies somewhat
outside the scope of this project, we limit ourselves to a very basic analysis with the default
values (n = 0.65, a = 0.01 and L = 4). The following results were generated with Adios-lite, a
demo implementation that is freely available from the Adios website. It is limited to 100
patterns, but serves to illustrate the effects of Adios on the Manuscript.

At word level, MEX achieved no results on the manuscript. No structure at all was found by
Adios. Parallel runs on corpora of similar length showed at least some results, for languages
like English, French or Chinese. Even in Latin, a language with a very high second order
entropy, much like the Voynich language, five patterns were found, in a corpus a bout 75%
the size of the Voynich manuscript. The the results of MEX at word level, these results can be
attributed to the manuscript's high second order entropy. The context windows that Adios uses
to search for words appearing in the same context is relatively small (the default setting is 4
words) since the second order entropy is so high, very few sequences of words will occur
often enough to provide such contexts. It seems that Adios is not well suited to detect the word
level structure of the Voynich Manuscript, if there is any.

Considering how well MEX performed at the character level, it should be very interesting to
see Adios perform at the character level. Unfortunately, because of the low number of nodes
(one per character) and (consequently) the high number of paths, Adios becomes very slow at
the character level. It spends on average 3 hours on one path per run over the manuscript.
Considering that there are 1804 paths (paragraphs) in the manuscript and it needs to make
several runs over over all of them, this test is far too time intensive for this kind of project.
(Let alone running it on other corpora as well for reference) The output of the running
program did however suggest that Adios discovered patterns and was rewiring several nodes
of the graph.

Conclusions

The MEX and Adios algorithms were applied to the Voynich Manuscript, in hopes of
analyzing its structure. The efforts using MEX at the character level resulted in a lot of data
that will certainly be of use in the further analysis of the text.

At the word level both MEX and Adios returned no results at all, which seems to point
towards a low level of structure, or at least, no structure in terms of Markov models.

The character level analysis using Adios had too long a running time to finish before the
deadline of the project, but the output of the program looked hopeful.

On the whole, unsupervised learning algorithms can certainly be a useful tool in the analysis
of texts like the Voynich Manuscript. However, results are not guaranteed and a solid
understanding of their workings and behavior is necessary to interpret the results.

Further Research

Some possible areas of future research:

● Various other unsupervised learning approaches are available. Most, however, will
have to be adapted somehow to be able too deal with small datasets and a lack of
sentence delimiters.

● The motifs found by MEX can be used to tokenize the corpus (ignoring spaces, or
simply treating them as delimiters) using these corpora, the Voynich Manuscript can
be compared to other corpora at a higher level than character level without depending
on the word delimiter. Some method would have to be designed to find the best way
too 'cover' the text using the motifs. (ie. choosing those motifs that allow as many of
the characters of the corpus to be part of a motif-token as possible). Some other way of
defining the best tokenization (such as giving motifs of greater strength or significance
precedence) may be preferable.

● Some students of the manuscript have suggested that the words of the Voynich
Manuscript should be split into two character syllables prior to analysis. Both MEX
and Adios may have more luck with these tokens than with word based tokens.

● The theory that the manuscript contains transcribed glossolalia is very difficult to
verify without a sufficiently large corpus of transcribed glossolalia (preferably from
the same person). I researched the possibility of obtaining such a corpus, but the three
people that would be able to help in this respect are all currently unreachable for
various reasons. Perhaps in the future, such corpora will become available, so that tests
like these and others can be performed on it.

References
● Zach Solan David Horn, Eytan Ruppin and Shimon Edelman (2005) Unsupervised learning of

natural languages.
● Zach Solan David Horn, Eytan Ruppin and Shimon Edelman (2005). Motif extraction and

Protein Classification.
● Zach Solan David Horn, Eytan Ruppin and Shimon Edelman (2004) Supporting online material.
● Menno van Zaanen (2000) ABL: Alignment-Based Learning.
● Rene Zandbergen(2000) From digraph entropy to word entropy in the Voynich MS

	abstract
	Introduction
	A short overview of the Voynich Manuscript
	Proposed Solutions & Hypotheses
	Encryption
	Artificial Language
	Hoax
	Glossolalia	

	
Unsupervised Natural Language Processing
	Simple Statistics
	N-grams and Entropy
	Automatic induction of Parse Trees
	ABL
	Adios
	MEX
	Distillation of Structure

	Application to the Voynich Manuscript

	Results
	MEX
	Adios

	Conclusions
	Further Research
	References

