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Abstract

A novel approach to Bayesian Reinforcement learning (RL) named Beetle has recently been pre-
sented; this approach nicely balances exploration vs. exploitation while learning is performed
online. This has produced an interest into experimental results obtained from the Beetle algo-
rithm. This thesis gives an overview of bandit problems and modi�es the Beetle algorithm. The
new Beetle Bandit algorithm is applied to the multi-armed bandit class of problems, thereby
comparing the resulting Beetle Bandit algorithm with traditional and current Bayesian inspired
approaches.
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Chapter 1

Introduction

1.1 Introduction

Reinforcement learning (RL) is presented as a �eld especially suited for problems where plan-
ning and learning has to take place simultaneously. A common theme in these problems is the
exploration-exploitation trade-o�; is it best to exploit the knowledge obtained or do you explore
to increase the knowledge base? A prevalent solution to this trade-o� is amortization of the cost
of exploring, leading to asymptotically optimal behavior, see [17] for a variety of these algorithms.

Bayesian approaches to RL o�er the prospect of optimal behavior because an informed trade-
o� can be made between the cost of obtaining new information and the future reward exploitation
this new information will likely provide. This is achieved by learning a transition-reward model,
a prior distribution is de�ned over transition and reward models, the prior distribution and new
observation are used to determine the posterior distribution, that is the updated transition-
reward model. A drawback of the Bayesian approach to RL has been the intractability of these
approaches.

However, recent developments have made approximate solutions to partially observable Markov
decision processes (POMDPs) tractable. This, coupled with the knowledge that Bayesian adap-
tive Markov decision processes (BAMDPs) can be modeled as POMDPs [8], has created a renewed
interest in Bayesian approaches. One of the results of this renewed interest is Beetle (Bayesian
Exploration Exploitation Trade-o� in LEarning) [14].

Multi-armed bandit problems are prototypical problems which display the exploration- ex-
ploitation trade-o�. These bandit problems are �rst described by Robbins [15]. In these problems
an agent gets to pull one of multiple levers connected to a slot-machine and every lever pays
o� according to an underlying unknown probability distribution. The objective is to gain max-
imum reward by pulling the levers, or, more common in this setting, minimizing regret, which
is the amount of possible reward lost because of pulling a sub-optimal lever. The exploration-
exploitation trade-o� now becomes a question of pulling the lever with the highest payo� so far
versus pulling a sub-optimal lever but gaining more certainty on the underlying distributions.

This thesis is the result of a four week project, which completes the quali�cations needed
in obtaining the Bachelor of Science degree in Arti�cial Intelligence. The project is aimed at
evaluating the Beetle algorithm in the multi-armed bandit setting. This thesis is organized as
follows: Chapter 1 will give a layman's overview aimed towards friends and family, then it will
give a description of the project and its setup. Chapter 2 is aimed to give a literature overview
on bandit problems in the �eld of reinforcement learning and it will give insight into the Beetle
Bandit algorithm. Chapter 3 will describe algorithms used in the comparison of the new Beetle
Bandit algorithm. Chapter 4 will describe experimental results. Chapter 5 will give a conclusion
to this project and give ideas for possible future research.

1
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1.2 Layman's overview

Suppose you enter a casino and the manager welcomes you as the one millionth visitor. Of course,
this means you win a special prize. You are let into a room with a few di�erent slot machines.
You are allowed to play these one-armed bandits for free, for a �xed period, wanting to extract
as much money as quickly as possible from the machines. How will you be able to achieve this
goal? By playing the machines you have to �nd out which machine on average pays out the
most and then play this best paying machine, while minimizing the plays on the machine that
pays out the least. The problem you are faced with is a classical dilemma between exploration
and exploitation. In this case the exploration means playing the machine which has, so far, on
average given less payout, but by playing it you are gaining more knowledge and con�dence that
this machine is worse. Exploiting means playing the machine that has shown the best average
payout until now, but how can you be sure this is indeed the best machine to play?

Robbins [15] came up with this multi-armed bandit problem to investigate the exploration-
exploitation trade-o�. These problems were �rst studied as statistical problems; however, with
the advent of computing it is being studied in computer science. Reinforcement learning (RL) is
a machine learning setting where an agent learns a policy (how to behave) by receiving positive or
negative rewards while interacting with the environment. This setting is well suited for the bandit
problem because both deal with actions and subsequent rewards. This thesis investigates the
bandit problem in a RL setting and presents results for di�erent algorithms, one of which is our
new Beetle bandit algorithm, playing the multi-armed bandit. More speci�cally, it investigates
the problem where a choice has to be made between machines which pay out 0 or 1 each time,
but on average pay a �xed amount per play.

An intuitive way of dealing with this problem is keeping an estimate of the payout probability,
thus an average for every machine, and updating this estimate every time a machine is played
and more information about the real probability is received. This estimate will be called a belief;
with all the information we have received until now we believe the underlying probability to be
our estimate. Updating beliefs in the light of new evidence can mathematically be done with
Bayes' theorem.

However, this �rst intuitive solution loses the notion of certainty about your belief. For
example observing an average of 0.8 for arm 2 over 100 plays gives more certainty of what is to
be expected next time arm 2 is pulled than observing the same average over 10 plays. This is
why we take our belief to be a probability distribution over our estimate, meaning we do not
say we believe the real probability for arm 2 is 0.8, but we now say we think 0.8 is the most
probable real probability. The real probability might also be 0.5, but this is less likely, though
0.5 is more likely with 10 observations than with 100. We can now make an informed decision
between gaining short term rewards and/or improving the certainty of our estimates. This new
approach, however, causes computational problems.

Since our beliefs are no longer a �xed set of averages but all possible distributions, we cannot
compute the best actions to take but we have to make due with estimates. Previous Bayesian
approaches to RL slowly computed the estimates online ("while playing") a game. They are
therefore impractical in real life applications, For example when a router has to choose the best
peer to send a packet it has to be able to decide in milliseconds. However, if this router could
pre-compute intermediate results o�ine (before it is brought into service) it could provide fast
online service.

Due to certain mathematical properties of the bandit problem which will be derived in this
thesis, we are capable of such a fast online algorithm. We do this by �rst imagining that we
are playing multi-armed bandit problems and then pre-computing the belief updates; playing
the game has now become considerably less intensive computationally for the online decision
making.

Poupart et al. [14] have recently described a new algorithm from which the new Beetle Bandit
algorithm is derived. Beetle is capable of making a good trade-o� between exploration and
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exploitation while still making fast online decisions. There is a demand for experimental results
from this algorithm. This is why it has been adapted for the multi-armed bandit problem. We
have compared it to several other algorithms and found that the new Beetle Bandit algorithm
performs equal to, if not better than, any of the other reviewed classical algorithms, as long
as the problem is kept small. For larger problems other algorithms such as Wang's sampling
methods [20] have been found to be better.

1.3 Problem description

The project has primarily been setup to gain experimental data on the Beetle algorithm; more
speci�cally, we have chosen to gather experimental data in order to compare the Beetle algorithm
with existing algorithms. The project aims are three-fold:

• Adapting the Beetle algorithm to the domain of bandit problems.

• Review literature on bandit problems to see how this new algorithm compares to existing
approaches.

• Gather experimental results to compare Beetle Bandit with algorithms found in literature.



Chapter 2

Bandits Problems

2.1 Historical Background

Bandit problems are a prototypical example of the exploration-exploitation trade-o� seen in
machine learning algorithms in general and reinforcement learning in particular. The problem
was �rst proposed by Robbins [15]. Put simply, a slot machine with multiple arms, all with
di�erent payo� probabilities, can be played with the aim of maximizing reward. There have
been many variations on this basic bandit problem. For instance, Du� [7] attaches a reward
process to each arm where the reward is dependent on the arm chosen and the internal state of
the process attached to this arm. Cicirello et al. [5] try to maximize the largest single reward,
while Hardwick et al. [12] study a bandit problem with delayed reward signal. This variety in
bandit problems is due to the simplicity, complexity and universality of the problem. That is,
the problem statement is easy to grasp and understand, yet it manifests all complexity of the
exploration-exploitation trade-o�. This is why it has found it's way from sequential design in
statistics into machine learning [1], and in particular, reinforcement learning [17] and practical
applications such as clinical trial design [11].

Three works are of particular importance to the �eld of bandit problems, namely those by
Bellman [3], Gittins and Jones [10] and Lai and Robbins [13]. Bellman proved that the optimal
Bayesian solution was intractable. Gittins and Jones' paper is often described as making the
problem tractable. They prove that the optimal decision can be found by computing an index,
independent of other arms, for every separate arm after which the optimal choice is the arm with
the highest index. However, the computation of the indices is not trivial and needs information
about the reward processes [1]. Lai and Robbins proved that optimal exploration policies can be
achieved where the regret grows logarithmically with respect to the horizon of the problem.

2.2 Problem Statement

The basic bandit problem is well stated by Auer et al. [1], which we will follow closely in the
problem description of the multi-armed bandit with Bernoulli distributed rewards.

A K-armed bandit problem is de�ned by random variables Xi,m for 1 ≤ a ≤ K and m ≥ 1
, where m denotes time and a is the index of an arm or lever of the bandit. By playing the K-
armed bandits ath arm rewards Xa,1, Xa,2, ... are received, these are independent and identically
distributed according to the Bernoulli distribution with unknown expectation µa. This means
Pr(Xa,m = 1) = µa where 0 ≤ µa ≤ 1. The rewards across arms are also independent; that is
Xa,s and Xb,t are independent for each 1 ≤ a ≤ b ≤ K and each s, t≥ 1.

A policy, or allocation strategy, A is an algorithm that chooses the action to take, thus
which arm to pull, based on the previous plays and subsequent obtained rewards. Let Xa,mbe
the reward received when arm a was pulled at time m. Then the regret of A after m plays is
de�ned by

4
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µ?m−
m∑

t=1

E[Xπt,t] (2.1)

where
µ? = max

1≤a≤K
µa (2.2)

and E[·] denotes expectation, πt, denotes the action taken at time t when following policy π.
Thus the regret is the expected loss due to the fact that the policy does not always play the best
arm.

A division can be made between problems with �nite vs. in�nite horizons. Bandit problems
with �nite horizons stop after a certain number of rounds, whereas the in�nite horizon problems
never stop. A consequence of the in�nite problem setting is that future cumulative reward
also becomes in�nite. This is why future cumulative rewards for in�nite problems need to be
discounted by a term 0 < γ < 1, cumulative future reward then becomes

R =
∞∑

m=1

γm−1rm (2.3)

where rm is the reward received at time m. For �nite horizon problems the discount factor γ = 1
can be used to cancel discounting. Since regret is related to reward, future cumulative regret
also has to be discounted.

2.3 Important Concepts

Two concepts are of particular importance to Bandit problems, the Gittins index and the proof
by Lai and Robins about �optimal" regret, both will be discussed in this section. It is important
to note that both concepts are about the in�nite bandit case, the Gittins index needs in�nite
cumulative rewards, while Lai and Robbins claims hold when m →∞

2.3.1 Gittins Index

This section will describe and give an intuition into the so called Gittins index [9, 10].
Suppose we have a 1-armed bandit with rewards drawn from an unknown Bernoulli distribu-

tion. Let na denote the number of times a positive reward of 1 is observed after pulling arm a
and n̄a, denotes the number of times a reward of 0 has been observed after pulling a, and let γ
be a discount factor where 0 < γ < 0. We can now express a value function that is dependent
on observations of rewards in the following way

V (n, n̄) =
n

n + n̄
[1 + γV (n + 1, n̄)] +

n̄

n + n̄
γV (n, n̄ + 1) (2.4)

This means we multiply the the chance of receiving a reward rm ∈ {0, 1}, by the obtained reward
and all future rewards for both the reward 0 and 1. The future rewards are expressed as a value
function with updated observations. This is a Bayesian approach, because the prior probability
is used to update the posterior probability with the newly observed rewards.

Suppose we now add an arm to this bandit which gives reward 1 with probability p, this
probability is known to the player of the bandit. The discounted reward at round m will then
be γm−1rm and the in�nite cumulative reward is given by equation 2.3, for a �xed reward r this
will be r

1−γ . The new value function for this problem becomes

V (n, n̄) = max
{

p

1− γ
,

n

n + n̄
[1 + γV (n + 1, n̄)] +

n̄

n + n̄
γV (n, n̄ + 1)

}
(2.5)
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The new formula expresses that a choice has to be made between pulling the new arm with
�xed probability p or the arm with unknown probability. The Gittins index is de�ned as the p
where the value of pulling the arm with unknown probability is equal to the one with known
probability.

For a multi-armed bandit the best action is to pull the arm with the highest Gittins index.
However, the Gittins index is not easy to compute, it can be solved iteratively, but this is not a
trivial computation.

2.3.2 Lai and Robbins

Lai and Robbins [13] showed that for families of reward distributions, including the Bernoulli
distribution, there exist optimal exploration policies where the regret grows logarithmically with
the size of the horizon m. this section will stick closely to the formulation of Auer et al. [1].
There exist allocation policies satisfying

E[Ta(m)] ≤
(

1
D(pa||p?)

+ o(1)
)

lnm (2.6)

≤ (ca + o(1)) lnm (2.7)

where E[], denotes expectation, Ta(m) denotes the number of times arm a has been played at
time m o(1) → 0 as m → ∞ and D(pa||p?), a 6= i∗ is the Kullback-Leiber distance or relative
entropy [6]. This means that the greater the di�erence of probabilities between the optimal
arm and arm a, the less likely; arm a is to be pulled. It also means that the regret grows
logarithmically in the size m.

2.4 The Bandit problem as MDPs

Here the K-armed bandit will be stated as a Markov Decision Process (MDP). We will build on
the MDP to create a Bayesian adaptive Markov decision process (BAMDP) stated as partially
observable Markov decision process (POMDP). The Math will be derived in a similar fashion to
Poupart et al. [14].

2.4.1 Bandits as a Markov decision process

The K-armed bandit modeled as a Markov decision process (MDP) can be formally described as
a tuple <S,A, T, R>. Here the state space S is the set of states s, there is only one (1) state and
this can thus be omitted for convenience. The action space A is the set of actions a = {a1, ..., ak},
where k denotes the number of arms. The reward model T (s, a, s′) = 1; since there is only one
(1) state after all actions the state will stay the same. The reward model R(s, a, s′) = Pr(r|a)
encodes the reward received after action a is chosen, where r ∈ {0, 1}. Thus in its simplest form
the K-armed bandit MDP can be seen as the tuple <A,R>. The policy describing the actions of
an agent, normally π : S 7−→ A, a mapping from states to actions, now only speci�es an action
a.

Stationary policies do not change over time, they do not take into account new information
obtained over time, for instance randomly selecting an arm is a stationary policy. More inter-
estingly are policies that learn from information that is obtained over time, these non-stationary
policies can decide their actions on all available information. policies found by Bayesian adaptive
approaches speci�cally make use of new information obtained, besides taking into account all
current available information, they look ahead and also decide their actions on the possibility of
gaining new information.
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2.4.2 Bandits as POMDP or BAMDP

When we cast the MDP problem as a Bayesian model-based reinforcement learning problem,
we are able to learn the reward model while making informed decisions between exploitation
and exploration. We do this by introducing a belief about the reward model; this belief is
updated after an action is taken and subsequent reward is received. We can model this as a
POMDP de�ned by the tuple <SP ,AP ,OP , TP , ZP , RP>, using the unknown parameter θa,
which describes the parameter of the Bernoulli distributed reward function µa. The state space
SP = {θa}, the action space AP = AMDP . The observation space OP = {0, 1} is the set of
possible rewards. The transition function TP (θ, a, θ′) = Pr(θ′|θ, a), because θ is assumed not to
change, Pr(θ′|θ, a) = δθ(θ′) where δθ(θ) is a Kronecker delta with value 1 when θ′ = θ, otherwise
zero (0). The observation function ZP (θ′, a, o) = Pr(o|θ′, a) = RMDP (a) means we observe the
reward received after action a. Last, the reward function RP (θ, a, θ′) = RMDP (a) is the same
as the underlying MDP.

Rewards are drawn from a Bernoulli distribution with chance of p to obtain reward r, after
taking action a

p(r|a) = θr
a(1− θa)1−r (2.8)

where θa denotes the chance of success thus getting reward r = 1, and 1 − θa is the chance of
failure where r = 0. Our beliefs have to express a belief about the unknown parameter θ, which
parametrizes the Bernoulli distributions attached to each arm. Thus the belief b(θ) about θ is
related to all separate θa attached to arm a in the following way.

b(θ) =
∏
a∈A

b(θa) (2.9)

b(θa) = Beta(θa;−→na) (2.10)

Where na− 1 is the count of the number of successes obtained after action a, n̄a− 1 is the count
failures obtained after action a, −→na is a vector consisting of both na, n̄a. A belief b(θa) about θa

can be expressed by using a Beta distribution, because Beta distributions describe the chance
that a certain Bernoulli distribution is responsible for our observations. The Beta distributions
also provide a family of conjugate prior distributions for Bernoulli distributions. This means
that a Beta distribution has the property that if it is used as a prior probability in Bayes' rule,
the posterior probability will also be a Beta distribution. The formula for the Beta distribution
is

Beta(θa;na, n̄a) =
1

B(na, n̄a)
(θa)na(1− θa)n̄a (2.11)

B(na, n̄a) =
∫ 1

0
θna(1− θa)n̄adθ (2.12)

Where B(na, n̄a) is the Beta function which is needed to normalize the integral of the distribution
to 1. There is a closed form for the B(na, n̄a) function, that involves gamma functions.

We can now learn the reward model θ with belief updates after we perform an action and
receive a reward. Using Bayes' theorem the belief update can be written as :
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br
a(θ) = kb(θ)Pr(r|θ, a) (2.13)

= kb(θ)θr
a (2.14)

= k
∏
a∈A

b(θa)θr
a (2.15)

=
∏
a∈A

Beta(θa;−→na)θr
a (2.16)

=


∏

â∈A Beta(θâ;nâ + 1, n̄â) if r = 1, â = a∏
â∈A Beta(θâ;nâ, n̄â + 1) if r = 0, â = a∏

â∈A Beta(θâ;nâ, n̄â) otherwise
(2.17)

This means that belief updating for the K-armed bandit can be done by increasing the count
relating to the action made and the reward that is received.

2.5 Beetle Bandit

Beetle Bandit is derived from Poupart et al. [14], this paper can give further insight into math of
the Beetle Bandit algorithm. In section 2.4 it was described how a K-armed bandit problem can
be described as a POMDP, together with the way in which a belief state can be modeled and
updated, with new information. What is still left to do is the math to show how the proposed
POMDP description can be used to solve the Bellman equation.

2.5.1 The Bellman Equation

The Bellman equation is a way to express the value function for a state, in the case of POMDPs
a belief state, when following a policy. Once the optimal value for a state is known, the optimal
policy can be derived by selecting that action which has the best trade-o� between immediate
reward and future reward. The Bellman equation is the manner in which this optimal trade-o�
is expressed.

First some prerequisites, the chance of receiving a reward r after a history obtained, expressed
in belief b, and performing action a is equal to the expectation of the updated Beta reward, which
is equal to the updated average reward.

Pr(r|b, a) =
∫

θ
b(θ)Pr(r|θ, a) (2.18)

=
∫

θ
θab(θ) (2.19)

=
{ na

na+n̄a
if r = 1

n̄a
na+n̄a

if r = 1
(2.20)

We can now take the Bellman equation for POMDPs and plug in the reward expectation

V ?(b) = max
a

∑
o

Pr(o|b, a) [R(b, a, bo
a) + γV ∗(bo

a)] (2.21)

= max
a

∑
r∈{0,1}

Pr(r|b, a) [r + γV ∗(br
a)] (2.22)

= max
a

na

na + n̄a

[
1 + γV ∗(br=1

a )
]
+

n̄a

na + n̄a
γV ∗(br=0

a ) (2.23)

where V ?(b) is the optimal value function and br
a means the new belief reached after taking action

a and receiving reward r .
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Equation 2.23, is still not solvable in the normal sense, because it expresses a recursion, that
is, the next state value V ∗(br

a) has to be computed with the same equation.

2.5.2 Value functions

Luckily value functions exhibit certain characteristics which make it possible to accomplish ap-
proximate value iteration [16]. Because value functions are piecewise linear and convex, they can
be expressed as the inner product of a belief state and an alpha function

Vn(b) = max
{αi

n}i

∫
b · αi

n (2.24)

where
{
αi

n

}
is the set of vectors which parametrize the value function Vn at stage n. Since our

Bayesian approach deals with a continuous belief space, we can write the optimal value function
as the following two equations, in the second equation 2.26, the max has been replaced by the
optimal α?

br
a(θ) = arg maxα α(br

a), which will be written as α?(θ), it binds the br
a(θ) , though this

is not written in the subsequent formulas.

V ?(br
a) = max

α(θ)

∫
θ
α · br

a(θ)dθ (2.25)

=
∫

θ
α?

br
a(θ) · b

r
a(θ)dθ (2.26)

Suppose we have the optimal value function V k at stage k than we can compute the optimal
value function V k+1 at the next stage. First we state the formula, the α-functions are plugged
in and the max is absorbed into α?, then Pr(r|b, a) can be expressed in terms of θ as in equation
2.18. Last, i can swap the integral and sum.

V k+1(b) = max
a

∑
r∈{0,1}

Pr(r|b, a) [r + γV ∗(br
a)] (2.27)

=
∑

r∈{0,1}

Pr(r|b, a)
[
r + γ

∫
θ
α? · br

a(θ)dθ

]
(2.28)

=
∑

r∈{0,1}

[∫
θ
b(θ)Pr(r|θ, a)[r + γα?(θ)]dθ

]
(2.29)

=
∫

θ
b(θ)

 ∑
r∈{0,1}

θa[r + γα?(θ)]dθ

 (2.30)

The resulting value function is dependent on r and θ it can thus be a new α-function, Theorem 1
by Poupart [14] et al. proves that because the the α-functions in Bayesian RL have the derived
properties, they are multivariate polynomials.

αb,r(θ) =
∑

r

[θa[r + γα?(θ)]] (2.31)

2.6 Beetle Bandit Algorithm

The Beetle algorithm works in the following way, �rst it samples the belief space, it acquires
game states by simulating bandit games and playing them with a random policy. For every
belief state that is sampled the approximate optimal value function can be found using the
Perseus point based value iteration algorithm [16]. This is done by considering all actions and
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subsequent reward by using formula 2.32, the second formula 2.33 can be used to calculate the
optimal action. Finally the last formula 2.34 is used to construct a new α-function from the
found optimal α and a, r.

α?
br
a(θ) = arg max

α
α(br

a) (2.32)

ar
b = arg max

α

∑
r∈{0,1}

Pr(r|b, a)
[
r + γα?

br
a(θ)(b

r
a)

]
(2.33)

αb,r(θ) =
∑

r

[
Pr(r|θ, a)[r + γα?

br
a(θ)(θ)]

]
(2.34)

At each Perseus backup step a new α-function is made from other α-functions, this means
that with every backup the number of monomials, which together form the α -functions, grows.
Therefore a projection step has to take place, to project the new α-function, back onto a �xed
basis set. This basis set is build up out of the sampled belief states at the beginning of the
algorithm. These computations are all performed o�ine. Thus making the actual online playing
of the K-armed bandit a matter selecting the maximal α-function which is selected from the dot
products of the current belief and basis functions. For details on this projection step see the
original Beetle paper [14].

2.7 Beetle Bandit-2 and other improvements

Since the growing number of monomials and subsequent basis-projections keep Beetle and Beetle
Bandit from scaling to problems with more than a few unknown variables, Beetle Bandit-2 is
proposed and implemented. The main idea behind Beetle Bandit-2 is that the belief space is
built up out of a Beta-distribution for each arm. All these Beta distributions have a maximum,
which lies at the mean of the observed rewards. If the distributions that make up the belief space
get sorted according to the mean, the belief space shrinks with a faculty! term. For example
a belief space for two actions with Beta-distribution �maximum" of (0.2 and 0.8) will become
the same as one with (0.8 and 0.2) When the maxima have the same probability, the number
of �observations" (−→na) can be used to sort, the belief space. This reduces the belief space and
makes it possible for the algorithm to execute faster, or the belief space can be sampled deeper.

A second not implemented improvement comes from the following observation, according to
Lai and Robbins, see section 2.3.2, arms get selected with a term which is ∝ log(m) where m
the current round of the game. This means that an (nearly-) optimal exploration algorithm will
visit the action with worst average payo� less than a better one. This means that a large part of
the belief space will never get visited when the bandit game is played. Thus the �ctitious play
of a random policy at the start of the game can be improved, by a more realistic sampling.



Chapter 3

Previous approaches

This chapter describes previous approaches to the multi-armed bandit problem. All algorithms
described are �nite algorithms, because they do not use any discount factor γ. Usually �nite
algorithms perform better in an experiment with a short horizon, we therefore feel that these
algorithms form a good benchmark for our new Beetle Bandit algorithm.

All algorithms are taken from Vermorel et al. [18], with accompanying implementations from
sourceforge.bandit.net, unless stated otherwise. For a more in depth discussion I would like to
direct the reader to the Vermorel et al. paper. Caveat Lector, some claims are not substantiated;
for instance, in the description of ε-decreasing strategy it is claimed that Auer et al. [1] found
this strategy to be as good as other strategies described in the cited article. We concur with this
statement, however the algorithm described by Vermorel and Auer are not the same. Because

Vermorel uses εm = min
{
1, ε0

m

}
, where Auer uses εm = min

{
1, ε0K

d
2
m

}
where 0 < d < 1. Nonethe-

less, these algorithms are included in the research because we are con�dent in the experimental
results obtained.

In our multi-armed bandit setting, every action has a chance of returning a success when
chosen. This success chance can be estimated, this is called the value estimate, this value
estimate of an action a is usually equal to the mean reward obtained after performing action a.
If the action with the highest value estimate is chosen, this is called a greedy action.

3.1 ε-Greedy algorithms

For all ε-greedy algorithms the book by Sutton and Barto [17] is a good source for a more detailed
description of these methods.

3.1.1 basic ε-greedy

The ε-greedy algorithm is one of the simplest RL-algorithms. In its basic form a parameter ε is
set where 0 ≤ ε ≤ 1. The algorithm with a probability ε will choose a random action, and the
algorithm with probability 1 − ε will take a greedy action, it will exploit its current knowledge
and choose the action with the highest estimated action value. The extreme parameter setting
of ε = 0 leads to a completely greedy policy, while the other extreme ε = 1 leads to a completely
random policy.

3.1.2 ε-�rst

ε-First is a variation of the basic ε-greedy; here the algorithm starts with an exploration phase,
where all actions are chosen at random, after which a completely greedy policy is followed. This
means two parameters have to be set, ε and the horizon of the problem M , where 0 ≤ ε ≤ 1. The
exploration phase lasts εM rounds while the greedy exploitation phase lasts (1− ε)M rounds.

11
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3.1.3 ε-decreasing

Because the ε-greedy algorithm keeps exploring, it does not converge to the optimal policy.
Convergence is possible when more exploration is done in the beginning, while an increasingly
more greedy policy is followed near the end. ε-decreasing is one of the methods to achieve this.
Each round the ε value is decreased until it reaches 0. Parameter for this algorithm is ε0 > 0,
the εm at each round 1 ≤ m ≤ M is calculated by εm = min

{
1, ε0

m

}
.

3.1.4 LeastTaken

LeastTaken is another ε-greedy variety although the policy does not take an arbitrary random
action. The least taken arm is pulled with probability εa

m = 4/(4 + l2), where l is the number of
times the least taken action has been taken. With probability 1− εa

m, the greedy policy is taken.

3.2 Softmax algorithms

For the �rst two algorithms, the book by Sutton and Barto [17] is again a good starting point
for additional information.

3.2.1 Gibbs-Softmax

This algorithm will simply be called Softmax. Like the ε-greedy algorithms, Softmax also gives
the highest chance of selection to the greedy action. All other actions are given a probability
weighted by their value estimate according to a Gibbs distribution. The algorithm has parameter
τ ; this is the temperature of the Gibbs distribution. This is expressed in the following formula

Pr(a) =
eQm(a)/τ∑K
b=1 eQm(b)/τ

(3.1)

Thus, the chance of picking action a at time m depends on the current action-value estimate
Qm(a), which is the mean, the number of actions k and temperature parameter τ . When τ is
set high, the part Qm(a) plays in the equation becomes less, thus the policy will perform more
randomly and explore more. On the other hand, when τ → 0 the greedy action will be performed.

3.2.2 Softmix

What Softmax still misses is the behavior of ε-decreasing where more exploration is done in
the beginning and more exploitation in the end. This can be done by adjusting temperature τ
every round, with a higher τ in the beginning for more exploration and a lower temperature for
exploitation. Softmix does exactly this; it is parametrized by τ0 the starting temperature and is
adjusted every round by τm = τ0 log(t) /t.

3.2.3 Exp3

The Exponential weight algorithm for exploration and exploitation is described by Auer et al. [2].
This bandit problem algorithm was designed without statistical assumptions about the process
generating the payo�s of the slot machines. Exp3 generates new weights for the played arm which
is dependent on the reward received, as well as the chance this action was actually selected. The
formulas for calculating the probabilities that action a gets chosen at time m are,

pa(m) = (1− γ)
wa(m)∑K

b=1 wb(m)
+

γ

K
(3.2)

wa(m + 1) = wa(m) exp
(

γ
ra(m)

pa(m)K

)
(3.3)



3.3. Interval estimation 13

The only parameter γ can be set 0 ≤ γ ≤ 1, it controls the importance which is given to this
weight wa. Here a higher γ means a more random policy.

3.3 Interval estimation

With interval estimation, a reward estimate within a con�dence interval is kept for every action.
This con�dence interval gets tighter around the estimate each time the action is taken because
more information means more con�dence. A decision bound is set to a percentage of the upper
bound of the con�dence interval. An action is taken greedily with respect to this decision bound.
This means that actions which have not been chosen often, and therefore have a high interval
upper bound, are likely to be explored. After a few selections of every action, the con�dence
interval upper bound of actions with low expected reward will be considerably lower because of
a low reward estimate and a tighter interval. Thus, after an exploring start phase, only actions
with highest expected reward will remain to be exploited.

IntEstim is parametrized by α where 0 < α < 1. This parameter sets the decision bound ua

used for action selection as a portion of the upper bound in the following way, µa = µ(1 − α),
where µ is the upper bound. This means a low α value causes more exploration because the
decision bound is kept high. When α → 0 there is no interval and the reward estimate itself is
used for action selection. µa is calculated with the following formulas,

µa = µ̂ +
σ̂√
2π

cdf(1− α)−1 (3.4)

cdf(x; µ̂, σ̂) =
1

σ̂
√

2π

∫ x

− inf
exp(−(u− µ)2

2σ2
)du (3.5)

Where µ̂ and σ̂ are the empirical mean and standard deviation, cdf(x; µ̂, σ̂) is the cumulative nor-
mal distribution function. This algorithm makes the assumption that the arm mean is normally
distributed. Therefore algorithm needs two observations per action to make the math work;
therefore, in the beginning, random actions are taken until an action is chosen twice. Then,
obtained σ̂ for actions with more than 1 observation are averaged and used as an estimate for
actions with only one observation. This averaged σ̂ is also used for actions with no observations
together with the average of means µ̂.

3.4 Poker

The Price of Knowledge and Estimated Reward algorithm POKER is built with three ideas in
mind. The POKER algorithm makes a trade-o� between exploration and exploitation by pricing
knowledge gained by exploration. The horizon of the problem is speci�cally taken into account,
for example, the last possible action before the game stops should always be greedy, because
information gained will be useless. Last, the algorithm assumes that if there are more possible
actions than rounds, and thus no chance of observing all actions, the observed actions-rewards
can be used to estimate unobserved action-rewards. The main pricing formula which unites these
concepts is given by

pa = µ̂a + Pr [µa ≥ µ̂? + δµ] δµM (3.6)

with M is the horizon, µa is the reward mean, µ̂a is the reward mean estimate, µ̂∗ is the highest
reward mean estimate, and δµ = E[µ∗ − µ̂∗], is the expected reward mean improvement.

For an algorithm, Vermorel et al. [18] describes it extensively.
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3.5 UCB2

The UCB2 algorithm [1], is not taken from [18], it is chosen because it is presented as a Bernoulli
bandit algorithm, which performs almost as good as a tuned ε-greedy algorithm. The main
practical advantage of this algorithm is that it is more robust, thus the parameter setting does
not need to be tuned, a su�ciently low setting is enough. A theoretical advantage is that it
achieves logarithmic regret uniformly spread over time. Lai and Robbins, see section 2.3.2,
demonstrated and proved that logarithmic regret is possible asymptotically, UCB2 does this
uniformly, no asymptotical behavior is needed.

UCB2 selects the arm which maximizes µa +on,ra and plays this for an episode of τ(ra +1)−
τ(ra) times , µa is the current average reward for action a on,ra is calculated by the formulas

on,r =

√
(1 + α) ln(em/τ(r))

2τ(r)
(3.7)

τ(r) =
{

0 for r < 0.
d(1 + α)re r ≥ 0.

(3.8)

where m is the total number of rounds played until now, r is a counter which is initialized with
0, and gets increased at the end of an episode(which can last multiple rounds).

3.6 Optimistically initialized Greedy

This algorithm will be called Greedy [4, 17]. This algorithm gets initialized as if it has already
done an observation for every action, which all gave a positive reward. The optimistic action-
reward averages are updated ever round. An action is greedily chosen with respect to these
optimistic action-reward averages.



Chapter 4

Experiments

4.1 Overview of experimental setup

This chapter will describe the experiments which where designed to be able to compare the newly
proposed Beetle Bandit algorithm with other algorithms. There will be two setups: a 2-armed
bandit setup and a 5-armed setup. These two setups are chosen because the 2-armed bandit
problem is the simplest problem which still exhibits the whole complexity of the exploration
exploitation trade-o�. The 5-armed bandit is chosen so the results obtained can be compared to
the article of Wang et al. [20]. The obtained results will be discussed at the end of the chapter.
One has to take into account that Beetle Bandit is an in�nite horizon algorithm where the other
algorithms it is being compared to are not. Usually �nite horizon algorithms perform better
than in�nite horizon algorithms on problems with a small horizon.

4.2 2-Armed bandit experiments

Since we are con�dent the newly reported Beetle Bandit algorithm will make a good trade-o�
between exploration and exploitation, we have designed an experiment with a short horizon.
This means algorithms with good asymptotic behavior but poor �start" behavior are expected to
not perform well on this setup. This is because they generally over explore in the beginning, then
over exploit in the end, making the poor start behavior. Algorithms are run with parameters set
in multiple ways; the best results for every algorithm are reported in this section. UCB2 is the
only algorithm that was run with only 1 parameter because the authors have put this algorithm
forward to be robust as long as the parameter α is set low. The authors optimal setting for
UCB2 is used.

4.2.1 Experimental setup

The setting uses 2-armed bandit problems. The arms generate Bernoulli distributed rewards,
with means drawn uniformly from the interval (0,1) (though all algorithms play the same game)
this is done for 20 di�erent games. The game horizon is 20. Every game is played 1000 times.
Reward and regret per round will be reported.

Beetle Bandit has a number of parameters, the following parameters are used. To test the
in�uence of in�nite vs �nite games played by Beetle Bandit, discount factors γ = 0.99 and 1 were
used. The number of that are sampled is 2000 and the maximal number of basis functions that
were created was 100. 100 Perseus backups were performed. Every game new basis vectors are
initialized. State sampling of the belief space is performed with the same horizon as the problem.

15



4.3. 5-Armed Beetle experiment 16

Table 4.1: Best average rewards and regrets per round for 2-armed Bandit
Algorithm avg-Reward avg-Regret

Beetle Bandit, γ = 1 0.46298 0.21850

Beetle Bandit, γ = 0.99 0.62192 0.05956

Beetle Bandit-2, γ = 0.99 0.64077 0.04071

Greedy 0.62459 0.05688

UCB2, α = 0.001 0.60819 0.07328

POKER 0.58526 0.09622

ε-greedy, ε = 0.15 0.56346 0.07328

ε-�rst, ε = 0.15 0.58661 0.07328

ε-decreasing, ε = 1 0.58769 0.09379

LeastTaken ε = 0.15 0.58661 0.11220

SoftMax τ = 0.15 0.61387 0.06761

SoftMix τ0 = 0.1 0.49146 0.19002

Exp3 γ = 0.4 0.53718 0.14572

IntEstim α = 0.1 0.59307 0.08841

4.2.2 Discussion of results 2-armed Bandit experiments

The Beetle Bandit algorithm performs badly without discounting when γ = 1. This is because
the Perseus algorithm used is made for in�nite problems, without discounting future rewards,
every next value function will be higher than the last. Convergence onto the optimal value
function is no longer guaranteed. This is why the Beetle Bandit, γ = 1 sometimes performs
best, but on average performs poorly see Table 4.1. However, normal Beetle Bandit performs
with γ = 0.99 almost best, only optimistically initialized Greedy is better. Beetle Bandit-2 is an
improvement on the Beetle Bandit algorithm, it reduces the size of the belief space by ordering
the Beta-distributions which make up the belief space. This has a positive e�ect, Beetle Bandit-2
performs best of all algorithms.

4.3 5-Armed Beetle experiment

The 5-arm experiment is designed to make the results comparable to Wang et al. [20]. Which
gives results pertaining to other algorithms than the ones used in the 2-armed Bandit experiment.
The Beetle Bandit γ = 0.99 and Beetle Bandit-2 γ = 0.99 algorithms are both run in a setup
similar to Wang. Though the original paper by Wang only gives graphs, through personal
correspondence with the author the precise results have been obtained [19]. Results displayed
will be by Wang with the Beetle Bandit Algorithms added.

4.3.1 Experimental setup

The described setup is for the Beetle Bandit and other algorithms described in this thesis, Wang
et al. [20] report averages taken from 1000 to 10000 episodes. The setting uses 5-armed bandit
problems. The arms generate Bernoulli distributed rewards, with means drawn uniformly from
the interval (0,1), this is done for 20 * 1000 di�erent games. The game horizon is 5, 10, 15 and
20. Every game is played once. Optimal parameters of the 2-armed bandit experiment are used.
Reward and regret per round will be reported.

Beetle Bandit has a number of parameters, the following parameters are used. A discount
factor of γ = 0.99. The number of belief states that are sampled is 2000 and the maximal number
of basis functions that were created was 100. 100 Perseus backups were performed. Initialization
of new basis vectors will occur every 1000 games, thus 20 times.. State sampling of the belief
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space is performed with the same horizon as the problem. State sampling of the belief space is
done with the same horizon as the problem.

Table 4.2: Results by Wang et al. compared with Beetle Bandit, 5-armed bandit reward per
round is reported

Horizon 5 10 15 20

ε-greedy 0.5905 0.6311 0.6511 0.6703

Bolzman 0.574 0.6244 0.6494 0.6758

Interval Est. 0.498 0.5858 0.6061 0.6313

Thompson 0.5389 0.5965 0.6141 0.6412

MVPI 0.5511 0.6029 0.613 0.6445

Peret Garcia 0.555 0.5887 0.6097 0.6479

Sparse Samp. 0.6075 0.6598 0.6806 0.7148

Bayes Samp 0.6161 0.6686 0.6868 0.7212

Beetle Bandit, γ = 0.99 0.6109 0.6496 0.6673 0.7027

Beetle Bandit-2, γ = 0.99 0.5986 0.6580 0.6697 0,6987

4.3.2 Discussion of results 5-armed Bandit experiments

Table 4.2 shows that Beetle Bandit and Beetle Bandit-2 are comparable in performance on the
5-armed bandit. The results for Beetle Bandit are better than those for the classical approaches.
However, the Sparse and Bayes sampling techniques are generally a bit better than Beetle Bandit.
There are two reason why Beetle Bandits performance does not grow equally with Bayesian
sampling. Beetle Bandit is an in�nite horizon algorithm, where Bayesian sampling is a �nite
horizon algorithm. In�nite horizon algorithms usually perform slightly worse than �nite horizon
algorithms which do not discount rewards.

Beetle Bandit also su�ers from the size of the belief space when the horizon of the problem
grows. The reachable belief space can be seen as a tree with the root at the start of a game, the
tree branches out with every possible action and reward, this means the size of the tree will be
(2K)H , where K is the number of arms and H the horizon. The sampling of the belief space
which beetle performs at the beginning of the algorithm is not capable of getting a representative
sample of the whole belief space, this the performance of the algorithm drops as the size of the
belief space grows larger.



Chapter 5

Conclusion

In this thesis I have given an overview of Bandit Problems, in particular those with rewards
obtained from Bernoulli distributions. I have given an overview of algorithms with which our
newly developed Beetle Bandit algorithm was compared, as well as the math needed to adjust
Beetle into Beetle Bandit. The experiments show that for Bandit problems with limited arms,
horizon, and rewards distributed according to a Bernoulli distribution, the Beetle Bandit is per-
forming better than classical approaches and slightly worse than other current Bayesian inspired
approaches. These results occur because Beetle Bandit is an in�nite horizon algorithm whereas
the compared algorithms are �nite horizon algorithms which are usually better at dealing with
short horizon setups such as those presented in this paper. The other cause of these results is
the problem Beetle Bandit has with adequate sampling of large belief spaces. The Bayesian ap-
proach taken with Beetle Bandit o�ers the possibility of an optimal exploration vs. exploitation
trade-o�. Beetle Bandit has shown through o�ine pre-computation that the Bayesian approach
can give best results while still being able to make fast online decisions.

The main advantage of Beetle Bandit is its performance on problems with a small number of
variables. For these problems, it o�ers one of the best exploration exploitation decision making
available. However, a problem still facing Beetle and Beetle Bandit are larger problems with
more variables. This is partly due to the size of the belief space, as sampling this e�ciently
becomes increasingly harder and the projection onto a �xed set of basis functions becomes more
prone to errors as the size of the belief space increases. I have made a start at improving this
vulnerability of Beetle Bandit by sorting the distributions making up the belief space. The
results of this approach are promising, as for small problems the 'adapted' Beetle Bandit-2 does
not perform worse, but sometimes even better than Beetle Bandit. Making Beetle Bandit scale
to larger problems is the main area of future research. One may think of more intelligent belief
space sampling, better belief space representations, or better projection onto basis functions. An
other way can be to keep the look ahead decision tree small by intelligent sampling techniques.
A �rst step into this future research has been given with Beetle Bandit-2. For in terms of
practical applications, one can think of intelligent adaptive routers which can use Beetle Bandit
in discovering what peers should be selected for optimal service. Beetle Bandit can also be
used in adaptive medical trials where the goal is to decide which is the better treatment while,
balancing this with the the least possible negative impact.
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