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Abstract

This paper proposes a method to use the omnidirectional camera as a rangefinder
by using color detection. The omnicam rangefinder has been tested in USAR-
Sim for its accuracy and for its practical use to build maps of the environment.
The results of the test shows that an omnidirectional camera can be used to
accurately estimate distances to obstacles and to create maps of unknown envi-
ronment.
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1 Introduction

An important aspect of robotics is the task of collecting detailed information
about unexplored or disaster struck area’s. A part of this task is to make a
robot measure distances to obstacles in order to localize itself and to create a
map of the environment. This paper proposes the use of an omnidirectional
camera combined with a color based free space classification system to create a
rangefinder which can estimate these distances. ’Can an omnidirectional camera
be used effectively as a rangefinder?’ is the research question of this paper.

Until now, active sensors like a laser scanner are being used as rangefinders.
Active sensors tend to have highly accurate measurements, however they also
have a limited range and a limited field of view. Another problem is that they
are heavy and can consume lots of energy. Therefore using an active sensor on
a small or flying robot is not a viable choice.

This is why it is important to focus attention on alternative sensors like a
passive sensor. A passive sensor like the visual sensor do not have the disadvan-
tages of an active sensor. Furthermore a visual sensor can have a 360◦ field of
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view by using an omnidirectional camera. However a visual sensor tends to be
inaccurate compared to a laser sensor and it is hard to estimate the depth on
an image using an omnidirectional camera.

Again, this paper proposes a method to implement a rangefinder for an om-
nidirectional camera. This rangefinder uses a color histogram, which is a color
based statistical model, to identify free space in the immediate surroundings.
Furthermore a comparison between an omnicam and a laser determines which
sensor, in terms of accuracy and practical use, performs better in what kind of
environment or circumstance. Practical use is tested by letting a rangefinder
sensor build a map of an environment. Scanmatching algorithms are used in
combination with the rangefinder in order to estimates its position on the map,
which is an important part of mapping unknown environments. The implemen-
tation and testing of this method is done in USARSim [1], which is a simulation
environment that can be used as a research tool [2].

Section 3 describes the theory and method that have been used for the
development and validation of the omnicam rangefinder. Section 4 describes
how the experiments are set up to test the omnicam rangefinder. Section 5
handles the outcome of the test results while section 6 describes the discussion
and further work. The final section makes a conclusion of this research.

2 Related Work

Many methods of using a visual sensor to detect obstacles have already been
created. The winner of the DARPA challenge 2005 used a visual sensor as an
obstacle detection sensor [3]. Rauskolb et al. [4] improved this obstacle detector
so it can also be used in urban environments.

Since the introduction of the omnidirectional camera in USARSim [5] many
new applications have been designed for the omnicam. Roebert used the omnidi-
rectional camera to create a bird-eye view map of an environment [6]. However
these bird-eye view maps of the environment are not usable by autonomous
robots for navigation. The robots need to have an obstacle detector, know what
the free space is and have the ability to create a map where the free space and
obstacles are shown in order to navigate through an environment.

Maillette de Buy Wenniger [7] created a free space detector that uses a color
histogram trained with the colors of free space to identify free space in a bird-eye
view image. Scaramuzza [8] has designed a rangefinder for an omnicam sensor
that can detect and measure the distance to obstacle points in a black and white
environment. Together with localisation performed by scanmatching algorithms,
best desribed by Slamet [9], these three components can be combined to create
a map of an environment.
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3 Method

This section describes the method and theory behind the omnicam rangefinder.
The theory behind the rangefinder is to use a trained color histogram to classify
free space pixels in an image. By using this knowledge the rangefinder can also
find the non free space pixels of an image. Maillette de Buy Wennigers work [7]
has already shown that a color histogram can be used for identifying free and
non-free space pixels.

This paper suggests an omnicam rangefinder which uses the free space de-
tection system of Maillette de Buy Wenniger to classify pixels as either free
space or non-free space. From there on the rangefinder uses this knowledge to
detect boundary points of an obstacle by using polar scanning combined with
false negative and false positive filters. The robot can then estimate the metric
distance between the robot and the boundary point. After the distances have
been estimated an outlier rejection filter is used to reject the estimated distances
that have a high probability of being inaccurate.

3.1 Free space pixel identification

The color histogram is a statistical model used to identify free space pixels
based on their color values. It needs to be trained by using a set of training
data which consists of a collection of pixels where the class, which can be free
space or non-free space, is already known. A trained color histogram can then
calculate the probability if a certain color value belongs to a certain class.

3.1.1 Collecting training data

When the robot gets dropped into an unexplored environment it is going to
need a laser scanner to create the training set for the color histogram. After
creating the training set the robot can venture further into unexplored area’s
without using the laser scanner to measure the distances to obstacles. In order
to build the training set the robot needs to provide a bird-eye view image of
the environment [6] and the laser measured distances image of the environment.
These two components are then fused to create a bird-eye view image where the
free space is shown. The pixels that are classified as free space on that image
are used to train the histogram. This entire procedure is visualized in figure
1. The laser rangefinder has a field of view of 180◦ compared to the omnicams
360◦, therefore the created bird-eye view images of the omnicam has been cut
in half to make it synchronize with the laser image.

A bird-eye view image can be created by following Nayar’s described relation
between a pixel on an omnicam image and the corresponding pixel on the bird-
eye view image if nothing obstructs the view [10]. A pixel on an omnicam image
is described by pomn = (xomn, yomn) and a pixel on the bird-eye view image is
described by pbe = (xbe, ybe). These are the equations:
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(a) Bird-eye view
image of the envi-
ronment

(b) Image created
with laser mea-
sured distances

(c) The combined
image of the
bird-eye view
image and the
laser image

(d) The resulting
image that is used
for training

Figure 1: Procedure to create trainingdata. The half circle on the left part of
the images is from the omnicam, this will not be used for the training data

θ = arccos
z√

x2
be + y2

be + z2
(1)

φ = arctan
ybe

xbe
, ρ =

h

1 + cos θ
(2)

xomn = ρ sin θ cosφ, yomn = ρ sin θ sinφ (3)

The constant h is the radius of the circle describing the 90◦ incidence angle on
the omnicam effective viewpoint. The variable z is used to describe the distance
between the effective viewpoint and the projection plane in pixels. Roeberts
work [6] has shown that accurate bird-eye view maps can be achieved by using
these formula’s.

An image of the laser measured distances can be constructed by using a laser
rangefinder to measure the distances on every scanline between a ’hit point’ and
the origin of the laser, which is the sensor position on the robot. If the distance
of the ’hit point’ is bigger than the detection range, the laser will return the
maximum detection range for that scanline. Multiple laser measurements can
be done to increase the probability that free space is detected on a certain scan-
line. These measured distances can then be converted to an image like in figure
1b.

Finally a combined image between these two components can be created and
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the color pixels that are classified by the laser rangefinder as free space on that
image can be used as the trainingdata for the color histogram.

3.1.2 Color Histogram

The color histogram trains itself by counting how many times a certain RGB
value exists in the trainingdata. This trained color histogram is usable to classify
free space pixels in new omnicam images. The trained color histogram uses this
discrete probability distribution to classify a pixel as either free space or non
free space:

PHIST (rgb) =
c[rgb]
Tc

(4)

Here, c[rgb] returns the count of the histogram bin that is associated with the
rgb color. Tc returns the total count of all the bins of the histogram. The
outcome of a particular color will thus have a value between 0 and 1. In order
to filter out the false positives the histogram uses a Probabilitythreshold which
is set as 0 ≤ θ ≤ 1. Therefore a pixel is considered as free space if

PHIST (rgb) ≥ θ (5)

3.2 Omnicam Rangefinder

The basis of this method has been derived from Scaramuzza’s black and white
omnicam rangefinder [8]. However the proposed omnicam rangefinder in this
paper uses the color based free space detection described in section 2.1 instead
of only detecting black and white colors. This free space detector is combined
with the rangefinders very own detection method which uses polar scanning
combined with false positive and false negative filters to detect pixels of an
obstacles boundary point. These detected pixels are considered as the hit points
of the scanlines. Having detected a hit point the rangefinder estimates the metric
distance between the robot and that hit point. At the end of this method an
outlier rejection filter is used to reject the estimated measurements that have a
high probability of being inaccurate.

3.2.1 Polar scanning

The omnicam rangefinder uses polar scanning to create scanlines that are coming
from the center of an omnicam image, a visualisation can be found in figure 2b.
Every pixel in each scanline gets classified as either free space or non-free space
according to the trained color histogram. The omnicam rangefinder then uses
its false positive and false negative filters to find the correct hit point for each
scanline. These filters uses a variable parameter which depends on the current
environment or situation.

5



(a) The original image how the omni-
cam rangefinder receives it

(b) The same image with scanlines vi-
sualized on it

Figure 2: A visualization of scanlines on an omnicam image

1. False positive filter : This filter determines if a non-free space pixel is a hit
point by checking if N pixels behind it are also classified as non-free space
pixels. An example of this filter can be found in figure 3a.

2. False negative filter : This makes sure that a candidate hit point does
not get rejected because a free space pixel, which was actually misclassi-
fied, interrupts the sequence of non-free space pixels described in the false
positive filter. The parameter K determines how long the sequence of
free space pixels should be before rejecting the candidate hit point. The
visualisation is found in figure 3b.

The metric distance from the robot to a pixel is calculated whenever that
pixel is classified as a hit point according to the rangefinder. When there is no
hit point on a scanline the rangefinder returns the maximum range, which is
another variable parameter. When the hit point is too close to the position where
the robot is, this would make the measured distance unreliable, the rangefinder
returns the minimum range, which is also a variable parameter.

3.2.2 Measuring distance

The rangefinder calculates the metric distances to each hit point that it can
find. The metric distance is calculated by using this formula which Scaramuzza
[8] has also used for its rangefinder and can also be derived by using basic math
knowledge.

d(ρ) = h tan(
ρ

α
) (6)

ρ represents the pixeldistance from the hit point to the robot. α is a constant
value that depends on the mirror shape and the camera-mirror distance. h is
the height in meters from the groundfloor to the effective viewpoint of the hy-
perbolic mirror. The metric distance d is calculated in meters. Sample distance
measurements are needed in order to approximate the constant α. This can be

6



(a) Example where N = 4: The pixel with an ’X’ has been classified as a
hit point because N pixels behind it are classified as non free space pixels

(b) Example where K = 2: Hit point has not been found because there
is more free space starting from the ’O’ pixel. This is because K pixels
behind it are also classified as free space pixels. Note that the free space
pixel between the two non-free space pixels is negated because the next
pixel behind it is classified as a non-free space pixel

Figure 3: A representation of a set pixels from a scanline, green pixels are
classified as free space and red pixels are classified as non-free space pixels

achieved by letting a laser range sensor measure a distance in meters and letting
the omnicam sensor measure that same distance in pixels.

Figure 4: The basis of the pixel to meters formula lies in the blue rectangular
triangle

This formula had been derived by using figure 4. The blue rectangular
triangle is used to derive the following equation:

d(θ) = h tan(θ) (7)

The relation between ρ, the distance in pixels, and the unknown angle θ can
be approximated using a first order Taylor expansion.
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θ ≈ 1
α
ρ (8)

The combination of equations 7 and 8 outputs equation 6. Unfortunately, be-
cause of the hyperbolic shape of the mirror this formula is limited to mostly
small distances. The formula is unusable when θ ≥ 90◦. The metric distance
would be then be negative and hitting the hyperbolic mirror with a ray of light
at an angle higher than 89◦ would not reflect the light ray onto the camera
image plane.

3.2.3 Outlier Rejection Filter

A robot equipped with an omnicam rangefinder needs to localize itself when it is
going to map an unknown enviroment. This is done by using scanmatching algo-
rithms, these algorithms need to use the measured distances from a rangefinder
in order to do their localisation task. Scanmatching algorithms are designed to
find hit point correspondences between an old range measurement and a new
range measurement. By finding these point correspondences the scanmatching
algorithm can estimate its new pose on the map.

Because of their method to estimate new poses these algorithms are very
sensitive to outliers. Outliers are most of the time inaccurate measurements
and having too many outliers is going to confuse a scanmatching algorithm
which of course results into inaccurate localisation.

Using an outlier rejection filter reduces the chance that a scanmatching algo-
rithm will breakdown. The filter works by first calculating the average measured
distance, then the minimum and maximum boundaries are set by adding and
subtracting N meters from the average distance. The rangefinder then considers
the distance measurements that were outside the boundaries as outliers. These
outliers are of course rejected because they have a high probability of being an
inaccurate measurement.

4 Experimental Setup

This section describes the testing environment and the experiments that are
used to test the omnicam rangefinder. The implementation of the omnicam
rangefinder and the testing of it were done in USARSim which is a simulation
environment. The omnicam rangefinder was tested for its accuracy and for its
practical use to create a map of an environment.

4.1 USARSim

USARSim is a 3-D simulation environment that can simulate real world environ-
ments and situations. This program is intended as a research tool to study the
use of robots in the real world. Robots in USARSim can therefore use simulated
realistic tools to complete their tasks. Experiments have shown that perception
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algorithms that are developed in USARSim can easily be converted and used
for the real world [2].

4.2 Accuracy Test

This first experiment compares the measured ranges from an omnicam against
the measured ranges from a laser. The laser sensor is highly accurate and can
therefore be used as a reference measurement. The ranges are collected by
letting the robot drive around in an environment while measuring the distances
using both the omnicam and the laser. Each scanline measurement from the
laser gets compared to the appropriate scanline measurement of the omnicam.
Then by subtracting the omnicam measurements from the laser measurements
one can get the differences between them. These differences can then be plotted
in a histogram to show the omnicams accuracy compared to the lasers accuracy.

4.3 Map Building Test

The second experiment tests if the omnicam sensor can actually be used for
localization and building maps. The sensor has to create accurate maps of en-
vironments in order to achieve this. Again, the laser sensor is used to create a
reference map of the environment. The omnicam then drives exactly the same
route as the laser to create an omnicam map. The omnicam map is then com-
pared with the reference map to determine how different the map is.

The mapbuilding is done using two different ways:

1. Using Deadreckoning with the GroundTruth as the seed. This setting
makes sure that the robot always knows where it is on the map. This
means that the robot can always localize itself without scanmatching,
therefore the quality of the map fully depends on the accuracy of the
sensor.

2. Using Quad Weighted ScanMatching (QWSM) [11] with an Inertial Nav-
igation System (INS) as the seed. INS uses the robots motion sensors to
calculate its new pose compared to the old one. Therefore the robot de-
pends on INS and scanmatching for estimating its current location. This
setting is a more realistic setting and must be used when the robot is
venturing into unknown terrain.

Using QWSM and INS results in a less accurate map, but the omnicam
needs to be evaluated with this setting in order to proof that it can be used in
unknown terrain.

4.3.1 Environments and the Agent

Two different environments are used to test the omnicam rangefinder. The first
one is a grassmaze as shown in figure 5a. This environment consists of very
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(a) The grassmaze environment (b) The factory environment

Figure 5: These are the environments in USARSim to train and test the omni-
cam rangefinder.

(a) A cabinet (b) A pipe with liquid metal

Figure 6: These are some of the objects in the factory environment

small corridors, lots of turns and the hedge has about the same color as the
floor, which is made out of grass. The challenge is to correctly map the small
corridors and to make a distinction between the hedge and the grass.

The second environment is a factory as seen in figure 5b, this environment
has big corridors, less turns and it contains a lot of different objects. The
challenge in this map is to clearly detect the objects, figure 6 shows a couple of
examples of these obstacles.

The name of the robot that is used to do these experiments is the Om-
niP2DX(Figure 7), this robot comes equipped with a laser and an omnicam
sensor. The height of the omnicams effective viewpoint to the ground is 0.931m,
this value is needed to calculate metric distances.

Before starting the experiments it is important to estimate what the max-
imum range of the OmniP2DX is. This can be done by estimating the value
of the constant α in equation 6. The α is estimated by rewriting the equation
and performing several sample distance measurements by letting a range sensor
measure a distance in meters and letting the omnicam sensor measure that same
distance in pixels. Having estimated the α the distance formula can be used to
plot the relation between the pixel distance and the metric distance. Figure 8
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Figure 7: OmniP2DX, the omnicamsensor is mounted on top of the pillar

shows this relation and it also shows that the metric distance difference between
pixels exponentially increases. This means that having an off-by-one-error mis-
classification on a distance far away from the robot can result into a high metric
distance error. Setting the maximum range at 3.8 meters is therefore a good
tradeoff between the maximum range and the accuracy of the omnicam.

Figure 8: The relation between the pixel distance and the metric distance

5 Results

This section deals with the results of the experiments with the omnicam rangefinder.
The results have been obtained by using the parameters stated in table 1. These
are the optimal parameters that have been derived by hand. At the time of
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Map ScanLines Nonfreepixels Groupedpixels Probabilitythreshold Rejectiondistance
Grassmaze 360 20 2 0.05 1.25m
Factory 360 20 2 0.075 1.25m

Table 1: Measurementoutput statistics

writing there exists no learning algorithm for finding the optimal parameters
for every situation. The laser sensor used for these experiments is the SICK
laser which has a maximumrange of 19.8 meters compared to the omnicams
maximumrange of 3.8 meters. The image resolution for the omnicam images
used for this project is 1024x768.

5.1 Accuracy Results

Figures 9a and 9b shows the results of the accuracy test of the omnicam rangefinder
for respectively the grassmaze and the factory. Because of the skewed data of
the grassmaze the histograms needed to be shortened by discarding all the mea-
surement errors higher than 1 meter. Table 2 shows how many measurements
were actually discarded from the histogram. The table shows that the omnicam
sensor makes bigger measurement errors in the grassmaze. These errors can get
up to 2.5 meters. Table 3 shows the values of how much skewed the data really
is. The factory measurements are quite stable whereas the grassmaze is skewed,
this can also be seen in the histograms of figure 9.

Figure 10 shows the relation between the accuracy of the omnicam rangefinder
and the reference metric distance that it needs to estimate. The figure shows
that the omnicam rangefinder is measuring longer distances much further than
they in fact are. There is only a 3D histogram of the grassmaze because the fac-
tory did not have enough long distance measurements to create a 3D histogram
where this relation can be seen.

The measurements of the factory environment were done in the big and long
corridors, this means that the factory’s histogram is showing the accuracy of the
omnicam in a more optimal situation. The environment did not have a lot of
corners compared to the grassmaze environment which was chosen to stresstest
the omnicam rangefinder.

Table 4 shows that the omnicam rangefinder has an average absolute accu-
racy difference of 8.09cm in the factory compared to 13.75cm in the grassmaze.
The table also shows how many distance measurements were used in order to
create the histograms. The distance measurements in the grassmaze are consid-
erably more than in the factory. The route driven with the robot in the factory
was therefore shorter. Again, the factory route was chosen to show the results
in an optimal situation while the grassmaze route was chosen to stresstest the
omnicam rangefinder.
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(a) Grassmaze: Histogram of the omnicam accuracy

(b) Factory: Histogram of the omnicam accuracy

Figure 9: The omnicam accuracy compared to the laser accuracy measured in
both environments
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Figure 10: Grassmaze: The figure shows the relation between the omnicam
accuracy and the reference distance of the laser sensor. The omnicam tends to
get less accurate when measuring longer distances.

Map No. of Differences ≤ −1m No. of Differences ≥ 1m No. of Differences ≥ 2.5m
Grassmaze 443 131 21 %
Factory 3 1 0 %

Table 2: Table of left out differences

5.2 Map Building Results

Factory environment

Figure 11a and 11b shows the results of building a map of the factory environ-
ment using an omnicam sensor and a laser sensor combined with deadreckoning
and the groundtruth for localisation. Because of its accuracy the laser created
map serves as an indication for what the groundtruth map should look like.
Comparing both maps shows that the omnicam map does not differ that much
from the laser created map. The black dots and lines on the map represents
detected obstacles, the gray color represents the cleared space while the white
color represents the free space detect by the rangefinder. Having free space on
the map does not mean that there are no obstacles at that area. It serves as an
indication of where the robot can explore and by doing this the area changes
into cleared space.

A remarkable difference between both maps is within the red rectangle. The
omnicam map has a wall drawn at that location but the laser does not have it
drawn. However the omnicam map is correct at this situation, there is indeed a
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Map Skewness of differences data Skewness of the laser measured data
Grassmaze 2.3750 1.0925 %
Factory -0.3747 0.6555 %

Table 3: Table with the skewness values

Map No. Measurements Avg Absolute Difference Avg Percentage Difference
Grassmaze 31324 0.1375m 7.639%
Factory 9334 0.0809m 4.493%

Table 4: Table with Measurementstatistics

big object(figure 6a) which the laser looked right through because the cabinet
was empty. The lava pipe from figure 6b, which is represented by the most
upperleft wall on the map, was detected by both sensors.

Figure 12 shows the results of the same route using QWSM scanmatching
with INS. Comparing these maps with the maps from figure 11 shows that the
map from figure 12b is more accurate than the map from figure 12a. These maps
show that localisation with the omnicam sensor performs worse than localisation
with a laser sensor for this situation.

A reason for this is that the corridors are too wide, the omnicam can not
detect the walls on the other side of the corridor because of its limited range of
3.8 meters compared to the lasers range of 19.8 meters. By not detecting these
walls the localisation goes wrong because the scanmatching algorithms has a
harder time to detect what has changed in the environment.

Another reason is that the scanmatching algorithms that were used were
tweaked for the laser range sensor.

Grassmaze environment

Figure 13 shows the results using deadreckoning with the groundtruth to build
a map of the grassmaze. Because of the turns in the grassmaze the SICK laser
loses its advantage to measure distances up to 20 meters. The robot started
in the middle of the maze and made its way to the exit of it. Apart from the
noise on the path both maps look quite similar to each other. The laser could
sometimes look through the hedge because of the very small holes in the hedge.
The laser would then see the path on the other side but it can also create some
noise like the noise in the upper part of its map. The omnicam map does not
have those problems.

Figure 14 shows the created maps of the grassmaze with QWSM and INS.
The localisation for the laser sensor went wrong on this map. This is because the
laser measurements were too unstable, mostly because it looked right through
hedges which creates outliers that can breakdown the scanmatcher. The omni-
cam map is reliable, the map only has a small curve which can be seen when
it is compared with the maps from figure 13. The omnicam could localise itself
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(a) Omnicam sensor factory map (b) Laser sensor factory map

Figure 11: Factory map created with deadreckoning and groundtruth

(a) Omnicam sensor factory map (b) Laser sensor factory map

Figure 12: Factory map created with QWSM and INS
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(a) Omnicam sensor grassmaze map

(b) Laser sensor grassmaze map

Figure 13: Grassmaze map created with deadreckoning and groundtruth
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within the grassmaze because it did not had many outliers thanks to the outlier
rejection filter and it did not look through hedges like the laser sensor because
the holes of the hedges were too small to be even visible on the omnicam.

The grassmaze proofs that the omnicam combined with localisation can work
in an environment with narrow corridors, lots of corners and a wall which looks
like the groundfloor.

6 Discussion and Future work

Accuracy

The difference in accuracy between an omnicam and a laser lies in the detection
of object boundaries. Using color distinction to detect these boundaries does
not provide perfect results. Using color detection can sometimes get a pixel
misclassified as a hit point. These misclassifications are fatal for long distance
measurements because of the hyperbolic shape of the mirror of the omnicam.
A misclassified pixel can therefore result in a measurement error to up to 2.5
meters, this can also be seen in table 2.

The accuracy tests also shows that the omnicam measures longer distances
further away than they in fact are. This is a good result showing that the
omnicam rangefinder can create reliable maps. This is because the inaccurate
measurements can better be drawn outside of the path instead of on the path,
which makes the map noisier. Having error measurements on shorter distances
does not matter much because figure 8 shows that the metric distance error
between those pixels is very small.

Future work for the accuracy improvement using color detection is trying
other color spaces. This is also useful to let the omnicam rangefinder work
in other area’s where the RGB color space might fail. A fast way to increase
accuracy is to use a higher image resolution, however higher resolution images
need more time to process.

Corner misclassification

The maps created by the omnicam shows that there exists misclassification at
the beginning and at the end of each corner where a turn can be made. The
omnicam misclassifies pixels when it is approaching a turn. The reason for
this is that the omnicam rangefinder does not know if there is a corner by
just looking at one image. It could just as well be the wall, therefore when
it approaches a corner it already draws obstaclepoints on the map which are
in fact misclassifications. This undesirable effect of the omnicam sensor does
not pose a threat when the omnicam has to navigate through wide corridors.
However having noise in narrow corridors can certainly result in an inaccurate
map.

This problem might be solveable by implementing a method that can detect
corners on a sequence of images. Another method is to create a function that
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(a) Omnicam sensor grassmaze map

(b) Laser sensor grassmaze map

Figure 14: Grassmaze map created with QWSM and INS
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can classify and erase noise on the map. This might be achievable because the
corner noise consists of only a few dots as shown on the omnicam maps. A real
object or wall is represented by very thick lines on the map.

Thick lines

This next problem of the omnicam is a result of its inaccuracy. The omnicam
draws thick lines because the distance measurements taken from different angles
are not relative to each other. This leads into multiple obstaclepoints on the
map that are close to each other instead of points that overlap with each other
like with the accurate laser sensor. These inaccuracies therefore results into
a thick line on the map. This problem needs to be solved because navigating
through narrow corridors is undesirable if the thick lines are drawn half on the
pathway.

The solution for this problem is creating a function that can smooth thick
lines. The function would first need to identify the thick lines on the map so it
can turn those thick lines into thin lines by taking the average of its points.

Automatic parameter learning

The experiments were set up by using parameters that were derived by hand.
Future work would therefore include an automatic parameter learning algorithm.
An approach would be to use the trainingset of the histogram to train the
rangefinder parameters.

Further Improvements

The omnicam rangefinder does not work on a slope or other height differences.
This is because the pixel to meters formula does not incorporate height differ-
ences, this can be seen in figure 4. Further improvements lies in the theory of
detecting free space based on color detection. The free space detection does not
work well when the walls or objects all have the same color. This situation might
happen literally but having a dark room can also create this situation. The free
space detector might also break down when it has to deal with different lighting
conditions, a solution for this problem might be to adapt the color histogram to
a HSV color space because this color space can remove color intensity. Future
work should also include a method that can detect when the floor color changes.

7 Conclusion

Based on the results found in section 5 it can be concluded that an omnidirec-
tional camera can be used efficiently as a rangefinder. The omnicam rangefinder
can have an inaccuracy of 8.09cm compared to the laser sensor. The results also
shows that the omnicam rangefinder can use scanmatching algorithms that were
tweaked for a laser sensor to create accurate maps of an environment eventhough
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it does nog possess the precise accuracy of a laser sensor. The omnidirectional
camera can also detect obstacles, like an empty cabinet(figure 6a), that a laser
sensor can not detect. The omnicam rangefinder is based on color detection
and is therefore unusable when the obstacles have exactly the same color as the
floor.

This research can lead to the development of small and flying robots that
can use the lightweight, energy efficient and inexpensive omnidirectional camera
to quickly create a map of an environment. These robots need to work together
with a robot mounted with a laser sensor because the color histogram learned
with the laser sensor can be distributed wirelessly to the small and flying robots.
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