
Virtual victims in USARSim

Author: Chaim BASTIAAN (#5742889)

FACULTY OF SCIENCE (FNWI)

POSTBUS 94216
1090 GE AMSTERDAM

SCIENCE PARK 904

BSC THESIS, 9EC

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF BSC

Virtual victims in USARSim

Author:
Chaim BASTIAAN
Student #5742889

Supervisor:
Dr. Arnoud VISSER

Abstract

USARSim is used to simulate search and rescue tasks in the RoboCupRes-
cue. A necessary asset when it comes to most research related to rescu-
ing victims are the victims themselves. As general expectations rise and
(RoboCupRescue) leagues become more demanding, the environment has to
keep up with the possibilities and accuracy of the simulated (robot) observers.
This thesis presents a design on victim behaviour, as well as an analysis of
the resources and demonstrations. In addition to this, a description is given
of steps such as importing models and textures into USARSim (compatible
with UDK).

June 25, 2010

Contents

1 Introduction 2

2 Theoretical context 3
2.1 Victim analysis . 3

2.1.1 Behaviour in post-disaster (rescue) situation 3
2.1.2 Victim detection . 4
2.1.3 Victim simulation . 4
2.1.4 Related work . 5

3 Design and resource details 5
3.1 Challenges . 5
3.2 Used models and animations . 6

3.2.1 Face and head animations 8
3.2.2 Lying animations . 9
3.2.3 Kneeling animations . 10
3.2.4 Death poses . 10
3.2.5 Less relevant animations 10

3.3 Behaviour and states . 10
3.4 Appearance . 11

4 Future directions 12

5 References 13

Appendices 15

A Constructing a victim package 15
A.1 Textures and Materials . 15
A.2 Meshes . 16
A.3 Animation set . 16
A.4 AnimTree . 16
A.5 PhysicsAssets (not used in described design) 17

B UnrealScript example source 19

Acknowledgement

I’d like to thank my parents, my supervisor Arnoud Visser and Christine, for their
continuous support throughout the whole project. Last but not least, a big thanks
and full credits to Tom Lin, for the UDN models and a figure related to their tongue
structure.

1

1 Introduction

The Unified System for Automation and Robot Simulation or USARSim is a high-
fidelity simulation of robots and environments [5]. Due to a recent switch of US-
ARSim from the Unreal Tournament 2004 based game engine (Unreal Engine 2.5)
to Unreal Tournament 3 (Unreal Engine 3, or short UE3), the USARSim data has
to be ported. The newer game engine not only brings performance improvements,
it also adds new functionality such as dynamic shadows. It also leads to a setback
in functionality for USARSim, where victims up to now are inable to move or
perform gestures.

The RoboCupRescue project is an international joint effort in promoting re-
search and development in rescue environments. It uses USARSim to simulate
post-disaster environments in which robots are deployed to assist in rescuing vic-
tims. A necessary asset when it comes to most research related to rescuing victims
are the victims themselves. Therefore, to allow for future developments such as
new detection algorithms and sensors, additional realism or functionality in terms
of victim behaviour and appearance inside USARSim is desired.

There is surprisingly little accessible information on (simulation of) post-disaster
victim behaviour. This is in part due to the fact that the panic situation[11] (disaster
scenario) itself or the mental state of a victim is generally of greater general inter-
est. Examples of this type of research range from larger scale crowd simulation[3]
to more individual behaviour of civilians or communities[10][14]. Another reason
is that at the time robots are deployed, most victims are well hidden and barely
relocate. Nevertheless there is a great desire for virtual victims that correspond to
real ones in terms of appearance and behaviour. A decent simulation will allow
future research in multiple areas, as well as serve as a base for more complex be-
haviour and more dynamic (changes of) appearance.

It is useful not just to look at past research on behaviour, but also how existing
detection algorithms work. This should help determine what features make a vic-
tim recognizable as one by such an algorithm. Flynn [8] has recently shown that
algorithms within USARSim continue to work in a real world application, though
the results are less impressive than in the simulated environment. The used models
were unable to provide hand gestures (even though the structure of the model is
capable of showing such animations), obstructing research.

Even with such a simple model however, USARSim has been able to provide
a validated tool for simulating robot environments [1]. As the general expectations
rise and (RoboCupRescue) leagues become more demanding [2], the environment
has to keep up with the possibilities and accuracy of the simulated observers. As
the engine has recently been exchanged for another, victims are again needed more
then ever. A more sophisticated, dynamic behaviour pattern should suffice and
serve as foundation for future research.

2

This thesis presents a design of victim behaviour in USARSim. It can be
roughly divided into three parts. Section 2 describes earlier research and simu-
lations of disaster or urban search and rescue scenarios and related work. Section
3 presents the main design (process), as well as an analysis of the resources used,
in order to investigate the boundaries of the design. Finally, in section 4 possible
improvements and (logical) extensions to the design are discussed.

Since UE3 is also used as a commercial game engine it can be difficult to find
specific information on certain aspects. In appendix A a thorough description of
specific steps in the design process is given. Most, if not all steps in the appendix
hold for the more recent, UE3 engine based Unreal Development Kit1 (UDK).
UDK is free for non-commercial and educational use, but at the time of writing
this thesis incompatible with USARSim.

2 Theoretical context

What makes the topic of robot search and rescue so difficult is in part the fact that
it is stretched across so many research areas. In order to create a decent design of
the behaviour and appearance of victims in the simulation it is therefore useful to
look at what has been done in for example psychology and human-robot interaction
(HRI). Where psychology only in very specific branches touches upon the subject
of victims in a post-disaster situation where robots could be deployed, interaction
with the victim and detection (and therefore appearance) is of great interest to HRI.
The first is usually concerned with the disaster as it strikes (a panic situation) and
the post-disaster (traumatic) impact, where the latter is by definition in a situation
where robots are deployed in order to rescue victims or assist to do so.

As psychology continues to evolve and propose new, more refined descriptions
of human behaviour, we might be tempted to merely show interest in the most
current or in our eyes appropriate description. From an AI perspective however,
if a simpler model of behaviour is sufficient within the domain being used, it is
generally less interesting whether it is an accurate model of the actual world or not.
This is especially true when one of the main goals is to allow future research, as
is the case with this thesis. It is of course still of great interest and importance to
make the behaviour as realistic as resources allow.

2.1 Victim analysis

2.1.1 Behaviour in post-disaster (rescue) situation

There are plenty of field studies from a psychological perspective like those car-
ried out by Fritz and Marks[9], where an extensive description is given of human
behaviour during disaster. There are even more studies like those of Fritz and
Williams[10], where a more refined research is performed on the results of field

1Unreal Development Kit by Epic Games, URL: http://www.udk.com/

3

studies, before, during or after (such as post-traumatic research) a disaster situa-
tion. The disaster situations of robot rescue and this literature tend to differ, for
example victims are far less likely to relocate in robot rescue situations, rendering
most research less applicable to the robot rescue topic.

Perhaps the most promising field studies, those of Human-Robot Interaction
(HRI), supply us with detailed information on the behaviour and appearance (es-
pecially as viewed on video footage) of victims in a situation where robots are
deployed. A big question in search and rescue is how to recognize victims based
on cues, which are features that distinguish them from their environment. Exam-
ples of victim cues would be those presented by Murphy[12]:

“[. . .] heat of a victim (or ignition source), color (that a live vic-
tim has moved, thereby knocking off some of the gray dust typically
covering a void), motion, sound, and non-random areas and textures
(gestalt or perceptual organization).” [12, p. 9]

Heat of a victim is the only thing left unmentioned throughout this thesis, but is
briefly mentioned in section 4. Instead of cues, the term features is often used to
refer to these characteristic victim cues. The above article also reminds us that the
environment is generally filled with debris, instead of a clean office.

Human emotions have been investigated for a long time[6] and are of continu-
ous interest to many areas of research. Directions on a possible way to implement
emotion are presented in section 4, as well as suggestions for future areas of re-
search related to this topic in section.

2.1.2 Victim detection

There are several approaches to the detection of victims and it is unclear which will
be more error prone in the future, if any. Examples of approaches would be based
on skin [15] or object detection [8]. These use respectively the colour and shape or
pattern as features (cues) to distinguish victims from their surroundings. The two
mentioned approaches both classify as victim and non-victim, but detect different
things. To enable classifiers to work reliably on sensor data, the shapes, textures,
movement and lightning (or lack of it) has to be sufficiently realistic.

Section 3 describes the design of adding multiple of these features, where sec-
tion 4 gives an overview of what this means for topics like victim detection.

2.1.3 Victim simulation

As with research in the specific situation where robots are deployed, simulations of
victims are hard to come by. Simulations are generally on a larger scale than US-
ARSim generally uses, using a simplified model of the environment as proposed
in literature to simulate for example (victim) crowds[3] and escape panic[11]. A

4

larger scale, because USARSim is generally used for a few sites focusing on de-
tails, whereas these studies consider whole cities focusing on more general be-
haviour patterns and dynamical features. Some specific research may instead use
a simpler model of victims, so as not to scare participants (ie. by replacing them
with pool balls[4]). Another common reason for simple victims is that it is usually
sufficient, such as with static victims or limbs (simply partial models) in USARSim
research[16].

2.1.4 Related work

Since the research areas related to a virtual world such as USARSim are quite
diverse, this section will primarily focus on my area of expertise, Arificial Intelli-
gence (AI).

An important feature of USARSim is that it allows sensors, robots and algo-
rithms to be created and tested virtually. This allows for cheap development and
allows creating for example algorithms and sensors that do not exist yet in the real
world. A good recent example of this is an acoustic sensor [13], entirely created
and tested virtually (sounds emitters instead of victims). Developing algorithms
and robots (rapid prototyping without driving robots off a cliff for real) is a hot
topic. Current research in AI and Robotics is mainly focused on the problem of
localization and identification of victims. Another active area of research is the
simultaneous mapping and localization problem for agents, where an agent has to
localize itself (with a map) while at the same time building a map (with respect to
its current location).

3 Design and resource details

3.1 Challenges

The recent port to the newer Unreal Engine has created the need for victims in
USARSim. The previous implementation contained an RFID tag based on which
victims could be identified. A more realistic way of identification would be based
appearance and behaviour. Both the identity and the status of a victim should be
able to be determined based on cues[12, p. 9] emitted by appearance and behaviour.

Necessary steps in adding victims into the virtual world include:

• Gathering knowledge about

– The features of real victims in a real urban search and rescue task
– The used 3D models, including their structure and animation sets
– The combining (blending and sequencing) of animations

• Build behaviour sequences based on available animations in the animation
sets

5

• Adding the victims to the world and triggering their behaviour sequences

The presented design roughly consists of two parts, the behaviour and the ap-
pearance of the victims. Since the two are independent enough (for example the
behaviour will not depend on the outfit a victim is wearing, nor the other way
around), the sections below will address each seperately. If anything, behaviour
would influence appearance, as appearance would not influence behaviour easily
(unless one gets startled by his or her own appearance). This can be visualized by
thinking of a sweating response of the body to the mind of the victim. While the
appearance has yet to be experimented with, certain concepts of the appearance
will be adressed, such as the importing of textures into USARSim in appendix A.1
and future research in section 4.

The claim here is not that this is a very accurate model of the actual world,
but rather that it captures the concepts of a more abstract causal description of the
world. One starts sweating as a result of the current state of mind, whereas state of
mind does not generally depend on one’s own appearance. Even though the model
may not be the true behaviour in the real world, it can be reliably similar to some
extent [8].

3.2 Used models and animations

As victims were available in USARSim before the switch to UE3, the logical first
attempt would be a direct port. Unfortunately the victim models were not placed as
controllable agents, but rather as static statues looping a single animation. Another
set of models was available on the Unreal Development Network (UDN) 2, and
it featured virtually the same models. Virtually, because the number of bones in
the skeleton was lower in the imported USARSim models. Since this was likely
to be an optimization for the older engine and since there might be animations in
the available set of animations that would depend on the extra bones, the (original)
UDN models were imported.

The set of animations included with the UDN models lacks any victim-like be-
haviour such as lying on the ground, or otherwise behaving injured or exhausted.
Extra animations were included with the previous USARSim version and because
the models are so alike, the set of animations could be and is used to extend the
possible behaviour of the victims.

There are a lot of animations that come with the mentioned models (94 for the
male and 81 for the female model), but not all animations are of course appropriate
for post-disaster victims. Table 1 shows a table of the available animations in the
male and female animation sets. Not just the amount differs, but most animations
do as well. The reasons behind the choice of having a different animation set

2Example Models for the Unreal Engine by Tom Lin,
URL: http://udn.epicgames.com/Two/UnrealDemoModels.html

6

Table 1: Available actions for the available male and female victim models, as
pulled from USARSim (final UT2004 based release)

Victim Face or head*** Lying Kneeling Dead*** Standing Movement* Others

Male

Expressions: On back: Boot On back: Idle Rifle** CrouchX Pickup
Anger CheckHead Crouch DeadOnBackMale Idle Biggun** WalkX Throw
Disgust CheckHeadBreathe IdleGloves RunX
Fear LArmAmp AHHH On chest: IdleKnuckles SprintF ImpactX***
Happy Supine LArmAmp Breathing FaceDownDeath IdleNeck Falling
Sadness IdleNose FlyX Push
Surprise On chest: IdleScratch FlyIdle

facedown IdleStretch HoldGun
Visemes: FacedownBreathing Jump
Vis01-Vis13 Jump Takeoff

Upright: Jump Mid
Others: BrokenLeg Jump Land
bLink JumpUp

HugKnees
HugKneesBreathe JumpFTakeoff

JumpF
LookAround JumpF ok
LookAroundBreath JumpFMid

JumpFLand
LostMyEye
LostMyEyeBreathing Swim

SwimB
Writhing SwimL
Writhing2 SwimR

SwimTread
SittingUp

Female

Expressions: On back: Boot On back: Idle Rifle** CrouchX IdleStretch
Anger justbreathe CrouchIdle DeadOnBack IdleBreathe WalkX
Disgust LayedOutBreatheFast IdleHip FlyX ImpactX***
Fear LayedOutBreatheSlow On chest: IdleTwist FlyIdle
Happy OnBackBreathing pronedead RunX Pickup
Sad Falling
Surprise PassedOut Push

JumpTakeoff
Visemes: PostBonkedForehead JumpSwitch Shove
Vis01-Vis14 JumpLand

Supine JumpUp Snowball
Others:
bLink On chest: JumpFTakeoff
HeadTurnL ChestDownBreathing JumpF
HeadTurnR ChestDownBreathing2 JumpFMid

JumpFLand
FaceDownDislocation***

Swim
SwimB
SwimL
SwimR
SwimThread

* Where X is one of the following letters, denoting a direction: B(ackwards), F(orwards), L(eft) ,R(ight)
** Not a rifle animation, but an idle standing one (Rifle animation is with mouth closed, Biggun with mouth open)
*** These animations contain 2 frames (they are static, but may be blended into similar animations, if any)

between the two (similar) models, are best explained on the UDN website where
they can be found2:

“First of all, the male and female models are substantially different
sizes. Secondly, the models don’t share the exact bone hierarchy in
the head. Finally, because we were doing very delicate and precise
animation frames (adjusting the faces for lip synch capacity), it was
deemed unwise to try to adapt them to each other.”

The choice of specific animations included with the two different sets supplied
with USARSim and the reasons behind the inconsistent names remains unknown
for now.

7

The animations in Table 1 are spelled as they were supplied. The grouping is
based on characteristics the animations have in common, which is not always clear
from the animation name alone. Animations can be sequenced or blended together.
An example of blending can be found on the UDN website 3:

“A new animation could be created, talking, which can be selec-
tively played on certain bones during either the happy or sad anima-
tions. This saves animators from having to create separate talking
while happy and talking while sad animations.”

As selectively activating bones is applicable to all of the animations, instead here
the animations themselves are described and whether or not they can be sequenced
(without selectively playing bones). Detailed implementation details and informa-
tion on blending in the Unreal Engine can be found in the appendix.

The ordering of the (horizontal) groups in Table 1 is based on degree impor-
tance for victim behaviour, from important on the left, to the probably inapplicable
group ”Others” on the right. The ordering should not be taken strictly, but as an
indication of the type of animations that belong to that group. Animations are
separated by a newline if begin and end poses differ and therefore simple combina-
tion by sequencing of animations would not be sufficient. Movement would make
blending less noticeable, but the post-disaster situation we are considering does not
generally contain victims that move, or they move at slow pace.

3.2.1 Face and head animations

The group ”Face or head” has similar animations in both the female and the male
animation set and contains facial expressions (for simulating the status, mood and
emotions of victims) and visemes (for lip syncing). Pictures of the individual ex-
pressions and blinking animation can be found in Table 3.2.1. The dashes in the
viseme names in Table 1 indicate a range of numbered viseme animations. The
female set has an extra viseme, but Vis14 is virtually a duplicate of Vis13 (the dif-
ference is unnoticeable for normal applications, Vis14 can be ignored). There are
two extra female animations in this group for looking left and right. Each of the
animations is static, in other words consist of a single pose that is supposed to be
blended in another animation. The emotions as depicted in the figure correspond
to a complete set of basic emotions[7]. Noteworthy is also that blending together
”Fear” (70%) and ”Disgust” and ”Sad(ness)” seemed to give a reasonable victim
expression, but this can of course be set dynamically through UnrealScript.

3Preparing a Character for use with the Unreal Skeletal Animation System by Erik de Neve and
James Green, URL: http://udn.epicgames.com/Two/SkeletalSetup.html

8

Anger Disgust Fear Happy

Sad (Sadness) Surprise bLink (Blink)

Table 2: Included facial expressions (excluding visemes) for the female UDN
model.

3.2.2 Lying animations

The group ”Lying” contains a big list of animations specifically implemented for
USARSim usage. Both models can lie on their back and chest through animation,
the male model can also sit upright a bit. The most important animations are de-
scribed below. Male model:
CheckHead: reach for the head while lying on the back flat. Appending Breathing
uses the same starting pose, but does not grab for the head anymore.
Supine: similar to reference pose (arms and legs spread), but lying on back and
breathing.
facedown: lie face down and try to get up. FacedownBreathing does the same, but
does not try to get up.
BrokenLeg: sit upright with legs stretched and reach for left leg
HugKnees: sit upright with knees bent, bend forward and backward while hugging
knees as if scared. Appending Breathe does the same but does not bend forward
and backward.
LookAround: sit upright with knees slightly bent, look around and bend left knee
a little more. Appending Breath does the same but does not bend knee more and
does not look around.
LostMyEye: lie on right side, grab eye with left hand, seemingly waving with the
other. Appending Breathing does the same except for waving.
Writhing: writhe, lying on back. Writhing2 does something similar but reaches up
with right arm.
SittingUp: (simple) animation of trying to sit up from lying on the back.
Female model:
justbreathe (or LayedOutBreatheFast): lie on back and breathe. LayedOutBreatheS-

9

low is the same animation but is one second longer. Finally OnBackBreathing can
be sequenced with these 3 animations if blended a little (the position of the skele-
ton is almost the same, merely the arms are moved) PassedOut: lie on back with
knees bent, left arm stretched out to the left PostBonkedForehead: reach for head
with left hand, move both legs individually. Supine: see Supine description of the
male model ChestDownBreathing: lie face down, breathing (ChestDownBreath-
ing2 seems to be another near duplicate)

3.2.3 Kneeling animations

The animation Boot exists for both models and consists of an animation where one
leg is on the ground and the victim is resting on the other. The animations Crouch
for the male model and CrouchIdle are part of the crouching movement animations
and look less appropriate for victims (actively crouching). The male animation
set has two extra kneeling animations. The first is LArmAmp AHHH, where both
knees are on the ground, the victim uses his right arm to grab his left arm and he
leans backwards as if in severe pain. The second, LArmAmp Breathing starts from
the same pose as the first, but does not do any leaning.

3.2.4 Death poses

Though appropriate, the animations in this group speak for themselves. Each of
these are static poses and supposed to combined with another animation (or not,
considering they are dead).

3.2.5 Less relevant animations

The animations (or groups) not mentioned above are considered less appropriate
when it comes to victim behaviour. However, even these animations are valuable
as they can be played selectively on certain bones, using for example merely the
finger movements of the female SnowBall animation.

3.3 Behaviour and states

UnrealScript allows for state-machine like programming, leaving open plenty of
possibilities for implementations of existing algorithms and concepts from AI. This
provides an intuitive interface to implementing concepts such as the state of the en-
vironment and (mental) state of a victim. The actual animations that are used are
defined by an animation tree inside the Unreal Editor. The animation tree (selec-
tively) activated through UnrealScript. A useful sidenote is that certain animations
are called by the engine natively, see the appendix for an example of a native falling
animation.

UnrealScript is based on the Java programming language and therefore has
many things in common, such as that classes extend one another in order to avoid

10

code redundancy. The combination of state-machine like programming with a class
hierarchy works well for a simulated environment.

The created victim code structure consists of three files, VictimPawn, Victim-
Controller, FemaleVictim and MaleVictim. The last two files extend VictimPawn,
initializing the male and female specific variables containing the assets in the vic-
tim package as mentioned in the appendix.

It all starts with an Actor, this is the base class for all gameplay objects. Both
the Pawn and Controller class are (indirect) children of this class. The Pawn class
can be seen as the physical representation of the victim, something external to what
motivates it to behave. The Controller class on the other hand, while it may depend
on events from the Pawn class or engine, is what actually controls the victim.

To trigger an animation on a victim, one would have to add the necessary func-
tionality to the Pawn class and then make a call to execute this functionality from
the Controller class.

3.4 Appearance

The imported UDN models were created with certain goals in mind. While the
goals originated from the gaming industries, the design choices are important as
they show what the models are capable of and what may be improved upon. The
goals as presented on the UDN website1

(Inter)changeable skin/clothing1

The design part of this thesis is concluded with a few statements on the used
victim models as given by the author.
Information about the hands2:

“...each finger joint has two segments around each joint, which is
important in keeping the deformation to a minimum when they are
bent. If I was to make the models again, I might budget even more
resources to the hands; the knuckles are not clearly defined when the
hand is closed and the thumb could use more geometry where it joins
with the hand.”

Information about the feet2:

“I experimented a little bit when making the feet. As explained in
the UnrealModeling doc, perspective in games often makes ’normal’
human proportions seem wrong. This is especially the case with feet,
where the camera point of view is often looking down at your models
from a position above and behind your character. To compensate for
this effect, I made the feet on the male model much larger than is
normal. I made the girl’s feet normal sized, so that evaluating the
appropriateness of both sizes is possible.”

11

Figure 1: Folded tongue bones, Courtesy of Tom Lin4

Information about the tongue 4, see Figure 3.4

“A tongue seems fairly self explanatory, and depending on how
much movement you’ll require, it could be. If you’d like to have ma-
jor tongue extension outside of the mouth, however - sticking out the
tongue at someone, or licking lips - you’ll need a slightly unortho-
dox bone structure. Unreal CAN NOT deal with bones that stretch
over time - it can only understand orientation and position of bones.
I found that having the bones fold on themselves worked best for the
tongue. Since it’s not possible to stretch the existing bones, we unfold
them, like an accordion.”

4 Future directions

While the port of the models themselves has immediately been adopted by the
USARSim community, most of this thesis should be seen as foundations for doing
future research. The new engine brings new possibilities for simulate the dynamics
and variance of a real world situation. This section will address the benefits of this
thesis for future research and where future research with regard to virtual victims
is likely to be beneficial. The section is concluded with resources that would be
useful to have in USARSim, based on information acquired throughout the project.

Development and research in USARSim has gained virtual victims, including
a dynamic design of behaviour. This puts research with a wide selection of sensor
types back in business. Based on the more dynamic behaviour and blending of ani-
mations, sensors such as motion based sensors and object detection algorithms may
perform better than before. A thorough description on the creation of a package
in the Unreal Editor is given, allowing for additional victims to be easily added,
boosting the variance of the virtual world.

Future research would be beneficial in a number of directions. One direction
is the environment. Due to the newer engine models, materials and physics can be
better simulated. Soft-body physics is also added in Unreal Engine 3, but only in

4Unreal Modeling Guide by Tom Lin, URL: http://udn.epicgames.com/Two/UnrealModeling.html

12

UDK and is therefore not yet available in USARSim at the time of writing. Rag-
doll physics are mentioned in the appendix but have yet to be correctly combined
with victim models.

Another direction would be the victims themselves (although they are also part
of the environment mentioned above). Facial expressions can be modeled to great
extent and should be further explored as detection of a face is of great importance
in search and rescue. The iris of the eyes is connected to a bone, allowing iris
movements to be part of facial expressions. Better models may be nice, but the
current are already capable of sign language and lip synchronisation, which might
be something worth investigating first.

Another promising direction would be adding heat emission to a victim (and
detection to a sensor) or emotion. Emotion would likely best be implemented
through the Controller class of the victim, as part of the ”mental” state of the victim.

What is needed with respect to information gathered during this project would
mainly be a more concise list of animations in both animation sets. Both the names
as well as the animations themselves have to be cleaned up. As blending is possi-
ble per bone, specific animations (for example multiple arm movements, multiple
laying poses, etc.) would be most beneficial. Hand(/finger) and head movement
gestures are by themselves worthy additions, as these are (parts of) objects that are
defining of humans (and thus often used for object detection).

5 References

References

1.) B. Balaguer, S. Balakirsky, S. Carpin, M. Lewis, and C. Scrapper. USARSim:
a validated simulator for research in robotics and automation. In Workshop
on Robot Simulators: Available Software, Scientific Applications, and Future
Trends at IEEE/RSJ, 2008.

2.) S. Balakirsky, C. Scrapper, S. Carpin, and M. Lewis. UsarSim: providing a
framework for multirobot performance evaluation. In Proceedings of PerMIS,
volume 2006, 2006.

3.) M. Brenner, N. Wijermans, T. Nussle, and B. De Boer. Simulating and con-
trolling civilian crowds in robocup rescue. Proceedings of RoboCup, 2005.

4.) J. Brownbridge. Teleoperation of Rescue Robots in Urban Search and Rescue
Tasks. 2008.

5.) S. Carpin, J. Wang, M. Lewis, A. Birk, and A. Jacoff. High fidelity tools
for rescue robotics: Results and perspectives. Robocup 2005: Robot Soccer
World Cup IX, pages 301–311, 2005.

13

6.) P. Ekman and W.V. Friesen. A new pan-cultural facial expression of emotion.
Motivation and Emotion, 10(2):159–168, 1986.

7.) P. Ekman, W.V. Friesen, and P. Ellsworth. What emotion categories or dimen-
sions can observers judge from facial behavior. Emotion in the human face,
pages 39–55, 1982.

8.) H. Flynn. Machine learning applied to object recognition in robot search and
rescue systems. Master’s thesis, University of Oxford, 2009.

9.) C.E. Fritz and E.S. Marks. The NORC studies of human behavior in disaster.
Journal of Social Issues, 10(3):26–41, 1954.

10.) C.E. Fritz and H.B. Williams. The human being in disasters: A research
perspective. The Annals of the American Academy of Political and Social
Science, 309(1):42, 1957.

11.) D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape
panic. Nature, 407(6803):487–490, 2000.

12.) R. R. Murphy. Human-robot interaction in rescue robotics. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
34(2):138–153, 2004.

13.) S. Nunnally and S. Balakirsky. Acoustic Sensing in UT3 Based USARSim. In
Robots, Games, and Research: Success stories in USARSim”, Workshop Pro-
ceedings of the International Conference on Intelligent Robots and Systems
(IROS 2009), pages 68–73.

14.) E.L. Quarantelli. Images of withdrawal behavior in disasters: Some basic
misconceptions. Social Problems, 8(1):68–79, 1960.

15.) A. Visser, B. Slamet, T. Schmits, L.A.G. Jaime, and A. Ethembabaoglu. De-
sign decisions of the UvA Rescue 2007 Team. In Fourth International Work-
shop on Synthetic Simulation and Robotics to Mitigate Earthquake Disaster
(SRMED 2007), pages 20–26.

16.) J. Wang, M. Lewis, and J. Gennari. USAR: A game based simulation for
teleoperation. In Human Factors and Ergonomics Society Annual Meeting
Proceedings, volume 47, pages 493–497. Human Factors and Ergonomics
Society, 2003.

14

Figure 2: A single frame capture of victims as implemented in USARSim (based
on UT3).

Appendices
A Constructing a victim package

A package refers to a set of assets, where common examples of assets are 3D
models, 2D textures, sounds or animations. Both UDK and UT3 allow for packages
to be imported easily into the Editor and generally accept the same import formats,
but a UDK package cannot be directly imported into UT3 and vice versa. This
appendix will guide the reader through the steps necessary to import all of the
assets used for victim animation in the Unreal Editor (UT3 based USARSim), but
the steps have been verified to work within UDK as well. The result of going
through the whole process of importing and setting up the world can be seen in
Figure 2.

Since different assets of a package require different methods to be constructed
or imported, this section is divided into the subsections Textures and Materials,
Meshes, Animations, AnimationTrees, PhysicsAssets (not used in described design)
and the UnrealScript code is included in appendix B (elaborating on the class struc-
ture explained in section 3.3).

A.1 Textures and Materials

To import a texture: open the Contents Browser, click File > Import.... Im-
ported images can only be of certain formats, the textures delivered with the models
can be directly imported as they are in .TGA format and have the correct layout.

When importing a texture, a property window will appear. For the victim pack-
age the default settings were used, except for Create Material? being checked,
and Two Sided? being checked for just the hair. The textures in this package were
given the same package and group for convenience.

Once imported, for the hair texture to appear transparent, the hair material
should be edited. Doubleclick it in the Content Browser and drag the top-most
layer (the RGB channel) to Diffuse and the lower one (the alpha channel) to

15

Figure 3: Unreal Material Editor, example setup for transparency.

OpacityMask in the editor. You can click the Texture Sample to select it and
then hold control and drag it to move it if it is blocking the in- and output nodes.
See Figure 3 for an example.

Now deselect the Texture Sample (click anywhere else in the editor) and put
BlendMode to BLEND_Masked. If all is well, the material preview sphere will render
transparency.

A.2 Meshes

Import the mesh the same way as textures, in this case the .PSK files of the models
were imported. The default settings were used (no Maya coordinates).

Once imported, the mesh looks rather gray. To add the created materials, edit
the mesh and add them to the SkeletalMesh properties window in the lower left.
Material [0] should be the skin, Material [1] the cloth and finally Material [2]
the hair.

Since the mesh’s settings are set through UnrealScript, these can be found in
the source in appendix B. If one would rather set the settings through the Editor,
the variables and values have the same name in there.

A.3 Animation set

In the same mesh screen as above, create a new AnimSet (File > New AnimSet)
and then import the corresponding AnimSet. This can be done by File > Import PSA.
Both the AnimSet and AnimTree assets were given the same group in this package
for convenience.

A.4 AnimTree

The AnimTree or animation tree is what determines the animation that is actually
played. Figure A.4 depicts an AnimTree created for the female victim. Note-
worthy nodes are AnimTree, AnimNodeBlendPerBone, AnimNodeCrossfader, Ani-
mNodeRandom and AnimSequence Player.

AnimTree is the root of the tree, where all the animations combined lead to.
AnimNodeBlendPerBone lets you pick specific bones are defined that the ani-

mation below plays on. In this example, there are two instances of this node. The

16

Figure 4: An example AnimTree in the Unreal Editor (main AnimTree example).

left-most specifies to play the facial animations on the bottom on the HeadBone.
The top-most makes sure PostBonkedForehead (a full body animation) only trig-
gers the left arm.

AnimNodeCrossfader lets you merge two animations - the slider underneath
indicates the crossfading percentage.

AnimNodeRandom allows randomly picking an animation. It seems only one
random node is supported within an AnimTree, more functionality would have to
be implemented through UnrealScript.

AnimSequence Player denotes a certain animation. If for example just one
animation was wanted, the output node of an AnimSequence Player can be directly
connected to the Animation input node of the AnimTree.

Figure 5 depicts an AnimTree created for the male victim. All nodes are men-
tioned above except for AnimNodeBlendByPhysics. Blending by physics is natively
done by the engine when it detects and passes on certain events. The physics flag
can also be set through UnrealScript.

A.5 PhysicsAssets (not used in described design)

The PhysicsAssets defines how the joints and constraints in the skeletal mesh work.
The created victim physics asset, not used due to scaling issues, was made by right
clicking the Mesh in the Content Browser and selecting Create New Physics Asset.
The minimum bonesize can be increased to skip bones such as fingers or inside the
head, which make the (manual!) process of fixing the constraints and joints a lot
of work. The other details can be left to default, though for Collision Geometry the

17

Figure 5: An example AnimTree in the Unreal Editor, featuring AnimNodeBlend-
ByPhysics.

value Sphyl/Sphere is often used for characters. This setup should provide a very
basic PhysicsAsset, that still has to be corrected for realistic joints, constraints, and
bone weights.

18

B UnrealScript example source

Listing 1: FemaleVictim.uc
C l a s s FemaleVic t im ex tends VictimPawn c o n f i g (USAR) p l a c e a b l e ;

d e f a u l t p r o p e r t i e s
{

Begin O b j e c t Name=WPawnSkeletalMeshComponent
S k e l e t a l M e s h = S k e l e t a l M e s h ’ Vic t imPackage . Mesh . Gene r i cFemale ’
P h y s i c s A s s e t = P h y s i c s A s s e t ’ Vic t imPackage . Mesh . G e n e r i c F e m a l e P h y s i c s ’
AnimTreeTemplate=AnimTree ’ Vic t imPackage . a n i m a t i o n . Gener icFemale AnimTree ’
AnimSets . Add (AnimSet ’ Vic t imPackage . a n i m a t i o n . Gener icFemale AnimSet ’)

End O b j e c t

b I sFema le = TRUE
}

Listing 2: VictimPawn.uc
c l a s s VictimPawn ex tends UTPawn c o n f i g (USAR) ;

v a r AnimTree d e f a u l t A n i m T r e e ;
v a r a r r a y<AnimSet> d e f a u l t A n i m S e t ;
v a r AnimNodeSequence de fau l tAn imSeq ;
v a r P h y s i c s A s s e t d e f a u l t P h y s i c s A s s e t ;

v a r V i c t i m C o n t r o l l e r M y C o n t r o l l e r ;

v a r AnimNodeBlendList A n i m a t i o n L i s t ;

d e f a u l t p r o p e r t i e s
{

Begin O b j e c t Name=MyLightEnvironment
ModShadowFadeoutTime = 0 . 2 5
MinTimeBetweenFul lUpdates = 0 . 2
AmbientGlow = (R= 0 . 0 1 ,G= 0 . 0 1 ,B= 0 . 0 1 ,A=1)
AmbientShadowColor = (R= 0 . 1 5 ,G= 0 . 1 5 ,B= 0 . 1 5)
S h a d o w F i l t e r Q u a l i t y = SFQ High

End O b j e c t

Begin O b j e c t Name=WPawnSkeletalMeshComponent
bOwnerNoSee = FALSE
bUseAsOccluder = TRUE
CastShadow = TRUE
bCastDynamicShadow = TRUE
L i g h t E n v i r o n m e n t = MyLightEnvironment
L i g h t i n g C h a n n e l s = (Dynamic=TRUE)

B l o c k Z e r o E x t e n t = TRUE
BlockNonZeroExten t = TRUE

C o l l i d e A c t o r s = TRUE
S c a l e = 0 . 7 5

RBChannel = RBCC Pawn
RBCol l ideWi thChanne l s = (D e f a u l t =TRUE, GameplayPhys ics =TRUE, E f f e c t P h y s i c s =TRUE,

V e h i c l e =TRUE, U n t i t l e d 3 =TRUE, Pawn=TRUE)
End O b j e c t
Mesh = WPawnSkeletalMeshComponent

Components . Add (WPawnSkeletalMeshComponent)

Begin O b j e c t Name= C o l l i s i o n C y l i n d e r
C o l l i s i o n R a d i u s =+0022.000000
C o l l i s i o n H e i g h t =+0022.000000
B l o c k Z e r o E x t e n t = f a l s e
S c a l e =0 .75

End O b j e c t
Cyl inderComponent = C o l l i s i o n C y l i n d e r
C o l l i s i o n C o m p o n e n t = C o l l i s i o n C y l i n d e r

b C o l l i d e A c t o r s = t rue
b P u s h e s R i g i d B o d i e s = t rue
b S t a t i c = f a l s e
bMovable= f a l s e
b C o l l i d e W o r l d = t rue
C o l l i s i o n T y p e =COLLIDE BlockAll

}

s i m u l a t e d f u n c t i o n P o s t B e g i n P l a y () {

19

super . P o s t B e g i n P l a y () ;
S e t P h y s i c s (P H Y S I n t e r p o l a t i n g) ;

i f (M y C o n t r o l l e r == none) {
M y C o n t r o l l e r = Spawn (c l a s s ’ V i c t i m C o n t r o l l e r ’ , s e l f) ;
M y C o n t r o l l e r . SetPawn (s e l f) ;

}
}

s i m u l a t e d e v e n t Tick (f l o a t Del taTime) {
Super (Pawn) . T ick (Del taTime) ;

}

Listing 3: VictimController.uc
c l a s s V i c t i m C o n t r o l l e r ex tends A I C o n t r o l l e r c o n f i g (USAR) ;

v a r VictimPawn MyVictimPawn ;
v a r Pawn t h e P l a y e r ;

v a r f l o a t d i s t a n c e T o P l a y e r ;
v a r f l o a t d i s t a n c e T o T a r g e t N o d e N e a r P l a y e r ;
v a r Name AnimSetName ;

v a r F l o a t I d l e I n t e r v a l ;

v a r f l o a t p e r c e p t i o n D i s t a n c e ;
v a r boo l P l a y e r I n S i g h t ;

d e f a u l t p r o p e r t i e s
{

p e r c e p t i o n D i s t a n c e = 1000

AnimSetName = ”IDLE”
I d l e I n t e r v a l = 2 . 5 f
P l a y e r I n S i g h t = f a l s e ;

}

f u n c t i o n SetPawn (VictimPawn NewPawn) {
MyVictimPawn = NewPawn ;
P o s s e s s (MyVictimPawn , f a l s e) ;

}

f u n c t i o n P o s s e s s (Pawn aPawn , boo l b V e h i c l e T r a n s i t i o n) {
i f (aPawn . bDeleteMe) {

‘Warn (s e l f @ GetHumanReadableName () @ ” a t t e m p t e d t o p o s s e s s d e s t r o y e d Pawn” @ aPawn) ;
S c r i p t T r a c e () ;
G o t o S t a t e (’ Dead ’) ;

} e l s e {
Super . P o s s e s s (aPawn , b V e h i c l e T r a n s i t i o n) ;
G o t o S t a t e (’ I d l e ’) ;

}
}

s t a t e I d l e
{

e v e n t S e e P l a y e r (Pawn S e e n P l a y e r) {
t h e P l a y e r = S e e n P l a y e r ;
d i s t a n c e T o P l a y e r = VSize (t h e P l a y e r . L o c a t i o n − Pawn . L o c a t i o n) ;
i f (d i s t a n c e T o P l a y e r < p e r c e p t i o n D i s t a n c e && ! P l a y e r I n S i g h t) {

Wor ld in fo . Game . B r o a d c a s t (s e l f , ” I can s e e you ! ”) ;
P l a y e r I n S i g h t = t rue ;

} e l s e {
P l a y e r I n S i g h t = f a l s e ;

}
}

Begin :
Wor ld in fo . Game . B r o a d c a s t (s e l f , ” I d l e . . . ”) ;

S l e e p (I d l e I n t e r v a l) ;

G o t o S t a t e (’ I d l e ’) ;
}

20

