
Combining Robocup Rescue and XABSL

Maarten P. de Waard

Bachelor project: Final Thesis
Combining Robocup Rescue and XABSL

Maarten P. de Waard

5894883

Bachelor thesis
Credits: 6 EC

Bsc. Arti�cial Intelligence

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor

dr. A. Visser

Informatics Institute
Faculty of Science

University of Amsterdam
Science Park 904

1098 XH Amsterdam

June 26th, 2012

bertbredeweg
Sticky Note
Typo: should be 18EC

Contents

1 Introduction 1

2 Behavior Based Arti�cial Intelligence 1

3 BBAI Implementations and Alternatives 3

3.1 XABSL . 3
3.2 POSH . 4
3.3 Petri Net Plans . 5
3.4 COLBERT . 7
3.5 Other alternatives . 7

4 Language of choice 8

4.1 Advantages of Using XABSL . 8
4.2 Disadvantages of Using XABSL . 9
4.3 Creating an XABSL-speci�cation . 9
4.4 Traditionally Combining XABSL With Any Existing Program 11

5 RoboCup Rescue 13

5.1 Description . 13
5.2 Alternative possibilities . 13

6 Approach 13

6.1 Information �ow . 13
6.1.1 Messages . 13

6.2 World Class . 15
6.3 Other Added Simplicity . 15

7 Results 15

7.1 UsarCommander . 15
7.1.1 Driving a circle . 15
7.1.2 Walking a corridor . 15

8 Conclusion 16

9 Discussion and future work 18

Combining Robocup Rescue and XABSL Maarten de Waard

Abstract

In this research, a product will be introduced, that combines the Extensible Agent Behavior

Speci�cation Language (XABSL) with any program capable of having a socket connection. A use

of this product is shown, by combining it to the rescue project on the University of Amsterdam,

using UsarCommander, a program designed to control one or more robots, in a virtual rescue

operation in the simulator USARSim.

Keywords: XABSL, Behavior Based Arti�cial Intelligence, RoboCup, UsarCommander

1 Introduction

The research will be focussing on combining a specially designed Behavior Speci�cation Language
with any program capable of making a socket connection. In particular, the focus will lay on virtual
rescue operations, otherwise known as the RoboCup Rescue League. Using a behavior speci�cation
language will make it possible to separate speci�cation of behaviors from implementation.

At the end of the research, a product will be presented that can be inserted into any other program
to take over the behavior speci�cation. The method will be proven with UsarCommander, which is
used by the Rescue team on the University of Amsterdam.

Currently, the focus of research in the rescue missions is mainly on creating smart implementations
of sensors. Much of the actual controlling of robots is done by hand, using programs that forward
the camera images of the robots to a human operator controlling them. Some of these operators use
simple behaviors to help them, like for example making the robot automatically traverse a path to a
speci�ed point. This kind of simple task can be called a behavior.

An improvement that can be made in these behavior controlled robots, is in the speci�cation of
which behavior should be selected in a certain situation and how the behavior is executed. This can
be done by creating behavior-controlled robots, that can autonomously select the best behavior to
activate on a certain moment, and using their sensors as input, can choose the right way to navigate.

Currently, not many behavior-controlled exploration algorithms exist. An exception is path �nding
on challenging terrain [9] . This research will result in a method to easily adjust and improve the
behavior of any robot in any robot commanding program, especially focussing on UsarCommander,
the program used by the UvA Rescue team1.

There has however been research in Behavior Based Arti�cial Intelligence since 1986.

2 Behavior Based Arti�cial Intelligence

This was �rst researched by brooks [3], who laid the foundations of looking at intelligence in
di�erent layers. Brooks proposed that the following four elements were key requirements in a robot
controlling system:

1. Multiple goals: A robot should be able to chase multiple goals at the same time, for example
reaching a place in minimal time, while conserving power reserves. There should be an ability
to prioritize goals, so that dangerous situations can be evaded while the main goals are still
executed when the robot is able to. A simple example is being able to evade obstacles while
reaching the place it wants to reach.

2. Multiple sensors: Most robots have more than one sensor, each having its own error measure.
Some sensors have a bigger error in certain situations then others. For example while traversing
inside a building, a robot should not be trusting its GPS sensor (Global Positioning Satelite),
while being outside this would be a good option. A robot should be able to cope with these
di�erent errors, and use the right sensors at the right time with the right amount of trust.

3. Robustness: A robot's arti�cial intelligence should be robust. This means that when certain
sensors fail, or unexpected deviations from it's normal environment occur (for example when a
robot meant for inside-use comes outside a building, where there are less walls, but more small
obstacles), the robot should still be able to act in a sensible way, in stead of just stop and stay
still, or act randomly.

1Team description and more at: http://www.jointrescueforces.eu/wiki/tiki-index.php

1

http://www.jointrescueforces.eu/wiki/tiki-index.php

Combining Robocup Rescue and XABSL Maarten de Waard

Figure 1: A level 0 control system, as proposed by Brooks

4. Extensibility: Brooks only speaks of being able to enlarge the processing power of the robot,
when more sensors are loaded on the robot. I would like to add to this, that the intelligent
system should have some kind of modularity in its software, making extending the system to
work with a new kind of sensor, or even a totally di�erent robot or environment (for example
virtual vs the real world) easy, without having to rewrite big parts of code, or search through
the program to �nd where a sensor should be added and where the activation of the sensor
occurs, etc.

Brooks explains that typically, robot intelligences slice problems up in the following order: Sense,
map sensor data in a world representation, plan, execute task and at last: control motors to do so.
He then o�ers a new implementation of problem-decomposing, in the following order, and calls these
`Levels of competence'

0. �Avoid contact with objects (whether the objects move or are stationary).�
1. �Wander aimlessly around without hitting things.�
2. � `Explore' the world by seeing places in the distance that look reachable and heading for them.�
3. �Build a map of the environment and plan routes from one place to another.�
4. �Notice changes in the `static' environment.�
5. �Reason about the world in terms of identi�able objects and perform tasks related to certain

objects.�
6. �Formulate and execute plans that involve changing the state of the world in some desirable

way.�
7. �Reason about the behavior of objects in the world and modify plans accordingly.�

Each level of competence adds complexity to the entire system, thereby creating a layered im-
plementation of behavior in an (in that time) untraditional way. Brooks proposes that each of these
layers can be implemented in a �nite state automaton, resulting in �gure 1 as a representation for
the zeroth level, and, by augmenting this with an FSA for level one and two, in �gure 2.

In the level 0 representation, the robot will `run away' when it is standing still and a moving object
closes in. Alternatively, it will halt when a probable collision is detected. This is enough for simple
obstacle avoidance.

This representation is augmented by inserting the avoidance and wander states above it parallel to
the runaway state, in �gure 2, This results in level 1 behavior: a robot capable of wandering around
aimlessly, without hitting any objects. The direction outputted by the level 0 FSA is, when possible,
overridden by the direction of the level 1 output.

As can be seen, this method a very large FSA, when we add the second level of control. This has
the advantage of being capable of more complex behavior, in this case exploring an area, thus no more
simply wandering around, but reaching places it has not yet explored. A disadvantage of this method,
however, is that these big FSA's are quite complex to understand Adding more and more complexity
to the system results in bigger and bigger images, resulting in more representation complexity and,
in the worst case, in a system that only the creator can understand fully, but cannot anymore be
represented in a clear way. Of course it needs to be considered that this system was created in 1986,

2

Combining Robocup Rescue and XABSL Maarten de Waard

Figure 2: A level 2 control system, as proposed by Brooks

when computers were many times slower and capabilities were limited. Brooks managed to get the
level 2 version working on a real robot in the time, by distributing the system over many cores.

This is the main advantage Brooks proposes, of this kind of implementation: The processes needed
for the in- and output of the states, can be done with the least possible interaction between processes,
making Brooks able to distribute the implementation over di�erent processors and thereby able to
run this, for that time, complex program.

Nowadays, this implementation is a bit outdated, mainly because of the complex structure of
the representation. The behavior based approach, however, has been used in several solutions to
controlling robots. These solutions will be discussed in the following section.

3 BBAI Implementations and Alternatives

This section will cover most of the BBAI implementations that can be chosen from when deciding
to create an application that should be capable of specifying a Behavior Based arti�cial intelligence.

3.1 XABSL

One of the implementations of behavior based software is XABSL [7] [6]: a programming language,
created to easily describe behaviors for autonomous agents based on hierarchical �nite state machines.
It is the software that has been used by the German robotic soccer team to specify their robots'
behaviors. The team won in 2008, and the years after that.

The language is used to specify a �nite state automaton hierarchy. This means that the user
de�nes several �nite state automata, which can activate each other. Each state makes decisions on
certain variables, and as an output activate another state or another FSA. The hierarchies are built
up from the following components:

A XABSL-speci�cation is built up from the following components:

• Agents: A rooted acyclic graph, containing all the behaviors for one agent. Several of these
agents can be created, all having their own graph and thus their own behavior.

3

Combining Robocup Rescue and XABSL Maarten de Waard

Figure 3: Left: An example of a �gure generated by the XABSL compiler, from XABSL code. Right:
a POSH hierarchy

• Options: Complex agent behavior. Each option is on itself a �nite state machine, containing
several states. When creating an agent, the start option can be speci�ed, which makes the user
able to create di�erent agents from one Option hierarchy. Options can also have parameters,
enabling an option to have di�erent outputs for di�erent agents. Figure 3 contains an example
of a simple option, that makes the agent turn 360 degrees and then stop and wait for a certain
amount of time.

• States: Options are bounded to each other by states, each state has a decision tree, and an
action. The decision tree decides whether to stay at this state, or to go to another state. These
decisions are based on variables that can either be internal, or inputs.

When a decision tree decides to stay at its current state, an action is performed. Actions can
be activation of a basic behavior, or of another option. Several actions per state are permitted.

• Basic behavior: At every leaf of an option (so, every state with no other states to reference
to) a basic behavior is activated. This is a small piece of native code (C++ or Java), that
in�uences the actions of the agent in its world.

This is an improvement over Brooks' BBAI, because the FSA's are now no longer directly con-
nected to each other through state connections, but are connected via the actions of certain states, in
that way improving the comprehensibility of the representation, thereby also improving the modularity
of the system, because modules can be better recognized and then expanded.

By using basic behaviors, that can be written in C++ or Java, XABSL also enables distribution of
the system: Each basic behavior can run its own module. This way basic behavior can be a module
that simply makes a robot move, but also a module that �nds a ball in a soccer �eld, using libraries
like OpenCV. This makes an XABSL application capable of the same things as any native C++ or
Java application, which is almost everything one or more computers can do.

Section 4 will explain more clearly the advantages of XABSL, and the possibilities of agents,
options, states and basic behaviors.

3.2 POSH

POSH [2] is a very similar alternative implementation of a Behavior Speci�cation Language. Posh
is de�ned as a Behavior Oriented Design, which is a combination of Object Oriented Design (OOD,
used by object oriented programming languages like Java and C++) and Behavior Based Arti�cial

Intelligence (BBAI).
From OOD the language takes the object hierarchy that it is known for. In object oriented

languages a person is capable of creating an object based on another object. These can be Abstract
classes, or Interface classes. When using an abstract class to de�ne an object, this means the class
can be extended by another object: The new object automatically has all the properties its Base class

4

Combining Robocup Rescue and XABSL Maarten de Waard

(the original, abstract, class) has, but can override some of them, or add new ones. An interface class
can de�ne what its subclass should have, for example when an interface class speci�es a method that
searches for a doorway, using laser sensors, its subclass should implement this method. The interface
class itself does not have any actual implementations. BOD objects are literally built in an object
oriented language, thereby having all its advantages

The BBAI-part of it is the decomposition of intelligence as subtasks called acts. Examples of acts
are knowing your position and planning a route. There is no implementation of prioritizing certain
acts above others, other than that they come earlier in the POSH diagram.

Behaviors in BOD are thus speci�ed as a Behavior object, written in an Object Oriented language.
They are split up in actuators and senses. The actuators are used to act on the world, for example
move in a certain direction, or pick something up, whereas the senses are used to inform the planner
the current context. Context can be any piece of information about the world, or the agents internal
state. The whereabouts of an object, or the data from a laser scanner can be context, but the agents
current battery level is also context.. All the speci�ed behaviors together form the Behavior Library,
which can be used by the action planning system to select the right behavior on the right time.

Furthermore POSH uses three aggregates: simple sequences, competences and drive collections.

1. Simple sequences: The sequence is simply a sequence in which order a diagram should be
traversed

2. Competences: A competence is a prioritised set of condition-action pairs. These condition-
action pairs are based on the current context (described above). Because of the hierarchical
structure of the system, only small pieces of context have to be processed at a time. When a
certain part of competence is reached, competences have been passed higher up in the hierarchy,
meaning that this information needs no more checking. In this part there is assumed that in
the time it took to traverse the tree, the world has not changed signi�cantly.

3. Drive Collections: The drive collection is a special competence, that is executed before each
program cycle. The collection contains all vital condition-action pairs to be able to survive. For
example when an enemy is close (given that the environment has enemies that can seriously
harm the agent), the agent should hide from the enemy, or take other actions not to get harmed.
The drive collection can also contain routines that have to be executed every once in a while,
like checking the environment for safety

This is actually quite similar to XABSL, because selects actions based on decisions based on
its �ndings. The actions are always executed by an external program. There are some important
di�erences though:

• POSH is designed to be used by non-programmers. This means the interface is easy, colorful and
simple, whereas XABSL prioritizes complex capabilities, ignoring the fact that non-programmers
then couldn't use it. This improves the adaptability of XABSL far above the capabilities of
POSH, resulting in ability to create more complex behaviors.

• Where XABSL has a close coupling with the perception stream of the robot, POSH has no
variable management, enabling the system to be a lot easier to use, but also maximizing the
complexity of the speci�ed behaviors to a lower maximum than XABSL o�ers.

3.3 Petri Net Plans

Another possible method to represent robot behavior as plans, is by using Petri Net Plans (PNP), a
language based on Petri Nets (Also known as Place/Transition Nets or P/T Nets).

A Petri net is a mathematical modelling language, making it an alternative to the use of Finite
State Automata. The formal de�nition of a net, as given in [4], is the following:

�A net N is a triple (S, T, F), where S and T are two disjoint, �nite sets, and F is a relation on
S ∪ T such that F ∩ (S × S) = F ∩ (T × T) = ∅.�

5

Combining Robocup Rescue and XABSL Maarten de Waard

In this de�nition, the elements of S and T are respectively called places and transitions. The
elements of F are called arcs. A transition t can be made, when a marking M marks all of its input
places. If t is enabled at M, it will occur, and thus lead to the successor of marking M, which we call

M ′. This is denoted by M
t−→ M ′.

A Petri Net is a pair (N,M0), with N representing a net, and M_0 representing the initial marking
of N, which means thatM0 is the �rst marking of N. A sequence of transitions that enables the graph
to go from marking M0 to Mn, is called a �nite occurrence sequence. In�nite occurrence sequences
are possible too, when there is no clear end marking, but transitions keep on happening. If a state is
reached where transitions can no longer occur, this is not called an in�nite occurrence sequence.

The main advantage of Petri Nets, is that due to their de�nition, they are very analyzable. Three
attributes exist, on which analysis can be done more easily than most comparable mathematical
models.

1. Reachability: For most graphs it is hard to exactly calculate if every node in the graph can
possibly be reached. For petri nets, it is possible to calculate this automatically, and with great
certainty. An algorithm for this calculation is given in [8].

2. Liveness: Degrees of liveness can be assigned to Petri Nets. Loosely speaking, a petri net is
live when every transition can always occur again. More precisely, the following levels of liveness
are possible2:

• dead : It can never �re, i.e. it is not in any �ring sequence in L(N,M0)

• L1 − l ive: (potentially �reable) if and only if it may �re, i.e. it is in some �ring sequences
in L(N,M0).

• L2 − l ive: if and only if it can �re arbitrarily often, i.e. if for every positive integer k , it
occurs at least k times in some �ring sequence in L(N,M0).

• L3 − l ive: if and only if it can �re in�nitely often, i.e. if for every positive integer k , it
occurs at least k times in V , for some pre�x-closed set of �ring sequences V ⊆ L(N,M0)

• L4− l ive (live) if and only if it may always �re, i.e. it is L1-live in every reachable marking
in R(N,M0).

3. Boundedness: A petri net is bounded if its set of reachable markings is �nite. For petri
nets, it has been shown that this is also decidable, because an unbounded Petri net, is easily
characterized in the following matter:

An unbounded petri net is characterized by a reachable markingM, and a sequence of transitions

σ, so that M
t−→ M + L, where L is some non-zero marking and the sum of these markings

is de�ned place-wise. The sequence σ can be called a token generator when it, starting at M
leads to M + L. This generator makes the petri net unbounded.

For this section, it is extra important to know that Petri Nets have the ability of forking and joining
their tokens. This means that from one state, two tokens can be output, going to two di�erent states.
On the other hand two tokens from di�erent states can be asked as input for one state, making the
state wait for output from both input transitions, before continuing by outputting one token of itself,
in the next marking.

Petri net plans [11], is a language using these petri nets, to create special plans. Because of the
petri nets fork and join abilities, Petri Net Plans is explicitly suitable for controlling several robots.
The clear advantage of this approach, is that there is only one petri net plan needed, to control all
the robots in the �eld, whereas most other methods have one plan per agent.

An example of a petri net plan can be seen in �gure 4. It can be seen that the h_sync method is
used to halt the robots until both have synced, and only then continue to the next state.

Other advantages of Petri Net Plans are closely related to the advantages of Petri Nets above
Finite State Automata. A consideration has be done though: It is harder to specify a completely
su�cient petri net plan, than to specify several simple Finite State Automata.

2From wikipedia

6

Combining Robocup Rescue and XABSL Maarten de Waard

Figure 4: A petri net describing the actions of two robots, for a simple task execution. The robots
use h_sync to synchronize. Due to the join capabilities of a petri net, none of the robots will continue
to state p0n before the sync is done.

1 ac t p a t r o l 2 { i n t a}
2 s t a r t :
3 w h i l e (a != 0)
4 {
5 a = a−1;
6 Turnto (1 8 0) ;
7 Move (1000) ;
8 Turnto (0) ;
9 Move (1000) ;

10 }
11 succeed ;
12 o n I n t e r r u p t :
13 w a i t f o r (s fDo n ePo s i t i o n ()) ;
14 su spend ;
15 onResume :
16 a = a +1;
17 goto s t a r t ;

Figure 5: A simple speci�cation of a patrolling behavior in COLBERT

3.4 COLBERT

COLBERT is a programming language using the Saphira Architecture. The abstract of [5] states
that: �The design criteria for Colbert are:�

1. �To have a simple language with standard iterative, sequential and conditional constructs.�
2. �To have a clear and understandable semantics based on FSAs.�
3. �To have a debugging environment in which the user can check the state of the system and

rede�ne Colbert activities.�
4. �To have an small, fast, and portable executive.�

The main advantage of COLBERT is that it is small and fast. And as we all know: quick re�exes
are important in a dangerous world, so having small and fast behavior based AI has it advantages.
COLBERT is based on a subset of ANSI C and it is even possible to compile it to native C code, to
make the program even easier to run.

Figure 5 shows a small sample of speci�cation in the COLBERT language.

3.5 Other alternatives

These are the main alternatives. There are others, like using constraint logic, with aid of If-then-else
statements directly in the main program. One can also use machine learning techniques, for example
Reincorcement Learning methods are used by Sarsa and Q-learning. This is, however a complete

7

Combining Robocup Rescue and XABSL Maarten de Waard

di�erent way of looking at the problem, with its own set of results, which are not comparable to the
ones reachable with human-speci�ed behaviors, because the current learning techniques are not yet
su�cient.

4 Language of choice

In this research, of the above speci�ed languages, XABSL has been chosen. There are a few
advantages of XABSL above the others, but also a few disadvantages. The following part will discuss
why XABSL is, in this case, a better choice than de aforementioned alternatives. Then, this section
will explain more about how XABSL hierarchies are speci�ed, and how they are combined with other
programs, traditionally.

4.1 Advantages of Using XABSL

The �rst thing that needs to be considered when choosing a behavior speci�cation type and language,
is what characteristics are the most important. Here is a list of things that the ideal behavior
speci�cation language for multiple robot control should have.

• The points mentioned by Brooks:

� Multiple goals

� Multiple sensors

� Robustness

� Extensibility

• Modularity: It should be possible to build up a speci�cation in small pieces, thereby keeping
track of what is speci�ed where, and not getting entangled in pages of code, of which no body
remembers the function

• Documentation: Most programs, especially the ones used in the RoboCup, are not only used by
one person. For a team to be able to work on a project together, it is good to easily understand
the work somebody else has done. This is achieved by keeping documentation in your code,
but it is achieved even more by documentations on websites or in other documents, that can
be consulted without having to actually dig into the code.

All of the mentioned possibilities enable havingmultiple goals. POSH has the possibility of adding
the set of extra important goals, which the others do not, but POSH has too many disadvantages in
relation to XABSL to make this point count.

Of all the possibilities discussed, XABSL has the clearest solution for dealing with Multiple sen-

sors. XABSL has input variables, which, together, are a world representation that is constantly
updated by the Engine, that runs the decision-making program. Petri Net Plans has of course the
added possibility of keeping track of several robots at the same time, in the same graph. This could
be seen as an advantage above XABSL, but since XABSL o�ers us the possibility of adding extra
variables from the running program, the relevant information about other robots could also be added
to the reasoning engine via that method.

Robustness is the ability of functioning in another setting than usual. A lot of the robustness
of a robots behavior is not in the language in which it is speci�ed, but mainly in the speci�cation
itself. A way to force programs to be at least a bit robust, is by error-checking the speci�ed behaviors
before running the program. This can be done very easily in PNP, because Petri Nets have so many
algorithms for complete checking of reachability, liveness and boundedness. XABSL however also
o�ers a compiler that compiles your code and �nds the necessary problems. A complete survey of if
every node in the graph is reachable is not done, but to be able to do that, more knowledge of the
input variables should be present.

Extensibility was a bigger problem in 1986 then now. Computer systems were slower, forcing
programmers to create the fastest possible programs, when creating something heavy, like a behavior

8

Combining Robocup Rescue and XABSL Maarten de Waard

1 i n c l ude "my−ba s i c−b e h a v i o r s . x a b s l " ;
2 i n c l ude "my−s ymbo l s . x a b s l " ;
3 i n c l ude "Opt i on s / d r i v e _ c i r c l e . x a b s l " ;
4
5 /∗∗ S t a r t an agent w i t h a name and a s p e c i f i e d o p t i o n . ∗/
6 agent r obo t1 ("Robot−1" , d r i v e _ c i r c l e) ;

Figure 6: A very basic agent �le, which includes only the explicitly necessary

control system. Brooks' system had problems with their level 2 speci�cation, whereas nowadays
the cheaper computers could run that. Inherently, almost all possible options of creating a behavior
speci�cation would allow for a system to be expanded with a new sensor, or a new kind of processor.
In XABSL, adding a new sensor, would simply mean adding a new option, that accounts for dealing
with that sensor. Another possibility would be to process the sensor to a world representation, in
whatever program is used in combination with XABSL.

XABSL, together with POSH, are the most modular languages of the ones proposed. This is
because of the modular way the behavior speci�cations are built up. My preference goes to XABSL
in this case, because its �nite state automata enable a bit more complex implementations than the
acts used in POSH hierarchies.

In contrast to the other possibilities, the XABSL compiler o�ers a method of directly translating the
code to svg images, and the comments to html context, and automatically combining those to a full
web page, with the entire documentation. Figure 3 shows an example of an automatically generated
image. These images, together with the extracted comments, make for a complete documentation,
which provides overview to any one who's interested, in less time and e�ort than when some body
would have to look through the code.

4.2 Disadvantages of Using XABSL

Especially PNP o�ers some great possibilities that XABSL does not. Using Petri nets in stead of the
FSA-hierarchy XABSL provides, has the following advantages:

• Mathematical proof of reachability: It can be useful to be able to show that every node in
a behavior speci�cation can certainly be reached. Unreachable nodes mean bad speci�cation,
which mostly comes from, or results in bugs, which in their turn results in a program that could
have worked better. Some of these di�erences, however, are resolved in [1]

• Multiple robots in one plan: PNP o�ers a possibility of using one plan with multiple robots, at
the same time. Of course, when using XABSL two robots can use the same option tree, but
when using PNP, the robots actually share the Petri Net Plan, enabling the system to work
more e�ciently. A part of this problem is solved by creating a shared world-representation in
the program that is used in coherence with XABSL, but some functions, like for example the
h_sync in �gure 4, are di�cult, if not impossible, to recreate using XABSL.

4.3 Creating an XABSL-speci�cation

When using XABSL in coherence with any application, the XABSL engine is used to control the
behavior. This engine uses a user speci�ed XABSL graph and the internal variables of the program it
is running in in coherence, to make decisions about what basic behavior, or option to run next. More
about the engine can be read in section 4.4

This engine runs on intermediate code that is automatically generated from several XABSL �les,
by the XABSL compiler. This intermediate code is a �le containing all the information from the
di�erent �les, which is read by the engine. The following �les are always used by the compiler:

• Agents: One of the �les, speci�es all the agents. This is the root �le of the XABSL hierarchy.
In this �le, all the other �les are included (similar to the include in the C programming language).

9

Combining Robocup Rescue and XABSL Maarten de Waard

option drive_circle

turn

done

differential
drive

(a) output option of the code

1 /∗∗ Dr i v e s a c i r c l e ∗/
2 opt ion d r i v e _ c i r c l e {
3 i n i t i a l s t a t e t u r n {
4 d e c i s i o n {
5 i f (amount_turned < 360){
6 s t a y ;
7 }
8 e l s e {
9 goto done ;

10 }
11 }
12 ac t i on {
13 d i f f e r e n t i a l _ d r i v e (speed =0 ,
14 tu r n i ng_speed =−0.3);
15 }
16 }
17 t a rge t s t a t e done{
18 ac t i on {}
19 }
20 }

(b) code in drive_circle.xabsl

Figure 7: A simple option (FSA), capable of making a robot turn a circle. In this option
amount_turned is an input variable and differential_drive is a basic behavior.

When that is done, agents can be speci�ed by typing agent robotName(�robotIdentifier�,

startOption). An example agent �le is given in �gure 6

• my-basic-behaviors and my-symbols: As you can see, the agent �le includes not only one
option, but also two �les with basic behaviors and symbols. The �rst of these two, contains
the names of the basic behaviors. These basic behaviors need to be speci�ed in C++ or Java,
depending on which of the engines is used. The �le simply names them, for the compiler to be
sure that these behaviors exist, and are called in the right manner.

The symbols �le de�nes all the variables that are used by XABSL. Three kind of variables exist:

1. Input variables: variables that are put into the engine, from the external program. For
example, the x and y position of the robot.

2. Internal variables: these are the variables that XABSL keeps track of itself. An internal
variable does not have to be implemented by the engine running program, but can be
completely modi�ed by the engine itself. Internal variables can also be constants, to enable
very simple modi�cation of constants like, for example, driving speed, without having to
recompile the main program.

3. Output variables: If XABSL should be able to change a variable in the main program, this
is an output variable.

These three together, enable complete control of XABSL in the main application, and the other
way around. The variables can be monitored at all time, by simply asking the engine for the
current value.

• Option de�nition �les: Each option de�nes a �nite state machine in its own �le. These options
are conveniently placed in a separate folder, and included by the agents �le. As can be seen,

10

Combining Robocup Rescue and XABSL Maarten de Waard

the robot in �gure 6 has option drive_circle as argument. The de�nition of this simple option
can be seen in �gure 7. An option always contains one or several states, one of which is the
initial state. This concept is known in Finite State Automata as the start of the automaton.
Optionally, a target state can be provided, which means that the option stops there.

As can be read on the XABSL website3 and in [7], every state has the following layout:

<state> ::=

[initial] [target] state <name> {

decision

{

[else] <decision tree>

}

action

{

{ <action definition> }

}

}

The decision tree makes decisions based on symbols speci�ed in my-symbols.xabsl. All common
boolean operators are supported, and because the trees are built up of merely if and else
statements, the tree is very simple to create and understand.

An action de�nition can contain several options or basic behaviors to be called. These will be
called in the order in which they are speci�ed, so not all at once.

An automatically generated documentation web page of an option always shows the code of
the decision tree (including comments), a graph of the �nite state automaton, graphs of every
state and links to the options or behaviors in the action de�nition.

4.4 Traditionally Combining XABSL With Any Existing Program

Before the existence of this research, XABSL could only be combined with other C++ programs, by
using the C++ XABSL engine, or later with Java programs, by using the Java engine. Of course the
third possibility of parsing the intermediate code with an own implementation is present, but that
would require actually rebuilding the XABSL engine in the programming language of your choice,
which, to do it without faults, would require a great understanding of XABSL, and a lot of time. This
section will cover how the engine is used, and what it does. The focus will lay on the Java XABSL
engine, since that is the one used in the rest of the research.

Each robot will get its own reasoning engine. The engine is simply created by creating a Java
Engine object, which only takes an output stream (for debug messages) and a time function as an
input.

Next, all the symbols and basic behaviors present in the my-symbols and my-basic-behaviors

�les have to be registered to the engine. This means that for every input variable, a variable of the
Java program running the engine needs to registered, together with the name it has in XABSL, and
the getter function you have created for the variable in Java. This enables the engine to access the
variable whenever it needs to.

Behaviors are registered almost the same way, but it uses a Java behavior class, which extends
the basic behavior class provided by the XABSL framework. This enables the engine to run the
execute() method of that class, which can be any type of native Java code. The behavior class of
a XABSL using program can do anything another Java class can, thus not limiting the possibilities of
the behavior.

Once everything is registered, the intermediate code can be read into the XABSL engine. This
results in the engine linking everything together, after which the engine can be used to select the
right behavior on the right time. This is done by calling the engine's execute method in a loop. This
enables users to choose when the engine should be executed, making it possible to wait until every
sensor has been updated, and then execute again.

3www.xabsl.de

11

C
o
m
b
in
in
g
R
o
b
o
cu
p
R
escu

e
an
d
X
A
B
S
L

M
aarten

d
e
W
aardFigure 8: The start screen of UsarCommander, alongside the screen where several options can be selected for a robot, including SLAM method and

1
2

Combining Robocup Rescue and XABSL Maarten de Waard

5 RoboCup Rescue

Before continuing with the research done, one last component has to be introduced. The Rescue
program used to test the framework on. This program is called UsarCommander. The program is
written in Visual basic and provides many tools to get information from a session in USARSim.

5.1 Description

UsarCommander4 was originally developed by Bayu Slamet, and extended by Arnoud Visser and many
others. The program takes care of connecting to USARSim (the simulator used in the RoboCup) and
makes the user able to easily get sensor data from the simulated robots. It is also possible to control
the robots with several types of behavior, like corridor-following, obstacle-avoidance, or tele-operation,
the last of which enables the operator to manually control the robots, using an interactive human
interface.

Over time, the system has been expanded with many subprojects, for example one implementing
a SLAM (Simultaneous Localisation And Mapping) algorithm, to make an accurate map from the
sensor data of several robots [10]. All the information used and produced by these subprojects can
be accessed by other subprojects, resulting in an ideal environment for creating new robot-controlling
applications. An example of the UsarCommander interface and its possibilities, is shown in �gure 8.

5.2 Alternative possibilities

Since the university of Amsterdam is not the only university that enrolls in the Rescue simulation
league of the RoboCup, alternatives to UsarCommander are available. It is however not a trend over
all of the world to create open source programs for the RoboCup, which limits the list of possibilities.

One alternative that is widely known is Iridium. A program created to provide easy access to
USARSim for programmers with little experience. This is a nice framework to test your programs on,
but it lacks the possibilities and features that UsarCommander o�ers.

6 Approach

There is one problem left to solve: UsarCommander is written in Visual Basic, whereas XABSL is
written in C++ or Java. The solution is socket programming.

Sockets programming is possible in almost every common programming language, and simple
means `writing strings to, and reading strings from a network socket'. It enables computers to write
and read to and from not only their own network sockets, but any one that has been opened to listen.

This research o�ers a framework, written in Java, that enables using XABSL on any program that
has been written in a language supporting Socket programming.

6.1 Information �ow

This section will describe what information is contained in which part of the program, and how
information is shared between both of them. A representation of the information �ow of the program
can be seen in �gure 9. In this �gure, an S represents a socket. The commanding program is, in this
case, UsarCommander, but can be any program. JXI stands for JavaXabslImplementation, the name
of the project this research is about.

6.1.1 Messages

The socket connection enable sending messages from one module to the other. These messages are
always strings, so an encoding of other values has to be made when sending, for example, arrays.

Several methods exist for automatically encoding the messages that are sent over sockets. The
best, widely used example is JavaScript Object Notation (also known as JSON)5. It o�ers very easy
encoding of Java objects, when using a Java-like language (Java or JavaScript). Several libraries exist

4Available at http://www.jointrescueforces.eu/wiki/tiki-index.php
5Exact description and implementations can be found at http://www.json.org/

13

http://www.jointrescueforces.eu/wiki/tiki-index.php

Combining Robocup Rescue and XABSL Maarten de Waard

Robot commander

- Preproccesses world
- Contains runnable
basic behaviors

JXI
- Contains reasoning
XABSL engine
- Contains preprocessed
world representation

S

S

Sensor
information

Call to basic
behavior

S = Socket

Figure 9: The information �ow from any robot running program to JavaXabslImplementation (JXI).
A world representation is made in JXI, enabling the commander program, as well as JXI to preprocess
sensor data to variables in the world representation. For example ammount_turned can be created
in JXI, when executing the option drive_circle, from the information then ins sensor sends. S
represents a socket connection.

to use JSON with other languages, but some of them lack the simplicity JSON o�ers to others and
many of the JSON libraries are created by third parties, which makes them less trustworthy.

For example when using JSON in Visual Basic, a solution is o�ered by MSDN6, but it comes
down to the programmer having to do most of the formatting himself. For this particular reason, this
research uses its own, simpler notation for messages.

Every message is built up in the following structure:

<target>:<parameter1>,<parameter2>,...,<parameterN>

When messages are sent from the robot commander unit, the messages mostly consist of sensor
data. For example, a laser range scanner sensor would send the following data:

LASER:1.14,2.55,3.54,5.54,2.99,1.44

This can then easily be parsed in JXI, by splitting the entire string on the colon. The �rst ele-
ment of the array that comes out, is the name of the sensor, and the second element contains the
sensor data, in a string that can be split on the commas. Splitting is done by invoking the Java
method split(), which is a standard String operation.

When the XABSL engine invokes a Basic Behavior, JXI will send a message containing the be-
havior and its arguments, in the same fashion. For example:

DIFFERENTIALDRIVE:5,1

will invoke the di�erential drive method in the robot commander. Currently this is the only method
that has to be implemented in the commander program. The �rst argument resembles the driving
speed, the second argument resembles the turning speed. A positive turning speed makes the robot
turn left, and a negative value makes it turn right. Together, these values can invoke every movement

6The solution is described here: http://msdn.microsoft.com/en-us/library/bb299886.aspx

14

 http://msdn.microsoft.com/en-us/library/bb299886.aspx

Combining Robocup Rescue and XABSL Maarten de Waard

a simple robot can make. Of course, more behaviors can be added for �ying robots, or robots with
more moving parts.

6.2 World Class

The JXI package contains a world object. This object contains all the input variables XABSL requires.
In the future, this object can be shared with other robots, enabling them to know each others location.

The world class also provides a simple interface for users of the system to add their own, new,
variables to the JXI. More information on this class and adding variables, can be found in the code
documentation.

6.3 Other Added Simplicity

The connection is not the only thing JXI adds to the standard XABSL engine. The engine tends to
require some objects that are always the same, but not included in the standard package. An example
of these objects, is that before being able to register a decimal parameter (symbol) to the engine,
the interface of DecimalParameter should be implemented. This only has to be done once, to have
a runnable class in Java, but for some reason is not delivered with the XABSL engine. Of course JXI
does deliver a MyDecimalParameter class that does this.

Also an abstract class of a basic behavior (StandardBehavior) is shipped with the JXI package.
This is an extension of the BasicBehavior class in the XABSL engine, that also handles the socket
connection, making every basic behavior capable of sending messages to the robot commander unit.

7 Results

This section contains the results of the experiments that have been done with the system.

7.1 UsarCommander

A few simple adjustments had to be done to be able to run JXI alongside with UsarCommander. This
mainly involved receiving and sending messages over a socket connection, and creating a new behavior
in the choice menu, to be able to start a connection to XABSL when starting an USARSim session.

When these adjustments were done, both programs were capable of connecting to each other,
and the �rst XABSL hierarchy could run.

7.1.1 Driving a circle

The �rst XABSL hierarchy used, was one capable of driving a circle. The code and option graph can
be seen in �gure 7, which was explained in section 4.3. The agent directly started in this option, so
no other �les were needed.

This resulted in the robot turning slightly more than 360 degrees, which is Okay, because the
XABSL engine waits until it's over 360 degrees, and then sends back a message for the robot to stop
spinning.

Of course, driving a circle is not the only possible behavior we would want our robot to do. In
fact, it is no desired behavior at all, we could make it drive circles all day, but it would never reach
any victims that way.

7.1.2 Walking a corridor

That's why the next step is to make the robot walk a corridor. The algorithm for walking a corridor
was already placed inside the code of UsarCommander, so would not have to be reinvented.

The original walk-corridor relied on laser range scanner data. To minimize data tra�c between
the two units, the laser range scanner data had to be pre processed. This is done by taking the
minimum value of 7 regions of the scanner: from the `western' end of the robot to the `eastern' end.
The resulting option and code can be seen in �gures 10 and 11. The code only shows one of the

15

Combining Robocup Rescue and XABSL Maarten de Waard

option walk_corridor

decide
movement

move
forward

move
left

move
right

move
back

differential
drive

wait

Figure 10: The graph for autonomously traversing through a corridor. The principle is simple: the
robot always turns to the place where the longest laser ray comes from.

movement states, since the principle is the same for all of them. Creating the XABSL code for this
corridor walk algorithm took very little time.

The corridor traversing had a bit of problems. The XABSL engine reacted good on everything, just
as expected, but the UsarCommander was not reacting fast enough to send all the sensor data in time.
This meant that after running the program for a minute, the sensor data of 30 seconds in was only
just coming in! Since the (distributed) system was running on 2 di�erent systems (UsarCommander
and UDK on one, JXI on the other), the problem could not be in JXI, because it handled every piece
of information as soon as it came in. The problem thus had to be in UsarCommander, but couldn't
be solved in time anymore.

8 Conclusion

In its current state, JXI is a proof of concept. The framework works, as far as it has been used.
There is not yet any information of how the framework reacts in case of enormous agent speci�cations,
or with a big amount of variables. Still, everything that has been tested worked great on the JXI-side,
and XABSL has proven itself as capable of running a soccer league with 6 robots.

The JXI package o�ers great possibilities for every one who want to add Behavior Based Arti�cial
Intelligence to his project. I would recommend the usage of JXI above the ordinary Java Xabsl engine,
due to its poor documentation. The engine does not provide any documents about how to run it,
other than their unit test, whereas JXI has a code documentation online, which explains how it works
and how it is supposed to be ran.

Furthermore having a distributed system is often a good option. Especially when more robots
are supported, one command center should be consulted on what to do next. This command center
could very well be using JXI to choose the right behavior.

As an added note, a socket connected program is easily integrated in any kind of system. The
only thing needed is a socket connection to JXI, something that combines the right variables to a
simple message and something that reads the incoming messages, and runs the corresponding basic
behavior.

16

Combining Robocup Rescue and XABSL Maarten de Waard

1 /∗∗ Uses the data from the l a s e r s e n s o r to wa lk th rough a
2 ∗ c o r r i d o r as good as p o s s i b l e , w i t h ou t bumping i n t o the w a l l s ∗/
3 opt ion wa l k_co r r i d o r {
4 i n i t i a l s t a t e decide_movement {
5 d e c i s i o n {
6 i f (laser_max < maximum_laser_value){
7 goto move_back ;
8 }
9 e l s e {

10 i f (laser_max == laser_min_n){
11 goto move_forward ;
12 }
13 e l s e {
14 i f (laser_max == laser_min_nne | | laser_max ==laser_min_ne
15 | | l ase r_max == laser_min_ene)
16 {
17 goto move_r ight ;
18 }
19 e l s e {
20 i f (laser_max == laser_min_nnw | | laser_max ==laser_min_nw
21 | | lase r_max == laser_min_wnw)
22 {
23 goto move_le f t ;
24 }
25 e l s e {
26 s t a y ;
27 }
28 }
29 }
30 }
31 }
32 ac t i on {
33 d i f f e r e n t i a l _ d r i v e (speed =0 , t u r n i n g_speed =0) ;
34 wa i t (t ime =2) ;
35 }
36 }
37
38 s t a t e move_le f t {
39 d e c i s i o n {
40 /∗∗ go on t i l l t h r e a t i s o v e r ∗/
41 i f (laser_max == laser_min_nne | | laser_max ==laser_min_ne
42 | | l ase r_max == laser_min_ene | | laser_max == laser_min_n){
43 goto decide_movement ;
44 }
45 e l s e {
46 s t a y ;
47 }
48 }
49 ac t i on {
50 d i f f e r e n t i a l _ d r i v e (speed=forward_speed , t u r n i n g_speed=tu r n i ng_speed) ;
51 }
52 }
53 }

Figure 11: The XABSL code for autonomously traversing through a corridor. Only one of the
movement states is shown, since the principle is simple.17

Combining Robocup Rescue and XABSL Maarten de Waard

9 Discussion and future work

Of course, before combining this project to every system thinkable, some improvements can be
made to the JavaXabslImplementation. This section will sum up the main inconveniences and the
work that should be done to solve them.

• Multiple robots: Currently the program only supports using one XABSL engine with one robot
and one connection to a robot commander system. To enable using several connections, the
world class should be edited to support several robot information variables. Most of this editing
involves creating arrays in stead of single variables, which is not hard to bring into practice, but
for which more time was needed.

• Messages: Right now, the messages are plain and simple, but limited to simple data types.
JSON o�ers an improvement over this limited complexity, but adds poor support for some
languages. When complex variables are being used, including JSON should be considered. For
now, the simplicity of the used messages outweighs the complexity of JSON.

• Testing: The JXI framework has not yet been fully tested. The fact that UsarCommander
seemed to be too slow in sending sensor information, made the testing state a hard one. When
the bug in UsarCommander is �xed, more testing can be done. An alternative is to test the
framework on other systems, like Iridium or a new framework.

References

[1] R. Alur and M. Yannakakis. Model checking of hierarchical state machines. In ACM SIGSOFT

Software Engineering Notes, volume 23, pages 175�188. ACM, 1998.

[2] C. Brom, J. Gemrot, M. B�da, O. Burkert, S.J. Partington, and J.J. Bryson. Posh tools for game
agent development by students and non-programmers. In The Nineth International Computer

Games Conference: AI, Mobile, Educational and Serious Games, pages 126�133, 2006.

[3] R. Brooks. A robust layered control system for a mobile robot. Robotics and Automation, IEEE

Journal of, 2(1):14�23, 1986.

[4] J. Esparza and M. Nielsen. Decidability issues for petri nets. Petri nets newsletter, 94:5�23,
1994.

[5] K. Konolige. Colbert: A language for reactive control in sapphira. In KI-97: Advances in Arti�cial
Intelligence, pages 31�52. Springer, 1997.

[6] M. Lötzsch, J. Bach, H.D. Burkhard, and M. Jüngel. Designing agent behavior with the extensible
agent behavior speci�cation language xabsl. RoboCup 2003: Robot Soccer World Cup VII, pages
114�124, 2004.

[7] M. Lötzsch, M. Lötzsch, J. Bach, H.D. Burkhard, M. Jüngel, M. Lötzsch, M. Risler, M. Jüngel,
M. Risler, O. von Stryk, et al. XABSL-a behavior engineering system for autonomous agents.
PhD thesis, Diploma thesis. Humboldt-Universität zu Berlin, 2004. Available online: http://www.
martin-loetzsch. de/papers/diploma-thesis. pdf, 2004.

[8] E.W. Mayr. An algorithm for the general petri net reachability problem. In Proceedings of the

thirteenth annual ACM symposium on Theory of computing, pages 238�246. ACM, 1981.

[9] H. Seraji and A. Howard. Behavior-based robot navigation on challenging terrain: A fuzzy logic
approach. Robotics and Automation, IEEE Transactions on, 18(3):308�321, 2002.

[10] B. Slamet and M. P�ngsthorn. Manifoldslam: a multi-agent simultaneous localization and
mapping system for the robocup rescue virtual robots competition. Master thesis in Arti�cial

Intelligence at the Universiteit van Amsterdam, 11, 2006.

[11] V.A. Ziparo, L. Iocchi, P.U. Lima, D. Nardi, and PF Palamara. Petri net plans. Autonomous

Agents and Multi-Agent Systems, 23(3):344�383, 2011.

18

	Introduction
	Behavior Based Artificial Intelligence
	BBAI Implementations and Alternatives
	XABSL
	POSH
	Petri Net Plans
	COLBERT
	Other alternatives

	Language of choice
	Advantages of Using XABSL
	Disadvantages of Using XABSL
	Creating an XABSL-specification
	Traditionally Combining XABSL With Any Existing Program

	RoboCup Rescue
	Description
	Alternative possibilities

	Approach
	Information flow
	Messages

	World Class
	Other Added Simplicity

	Results
	UsarCommander
	Driving a circle
	Walking a corridor

	Conclusion
	Discussion and future work

