A Smartphone-based Controller for
Virtual Reality Applications

John Heukers
10050027

Bachelor thesis
Credits: 18 EC

Bachelor Opleiding Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904
1098 XH Amsterdam

Supervisors
Dhr. dr. Robert Belleman Dhr. dr. Frank Nack
Informatics Institute Informatics Institute
Faculty of Science Faculty of Science
University of Amsterdam University of Amsterdam
Science Park 107 Science Park 107
1098 XG Amsterdam 1098 XG Amsterdam

June 27th, 2014



Contents
1 Abstract
2 Introduction

3 Literature review

3.1 inertial measurement unit pose estimation . . . . . . ... ... ... ... ..
3.2 Inverse Kinematics . . . . . . . . . . . . .. e
33 Immersion . . . . . ... e e e
4 Approach
5 Theoretical foundation
5.1 Sensorfusion . . . . . . . . ... e
5.2 Inverse Kinematics . . . . . . . . . . . . . . e

6 Implementation

6.1 Hardwaresetup . . . . . . . . . . . . e e e
6.2 Android application . . . . . . . ...
6.3 Unity SCENE . . . . . . . . i e e e e e
6.4 SensorFusion . . . . . .. ...
6.5 Thumb pose estimation . . . . . . . . . . ... ... ...

7 Evaluation and results

7.1 Poseestimation . . . . . . ... ... ..o
711 WIIStpose . . . . . o oo e
7.1.2 Thumbopose. . . . . . . . . . . . e

7.2 Latency . . . . . . .o e e e e

8 Conclusion

9 Future work
9.1 Improvements on the current prototype . . . . . . . . . . . . .. ... ...
9.2 Expanding the prototype . . . . . . . ... ... Lo

|

11
11
12
13
14
15

16
17
18
19
20

23



1 Abstract

This research claims that a smartphone can be used to create a controller for virtual reality
applications. Such a controller would require motion tracking to provide a mapping of the
user’s physical body movements to that of the virtual avatar. The validity of this claim is tested
by the construction of a prototype that uses the accelerometer, magnetometer and gyroscope
of a smartphone to determine its orientation, and the touchscreen to determine the location of
the user’s thumb. A virtual scene consisting of a virtual arm holding a smartphone uses this
information to mimic the rotation of the user’s arm and the location of thumb. The performance
of these pose estimations by the prototype has been evaluated on a visual basis by overlaying
the pose of the physical arm and thumb onto that of the virtual model. The results indicate that
a smartphone is capable of accurately tracking the rotation of the lower arm and hand around its
three axis, and to relay the position of the user’s thumb as long as it maintains contact with the
touchscreen. While the virtual representation is capable of reproducing the rotation of the arm
and the translation of the thumb, there are several aspects of the pose estimation that cannot be
tracked due to a lack of data. These limitations include the manner in which the user is holding
the smartphone and a number of unnatural thumb pose solutions found by the inverse kinematics
algorithm.



2 Introduction

Virtual reality has seen an increase in attention during the past two years. The upcoming Head-
Mounted Displays (HMDs) such as the Oculus Rift and Sony’s Project Morpheus are likely to
provide a very compelling experience for consumers. This surge in interest and innovation in
the virtual reality field has given rise to numerous startup companies and research groups with a
specific focus on virtual reality technology. Research areas of interest include display technol-
ogy, motion tracking, interaction techniques, haptic feedback and many more. As the display
technology in HMDs improves to a point where prolonged use remains comfortable, the desire
for appropriate interaction techniques grows larger. Most virtual reality applications have the
ambition of convincing the users into believing they are no longer in the real world, but rather in
what ever virtual space they see in the HMD. This sense of actually being in this virtual space
is often referred to as presence, and the adequacy of the technological setup to accommodate
this feeling is often called immersion. There are many factors of a virtual reality experience that
have an effect on the level of immersion, and therefore the level of presence. One of these factors
involves the user’s body. The HMD effectively blocks all view of the outside world, including
ones body. Therefore, most virtual reality applications provide the user with a virtual body. This
virtual body will generally display most of the actions performed by the user, such as walking
around, opening doors and piloting vehicles. However, the majority of current virtual realty
applications require the use of a keyboard and mouse or game controller to control the user’s
avatar. Because the user is unable to view the outside world, they are also unable to look for spe-
cific keys on the keyboard or game controller, forcing the user to navigate the controls by touch.
Additionally these interaction techniques can all be considered super-human interfaces. A small
action on a game controller such as pressing a button or slightly nudging a joystick can result
in relatively large actions such as turning the user’s body and pushing obstacles aside. This can
cause a disconnect between the actions perceived by the users, as they observe the actions being
performed by their avatar, and the gestures they command their physical body to make. As will
become apparent in the following section, various studies have shown that a greater mapping of a
user’s physical gestures to those of the virtual avatar can greatly benefit immersion and therefore
presence. Achieving an accurate mapping of gestures will require motion capture technology.
This technology generally uses either sensors such as accelerometers and gyroscopes, optical
systems such as RGB cameras and infrared depth cameras or a combinations thereof. These
systems are often bulky and expensive, and they sometimes even require a dedicated room. This
greatly affects the accessibility of these solutions for the average consumer, forcing them to
stick with an interaction technique based on a keyboard or game controller resulting in a poor
experience for most virtual reality applications. A sensor device that is already in the possession
of a great majority of the consumers is the smartphone. Any modern smartphone has access
to accelerometer, magnetometer and gyroscope sensor data as well as having a touchscreen. A
combination of these components could be used to create a rudimentary motion tacking system
to form the basis for a virtual reality controller. This project will focus on tracking the move-
ment of a user’s arm. The users place a smartphone in their hand and put on an HMD. In the
virtual environment the users will be presented with a virtual body holding a virtual smartphone
in its hand. The accelerometer, magnetometer and gyroscope will be used to determine the ori-



entation of the physical smartphone. This orientation also dictates the orientation of the virtual
smartphone, and the virtual arm holding the smartphone will adjust its pose accordingly. If the
user’s thumb touches the smartphone’s touchscreen, those coordinates will be sent to the virtual
environment. The thumb of the avatar will then be placed on the corresponding coordinates on
the virtual smartphone, effectively mimicking the movement of the thumb as long as it main-
tains contact with the screen. This would result in a system that can track the rotation of a single
lower arm and hand and the translation of the thumb across a smartphone screen. This system
could provide numerous virtual reality experiences with an immersive and intuitive controller
for various interaction techniques. For example, the user could rotate the smartphone to point
at a virtual object and manipulate it by selecting it. Additionally the virtual smartphone screen
could be used to display various menus and options, allowing the users to navigate and inter-
act with it much like they would with a physical smartphone. In summary this project aims to
answer the following research question: Can a handheld smartphone be used to create a con-
troller for virtual reality applications? To answer this question a prototype of such a system will
be constructed. This prototype will then be evaluated on the range and accuracy of its motion
mapping to the virtual environment in addition to a review of its latency.

3 Literature review

Literature most relevant to this project involves algorithms to determine the orientation of a de-
vice via accelerometer, magnetometer and gyroscope sensor data, inverse kinematic algorithms
to determine the proper position of a kinematic chain given a target location and the relationship
between interaction methods and immersion in virtual reality applications.

3.1 inertial measurement unit pose estimation

Siegling et al. (2011) [7] describes the challenges of gathering sensor data using a smartphone. It
appears that smartphones are not able to gather sensor data at a consistent interval, this is larger
due to the multitasking behaviour of smartphone operating systems. The primary processor
switches between tasks on a timer, even if the current task is not yet completed. This behavior
can result in occasional sensor measurements being skipped in favor of another process. They
propose interpolation methods as a possible solution. Lawitzki (2012) [2] uses the sensors of a
smartphone attached to a headset to track the orientation of the user’s head. This information is
then used to calculate the location of a bineural audio source. Using smartphone sensor data to
track its orientation is not a trivial matter. Each of the sensors in a smartphone has strengths and
weaknesses: The accelerometer and magnetometer have poor short-term accuracy, yet robustly
maintain their orientation over the long-term, This is in contrast to the gyroscope which is highly
accurate yet loses its orientation of the long-term. It would appear that the best method to
construct an accurate and responsive tracking system is to combine these three sensors. Such
an implementation is generally referred to as sensor fusion. Lawitzki’s master’s thesis includes
a well-documented implementation of sensor fusion that has been invaluable to the prototype
stage of this project.



3.2 Inverse Kinematics

Aristidou et al.(2009) [1] wrote a comprehensive paper comparing various inverse kinematic al-
gorithms and suggests a novel solution that is computationally cheap, supports movement con-
straints and allows for natural motion. This algorithm is called Forward And Backward Reaching
Inverse Kinematics (FABRIK). Instead of using rotational angles it transforms the positon of a
kinematic chain’s joints via lines connected between neighbouring joints. This implementa-
tion was then compared to various other algorithms on computational cost and quality of found
solutions. The inverse kinematic algorithms included in the evaluations were CCD, Jacobian
Transpose, Jaconbian DLS, Jacobian SV-DLS and Triangulation. The experimental results indi-
cate that the FABRIK algorithm is computationally cheaper than the other algorithms, requiring
the fewest iterations to reach the desired target. While in motion the solutions generated by the
FABRIK algorithm produce the most natural movements compared to the other algorithms.

3.3 Immersion

The first paper of interest, McMahan et al.(2012) [5], concerns the effect of varying levels of
both display fidelity and interaction fidelity on the level of immersion. Test subjects were placed
in a CAVE system with either a low or high fidelity display, and a low or high fidelity interac-
tion technique. The subjects were then asked to complete various tasks while their performance
was being measured. Their perceived sense of immersion was also measured based on a ques-
tionnaire. The results indicated that both a high fidelity display and high fidelity interaction
technique offered the greatest sense of immersion. Slater et al. (1995) [8] did a comprehensive
study on different types of interaction techniques for locomotion in a virtual space. These meth-
ods included pointing in the desired direction to move, or walking-in-place to move towards the
faced direction. It also goes in-depth to define immersion as the extent to which the virtual world
is extensive, surrounding, inclusive, vivid and matching while arguing that immersion requires
a good match between the user’s physical movements and those displayed in the virtual world.
Thus, the greater the precision of physical movement mapping to the virtual movement, the
greater the immersion. These articles are very useful because they reveal the important features
of interaction techniques that have an effect on the level of immersion and support the claim that
motion tracking is a requirement for a well performing virtual reality controller.

4 Approach

The first stage of this project involves the construction of a prototype. This prototype will use the
accelerometer, magnetometer and gyroscope of a smartphone to determine its orientation, and
the coordinates of the user’s thumb contact with the touchscreen to determine the location of the
user’s thumb. This data will then be send to a remote desktop computer via a wifi connection.
A game engine running on the desktop computer will receive and process the sensor data. The
virtual scene of the game engine will consist of an avatar holding a virtual smartphone in its left
hand. The orientation of the virtual smartphone will be dictated by the orientation data received
from the physical smartphone. The virtual arm connected to the smartphone will adjust its pose
accordingly by either rotating at the wrist or around the lower arm. The thumb of the virtual hand



will received its target location via the coordinates of the touch event of the physical smartphone.
An inverse kinematics script will ensure a proper position of the thumb’s kinematic chain. The
combinations of these components will result in a prototype capable of tracking rotations of
the lower arm and hand, as well as track the location of the thumb as long as contact with the
touchscreen is maintained. The performance of these components will be evaluated on a visual
basis by comparing the pose of the physical arm and thumb with their virtual representations.
The evaluation will be concluded with a measurement of the prototype’s latency.

5 Theoretical foundation

This section will provide the theoretical knowledge behind the sensor fusion algorithm, which
is used to track the rotation of the user’s arm, and inverse kinematics algorithms which is used
to determine the pose of the virtual thumb.

5.1 Sensor fusion

Determining the orientation of a smartphone is a common problem with various solutions rang-
ing in complexity and performance. The prototype of the virtual reality controller requires re-
sponsive and accurate tracking of the changes in orientation. Significant motion-to-photon lag
or inaccurate orientation estimates would undoubtedly have a negative impact on the practicality
of the smartphone as a controller. Currently, the sheer majority of smartphone games and appli-
cations that utilize the orientation of a smartphone in any meaningful manner rely on data from
the accelerometer and the magnetometer. The accelerometer measures, as the name suggestions,
the acceleration of the smartphone along three axis (see figure 1). To get an intuition into the
workings of an accelerometer one could imagine it as a cube suspended by a spring on each
side, and each of those springs is attached to the body of the smartphone. In an environment
without gravitational forces (or during free-fall), the cube would not apply force to any of the
strings, and the accelerometer would therefore return O for each of the axis. If the smartphone is
resting on a stationary surface, it will measure an acceleration of 9.8m/s> away from the center
of gravity. This is because the cube is compressing the string below it, towards the center of
gravity. The force applied the phone to keep it from falling towards the center of gravity is the
value measured by the sensor, and therefore points away from the center of gravity.

The magnetometer measures the magnetic field in the environment and is often used as a
compass in smartphones. However, this sensor does not only measure the magnetic field of the
planet’s poles. It also senses the magnetic fields generated by nearby electronic devices and even
other components in the same smartphone. This sensitivity to other sources of magnetic fields
causes the sensor to be vulnerable to noise. [6] The magnetometer also has three axis, because of
this the magnetometer cannot function as a compass by itself because it lacks the information to
know which axis should function as the pivot point or in other words, what the horizontal plane
is. To address this problem it needs knowledge of the orientation of the smartphone, specifically
it needs to know what is up. Fortunately the accelerometer can provide this information. Recall
that the accelerometer can measure the direction of gravity. The direction pointing towards
the center of gravity can be used to determine the pivot point of the magnetometer, effectively



forming a compass.

These two sensor can be combined to determine the orientation of a smartphone. The ac-
celerometer can measure the pitch and roll of the smartphone. [3] The magnetometer aided by
the data of the accelerometer can form a compass which can determine the yaw of the smart-
phone. This is sufficient information to determine the orientation the device.

Figure 1: Axis of the smartphone

However, this solution is not optimal and does not meet the criteria of a fast and accurate
motion tracker. The magnetometer is unable to react quickly to large changes in orientation,
resulting is visible lagging. This problem can be addressed by adding information of the gyro-
scope to the system. The gyroscope is a sensor which has recently been a common addition to
modern smartphones. The gyroscope used in smartphones is that of the Micro Electro Mechan-
ical Systems (MEMS) variant. This type of gyroscope consists of a vibrating element inside the
sensor that is affected by the Coriolis effect as its frame changes its orientation. This measures
the angular velocity of the smartphone, which can be defined as the change of rotation per unit
of time. The orientation of the smartphone can then be determined by integrating the angular
velocity. The gyroscope has the great advantages of being very responsive to sudden changes in
orientation and is capable of giving robust measurements even during large rotations. However
during the calculation of the orientation small errors accumulate which result in increasingly
inaccurate orientation results. This phenomenon is ofter referred to as gyro drift. This unfor-
tunate characteristic of MEMS gyroscopes prevents it from being a practical solution for any
application designed for prolonged use by the user.

This leaves the final option of combing the data of all three sensors, also known as sen-
sor fusion. As previously mentioned, estimating the orientation of the smartphone via magne-
tometer and accelerometer has significant limitations including slow reaction time during large
movements and noise, but it does maintain an accurate estimation of the orientation over the
long-term. This is in contrast to the gyroscope which is responsive and accurate, however over
time it suffers from gyro drift. The robust orientation estimation of the magnetometer and ac-
celerometer can be combined with the orientation estimation of the gyroscope to cancel the gyro



drift while the gyroscope reacts to short-term changes in orientation. Combining the orientation
estimates of the magnetometer, accelerometer and gyroscope is done using a complementary
filter. The resulting orientation replaces the current orientation estimate of the gyroscope to re-
move any of the errors that have accumulated in that estimate due to gyro drift. The specific
implementation of this will be discussed in the following implementation section.

5.2 Inverse Kinematics

The inverse kinematics algorithm is required to be computationally efficient, allow for smooth,
natural motion and should support contraints to movement. Computational performance is very
important for virtual reality application since it can greatly affect the frame rate. The movement
of the thumb should also mimmic the movements of a real thumb as closely as possible, involv-
ing accurate range of motion and smooth movements. Applying constraints to the movements of
the virtual thumb will ensure that the possible solutions of the inverse kinematics script remain
within the natural range of motion of a thumb. As discussed in the literature review, the FABRIK
algorithm appears to meet these requirements. The algorithm for FABRIK can be found below.



Algorithm 1: A full iteration of the FABRIK algorithimn.

Input: The joint positions p; for i = 1, ..., n., the target position t and the distances
between each joint d; = |pjy —pil fori=1,....n— 1.
Output: The new joint positions p; fori =1, ... . n.

1.1 % The distance between root and Larget
1.2 dist = |p1 —t|

1.3 % Check whether the largel is wilhin reack
1.4 if dist = dy +do + ... + dy_; then

1.5 % The larget is unreachable
1.6 fori=1,....n—1do
1.7 % Find the distance v belween the target © and the joint position py
1.8 ri = |t — pil
1.9 :Jlt' = l’f,‘f'l"t'
1.10 % Find the new joint posilions pg.
111 Pis1 = (1= Ai) pi + At
112 end
1.13 else
1.14 % The target is reachable; thus, sel as b the initial position of the joint py
1.15 b=pm
1.16 % Check whether the distance between the end effector py and the farget U is greater than a
tolerance.

var | difa=|pa—t]
1.18 while i f4 = tol do

1.19 % STAGE 1: FORWARD REACHING
1.20 % Set the end effector p, as target t
1.21 p. =t

1.22 fori=n-1,...1do

1.23 % Find the distance ry between the new joint posilion pisa and the joind pg
1.24 ri = |pi+1 — il

1.5 Ai=difry

1.26 % Find the new joind positions py.
La7 pi = (1 — Xi) pis1 + Aips

1.28 end

1.29 % STAGE 2: BACKWARD REACHING
1.30 % Sel the rool py ils inilial posilion.
1.31 pp=hb

1.32 fori=1,...n—1do

1.33 % Find the dislance ry between the new joint posilion p; and the joint py,
L34 i = |pi1 — Pl

1.35 Ai=difri

1.36 % Find the new joinl positions pg.
1.37 Pi+1 = (1 = M) pi + Aipis1

1.38 end

1.39 difa = |pn —t]

1.40 end

1.41 end

Figure 2: The FABRIK algorithm [1]
10



This algorithm does not apply rotational changes to the joints of the kinematic chain, as
is common amongst inverse kinematic algorithms, instead it translates the position of the joints
to orient the segments of the chain into their proper position. The first step of this algorithm
is to determine whether the target location for the thumb in is range by calculating the total
length of the thumb. This is done by taking the sum of the length of each segment and then
comparing it to the distance of the root to the target location. If the target location is not in
reach then the calculation is terminated. Otherwise the algorithm enters the forward reaching
stage. During this stage the end effector P, is placed on the location of the target r. Between
the new position of the end effector P'n and the position of the next joint P,_; the line , | can
be defined with a length of d,,_, the end of this line is the new position of P,_;. These same
steps are then repeated for all of the remaining joints. However, this would cause the root, P; to
change position as it moves into its place on the /; line. To address this problem the algorithm
executes the backward reaching stage. During this stage the steps of the forward reaching stage
are repeated from the top of the chain (P}) to the bottom (P,). This results in a kinematic chain
that has remained stationary on its root position, but is now closer to reaching the target location.
These steps form a single iteration. Within the FABRIK algorithm a limit is set to the maximum
number of allowed iterations, if the limit is reached then the algorithm will terminate.

6 Implementation

The implementation of the prototype can be divided into four parts: The android application
to gather, process and send sensor data, the Unity scene which contains the virtual environ-
ment including the virtual avatar, the sensor fusion algoritm to determine the orientation of the
smartphone and the inverse kinematics script to determine the movement of the thumb.

6.1 Hardware setup

The hardware used to implement and evaluate the prototype is listed below. Unity 4.4.3 was
used on the desktop computer to create the virtual environment.

Dekstop computer
CPU Intel Core 2 Quad Q6600 2.40Ghz
GPU ATI Radeon HD 5770
Memory 4 GB DDR2 800MHz
Operating System Microsoft Windows 7 64bit

11



Smartphone

Name Samsung Galaxy S4

CPU 1.6Ghz octa-core

Memory 2GB

Operating System Android 4.4.2

Sensors Accelerometer, magnetometer, gyroscope,
RGB light, barometer, proximity, gesture,
temperature, humidity, hall sensor

6.2 Android application

<< Smartphone >> << Desktop computer >>

A

Acc Gyro

‘ Mag

Lower arm

N
-+ )\ Virtual smartphone

Orientaton x

‘ Sensor fusion L;

E: Orientaton y '_

i i H

i Orientaton z ! o — Resef} thd

L H

| Touch

Volume button { ! ouchscreen

. Touchscreen x J,--'_-:: :::::: |K fcrgef
Touchscreen | i

' Touchscreen y

Figure 3: Diagram of the system

The Android Application gathers the sensor data from the accelerometer, magnetometer and
gyroscope and processes these into a single estimate of the orientation represented as 3D co-
ordinates. It also gathers the location of the user’s thumb on the touchscreen, contact with the
touchscreen is often called a rouch event. Touch events are represented by a set of 2D coordi-
nates, these coordinates are defined as the number of pixels in both width and height from the
top-left of the screen. Occasionally the user’s position changes after the first initialization of the
application, for example due to movement in a rotating chair. Any changes in the user’s ori-
entation will be considered rotational changes of the smartphone itself, since there is no frame
of reference to determine the orientation of the user and smartphone independently. In such a
case it is necessary to hold the physical smartphone straight and to then reset the position of the
virtual smartphone to its default, straight position. This is done in the Android application by

12



listening for any interaction with the volume button on the smartphone. If the volume button
is pressed, then a boolean is sent that will trigger the reset command in the Unity engine. The
smartphone gathers the orientation data, touchscreen coordinates and reset value into a single
packet and transmits this to the server running on the desktop via wifi. To achieve this the Open
Sound Control (OSC) java library is used [9].

6.3 Unity scene

The virtual scene in the Unity engine consists of an avatar holding a virtual smartphone in its
left hand. The smartphone’s dimensions of both the case and the screen have been modeled after
the dimensions of the Samsung Galaxy S4 smartphone to accommodate an accurate evaluation
of the pose estimation and the inverse kinematics performance.

The orientation data received from the smartphone is used to rotate the smartphone model,
however rather than rotating the smartphone around its center, the pivot point has been moved
the the location of the virtual wrist. In addition the virtual hand is attached to the smartphone,
so any rotation made by the smartphone model will also apply to the hand. This simple design
effectively mimics the rotating the wrist while holding a smartphone. To ensure proper behavior
of the arm model, the rotation data of the roll movement is also passed on to the model of the
lower arm to rotate along with the wrist. The rotation values are applied using the quaternion
system to avoid the risk of gimbal lock.

Figure 4: Unity scene

The red circle represents pitch
The blue circle represents roll
The green circle represents yaw

The values of ths touch event coordinates are based on the number of pixels of the smart-
phone’s screen. Therefore a single set of coordinates from different smartphone models with
varying screen resolutions does not translate to the same position on the touchscreen. To address
this problem the received touch event coordinates are translated into relative coordinates, taking

13



the smartphone’s screen resolution into account. This calculation is done by the following code
snippet:

touchX
touchY

(inputX / physcialResolutionX) * virtualResolutionX
(inputY / physcialResolutionY) * virtualResolutionY

The resulting set of coordinates corresponds to a location on the virtual touchscreen. This
set of coordinates also marks the target location for the inverse kinematics script of the virtual
thumb.

6.4 Sensor Fusion

The algorithm of this sensor fusion implementation is based on the implementation of Lawitzki
(2012) [2], The raw data from the smartphone sensors require preprocessing before they can
be used to estimate the orientation of the smartphone. Fortunately the Android API provides
various methods to simplify this process. First the sensor data from the gyroscope is retrieved
and its rotation vector is calculated. This is done by integrating the gyroscope data over time for
each of its three axis. The simplified calculation for one of the three axis is show below:

gyroOrientation = gyroOrientation + (gyroValue * deltaTime)

The gyroOrientation value will suffer from gyro drift over time as the additional gyroscope val-
ues introduce small errors. To cancel the gyro drift the orientation estimate of the accelerometer
and magnetometer is required. Android provides a helpful method for this calculation which
takes the rotation vectors from both the accelerometer and the magnetometer and returns a rota-
tion matrix. This rotation matrix can then be used to calculate the orientation matrix which is an
estimation of the orientation of the smartphone.

SensorManager.getRotationMatrix(rotationMatrix,null,accValue,magValue)
SensorManager.getOrientation(rotationMatrix, accMagOrientation)

To effectively combine the orientation estimate of both the gyroscope and the accMagOrien-
tation a complementary filter will be implemented. This filtering process needs to take place
at a constant and frequent interval, therefore the implementation of the complementary filter is
executed in a separate thread on command of a timer. At a sampling rate of 33Hz the following
code is executed once every 30ms.

FILTER_COEFFICIENT = 0.98

fusedOrientation = FILTER_COEFFICIENT * gyroOrientation +
(1-FILTER_COEFFICIENT)* accMagOrientation

gyroOrientation = fusedOrientation

14



This snippet of code gives a weight to the gyroscope orientation and the accMag orientation.
The combined values of the gyroscope orientation and the accMag orientation results in a fused
orientation estimate. This new orientation estimate then replaces the current orientation estimate
of the gyro orientation. Over time the robust long-term orientation estimate of the accelerometer
and the magnetometer will correct the orientation estimated by the gyroscope. Since the gyro-
scope orientation estimate is replaced by the fused estimated, the gyro drift errors that would
normally be introduced into the gyroscope orientation estimate are canceled. This implementa-
tion will result in an accurate estimation of the smartphone’s orientation that is both responsive
to large, short-term changes in rotation and well as maintaining a robust orientation over a long
term, unaffected by gyro drift. These estimated orientation values are then passed on to the
virtual smartphone to dictate its orientation and in turn the pose of the virtual arm that it is
connected to.

6.5 Thumb pose estimation

The FABRIK algorithm is applied to a simple model of a thumb consisting of three capsule-
shaped segments. The base of the thumb is rooted onto the virtual hand and the target of the
thumb’s end effector is determined by the coordinates of the touch event given by the physical
smartphone. If the user’s thumb is not making contact with the touchscreen, then the coordinates
of the inverse kinematic target is adjusted to hover 1 cm above the last known touch coordinates
on the virtual screen. This will allow the inverse kinematic algorithm to position the kinematic
chain of the thumb in a hovering pose over the screen. This elevated resting position of the
virtual thumb allows for the simulation of tapping behaviour. As the user briefly makes contact
with the touchscreen for a tapping guesture, the virtual thumb will snap back into position on
the touch event coordinates, after which it will return to the hovering position. In order to avoid
unnatural poses of the thumb a number of constraints are placed on the inverse kinematics script.
These constraints are on based on the range of motion of an average human thumb. [4].

15



40°

Figure 5: Range of motion of the thumb

As shown in figure 5, the first segment has an adduction range (blue) of 40°and an abduction
range (red) of 50°. The second segment has a flex range (yellow) of 70°, and the final segment
as a flex range (green) of 90°.

7 Evaluation and results

The purpose of this project is to determine whether a smartphone can be used as a virtual reality
controller. The success of such a controller is largely based on aspects that determine the prac-
ticality. Users with an HMD are effectively blocked from all outside view, therefore having the
ability to perceive the movements of ones body in the virtual environment becomes paramount.
The evaluation of the controller implementation will focus on this aspect. The first factor to be
evaluated is the accuracy of the pose estimation. If this virtual reality controller does not convey
the proper pose of the lower arm to the user then this can lead to a very poor user experience.
Take for example the interaction task of pointing the smartphone at a virtual object, if the pose
estimation is off by a significant amount, then the user is forced to be mindful of this limitation
during its use, this prevents the controller from being a natural form of interaction. In another
example where the user is controlling a vehicle by using the smartphone as a steering wheel,
any error in the pose estimation can result in a situation where the rotation of the smartphone no
longer results in a properly corresponding steering angle of the car. The poses most relevant to
this project concern the rotation of the lower arm, hand and movement of the thumb. Because
the accuracy of the visual representation of the arm is most important, the model of the arm and
thumb will be evaluated on a visual basis. Several images will be taken of both the physical
and virtual arm in various poses. The image of the physical arm will be given an outline which
will be overlaid onto the image of the virtual arm. This should give an indication as to the accu-
racy of the model since any significant differences in pose will be visible. The final part of the
evaluation concerns the latency of the smartphone controller. Latency is very important in any

16



video game, but especially so for virtual reality applications. A good user experience requires
the image of the virtual environment displayed inside the HMD to quickly and accurately reflect
the actions of the user. In the case of motion controllers a high latency forces the users to plan
actions and movements ahead of time and having to wait for their effects to become visible in the
virtual environment on the screen. When using an HMD this is worsened as the users cannot see
their physical body, and must therefore estimate the pose of their physical body while waiting
for the virtual body to catch up with them.

7.1 Pose estimation

The pose estimation of the lower arm and hand is evaluated visually, comparing the visual rep-
resentation of the virtual arm to that of the physical arm. This is done by recording both the
physical and virtual arm and overlapping these two images. Accurately quantifying the angular
difference between the pose of the physical arm and that of the virtual model using these images
has proven to be difficult, instead a limit is set on the error allowed by the virtual pose estima-
tion. The outline of the physical arm and thumb is used to define this limit. If the estimated
pose treads outside of this boundary, then the estimated pose is considered to have a significant
fault. Note that it is assumed that the user will hold the smartphone in a similar manner to that of
the virtual model, since the sensor data do not provide enough information to accurately detect
different grip location on the smartphone. The first step to this measurement is to suspend a
downwards facing video camera over a flat surface. This camera is used to record the move-
ments of the physical lower arm, hand and smartphone. On a remote computer the Unity engine
is running the virtual environment in which the virtual camera is placed over the virtual arm is
the same manner. Once the physical arm is straightened and flat against the table, the position
reset command is given to the smartphone to reset the rotation values of the virtual smartphone,
resulting in a virtual arm holding the smartphone straight. A number of wrist movements on
each of the axis are then performed. These two videos will then be overlapped to determine any
error in the pose estimation. The image of the first, straight pose of the virtual arm is overlapped
onto the initial straight pose of the physical arm, performing a series of scaling and translation
operations. The operations to synchronize the image of the virtual and physical arm will then be
repeated for each subsequent frame of the video that is evaluated. A number of the poses in the
recorded video are selected and overlaid onto each other. An outline of the image of the physical
arm is overlaid onto the virtual arm to enable the visual comparison of the estimated pose. The
images below show the overlaid images of a pose for each of the rotation axis of the arm and
movement of the thumb.

17



7.1.1 Wrist pose

N
| | |

Figure 6: Pose comparison of the default and yaw

Figure 7: Pose comparison of the pitch and roll

These images appear to confirm that the sensor fusion implementation is accurate, as any dif-
ference in orientation of the physical and virtual smartphone is not measurable in an image of
this quality. It does however reveal a limitation of this model: The left image of figure 7 shows
a slight translation of the virtual smartphone, while the orientation remains similar. This trans-
lation is due to the distance of the physical smartphone to the pivot point in the physical wrist
being different than that of the virtual model. Unfortunately the sensor data from the smartphone
is unable to provide enough information to address this problem leaving manual adjustment as
the only solution.

18



7.1.2 Thumb pose

The pose evaluation of the virtual thumb has been evaluated using the same method of the arm
pose evaluation. An outline of the physical smartphone and thumb is overlaid onto the image of
the virtual model to determine any faults in the pose estimation. A set of these images are shown
below. The green dot on the images indicate the location of the touch event on the physical
touchscreen, in other words this dot is the target location for the inverse kinematics algorithm.

Figure 8: Pose comparison of the thumb

Figure 9: Pose comparison of the thumb

Notice that the location of the end effector of the virtual thumb in the images of figure
9 is slightly off compared to the pose of the physical thumb. The location of the touchscreen
touch event is accurately represented as a set of pixel coordinates which are then translated to
the relative coordinate system of the virtual touchscreen, the indicated location of the touch even
is correct. However the contact area of the thumb with the touchscreen is not always in the same

19



location. These results indicate that various poses of the thumb have different contact areas with
the surface of the physical thumb. The model of the virtua; thumb assumes that the end effector
of the kinematics chains is always on the tip of thumb, and thus the tip of the virtual thumb
will always seek to reach the location of the touch event. However in the case of the images
of figure 9 the contact area appears to have shifted away from the tip of the thumb. While the
contact area of the physical thumb shifts positions, the end effector of the virtual thumb remains
in the same location. This results in numerous thumb poses that cannot be accurately mimicked
by the inverse kinematics script, because the end effector of the kinematic chain is the wrong
position. The left image of figure 8 reveals another limitation of the estimated thumb poses.
While in this case the end effector of the kinematic chain is in correct position resulting in a
properly positioned thumb location, the solution found by FABRIK algorithm is not a natural
pose of the thumb and does not resemble the outline of the physical thumb. Unfortunately
the issue of a mismatch of the contact area of the physical thumb with the location of the end
effector on the virtual thumb cannot be solved using the sensor data. The data does not provide
enough information to hint at shift in the contact area of the thumb. However, some areas of the
touchscreen may be more likely to have a shift in the contact area than others. If such a pattern
could be identified then this information could potentially be used to adjust the end effector to
more accurately resemble to location of the contact area of the physical thumb via heuristic rules.
The second problem of unnatural inverse kinematic solutions could potentially be solved by a
more accurate model of the thumb. A model that accurately simulates the flexing and relaxating
of muscles and the pull of tendons may provide the inverse kinematics algorithm with enough
information to determine the most natural pose in a given situation.

7.2 Latency

The latency of the smartphone controller is measured as motion to the last photon. This is de-
fined as the time between the initiation of the motion with the physical smartphone and the first
frame on the monitor that displays this motion. In practical terms this entails a camera to record
both the smartphone and the display. The smartphone’s orientation is adjusted multiple times
while being recorded. This video is then used to find the start frame of the physical smartphone’s
motion and subsequently to count the number of frames before that motion is first visible in the
virtual environment on the display in the background of the video. Ideally this would involve
a video camera capable of recording a high frame rate video, and a monitor with an equally
high refresh rate to display a new frame of the virtual environment on the background display
in every frame of the recorded video. These measurements were performed using a 120 frames
per second recording. Unfortunately the monitor used during these measurements had a maxi-
mum refresh rate of 60Hz, meaning that only 60 new frames can be displayed on the monitor
per second. The video recorded at 120 frames per second will therefore take two frames before
an updated frame is visible on the background monitor. This unfortunate circumstance during
the experiments may have resulted in a occasional miscounts of one frame during the measure-
ments. The process of motion to photon measurement is highly time consuming, therefore each
evaluation has been limited to 20 measurements. Such a small data set does impact the reliability
of the data. In order to determine whether the resulting average is statistically significant a t-test
is used to calculate the p value.

20



The first measurement relates to the latency of changes in orientation. The smartphone
is placed on a flat surface in front of a monitor on which the Unity scene is displayed. A 120
frames per second recording is made of this setup. During the recording the smartphone was
tilted upwards to roughly 45 degrees around the x-axis (see figure 1) multiple times. The video
was then used to count the number of frames between the first frame to display motion of the
physical smartphone, and the first frame to display that same motion on the background display.
Since the recording is 120 frames per second each frame spans 8.33ms. The amount of counted
frames is then multiplied by 8.33 to determine the latency of the system in milliseconds. The
histogram below shows the results of these measurements.

Freguency
Je

w

1]
140 145 150 155 160 165 170 175 180 185
Latency in miliseconds

Mean: 158.33 (p < 0.05)

Figure 10: Latency of the orientation sensors in ms

Note that while the results are assumed to be statistically significant based on the t-test
(p < 0.05), it cannot be stated with certainty since these results are based on a small dataset
(n=20). The average latency of the changes in orientation is 158.33ms, which is fairly high.
In order to determine the cause of this, the touchscreen latency was also measured. The same
measurement methodology was used, however instead of tilting the smartphone, the touchscreen
was tapped with the index finger multiple times. The results of these measurements are shown
in the histogram below.

21



Freguency

75 80 85 a0 95 100 105 110 115 120
Latency in miliseconds

Mean: 90.42 (p < 0.05)

Figure 11: Latency of the touchscreen in ms

The average latency of the touchscreen is 90.42ms, which is a significant improvement
over the orientation latency. As discussed in the implementation section, the Android applica-
tions sends single packets to the Unity engine containing both the orientation data of the smart-
phone as well as the touchscreen coordinates. That would acquit the complexity sensor fusion
implementation and the wireless connection of being to cause of the high latency seen during
orientation changes. The likely culprits that remain are the complementary filter, which may
reduce the speed at which the new orientation values can be updated, and any inherent latency of
the sensor hardware itself. Further experimentation will be required to determine the cause and
a possible solution. An experiment of particular interest would be to replace the complementary
filter with a Kalman filter to not only determine if the latency is improved, but also the overall
accuracy of the sensor fusion algorithm.

In order to get a frame of reference on the amount of latency of these two inputs, the latency
of a keyboard was also measured in the same Unity instance as the previous two latency mea-
surements. The measurement methodology remains unchanged. The histogram below shows
the results.

22



m

Freguency
J

1)

75 80 85 a0 95 100
Latency in miliseconds

Mean = 86.25 (p < 0.05)

Figure 12: Latency of a keyboard in ms

With an average of 86.25ms latency, it is similar the touchscreen latency. This is an encour-
aging result that indicates that the wireless connection and the algorithms used by the prototype
do not add a significant amount of latency.

8 Conclusion

The goal of this project is to explore the viability of a smartphone functioning as a controller
for virtual reality applications. The success of a virtual reality controller is dependent on the
performance of its motion tackers to properly simulate the user’s movements and on the practi-
cality of its interaction methods. This project focused on the motion tracking capabilities of the
smartphone sensors. The sensor data of the accelerometer, magnetometer and gyroscope have
successfully been combined using a sensor fusion algorithm. This algorithm accurately deter-
mines the orientation of the physical smartphone. A virtual environment has been constructed
in the Unity game engine consisting of a rigged avatar holding a virtual smartphone in its left
hand. The orientation of the smartphone has been used to determine the pose, limited to rotation
on its three axis. The accuracy and latency of this implementation have been evaluated. The
evaluation method for the pose estimation did not yield robust, quantifiable results. However it
did reveal a number of limitations of the models. While the rotation of the wrist and lower arm

23



appears to function as desired, the distance between the smartphone and wrist differs from that
of the virtual model. This results in a slight translation of the smartphone as it rotations around
the wrist. This causes a minor mismatch between the location of the virtual smartphone and
the physical smartphone. The evaluation of the thumb poses revealed that the surface contact
area of the physical thumb with the touchscreen does not remain static. The virtual model fo the
thumb cannot take the shifts of contact area into account resulting in an occasional mismatch of
desired thumb pose. Additionally not every solution found by the FABRIK algorithm is a nat-
ural pose. The latency evaluation revealed that the average latency of the orientation sensors is
158.33ms. This is considerably higher than the latency of the touchscreen (90.42ms) and a key-
board (86.25ms). Unfortunately the cause of the higher orientation latency is as of yet unknown.
Further research will be required to determine the cause of the higher orientation latency and
to determine whether a latency of 158.33ms negatively affects the interaction with the virtual
reality application. In summary: This project has resulted in a prototype capable of tracking the
rotations of a users lower arm and hand around its three axis.

9 Future work

9.1 Improvements on the current prototype

The resulting implementation of this project is still unpolished and will require additional re-
search and time to bring it to fruition. It is currently unclear whether the latency of the orien-
tation sensors can be improved, or whether the current latency of 158.33ms is harmful to the
virtual reality experience. Furthermore it as of yet unclear whether a more accurate model of
the thumb can solve the occasional unnatural pose solutions of the FABRIK algorithm. Further
research into user experience and whether the unpolished aspects of the prototype are damaging
to the virtual reality experience would provide greater clarity to the potential of this prototype
as a virtual reality controller.

9.2 Expanding the prototype

The current motion tracking component of the prototype is limited to rotation only. Expanding
the tracking capability to a full 6 degrees of freedom can greatly benefit immersion through a
greater mapping of the user’s movements and the ease of use during interaction with the virtual
environment. Unfortunately the sensors of a single smartphone do not provide adequate data to
determine the translation of the smartphone. Mounting RGB cameras and infrared depth sensors
to the smartphone could potentionally provide enough information to determine the translation.
Alternatively an additional smartphone or set of smartphone sensors could be attached to the
lower or upper arm to determine its orientation, thus being able to determine the translation of
the smartphone. This could even be expanded into a full suit of sensor clusters on each major
segment of the user’s body to provide a full-body motion tracking system.

24



References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

Andreas Aristidou and Joan Lasenby. Inverse kinematics: a review of existing techniques
and introduction of a new fast iterative solver. Technical Report CUEDF-INFENG, TR-632,
Department of Information Engineering, University of Cambridge, September 2009.

Joachim Lawitzki. Application of dynamic binaural signals in acoustic games. Hochschule
der Medien Stuttgart, 2012. Master’s thesis.

S. Luczak, W. Oleksiuk, and M. Bodnicki. Sensing tilt with mems accelerometers. Sensors
Journal, IEEE, 6(6):1669-1675, Dec 2006.

Merck Manuals. [www.merckmanuals.com]. [cited 2014 jun 27]; available from
www.merckmanuals.com/ pro fessional [special _sub jects [ rehabilitation/ physical therapy_
pt.html.

Ryan P. McMahan, Doug A. Bowman, David J. Zielinski, and Rachael B. Brady. Evaluating
display fidelity and interaction fidelity in a virtual reality game. IEEE Transactions on
Visualization and Computer Graphics, 18(4):626-633, April 2012.

Dahai Ren, Lingqi Wu, Meizhi Yan, Mingyang Cui, Zheng You, and Muzhi Hu. Design and
analyses of a mems based resonant magnetometer. Sensors, 9(9):6951-6966, 2009.

Jared D. Siegling and Jon K. Moon. Performance of smartphone on-board accelerometers
for recording activity. Orlando, FL, 2011. Obesity Society Annual Conference.

Mel Slater, Martin Usoh, and Anthony Steed. Taking steps: The influence of a walking
technique on presence in virtual reality. ACM Trans. Comput.-Hum. Interact., 2(3):201-
219, September 1995.

Open Sound Control. [http://www.illposed.com/]. [cited 2014 jun 27]; available from Azt p :
//www.illposed.com/software/ javaosc.html.

25



