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Abstract

It is important to train classifiers that are able to make a distinction between posed and spon-
taneous facial expressions for the improvement of facial expression classification In this thesis, the
focus is on the classification of posed and spontaneous enjoyment smiles using temporal facial infor-
mation. Four experiments are conducted to investigate the influence of temporal information from
the head, lips and eyes, and the influence of the fusion of these sources of information, on the classi-
fication of posed and spontaneous enjoyment smiles. Continuous Hidden Markov models (CHMM)
and Support Vector Machines (SVM) are trained on features extracted from smile videos from the
UvA-NEMO Smile Database (Dibeklioğlu et al., 2012). In the conducted experiments, features
from the lips are found to be the most discriminating features for classification, followed by fea-
tures from the head and from the eyes. Furthermore, the fusion of sources of information generally
leads to a better classification than each of the features on their own. Despite the low performance
of the CHMM classifiers which achieved a maximum recognition rate of 54%, the SVM classifiers
achieved a highest recognition rate of 78%. When compared to posed and spontaneous smile clas-
sification in still images, it is shown that the use of temporal information improves the classification
of posed and spontaneous enjoyment smiles with a recognition rate improvement of 4%.
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1 Introduction

The human face is an important source of information about gender, age, ethnicity and identity. In
addition, it can reveal a great deal about a person’s mood or emotions by means of facial expressions.
Facial expressions are a form of nonverbal communication and play a vital role in social interaction
between humans. Without the ability to show or identify facial expressions humans would be far less
capable of expressing themselves, understanding others and having interpersonal relationships.

For half a century, researchers in the field of Artificial Intelligence primarily focused on providing
computers logical-mathematical and linguistic intelligence and, conversely, the lack of emotional intelli-
gence causing an unnatural interaction between humans and computers (Picard, 2004). Since the 1990s,
however, a great deal of research on identifying facial expressions has been conducted for the improve-
ment of human-computer interaction (HCI) (Lien, 1998; Shan et al., 2006; Picard, 2004). To achieve a
more natural interaction between humans and computers, computers are trained to identify a person’s
feelings by classifying his/her facial expressions. This ability to sense human emotions by classifying
facial expressions is important for helping computers to choose appropriate behaviour, for example, by
being more helpful and behaving in a way that causes less aggravation in situations of distress (Picard,
2004).

The problem with this approach, however, is that facial expressions do not always correlate with
the emotional feeling being experienced, as expressions can be posed rather than being spontaneous1.
Hence, the classification of facial expressions is only useful for human-computer interaction when a
distinction can be made between posed and spontaneous facial expressions.

One of the most frequently studied facial expressions for the analysis of spontaneity is the smile,
because it is the most frequently used facial expression and the easiest facial expression to perform
deliberately (Ekman, 2009). For these reasons, the focus of this study will be on the smile, more specif-
ically, on smiles of enjoyment. These are smiles that are associated with feelings of happiness and,
thus, differ from smiles of embarrassment or smiles that are used to mask sadness or anger (Ekman and
Friesen, 1982; Keltner, 1995).

Existing research into smile spontaneity has either a psychophysical or a computational foundation
(Ekman and Friesen, 1982; Krumhuber and Manstead, 2009; Valstar et al., 2007; Dibeklioğlu et al.,
2012). The psychophysical research focuses on the perceived differences between posed and spon-
taneous smiles. In contrast, computational research focuses on algorithms and on extracting certain
features that are often suggested as being discriminating by psychophysical research. These features are
then used to train these algorithms to automatically distinguish between posed and spontaneous smiles.

In a great deal of psychophysical research on smile spontaneity, participants are instructed to pose
a smile or their smile is invoked by showing them amusing material (Krumhuber and Manstead, 2009).
Subsequently, researchers attempt to discover significant differences between posed and spontaneous
smiles in the recorded smiles. Furthermore, in some studies participants are instructed to rate sponta-
neous and posed smiles presented to them (Krumhuber and Kappas, 2005; Krumhuber and Manstead,
2009; Del Giudice and Colle, 2007). These faces may be partially visible, for example, faces of which
merely the mouth or the eyes are shown. The participants’ ratings are then analyzed in an attempt to
discover discriminating features of smiles used by people to distinguish between posed and spontaneous
smiles.

Initially, classifiers of enjoyment smile classification are trained on features extracted from static
faces (still images). The disadvantage of these classifiers is that they do not generalize well to dynamic
faces in videos that display the development and fading of the smile because they are trained on static

1N.B. although facial expressions can be classified as genuine or insincere instead of spontaneous or posed, I have chosen
the latter terms because genuineness analysis is less objective than spontaneity analysis. Whereas it is more complex, and
perhaps even impossible, to discover whether emotions perceived on a person’s face are truly present or absent, it is less
problematic to discover whether a perceived facial expression has emerged spontaneously or not.
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faces that merely display one pose in the entire process of smiling. Furthermore, because these classifiers
are trained on static faces, the facial dynamic information provided during a smile is lost and it is this
information that may be useful for improving classification.

More recently, the focus of computational research on enjoyment smile classification has shifted
to classification using dynamic features from facial expression videos. These classifiers make use of
dynamic facial features such as the speed and timing of the contraction of certain facial muscles (Cohn
and Schmidt, 2004; Valstar et al., 2007; Dibeklioğlu et al., 2012). The disadvantage of these classifiers,
however, is that dynamic temporal information of the face is often only partially represented. This is
because the smile can be divided into three phases: the onset, apex and offset. Subsequently, features
are computed once for each of the three phases, or the mean feature of each phase is calculated and used
to represent the phase. This approach therefore ignores a great amount of information per smile phase
and, therefore, per smile.

In the present study, a more continuous approach to temporal modelling is adopted in order that
temporal facial information is more explicitly preserved for improved classification of posed and spon-
taneous smiles. Consequently, the principal question of the present study is whether the use of temporal
facial information improves the classification of posed and spontaneous enjoyment smiles.

The method comprises data registration, temporal segmentation of the smiles, feature extraction,
training of the Continuous Hidden Markov models and Support Vector Machines, and the (separate)
fusion of these models trained on different features. Fusion of continuous Hidden Markov Models can
either be done by fusing the maximum likelihood estimates or by majority voting using the classification
result of each model. In contrast, fusion for Support Vector Machines basically means training on the
concatenation of different features (see Section 3 for a detailed description of the method). The design
criteria of the method are invariance to scale, meaning that a fixed distance between the head and the
camera is not required, invariance to head movements, robustness against illumination and free smile
duration.

1.1 Outline

In Section 2, firstly an overview is given of features analyzed in the literature and, subsequently, the
most promising dynamic features of which the influence on classification will be investigated are listed.
In Section 3, an overview of the method is given and discussed in more detail. In Section 4, the experi-
ments are described, including the employed dataset, the metrics and the results. The results are further
discussed in Section 5. Finally, the conclusion of this study is presented in Section 6 and directions for
future research are presented in Section 7.
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2 Related work

The facial movements of a smile and other facial expressions can be encoded by the Facial Action
Coding System (FACS), which was originally introduced by Hjortsjö (1969) and further developed by
Ekman and Friesen (1978). Each basic facial movement (action) caused by the contraction of individual
facial muscles or a group of facial muscles is assigned an Action Unit (AU). In general, a smile can be
identified by the contraction of the zygomatic major muscle, which raises the mouth corners, and this
corresponds to Action Unit 12 in the FACS. As both spontaneous and posed smiles involve Action Unit
12, several other characteristics of spontaneous and posed smiles have been analyzed in the literature
and experimented with in order to distinguish between the smiles.

Numerous psychophysical studies claim that the D-marker is a proper indicator of true enjoyment
smiles. They are called Duchenne smiles in honour of Guillaume Duchenne, who laid the foundation
of research on smile genuineness. The D-marker corresponds to Action Unit 6, which is the contraction
of the orbicularis oculi, pars lateralis muscle that raises the cheek, narrows the opening of the eyes,
and forms wrinkles (crow’s feet) around the eyes (see Figure 1). According to Ekman and Friesen
(1982) spontaneous enjoyment smiles indeed involve both the zygomatic major as well as the D-marker,
whereas posed smiles involve the zygomatic major but lack the D-marker. However, in experiments of
Krumhuber and Manstead (2009) the D-marker is about as frequently present in spontaneous as in posed
smiles. In addition, the study by Schmidt et al. (2009) finds that although 96 percent of the participants
shows the D-marker in their spontaneous smiles, 56 percent of the participants also show the D-marker
in their deliberate smiles.

Figure 1: The orbicularis oculi muscle. Retrieved from http://antranik.org/
muscles-of-the-head/

Another feature of smiles analyzed in the literature is smile symmetry. According to Ekman and
Friesen (1982) spontaneous smiles are more symmetrical than posed ones. However, in later studies by
Schmidt et al. (2009); Dibeklioğlu et al. (2012) a significant difference in symmetry between posed and
spontaneous smiles is not observed. Hence, smile symmetry is not used to discriminate between posed
and spontaneous smiles in this study.

Furthermore, the present study will focus less on static characteristics such as smile symmetry and
more on dynamic characteristics of smiles. Examples of dynamic smile characteristics analyzed in the
literature are the duration of the smile and the relative durations of the three phases of the smile: the
onset, apex (peak) and offset phases. According to Ekman and Friesen (1982) felt smiles have a duration
of two-thirds of a second to four seconds, as opposed to posed smiles that have a duration outside of this
interval. This claim is in accordance with findings from Krumhuber and Manstead (2009). In the present
study, the smiles are segmented into the three phases of the smile and the durations of each phase is used
to train the Support Vector Machines.

Characteristics of spontaneous and posed smiles analyzed in the literature are often used for the
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automatic classification of smiles. Cohn and Schmidt (2004) propose a linear discriminant classifier
that classifies posed and spontaneous smiles using information about their amplitude, duration and the
relation between the amplitude and duration. Smile amplitude information is also used in the present
study.

Valstar et al. (2007) not only focus on facial information, but propose a multimodal approach fusing
video data from the face, head and shoulders. The resulting classifier is very accurate and it transpires
that head motion is the most reliable source of data, followed by the face. Hence, head motion is used to
train the models in the current study and, furthermore, models trained on several sources of data, head
motion included, are fused to investigate the multimodal approach for posed and spontaneous enjoyment
smile classification.

In contrast to the multimodal approach of Valstar et al. (2007), Dibeklioğlu et al. (2010) propose a
classifier that merely makes use of eyelid movements and propose distance-based and angular features
for eyelid movements. This classifier is compared to classifiers trained on other facial features and the
results indicate that eyelid movements are more reliable for smile classification than movements of the
eyebrows, cheeks and lips. In addition, the results show that lip motion is the second most reliable source
of information for smile classification. The present study therefore investigates, besides the influence of
temporal information from the head, the influence of temporal information from the eyes and the lips
on the classification of enjoyment smiles. In addition, the trained classifiers in the study by Dibeklioğlu
et al. (2010) include Continuous Hidden Markov Models, which are also used in the present study.
However, in the study by Dibeklioğlu et al. (2010) data from different facial regions are used to train
seperate models and are not fused for improved classification. This fusion is performed, however, in
the present study for data from the eyelids, the lips and the head. Furthermore, the present study uses
different lip features than the ones presented by Dibeklioğlu et al. (2010).

More recently, Dibeklioğlu et al. (2012) propose a classifier that distinguishes between spontaneous
and posed enjoyment smiles by using the dynamics of eyelid, cheek, and lip corner movements. Support
Vector Machines are trained on different features for different phases of the smile and it is shown that for
different phases of the smile, different facial regions are more descriptive. Although this classifier makes
use of dynamic features, the dynamic temporal information of the face is more implicitly preserved than
in a Continuous Hidden Markov Model (CHMM). Whereas Continuous Hidden Markov Models can be
trained on raw sequences of, for example, lipcorner amplitude values, Support Vector Machines require
less raw training data with fewer dimensions. This is for example achieved by taking the mean of a se-
quence of lipcorner amplitudes in one of the smile phases. However, such an approach basically ignores
most temporal information. Dibeklioğlu et al. (2012) take a different approach and computed the mean,
maximum and standard deviation for segments with increasing and decreasing values in each of the three
phases of the smile (and for different regions of the face). In addition, speed and acceleration features
are computed. Therefore, although temporal information is generally less explicitly preserved in a SVM
than in a CHMM, SVMs can be used to investigate the influence of temporal facial information when
the features are computed in a way guaranteeing the preservation of a reasonable amount of temporal
information. Hence, in the present study both CHMMs and SVMs are trained to distinguish between
posed and spontaneous enjoyment smiles.

In summary, based on existing literature the present study investigates the influence of temporal
information from the head, lips and eyes, and the influence of the fusion of these sources of information,
on the classification of posed and spontaneous enjoyment smiles using CHMM and SVM classifiers.
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3 Method

In order to investigate the influence of temporal facial information on the classification of posed and
spontaneous enjoyment smiles, data is gathered and preprocessed, features are extracted and models are
trained and then fused. A visualisation of this pipeline is shown in Figure 2. The sources of temporal
information that are investigated are head motion, lip movement and eye movement.

Figure 2: The pipeline of the research method

3.1 Registration

Smile videos of varying lengths are used, see Section 4.1 for more details about the dataset. In each video
49 facial landmarks are initialised in the first frame and then tracked throughout the video. The facial
landmarks include points of the eyes, eyebrows, nose and lips, and are shown in Figure 3. The landmarks
are further denoted as lti , which means the i’th landmark in frame t. The facial landmarks and head
pose angles are estimated using the Supervised Descent Method (SDM) proposed by Xiong and De la
Torre (2013). Due to the usage of SIFT features extracted from patches around the landmarks, a robust
representation against illumination is obtained. Hence, because the estimation of the landmarks is robust
against illumination, the classifier trained on this data is also robust against illumination, satisfying the
criterion of illumination robustness presented in Section 1.

5



Figure 3: The 49 facial landmarks

3.2 Temporal segmentation

To satisfy the criterion of free smile duration (see Section 1), videos with smiles of varying lengths are
used for training. To align the onset, apex and offset phases of the smiles in the videos, the videos are
temporally segmented.

Onset, apex and offset phases of the smile can be detected by computing lip corner displacement
for every frame and selecting the initial longest continuous increase as onset, the longest continuous
decrease as offset and the timespan between the onset and offset as apex (see Figure 4). Here, lip corner
displacement is computed by averaging left and right lip corner displacement vectors and polynomials
are fit to the resulting function for smoothing purposes. Subsequently, onset, apex and offset are selected
on the smoothed curve.
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Figure 4: The temporal segmentation of a smile into the three phases onset, apex and offset.

3.3 Feature extraction

The temporal segmentation of the smiles is followed by feature extraction at different regions: the head,
the lips and the eyes. These features are extracted from each phase of the smile.

3.3.1 Head pose

There are three angles that determine the head pose: roll, yaw and pitch (see Figure 5). The angles are
defined within a range of −180◦ to +180◦, where a value of 0◦ for each of the angles corresponds to a
neutral head pose. As previously mentioned in Section 3.1, the roll, yaw and pitch angles are the output
of the landmarker by Xiong and De la Torre (2013). Each head pose signal is smoothed with (4253H,
twice) (Velleman, 1980), which is a running median smoother of 42, 5 and 3. Subsequently, the signal
is normalized with respect to the first frame by subtracting the first frame from the signal.

Figure 5: Head pose angles. Retrieved from http://msdn.microsoft.com/en-us/
library/jj130970.aspx

3.3.2 Lip features

The principal indicator of a smile, either posed or spontaneous, is the raising of the lip corners, caused
by the contraction of the zygomaticus major muscle. The distance between the center of the mouth and
the lip corners (smile amplitude) increases during the onset of a smile, until the maximum amplitude is
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reached in the apex phase, after which the amplitude decreases during the offset phase. In addition, the
angle of raised lip corners with respect to their non-raised pose also changes during a smile.

Hence, two different lip features are used: two-dimensional lip corner displacement features and lip
corner angle features. The facial landmarks used for the computation of these lip features are normalized
with respect to rotation, translation and scale. This satisfies the criteria of invariance to scale and head
movements presented in Section 1. Furthermore, once the lip features are computed, the signals are
smoothed with the running median smoother (4253H, twice) (Velleman, 1980). In addition, the lip
corner angle signals are normalized with respect to the first frame by subtracting the feature value of the
first frame from the entire signal.

3.3.2.1 Lip corner displacement vector
The lip corner displacement feature Dlipdisp is a vector from the center of the lips to the corners of the
lips (see Figure 6). Because Dlipdisp is a vector it encodes both magnitude (length) and direction. This
is useful because, in addition to the changing lip corner angle during a smile, the distance between the
center of the lips and the lip corners also changes. This change in distance is further referred to as lip
corner displacement.

Figure 6: Left lip corner displacement vector on a normalized face.

The lip corner displacement feature Dlipdisp is computed for the right and left lip corner by subtracting
the center of the mouth from the lip corners and normalizing by the length of the lip (Euclidian distance
between the lip corners) in the first frame. The length of the lip in the first frame is used for the nor-
malization of the extracted features in the rest of the frames because the Euclidian distance between the
lip corners changes during a smile and will, therefore, not correspond to the length of the lip in most
frames. The computation of the right lip corner displacement feature DlipdispR(t) and left lip corner
displacement feature DlipdispL(t) are as follows:

DlipdispR(t) =
(lt32 −

lt45+lt48
2 )

d(l132, l
1
38)

, (1)

DlipdispL(t) =
(lt38 −

lt45+lt48
2 )

d(l132, l
1
38)

. (2)
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As shown in Figure 7, facial landmarks lt32 and lt38 correspond to the right and left lip corner in frame t,
respectively. In addition, lt45+lt48

2 corresponds to the center of the mouth in frame t.

Figure 7: The landmarks on the lips

3.3.2.2 Lip corner angle
The lip corner angle feature is defined as the angle between the raised lip corners and their non-raised
counterparts. However, due to normalization of the facial landmarks prior to the computation of the
features, the lip corner angles can be computed by calculating the angle between the raised right and left
lip corner vectors and the unit vectors

[−1
0

]
and

[
1
0

]
, respectively (see Figure 8, where the unit vectors

are stretched for clarity reasons). The raised right and left lip corner vectors are identical to the lip corner
displacement vectors in the previous section, see Equation 1 and 2 their computation, and therefore the
lip corner vectors will be further denoted as DlipdispR(t) and DlipdispL(t).

In general, the angle α between two vectors A and B can be computed as follows:

α = cos−1

(
A •B

‖A‖ · ‖B‖

)
.

Hence, the angles Dlipangle (in degrees) for the right and left lip corner can be computed as follows:

DlipangleR(t) = cos−1

( [−1
0

]
•DlipdispR(t)∥∥[−1

0

]∥∥ · ‖DlipdispR(t)‖

)
, (3)

DlipangleL(t) = cos−1

( [
1
0

]
•DlipdispL(t)∥∥[ 1

0

]∥∥ · ‖DlipdispL(t)‖

)
. (4)

Figure 8: The lip corner angle features (right and left).
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3.3.3 Eye features

Two different eye features are used: eyelid displacement and an eye aperture angle. Before the extraction
of eye features, all faces are normalized with respect to rotation, translation and scale. This satisfies the
criteria of invariance to scale and head movements. Furthermore, once the eye features are computed the
signals are smoothed with the running median smoother (4253H, twice) (Velleman, 1980). In addition,
the signals are normalized with respect to the first frame by subtracting the feature value of the first
frame from the feature values of all frames.

3.3.3.1 Eyelid displacement
The eyelid displacement feature Deyelid(t) for frame t is defined as the Euclidian distance between the
middle point of the eye P0,3 and the middle point of the upper eye curve P1,2 in frame t, normalized by
the length of the eye (see Figure 9). Firstly, the middle point of each eye P0,3 is computed by taking the
mean of the corner points P0 and P3 of the eye.

Figure 9: The eyelid displacement feature Deyelid(t) (dm in figure).

As can be seen in Figure 3, the middle point of the upper eye curve is not one of the 49 facial
landmarks. Therefore, in order to find the middle point of the upper eye curve P1,2, a cubic Bézier curve
is fitted to the facial landmarks lt20 to lt23 for the right eye and to facial landmarks lt26 to lt29 for the left
eye. As can be seen in Figure 3 these landmarks are the four upper landmarks for each eye. The cubic
Bézier curve through four points P0...P3 is defined by:

B(b) = (1− b)3P0 + 3(1− b)2bP1 + 3(1− b)b2P2 + b3P3, b ∈ [0, 1]. (5)

Here, B(b) corresponds to P1 and P2 for b = 1
3 and b = 2

3 , respectively. Hence, B(b) corresponds to
P1,2 for b = 1

2 . Hence, the middle point of the upper eye curve for the left and right eye for frame t can
be computed as follows:

Bt
R

(
1

2

)
=

1

8
lt20 +

3

8
lt21 +

3

8
lt22 +

1

8
lt23,

Bt
L

(
1

2

)
=

1

8
lt26 +

3

8
lt27 +

3

8
lt28 +

1

8
lt29.

Furthermore, the length of the eye is defined as the Euclidian distance between the corner points of the
eye d(P0, P3), where d() denotes the Euclidian distance. This eye length is used for normalization.
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Finally, the eyelid displacement feature for the right eyeDeyelidR(t) and left eyeDeyelidL(t) are thus
defined as follows:

DeyelidR(t) =
d
(
lt20+lt23

2 , Bt
R(12)

)
d(lt20, l

t
23)

,

DeyelidL(t) =
d
(
lt26+lt29

2 , Bt
L(12)

)
d(lt26, l

t
29)

.

3.3.3.2 Eye aperture angle
There are two eye aperture angle features, one computed using a landmark on the eyelid estimated using
the Bézier curve fitted to the recorded landmarks on the eyelid, DeyeangleB(t), and the other computed
using exclusively the recorded landmarks, Deyeangle(t). See Figure 10 and Figure 11 for the two eye
aperture angle features.

The Bézier eye aperture angle feature DeyeangleB(t) is defined as the angle between the vector v2,
stretching from one corner to the other corner of the eye, and vector v1, stretching from the outer corner
of the eye P0 to the neighbouring landmark P0,1 (see Figure 10). In Figure 3, it is shown that landmark
P0,1 is not a recorded landmark and, thus, needs to be estimated. This is done by fitting a Bézier curve
B(b) to the recorded landmarks P0 to P3 so that P0,1 = Bt

R(56) for the right eye and P0,1 = Bt
L(16)

for the left eye. (see Equation 5 for B(b)). The Bézier eye aperture angle features DeyeangleBR
(t) and

DeyeangleBL
(t) for the right and left eye, respectively, can then be computed as follows:

DeyeangleBR
(t) = cos−1

(
(Bt

R(56)− lt23) •(lt23 − lt20)∥∥Bt
R(56)− lt23

∥∥ · ‖lt23 − lt20‖
)
, (6)

DeyeangleBL
(t) = cos−1

(
(Bt

L(16)− lt26) •(lt26 − lt29)∥∥Bt
L(16)− lt26

∥∥ · ‖lt26 − lt29‖
)
. (7)

Figure 10: The Bézier eye aperture angle feature
DeyeangleB(t) (βm in figure).

Figure 11: The eye aperture angle feature
Deyeangle(t) (βm in figure).

The eye aperture angle featureDeyeangle(t), which is defined exclusively by recorded landmarks, can be
computed quite similarly to DeyeangleB(t), namely, by replacing Bt

R(56) and Bt
L(16) in Equations 6 and

7 by lt22 and lt27, respectively.
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3.4 Models

Modelling temporal facial information requires a model that can handle temporal information. Because
temporal facial information can be represented as a sequence of symbols it is natural to consider a
Hidden Markov Model (HMM). The advantage of an HMM is that it accepts sequences with variable
lengths, which is useful because the videos are of varying lengths. Moreover, this satisfies the criterion
of free smile duration.

Rather than the more commonly known and used discrete Hidden Markov Model, the continuous
variant is used: a continuous Hidden Markov Model (CHMM). In contrast to a DHMM, a CHMM
accepts sequences of any value on the real line. This is useful for modelling temporal facial information
because temporal information can be represented as a sequence of real values, where each consecutive
value represents the information of the next frame. The (continuous) Hidden Markov Model is further
explained in Section 3.4.1.

In addition to continuous Hidden Markov Models, Support Vector Machines (SVM) are used. As
opposed to the probabilistic CHMM, a SVM is a non-probabilistic classifier. A Support Vector Machine
is a binary classifier in which each sample is labeled with its class and represented as an n-dimensional
feature vector in high-dimensional space. During training, the SVM attempts to map the feature vectors
to points in high-dimensional space in such a way that the best separation between the two classes
is achieved, which is, a clear gap between the two classes. Although SVMs require feature vectors
(samples) to be of equal length, SVMs can be used for the classification of smiles with varying durations
by uniformly segmenting them and extracting features from the resulting segments (see Section 3.4.2
for more details).

3.4.1 Hidden Markov Model

A Hidden Markov Model is a Markov chain in which the states are unobserved or hidden. A Markov
chain is a system consisting of states in which the transition from one state to another exclusively de-
pends on the current state and not on the preceding state transitions. A Markov chain can be used to
compute a probability for a sequence of events observable in the world. However, in smile spontaneity
classification the event of interest, whether a person is smiling spontaneously or is posing a smile, is not
directly observable. The sequences of features extracted from the smile, however, are observable.

A Markov chain cannot be used to model a hidden process based on observable events, but a Hidden
Markov Model can. Hence, a Hidden Markov Model can be used for smile spontaneity classification,
where the intention of the smile (spontaneous or posed) is hidden, but the facial actions during the smile
are observable. In Table 1 the correspondence between smiles and the elements of the HMM can be
seen.

Smile HMM

Hidden Posed/spontaneous State in model

Observable Facial action Sequence of symbols

Temporal domain Dynamic behaviour A network of state transitions

Characteristics Smile State transition probability and
symbol probability

Recognition Smile similarity The confidence of output probability

Table 1: The correspondence between smiles and elements of the HMM. Adopted from Lien (1998).
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More formally, an HMM can be defined as a triple λ = (Π, A,B). Here, Π = (πi) is the vector of initial
state probabilities, which are the probabilities of a sequence starting in a particular state. Furthermore,
A = (aij) is the state-transition matrix, where (aij) is the probability of moving from state i to state
j. Finally, B = (bij) is the observation probability matrix, containing the probabilities of observing an
event oi in state xj .

The classification of posed and spontaneous enjoyment smiles requires two HMMs, one for each
class. During training, characteristics are extracted from each sample in the train set, mapped to the
corresponding observation sequence O and the model parameters (Π, A,B) are adjusted in a way that
maximizes P (O|λ), the probability of the observed sequence given the model. For the classification of
an unseen sample, Pw = P (O|λw) is computed for both HMMs. Subsequently, the class w correspond-
ing to the model with the maximum likelihood is selected as the final classification result.

3.4.1.1 Continuous Hidden Markov Model
The principal difference between a discrete HMM and a continuous HMM is that a continuous HMM
accepts continuously varying feature sequences and a discrete HMM constrains the feature sequences to
take values from a discrete finite alphabet. For this reason a CHMM rather than a DHMM is used for
modeling the continuously varying smile feature sequences.

Due to its continuous nature, a CHMM does not have a discrete set of prior state probabilities πi,
state-transition probabilities aij and observation probabilities bij , like a DHMM2, but a CHMM has
mixtures of multivariate of Gaussians as probability distribution functions. During training, the mean
and variance of each of the Gaussians is optimized to maximize the probability of the observed sequence.

3.4.2 Support Vector Machine

As previously mentioned in Section 3.4, a Support Vector Machine is a binary classifier, which means
that it classifies samples into two classes. Each sample is an n-dimensional feature vector which
is mapped to a data point in high-dimensional space and, subsequently, during training an (n−1)-
dimensional hyperplane is found that best separates the data points of the two classes.

When the data points are linearly separable, they can be linearly separated by two hyperplanes in a
way that the hyperplanes have no data points in between them. Then, a third hyperplane, the maximum-
margin hyperplane, can be selected in between the two hyperplanes that maximizes the distance to the
two hyperplanes (see Figure 12).

Figure 12: The maximum-margin hyperplane separating two classes.

2Although DHMMs always have a discrete set of prior state probabilities and state-transition probabilities, the observation
probability distribution can either be discrete or continuous.
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However, when the data points are not linearly separable by a hyperplane, other kernel functions
can be used to map the feature vectors to data points in high-dimensional space in a different way in
order that they are linearly separable in high-dimensional space. The radial basis function (RBF) is an
example of such a kernel function (see Figure 13). RBF nonlinearly maps the feature vectors of the
samples into high-dimensional feature space, where the points can be linearly separated by a hyperplane
(see Figure 14). The linear kernel and the RBF kernel will be used in the present study.

Figure 13: The radial basis function. Figure 14: RBF mapping.

3.4.2.1 Feature vector computation
In order to use the extracted features described in Section 3.3 for the training of SVMs, they need to be
altered because the sequences of feature values are of varying lengths due to the varying lengths of the
smiles. In addition, a sequence of values for one feature for one phase can be 100 frames long, which
would result in a 100-dimensional vector for a single feature for a single phase.

These problems can be avoided by selecting a single value, for example the mean, to represent
an entire sequence. This way, the number of dimensions is greatly reduced to three dimensions per
feature (the mean value of the onset, apex and offset). However, this approach ignores a great amount of
temporal information within each phase. Therefore, a different approach is taken in the present study.

Firstly, the mean signal is computed from the left and right feature signals (for features that have
a left and right variant). Then, for every phase of each feature, increasing and decreasing segments
are detected in the feature signal. For the onset phase of the eye aperture angle feature, for example,
this means that increasing and decreasing segments are detected in which the eye aperture angle is
increasing and decreasing, respectively (see Figure 15). Subsequently, the mean, standard deviation,
maximum value and duration ratio of the increasing segment group and decreasing segment group are
computed, which results in eight values per feature per phase. The duration ratio of a segment group is
computed by dividing the number of frames in the segment group by the total number of frames in the
increasing and decreasing segment group.
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Figure 15: Selection of increasing (red) and decreasing segments (blue) of eye aperture angles (normal-
ized with respect to the first frame) for the onset of a sample in the dataset.

Furthermore, the first and second derivatives of the feature signals were computed to obtain speed and
acceleration signals for each feature3. The increasing and decreasing segments are detected and the mean
and maximum of each segment group is computed. Subsequently, for each feature the mean, standard
deviation, maximum and duration ratio of the amplitude (regular) signals are concatenated with the mean
and maximum of the speed and acceleration signals.

In order to add more temporal information, the duration of each phase of the smile is computed. This
feature is not added to the separate feature vectors because it interferes with the results for the separate
features, but it is added to the concatenation of all the feature vectors to show its effect.

Lastly, the feature vectors are normalized with min-max normalization, so that they are rescaled
between 0 and 1. The principal advantage of normalization is that it standardizes the range of the
features so that features with values in greater ranges do not dominate the features with values in smaller
ranges.

3.5 Fusion

Different features may be more discriminating in different phases of the smile. In addition, certain
combinations of features may be more discriminating than the features separately. Therefore, fusion of
models trained on different features and phases may improve classification.

CHMMs trained on different features can be fused either by fusing the maximum likelihood esti-
mates or by majority voting. In the first approach, the maximum likelihood of the observed sequence
Pw
i is computed for each model λi. Subsequently, the fused maximum likelihood Pf of N models

are computed for each class w by computing a linear combination of the maximum likelihoods P i as
follows:

Pw
f =

N∑
i=1

aiP
w
i ,

N∑
i=1

ai = 1.

It should be noted that in the present study the weights ai are equal to each other. The weights could,
however, be optimized by learning.

3Speed and acceleration signals are not computed for the lip displacement vector features.
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The second approach to fuse CHMMs is majority voting of the final classification results. This means
that for each CHMM pair i (the model trained on the posed smiles and the model trained on the spon-
taneous smiles) the class w is voted for where Pw = maxPw

i (O|λi) and, subsequently, the votes are
accumulated for each class and the class with the majority of the votes is selected as the final classifica-
tion result.

Majority voting is not used in this study, because it is more likely that the fusion of maximum like-
lihoods gives more accurate results. This can be illustrated in the following example. Three models
trained on different features are fused. These three models will output two maximum likelihood esti-
mates for each class (per sample). For sample i, the first model outputs a maximum likelihood estimate
of 49.9% for class 1 and 50.1% for class 2. The second model outputs a maximum likelihood estimate
of 49% for class 1 and 51% for class 2. Apparently, the first and second model cannot classify the
sample well, as the maximum likelihood estimates are very close to each other. The third model outputs
a maximum likelihood estimate of 96% for class 1 and 4% for class 2 for this sample. Hence, the model
is quite confident the sample should be classified as class 14. Then, maximum likelihood fusion results
in 64.97% for class 1 and 35.03% for class 2. Hence, with maximum likelihood fusion, sample i is
classified as class 1.

However, with majority voting, the first and second model vote for class 2 and the third model
votes for class 1, which results in the sample being classified as class 2. As can be noticed, the two
models that classify the sample with low confidence overshadow the model that classifies the sample
with high confidence. Therefore, maximum likelihood fusion is preferred over majority voting and,
hence, maximum likelihood fusion is used in this study to fuse CHMMs. This type of fusion is called
late fusion.

As opposed to the late fusion scheme used for the CHMM classifiers, an early fusion scheme is used
for the SVM classifiers. This type of fusion does not include the fusion of model parameters or majority
voting, but the fusion of the data used to train and test the model. For example, the fusion of the SVM
trained on head pose features and the SVM trained on eye features can be fused by training a third SVM
on the concatenation of the head pose and eye features.

4The high confidence that the sample belongs to class 1 does not necessarily imply that the sample does belong to class 1.
However, it is likely that this is the case.
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4 Experiments

For the classification of spontaneous and posed smiles, individual CHMM and SVM classifiers are
trained on different features from the head, lips and eyes. For the CHMM classifiers 10-fold cross-
validation is used to train and test the models trained with different numbers of states. The model that
performs best is used for fusion5. The number of gaussians in the mixtures is set at six for most models,
but for CHMM classifiers trained on lip features eight gaussians in the mixtures is found to perform
better.

Furthermore, for the SVM classifiers, a two-level 10-fold cross-validation scheme is used, where
each time a test fold is left out, 5-fold cross-validation is used to train the system and optimize the
parameters. SVM classifiers with RBF (with parameter selection) are found to have a better performance
than classifiers with a linear kernel when trained on individual features (see Appendix A.2). However,
classifiers with a linear kernel perform slightly better when trained on all features (see Appendix D.1) .
Hence, the focus of Section 4.3 is on the results of SVM classifiers with RBF rather than on the results
for linear SVM classifiers.

4.1 Dataset

The dataset employed for the experiments is the UvA-NEMO Smile Database (Dibeklioğlu et al., 2012).
This database contains 1240 smile videos (597 spontaneous, 643 posed) from 400 subjects (185 female,
215 male) with ages varying from 8 to 76 years. Age and gender distributions for the subjects and smiles
can be seen in Figure 16. To obtain the posed enjoyment smiles subjects were instructed to pose a smile
as realistically as possible. Furthermore, for the spontaneous enjoyment smiles short and funny videos
were used to elicit smiles.

Figure 16: Age and gender distributions for the subjects (top), and for the smiles (bottom) in the UvA-
NEMO Smile Database. Adapted from Dibeklioğlu et al. (2012).

5For each feature CHMM classifiers with a number of states varying from one state to ten states are trained. The CHMM
with the highest mean recognition rate (of the onset, apex, offset and the entire smile) is selected for fusion with CHMM
classifiers trained on other features.

17



The videos are recorded in RGB colour with a resolution of 1920×1080 pixels with a frame rate of 50
frames per second. In addition, the videos are recorded under controlled illumination conditions and a
colour chart is present on the background of the videos (see Figure 17). Furthermore, each video starts
and ends with a neutral or near-neutral expression. For more details about the database see (Dibeklioğlu
et al., 2012).

Figure 17: Spontaneous (left) and posed (right) enjoyment smiles from the UvA-NEMO Smile Database

4.2 Metrics

The metric that is used to evaluate the models is the recognition rate. For both the CHMM and SVM
classifiers, the recognition rate is the combined accuracy of the classification for both classes. For
example, in the confusion matrix in Table 2, the recognition rate is computed as follows (here, a+ b =
c+ d, which is the size of the test set):

Rec =
a

a+b + d
c+d

2
· 100%

Classified as:
Spontaneous Posed

True class:
Spontaneous a b
Posed c d

Table 2: Confusion matrix of spontaneous and posed smile classification.

4.3 Results

CHMM and SVM classifiers are trained on head features, lip features and eye features for different
phases of the smile. The results for head pose, lips and eyes are reported in Section 4.3.1, 4.3.2 and
4.3.3, respectively. Furthermore, the results for the fusion of models trained on different regions are
reported in Section 4.3.4. Finally, the results of state-of-the-art methods evaluated on the UvA-NEMO
Smile Database are reported in Section 4.3.5.

4.3.1 The influence of head pose on classification

To classify posed and spontaneous smiles based on head pose, CHMM and SVM classifiers are trained
on the three head pose angles: roll, yaw and pitch. The CHMM classifiers trained on roll, yaw and
pitch provide a combined classification and, hence, the CHMM classification results are not divided
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into separate results for roll, yaw and pitch. In contrast, the SVM classification results comprise the
combined as well as the separate results for roll, yaw and pitch.

The results for the head pose CHMM classifiers with the highest recognition rates can be seen in
Figure 18. These classifiers have five hidden states. The results for the head pose CHMM classifiers
with different numbers of states can be seen in Appendix A.1. As shown in Figure 18, the recognition
rates of all phases are just above the level of chance. The three phases combined gives the best result
with a recognition rate of 51.68%.

Figure 18: CHMM classification results for head
pose for different phases of the smile and the entire
smile.

Figure 19: SVM classification results for head pose
for different phases of the smile and the entire
smile.

The SVM classification results greatly surpass the CHMM results (see Figure 19). In contrast to
the low CHMM head pose recognition rate of 51.68% for all phases combined, the corresponding SVM
recognition rate of 70.44% is much higher. Pitch angles of all phases combined provides the overall
highest recognition rate of 71.88%. Furthermore, each head feature reaches its highest accuracy when
the three phases of the smile are combined.

4.3.2 The influence of lip features on classification

To investigate the influence of lip features on the classification of posed and spontaneous enjoyment
smiles, CHMM and SVM classifiers are trained on the two lip features: the lip displacement vector
features and the lip corner angle features.

The results for the lip CHMM classifiers with the highest recognition rates can be seen in Figure
20. The CHMM classifiers trained on lip displacement features have eight states and the classifiers
trained on lip angle features have one state because these are found to have the best performance. The
results for lip displacement and lip angle CHMM classifiers with different numbers of states are shown
in Appendix B.1 and B.2, respectively. As shown in Figure 20, the combination of both lip features
during the apex gives the highest recognition rate for the CHMM classifiers (53.83%). Although this is
an improvement of roughly 2% with respect to the head pose CHMM classifiers, it is not a significant
improvement because it is still too close to the level of chance.
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Figure 20: CHMM classification results for lip
features for different phases of the smile and the
entire smile.

Figure 21: SVM classification results for lip fea-
tures for different phases of the smile and the en-
tire smile.

SVM classifiers trained on lip features outperform the CHMM classifiers (see Figure 23). Although
the highest accuracy for the CHMM classifiers is achieved by combing the lip features during the apex
(53.83%), the highest accuracy for the SVM classifiers is achieved by combing the lip features of all
phases (73.90%). In comparison to the head pose SVM classifiers (71.88%), this is an improvement of
roughly 2%.

Furthermore, the highest accuracy for individual phases is achieved by the onset lip angle features
(72.23%). The lip angle features generally achieve a higher accuracy than the lip displacement features,
except during the apex where lip displacement (65.57%) exceeds the lip angle features (61.36%) with
roughly 4%.

4.3.3 The influence of eye features on classification

To investigate the influence of eye features on the classification of posed and spontaneous enjoyment
smiles, CHMM and SVM classifiers are trained on combinations of the three eye features: the Bézier
eye aperture angle features, the (non-Bézier) eye aperture angle features and the eyelid displacement
features. Subsequently, the combination of eye features that is found to be most discriminating is used
for fusion.

The classification results for CHMM classifiers trained on individual eye features and on all eye
features combined are shown in Figure 22. The classifiers trained on Bézier eye aperture angle features
and (non-Bézier) eye aperture angle features both have six states and the classifiers trained on eyelid
displacement features have ten states. The results for Bézier eye aperture angle features, (non-Bézier)
eye aperture angle features and eyelid displacement features trained on different numbers of states are
shown in Appendix C.1, C.2 and C.3, respectively.
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Figure 22: CHMM classification results for eye
features for different phases of the smile and the
entire smile.

Figure 23: SVM classification results for eye fea-
tures for different phases of the smile and the en-
tire smile.

The classification results for CHMM classifiers trained on the combination of Bézier eye aperture angle
features and eyelid displacement features are shown in Figure 24. The highest accuracy for this combi-
nation of features is reached during the apex (52.94%). In Figure 25, the classification results are shown
for CHMM classifiers trained on the combination of (non-Bézier) eye aperture angle features and eyelid
displacement features. This combination of features is most discriminating during the onset (52.57%).
However, the combination of all eye features exceeds both combinations of eye features (when combin-
ing all phases) with an accuracy of 53.13% (see Figure 22. Hence, the CHMM classifiers trained on all
eye features are selected for the fusion with classifiers trained on head and lip features.

When compared to CHMM classifiers trained on head features (51.68%) and lip features (53.83%),
the CHMM classifiers trained on eye features (53.13%) perform better than the head CHMM classifiers,
but worse than the lip CHMM classifiers.

Figure 24: CHMM classification results for
Bézier eye aperture angle, eyelid displacement
and the two combined.

Figure 25: CHMM classification results for eye
aperture angle, eyelid displacement and the two
combined.

Similarly to CHMM and SVM classifiers trained on head and lip features, the SVM classifiers trained
on eye features outperform the CHMM classifiers trained on eye features (see Figure 22 and 23). The
results for the SVM classifiers trained on certain combinations of the eye features are shown in Figure 26
and 27. The highest accuracy for all eye features combined is 66.83%. The combination of (non-Bézier)
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eye aperture angle features and eyelid displacement features excedes this with an accuracy of 67.91%
for the combination of all phases (see Figure 27). The highest accuracy, however, is achieved by Bézier
eye aperture angle features and eyelid displacement features from all phases (68.51%), which is shown
in Figure 26. Hence, SVM classifiers trained on the latter combination of eye features are selected for
the fusion with SVM classifiers trained on head and lip features.

Figure 26: SVM classification results for Bézier
eye aperture angle, eyelid displacement and the
two combined.

Figure 27: SVM classification results for eye
aperture angle, eyelid displacement and the two
combined.

When examining the SVM results of the individual eye features, it can be noticed that eyelid displace-
ment features are most discriminating for individual phases (see Figure 23). Furthermore, comparing
the results for individual phases, each eye feature is most discriminating during the apex and least dis-
criminating during the offset.

4.3.4 The influence of fusion on classification

To investigate the influence of fusion on the classification of posed and spontaneous enjoyment smiles,
classifiers trained on different features are fused and the results are compared to the classification results
achieved by each of the features individually. As previously mentioned in Section 3.5, late fusion is used
for the CHMM classifiers and early fusion is used for the SVM classifiers.

The classification results for the fusion of CHMM classifiers trained on head and lip features are
shown in Figure 28. As can be seen, the fusion of head and lip features only improves classification
when combining all phases (54.21%). For individual phases, lip features are more discriminating than
the fusion of head and lip features.

Furthermore, the classification results for the fusion of CHMM classifiers trained on head and eye
features are shown in Figure 29. The fusion of head and eye features improves classification for the
onset and offset, but is outperformed by eye features during the apex and for all phases combined. The
highest head-eye fusion accuracy is achieved when combining all phases (52.98%), but this is exceeded
by eye features of all phases combined (53.13%).
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Figure 28: CHMM classification results for the
fusion of head pose and lip features.

Figure 29: CHMM classification results for the
fusion of head pose and eye features.

Moreover, the classification results for the fusion of CHMM classifiers trained on lip and eye features
can be seen in Figure 30. The fusion of lip and eye features does not improve classification for any of
the phases.

Finally, the classification results for the fusion of CHMM classifiers trained on head, lip and eye
features are shown in Figure 31. The fusion of the features from the three regions improves classification
merely for the onset and apex. The highest accuracy is reached by the fusion of all features during the
apex (54.14%).

When comparing the results for the fusion of every combination of features in Figure 36, it can be
noticed that the fusion of head and lip features achieves the highest accuracy (54.21%), followed by the
fusion of all features (54.14%), the fusion of lip and eye features (53.46%) and, finally, the fusion of
head and eye features (52.98%).

Figure 30: CHMM classification results for the
fusion of lip and eye features.

Figure 31: CHMM classification results for the
fusion of all features.

The classification results for SVM classifiers trained on the fusion, or concatenation, of head and lip
features are shown in 32. Similarly to the corresponding CHMM classifiers, the fusion of head and lip
features is generally outperformed by the lip features. The highest accuracy for the fusion of head and
lip features is achieved for all phases combined (72.87%), but this is exceeded by the lip features for all
phases combined (73.90%).
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Furthermore, the classification results for SVM classifiers trained on the fusion of head and eye
features are shown in Figure 33. The fusion of head and eye features improves accuracy during the
apex and for all phases combined, but is outperformed by head features during the onset and offset. The
highest accuracy for the fusion of head and eye features is achieved when combining all phases (72.46%)
and this exceeds all head and eye feature results.

Figure 32: SVM classification results for the fu-
sion of head pose and lip features.

Figure 33: SVM classification results for the fu-
sion of head pose and eye features.

Moreover, the classification results for SVM classifiers trained on the fusion of lip and eye features are
shown in Figure 34. The fusion of lip and eye features improves classification for all phases, except for
the onset. The highest accuracy is reached by fusing lip and eye features from all phases (74.60%).

Finally, the classification results for the SVM classifiers trained on all features are shown in Figure
35. The fusion of all features improves classification for all phases, except for the onset. The highest
accuracy is reached by training on all features from all phases (76.06%).

Figure 34: SVM classification results for the fu-
sion of lip and eye features.

Figure 35: SVM classification results for the fu-
sion of all features.

When comparing the fusion combinations in Figure 37, it can be noticed that for individual phases, the
fusion of head pose and lips achieves the highest accuracy during the onset (71.81%). Furthermore, the
highest accuracy is reached by fusing features from all regions and all phases (76.06%).

Moreover, the effect of the additional duration feature is also shown in Figure 37. The addition of
the duration feature results in a better classification for every phase, in particular for the onset and apex
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phases. Finally, the overall highest accuracy is reached by the fusion of all features from all phases with
the duration feature (77.85%).

Figure 36: CHMM classification results for the
fusion of certain combinations of features and all
features.

Figure 37: SVM classification results for the fu-
sion of certain combinations of features and all
features. Furthermore, the effect of an additional
duration feature is shown.

4.3.5 Comparison to state-of-the-art methods

Dibeklioğlu et al. (2012) evaluated several state-of-the-art method on the UvA-NEMO Smile Database.
The results of these methods and the methods of this study are shown in Table 3.

Method Correct classification rate (%)
Dibeklioğlu et al. (2012), Mid-level fusion. 87.02
Dibeklioğlu et al. (2012), Eyelid Features. 85.73
Proposed, SVM 77.85
Cohn et al. (2004) 77.26
Pfister et al. (2011) 73.06
Dibeklioğlu et al. (2010) 71.05
Proposed, CHMM 54.21

Table 3: Correct classification rates on the UvA-NEMO Smile Database. Adopted from Dibeklioğlu
et al. (2012).

Besides comparison to state-of-the-art methods that all use temporal information to some extent, the
proposed methods can be compared to the classification rate achieved for the classification of posed and
spontaneous smiles in still images. Such a comparison shows the influence of temporal facial informa-
tion on the classification of posed and spontaneous enjoyment smiles. Zhang et al. (2011) achieved an
accuracy of roughly 70% on a more conditioned dataset than the UvA-NEMO Smile Database using
SIFT appearance based features and FAP geometric features from the face. Furthermore, Petridis et al.
(2009) achieved an accuracy of about 75% on a more conditioned dataset, fusing information from the
face and the head. The classification of posed and spontaneous enjoyment smiles in still images is not
performed on the UvA-NEMO Smile Database, but the resulting classification rate is likely lower than
75% or 70% because the UvA-NEMO Smile Database is less conditioned.
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5 Discussion

In the conducted experiments, the SVM classifiers outperform the CHMM classifiers greatly. The high-
est accuracy for CHMM classifiers is achieved by fusing head and lip features from all phases (54.21%)
and the corresponding SVM accuracy is 72.87%. This low performance of the CHMM classifiers is
most likely due to their optimization and not due to the use of a CHMM per se. This is because the
CHMM classifier of Dibeklioğlu et al. (2010) evaluated on the UvA-NEMO Smile Database reaches an
accuracy of 71.05%, using features from the eyes only (see Table 3). Although the eye features used
in this study slightly differ from the eye features used by Dibeklioğlu et al. (2010)6, this cannot be the
reason of the huge difference in performance.

Because the CHMM classification results are low and lie within a small range (roughly 50% to 55%),
they are not very reliable and, therefore, not very useful for analysis. The rest of this section therefore
focuses on the SVM classification results rather than on the CHMM classification results.

In the conducted experiments, head pitch is found to be the most discriminating head pose fea-
ture. This finding could provide some basis for investigating the suggestion of Cohn et al. (2004) that
head pitch can have a positive correlation with smile intensity, both movements embedded within a
coordinated motor structure. This suggestion has arisen from their finding that in spontaneous smiles
of embarrassment, head pitch is negatively correlated with smile intensity, which means that the head
moves downwards when the smile reaches the apex and moves upwards during the offset. This is quite
typical of smiles of embarrassment. It is plausible that indeed an opposite pattern can be seen in smiles
of joy: head pitch and smile intensity increasing and decreasing together. In addition, it is plausible
that this correlation is not seen in posed smiles because coordinated motor structures are possibly not
employed when posing a smile.

Furthermore, lip features are the most discriminating features for individual and all phases, followed
by features from the head and, lastly, features from the eyes. The onset lip angle features outperform the
lip angle features during the apex and offset. This result is consistent with the findings of Schmidt et al.
(2006), which indicate that spontaneous and posed smiles differ in lip corner speed speed and amplitude
during the onset. In spontaneous smiles the onset speed is slower and the amplitude smaller than in
posed smiles. However, during the offset the differences in speed and amplitude are insignificant. This
explains the higher accuracy of onset lip angle features. The seemingly contradictory low performance
of the lip displacement features during the onset can be explained by the fact that, in constrast to the
lip angle features, no speed features were computed for lip displacement. This feature is therefore less
discriminating than the lip angle features.

Another important finding is that the eye features used in this study are not very discriminating
in comparison with the eye features used by Dibeklioğlu et al. (2012), which achieve an accuracy of
85.73%. More specifically, the eye aperture angle features are the least discriminating features for every
phase. This is probably because these eye aperture angle features define the angles on the inner corners
of the eyes, as opposed to the outer eye corner angle features used by Dibeklioğlu et al. (2012). When
the orbicularis oculi, pars lateralis muscle contracts7, the outer corners of the eyes are likely to be
more narrowed than the inner corners of the eyes and, therefore, be more informative than the inner
corners of the eyes. Orbicularis oculi activity is important according to Ekman and Friesen (1982)
because it is present during spontaneous smiles, but not during posed smiles. Although this finding is
challenged by findings from Krumhuber and Manstead (2009), which indicated that the orbicularis oculi
is approximately as frequently present in posed smiles as in spontaneous smiles, it could explain the
present finding that the eye aperture angle features are less discriminating than the eyelid displacement

6The eye aperture angles in this study are computed for the inner eye corners. In contrast, the eye aperture angles used by
Dibeklioğlu et al. (2010) are computed for the outer eye corners. The eyelid displacement features are identical in both studies.

7The orbicularis, pars lateralis muscle raises the cheeks, narrows the opening of the eyes and forms wrinkles around the
eyes.
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features. This is because the landmarks used to compute the eyelid displacement features are closer in
distance to the outer corner of the eyes and, thus, eyelid displacement might reflect orbicularis oculi
activity better than the eye aperture angle features. This could explain the higher accuracy of eyelid
displacement, in particular during the apex, when (if present) the orbicularis oculi is contracted most.

The fusion of all features leads to a better classification than each of the features on their own, except
during the onset, where lip features are slightly more descriptive. The addition of even more temporal
information, achieved by fusing all features with the additional duration feature, improves classification
for every phase, in particular for the onset and apex phases. This finding is in accordance with findings
from Ekman and Friesen (1982), which indicated that posed and spontaneous smiles differ in duration
during the onset and apex phases. In false (posed) smiles, apex duration is usually too long and the onset
duration too short, which gives an abrupt appearance to the smile. In addition, the offset often appears
not smooth in false smiles, however, no difference in duration is provided by Ekman and Friesen (1982)
for this phase. This could indicate that there is a minimal or insignificant difference in duration during
the offset phases of posed and spontaneous smiles, which is reflected in this study where the duration
feature has a minimal effect on classification during the offset.

Furthermore, for individual phases, the fusion of certain combinations of features only occasionally
leads to a better classification than the features on their own. However, when onset, apex and offset
phases are fused, the fusion of every combination of features leads to a better classification than each
of the features on their own, except for the fusion of head and lip features. In fact, the fusion of the
onset, apex and offset phases generally leads to a better classification than the phases on their own. This
indicates that the use of more temporal information generally improves classification.

When comparing the highest recognition rate achieved in the present study (77.85%) with state-of-
the-art methods in Table 3, it can be seen that the performance of the proposed classifier is quite good.
It outperforms three state-of-the-art methods. Furthermore, the influence of temporal facial information
on the classification of posed and spontaneous enjoyment smiles is shown when comparing the pro-
posed classifier to classification of posed and spontaneous enjoyment smiles in still images. Whereas
classification in still images achieves a recognition rate of roughly 75%, classification using temporal
facial information achieves a recognition rate of 77.85% in the present study. This shows that the use
of temporal information improves the classification of posed and spontaneous enjoyment smiles with a
recognition rate improvement of at least 4%8.

8At least 4% because the UvA-NEMO Smile Database is less conditioned. This means that it is likely that the still image
classification methods being compared with the proposed method of this study perform worse on the UvA-NEMO Smile
Database than on the dataset on which they were evaluated. Therefore, the use of temporal information might improve the
classification of posed and spontaneous enjoyment smiles more than shown in this comparison.
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6 Conclusion

The influence of temporal information on the classification of posed and spontaneous enjoyment smiles
is investigated. CHMM and SVM classifiers are trained on features from the head, lips and eyes to
investigate the influence of these features on the classification of posed and spontaneous enjoyment
smiles. In addition, the influence of the fusion of classifiers trained on different features on classification
is investigated.

The results indicate the head motion positively influences the classification of posed and spontaneous
enjoyment smiles, especially head pitch is a discriminating feature. Furthermore, lip corner movement
has the greatest influence on classification. Lip corner movement is more discriminating than head mo-
tion and eyelid movement. In addition, eyelid movement has the least positive influence on classification
in this study. The results for fusion indicate that for individual phases, the fusion of all features generally
leads to a better classification than using each of the features on their own. However, the fusion of certain
combinations of features only occasionally leads to a better classification for individual phases. Nev-
ertheless, when onset, apex and offset phases are fused, the fusion of certain combinations of features
generally leads to a better classification than each of the features on their own.

Finally, the comparison between the performance of classification of posed and spontaneous enjoy-
ment smiles in still images and in moving images, as is performed in the present study, shows that the use
of temporal facial information improves the classification of posed and spontaneous enjoyment smiles.

7 Future work

The CHMM classifers used in the present study have a low performance. A better optimization of these
classifiers could improve results greatly. With better and more reliable results, the influence of individual
features and the fusion of certain combinations of features for CHMM classifiers can be compared to
the corresponding results of SVM classifiers.

Furthermore, classification using SVM classifiers with a linear kernel and parameter selection should
be investigated. In this study, the focus is on SVM classifiers with RBF (with parameter selection)
because these are found to have a better performance when trained on individual features. However,
SVM classifiers with a linear kernel without parameter selection perform slightly better when trained on
the fusion of all features. Therefore, SVM classifiers with a linear kernel and parameter selection could
possibly further improve classification.

Finally, head pitch is found to be the most discriminative head pose feature, however, further inves-
tigation is required to discover the discriminative value of head pitch in posed and spontaneous smiles.
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Appendices
A Additional head pose results

Figure A.1: Recognition rates for CHMMs trained on head pose with different numbers of states.
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Figure A.2: Recognition rates for SVMs trained on head pose with RBF or a linear kernel.

B Additional lip feature results

Figure B.1: Recognition rates for CHMMs trained on lip displacement features with different numbers
of states.
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Figure B.2: Recognition rates for CHMMs trained on lip angle features with different numbers of states.

C Additional eye feature results

Figure C.1: Recognition rates for CHMMs trained on Bézier eye aperture angle features with different
numbers of states.
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Figure C.2: Recognition rates for CHMMs trained on (non-Bézier) eye aperture angle features with
different numbers of states.

Figure C.3: Recognition rates for CHMMs trained on eyelid displacement features with different num-
bers of states.
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D Additional fusion results

Figure D.1: Classification results for SVMs trained on all features with RBF or a linear kernel.
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