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Abstract

6x6 Rush Hour is a sliding block game where blocks represent ve-
hicles stuck in traffic on a 6x6 field. In this game one tries to have
a special vehicle, the red car, escape the field by a gap in its border.
However, vehicles are restricted in their movement as they can only
move forwards or backwards, and cannot cross each other. In this
work we search for features that are characteristic for hardness of a
configuration within 6x6 Rush Hour. To perform this search the entire
configuration space of 6x6 Rush Hour is computed and stored, and
every configuration is solved. Surprisingly the results of this compu-
tation deviate from earlier obtained results[1] as more configurations
are found. A new hardest configuration is found using a different def-
inition of a move, and characteristics of the configuration space are
analysed.
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1 Introduction

Rush Hour is a solitaire sliding block puzzle with simple rules. 6x6 Rush Hour is
the commercial version and is played on a six by six field with two types of blocks,
which from now on will be called vehicles, a car of length two and a truck of length
three. Vehicles are placed on the field and can move forwards or backwards but not
through other vehicles or over the edge of the field. On the field there exists one
special vehicle: the red car. This red car is always placed on the third row from the
top, and at the end of the third row there is a gap in the field’s border which allows
the red car to escape. Only the red car is allowed to escape the field, and once it has
escaped the game is won. Thus the game is quite simple, one starts with a collection
of vehicles on the field, which from now on will be called a configuration, then by
performing a series of moves, where shorter series are deemed better, one tries to
let the red car escape the field. The configuration where the red car is parked before
the gap in the field is called a solution for the red car can then always escape the
field within one move.

Simple as it may appear, solving a configuration, thus finding the shortest path
to the nearest solution, proves to be quite difficult. In fact, deciding whether a
configuration is solvable or not was proven to be a PSPACE-Complete problem[3].
Not only is the game difficult to solve, when presented with a configuration it is
equally difficult to estimate how difficult it will be to solve. Difficulty of a con-
figuration in Rush Hour is based on the length of the shortest path to the nearest
solution, essentially the smallest number of moves needed to have the red car es-
cape the field. Often configurations appear easy as they contain few vehicles or the
red car is close to the exit, but prove difficult to solve. The opposite is also true,
what is seemingly hard may prove to be remarkably easy. Studying the properties
that influence the game’s hardness, and how one can identify an easy or hard to
solve configuration is the focus of this work. In order to study these properties the
entire configuration space within 6x6 Rush Hour is computed and stored.

The contribution of this work is twofold. Firstly, attempted replication of the
results obtained by Collette et al.[1] by generating all possible configurations for
6x6 Rush Hour. Secondly, knowledge on 6x6 Rush Hour such as the distribution
of hardness among configurations, which could support the development of new
solving or hard configuration generation algorithms for 6x6 Rush Hour.



2 Literature Review

Rush Hour is a game that has not received much attention from the computer
science community unlike other games such as chess. This section provides an
overview of the limited work on the puzzle.

Firstly, Flake et al.[3] examined a generalised version of Rush Hour; a ver-
sion which is not limited to the standard field size and exit location. Flake et al.
managed to prove that deciding whether a Rush Hour instance is solvable or not is
NP-hard. After which they showed the general problem’s PSPACE-completeness.
Flake et al. mention that Rush Hour is the simplest game with the PSPACE-
completeness property that they know of. Hearn et al.[5] went one step further,
and managed to prove PSPACE-completeness of sliding block puzzles in the more
general case.

The proof for NP-hard gives an indication that there does not exist any polyno-
mial time algorithm that is able to find a solution for every Rush Hour configura-
tion. Despite this indication Fernau et al.[2] considered the parametrised complex-
ity of the generalised version of Rush Hour. They managed to show that as long
as either the total number of moves or the total number of vehicles is bounded by
a constant, solutions can be found in polynomial time. Hauptman et al.[4] created
some heuristic functions through the use of genetic programming that are seem-
ingly successful in comparison to human designed heuristic functions. Though
these heuristic functions perform well on average, the performance of these func-
tions on specific configurations are inconsistent. This inconsistency serves as an
indication that some configurations are more difficult to solve than others or require
different search strategies.

Finally, Collette et al.[1] focused on finding hard initial configurations for 6x6
Rush Hour. The shortest path to the nearest solution was calculated for all possi-
ble 6x6 configurations through the use of propositional logic and symbolic model-
checking techniques within reasonable time. As a result, the study provided knowl-
edge on the most difficult configurations within 6x6 Rush Hour and knowledge on
the scope of the game. Collette et al. claim there exist 36 billion configurations
in total of which 29.8 billion configurations are solvable. In this context, solvable
means that for a configuration there exists a series of moves that leads to a configu-
ration where the red car has left the field. After finding all solvable configurations,
the configurations were kept in memory and could then be studied.



3 Research Question

Previous studies have shown the complexity of solving a configuration of Rush
Hour and the difficulty of designing heuristic functions that help solve configu-
rations. Especially the inconsistency in performance of these heuristic functions
among different configurations is interesting. This is interesting as some configu-
rations are apparently harder to solve than others, or some configurations benefit
more from different solving strategies. A classification of hardness of a configura-
tion could serve as help in the choosing of the applicable solving strategy. From
this the question rises: For the game of Rush Hour, what features, if any, exist
that are distinctive for hardness of a configuration? In order to provide an answer,
hardness of a configuration needs to be defined. Earlier studies such as Collette
et al.[1] and Hauptman et al.[4] used the length of the shortest path to the nearest
solution for any given configuration as the measure of hardness for that configu-
ration. This definition is what will be used as definition of hardness. Accepting
this definition allows for the classification of hardness for each configuration and
creates a gradation from easy to hard to solve configurations.

In order to determine the length of a path, the definition of a move has to be
made. Collette et al. defines a move as moving one vehicle one cell on the field.
This definition can be used for the measurement of hardness, yet it has a somewhat
strange effect. As through this definition a configuration that requires moving four
separate vehicles one cell is equally difficult as moving one vehicle four cells in one
turn. Yet the planning required to move four vehicles is harder as vehicles can block
each other, yet moving one vehicle four cells is simply doable if there are four cells
in front or back of the vehicle that are not occupied. On top of this, the definition
also finds a configuration with a nearly empty field and just the red car at maximum
distance from the gap on the field more difficult than the same nearly empty field
only now with the red car at minimum distance from the gap. Intuitively these two
configurations are equally difficult when solving the configurations by hand, as one
immediately sees that the red car can slide out of the gap. Often when playing this
game in person, one does not slide a vehicle one cell at a time but multiple cells per
slide. As such it seems logical to define a move as moving a vehicle for any number
of cells on the field. This change in definition in comparison to earlier work does
impact the degree for hardness for certain configurations as will be discussed later
on.



4 Research Method

In order to search for features that are distinctive for hardness of a configuration,
a sufficiently large set of configurations is needed that ranges across the scale of
hardness. Collette et al.[1] managed to produce such a set, as this set contained ev-
ery configuration that is solvable within the game. Although they did not store their
results, they were able to produce and solve every configuration within reasonable
time. The first step in this study is thus replicating the results of Collette.

4.1 Generating and Solving All Configurations

The solution Collette designed to tackle the problem of generating and solving all
configurations relies on the propositional modelling of the graph of configurations
where each node represents a configuration and a connection the direct transition
from one configuration to the other. Collette then made use of symbolic model-
checking techniques to explore this graph. Instead of directly copying the method
Collette used, a new method inspired by Collette was designed. The main goal of
this method is to construct a database which can be used to gain access to configu-
rations on the basis of their hardness.

Starting with the previous results, Collette’s results indicate that there are 10
billion solutions, 29.8 billion solvable configurations and 36 billion configurations
in total. This should give an indication of the scope of the problem. Yet as these
numbers appear large, Collette managed to generate and solve all 29.8 billion solv-
able configurations within ten hours on would now be considered a technologically
outdated computer. Thus the time needed to solve and generate these configura-
tions poses no threat to my study, however the space required to store these con-
figurations does pose a problem. Just enumerating every configuration requires 35
bits of storage for every configuration, which would lead to a database of roughly
130GB in size. This size is not infeasible, yet fairly difficult to work with as this
does not fit into memory of a regular computer and would thus result in very limited
operating speed. Therefore, the decision has been made to investigate alternative
methods of storing the database.

Storing all solvable configurations leads to a large and thus difficult to work
with database. Yet the need to store all solvable configurations is not entirely clear,
as when one configuration has a minimum distance to the nearest solution of 30,
there are 29 configurations between it and the solution. Hence there are essentially
29 configurations that are easier and that can be recomputed from just that one
configuration by solving the configuration. Essentially all configurations that are
reachable from a configuration can be generated from just that one configuration.
This can be done by performing all possible legal moves on that configuration



and by then exhaustively performing all legal moves on all the configurations that
spawn after the application of these moves until no new configurations are found.
This network of reachable configurations is henceforth denoted as a cluster. Based
on this definition a configuration always belongs to one and only one cluster. A
solvable cluster is a cluster that contains a solution and thus every configuration
within that cluster is solvable.

Only storing solvable clusters leads to a significant decrease in space required,
yet the generation of clusters is somewhat impractical. As each cluster needs to be
found preferably just once and this is a difficult task to achieve. Simply generating
all 29.8 billion solvable configurations and from those all clusters is infeasible as
there are far fewer clusters than there are configurations. Thus there exists a need to
specifically generate clusters. To generate clusters a deeper understanding of what
a cluster entails is needed. Clusters are defined as a set of reachable configurations,
as such all configurations within a cluster share quite some similarities such as the
same number of cars and trucks on the field. Actually the only difference between
the configurations in a cluster is the positions of the vehicles. Even the possible
positions for a vehicle are limited, as vehicles cannot cross each other and can
only move forwards or backwards. Thus when a car and a truck are placed in
length on a column of a field, they can never swap places nor leave that column.
The same is true for when a car and truck are placed on a row. Taking these
characteristics a configuration can be represented as a collection of six rows and
six columns where each row or column contain only the vehicles that are placed in
length on the row or column. Rows and columns can even be generalised as they
are essentially the same just interpreted differently. Accordingly, a line may be
defined as a row or column in a configuration containing only the vehicles placed
in length on the line. Thus a configuration is represented as a collection of twelve
lines, where six lines are interpreted as rows and the remaining six as columns.
Now there are only 24 lines in 6x6 Rush Hour and not all these lines can reach each
other, for instance a line containing only a truck can never reach a line containing
a car. A line containing a truck can reach every other line containing only a truck.
Thus, sets of lines exist that are reachable from each other and this reachability
is based solely on the way these lines are filled and in what order. The order is
important as a line containing a car and a truck can never reach a line containing
the same vehicles but in reversed order. A set of reachable lines will henceforth
be called a filling. As a configuration is represented as twelve lines and each line
belongs to a filling, a configuration can potentially only reach all configurations
which share those fillings. However, this is not a suitable definition for a cluster as
some configurations may share all fillings but are not reachable from each other.
An example of how these configurations are not reachable is illustrated in figure
1. A set of twelve fillings is called a cluster group. A cluster group is a group



Figure 1: Two configurations within the same cluster group but not within the same
cluster.

of clusters that all share the same twelve fillings and a cluster group can thus be
represented as a collection of twelve lines. A solvable cluster group is a cluster
group that contains a solvable cluster. 6x6 Rush Hour contains only eight fillings
and therefore there cannot exist more than 8'2 cluster groups. In fact by the rules of
the game there can only exist 4x8'! solvable cluster groups as there must always be
a red car placed on the third row from above. More importantly, the countability of
these cluster groups has two main advantages for the generation of cluster groups.
Firstly counting ensures finding all cluster groups. Secondly, when counting no
cluster groups are found more than once.

4.1.1 Generating Solvable Cluster Groups

As cluster groups are countable, simply counting leads to finding every cluster
group, however this includes cluster groups that cannot be made. For instance if
a cluster group has only fillings with three cars, that would lead to a 6x6 field
containing 12 « 3 = 36 cars. This is impossible to make as cars would always
overlap, because the cars take up more space than there is room on the field. Hence
each cluster group has to be checked whether it can legally form a configuration.
Here legally means, a configuration where vehicles do not overlap, and are all
placed on the field. For the generation of solvable cluster groups it is beneficial
to check if a cluster group can legally form a solution, as a solvable cluster group
must contain at least one solution.

The generation of all cluster groups is essentially done by traversing a tree
of depth twelve, where each node represents a filling and contains exactly eight



(which is the number of possible fillings within 6x6 Rush Hour) children and the
leaves represent the cluster groups. Traversing all nodes is unnecessary as for some
combinations of nodes no solution can be formed. For example seven fillings each
containing three cars can never form a solution as the space occupied by the cars
would exceed the space on the field. Hence further traversing the tree after having
traversed these seven nodes is unnecessary. Simply checking the space occupied
by the vehicles on the fillings over the space available has only limited success.
For example a cluster group containing a filling for a column consisting of three
cars and a filling for a row consisting of three cars can never form a solution, even
though the space occupied by the vehicles is less than the space available. As rows
do not hinder the movement nor placement of vehicles on other rows, and there
exists an empty filling, picking six fillings which represent rows will always lead
to at least one cluster group as picking the empty filling for each column creates a
cluster group that can form a configuration. Essentially the same holds for columns,
yet the third row contains the red car, thus for generating solvable cluster groups
it is beneficial to start with rows. Because of this feature, pruning is impossible
before depth six, as every node leads to at least one solvable cluster group. As a
result, a lower bound is established: 4 * 8 solvable cluster groups.

Pruning however is possible from depth seven as seen earlier. Preferably no
nodes are traversed that lead to a cluster group that cannot form a solution. This
can be achieved by first picking six fillings that represent rows. For each row all
lines are retrieved. Upon picking a filling for a column at depth seven or higher
the lines for the rows are filtered per column picked. In this context filtering means

Figure 2: Illustration of how different lines within a filling can impact the number
of configurations that can be made.
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removing the lines that would overlap with the columnn. If for a row no lines are
left, the branch is applicable for pruning. Yet there exists a problem, a column
contains multiple lines and not every line filters the same lines from the rows. This
is illustrated in figure 2. The problem can be solved by having every connection
in the tree represent a specific line picked from the node from which it spawned.
Essentially this creates a tree where nodes can be reached in multiple ways depend-
ing on how many lines a filling contains. Having solved this problem, every leave
found must thus contain a solvable cluster group for there exists a set of lines that
can form a solution. In contrast there exists numerous paths to the same nodes, and
therefore nodes are traversed multiple times and thus leaves are found numerous
times. This problem is easily solved by simply ignoring all leaves that have been
traversed and ignoring all nodes that have traversed their entire subtree, and thus
have found all leaves.

4.1.2 Generating Solvable Configurations

Now remains the task of finding all solvable configurations. The ability to find
all solvable cluster groups helps greatly with this task. For all solvable configura-
tions must reside within a solvable cluster group and can thus be found by finding
all configurations within a cluster group. Similarly to finding all solvable cluster
groups this task can be achieved by simply looking at all possible combinations
of lines that can be made within a cluster group. However, as figure 1 illustrates,
this can also find configurations that are unsolvable, because not all configurations
within a cluster group are reachable from each other. Furthermore, this technique
does not find the shortest path to the nearest solution for each configuration, and
would thus require further computation to classify each configuration on hardness.
Hence an algorithm which can explore the entire configuration space within a clus-
ter group and which is guaranteed to find the best solution for each configuration
is preferred. Both of these properties are found in a simple breadth-first search
algorithm. Given a configuration, this configuration can be solved by simply find-
ing all directly reachable configurations and then exhaustively searching for di-
rectly reachable configurations for each configuration found in order of which they
where found until a solution is found. Sadly this solves just one configuration while
traversing many. However reversed breadth-first search remedies this problem. For
reversed breadth-first search one starts with all solutions for a cluster group, then
for each solution search for directly reachable configurations, and finally by ex-
haustively searching for directly reachable configurations for each configuration
found in the order in which they are found, one finds all solvable configurations
and the shortest path to the nearest solution for each configuration.

Firstly, finding all solutions for a cluster group. This can be achieved by taking
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all lines for each filling of the cluster group and only the lines with a car parked at
the end for the the filling that represents the third row from above, for that is the
row with the red car. By creating all possible combinations that also form a correct
configuration all solutions for the cluster group are found. Similarly to finding all
cluster groups, this can be done be traversing a tree, where each node represents a
line and each leave a configuration. If one starts with picking lines for rows, then
pruning is possible in the tree from depth seven as the placement of rows does not
hinder the placement of other rows. Pruning is possible for when a column does
not fit with the current selection of rows, no configuration can be found by picking
subsequent columns.

Secondly, finding all directly reachable configurations from a configuration.
This can be achieved by changing one line from a configuration and replacing it
with another from the same filling where the placement of one and only one vehicle
differs from the original line. However this method also produces unreachable
configurations as illustrated in figure 1. Thus when replacing a line for another
there has to be checked whether that line is reachable given the configuration. This
reachability check can be done by checking the rows or columns that reside in
between the original location of the moved vehicle and that of the end location on
vehicles. For if such a column or row contains a vehicle the line is not reachable
from the original line.

Finally, given all solutions and the ability to find all directly reachable configu-
rations from a configuration, the implementation of reversed breadth-first search is
just an implementation of a standard breadth-first search. Only in reversed breadth-
first search one starts with all solutions and one keeps searching till all configura-
tions are found. During this reversed breadth-first search one essentially explores
a tree where each node represents a configuration and the root nodes represent the
solutions. In this tree the depth of a node indicates the length of the shortest path to
the nearest solution, and thus hardness is defined for every configuration. For the
generation of this tree all that needs to be taken into account is that a configuration
can always directly return to its parent node or nodes, and sometimes indirectly to
its parent or ancestor nodes. Therefore when building this tree through breadth-first
search, already visited configurations need to be filtered out and not visited again.

4.1.3 Building The Database

As explained earlier, storing all configurations is infeasible as the size of the database
would hinder its performance to great extend. Therefore a database is constructed
containing only cluster groups. Using the solvable configuration generation algo-
rithm described in the previous section all solvable configurations can be found
from these cluster groups. Preliminary results showed that finding and solving all
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configurations within a cluster group could be done in the scale of tens of millisec-
onds depending on the size of the cluster group. For Collette et al.[1] claimed there
are 29.8 x 10? solvable configurations, an early estimation of the time required to
compute and solve all solvable configurations was around one week. Given this
estimation and the time at hand, it was deemed necessary to store some extra fea-
tures other than just the fillings which it contains. Most important among these
features is the maximum distance, that is the longest shortest path from a config-
uration within the cluster group to a solution within a cluster group. This feature
essentially allows quick identification of cluster groups that contain hard to solve
or only easy to solve configurations. Besides this feature, the overall size, that is
the number of solvable configurations within the cluster group, and the number of
solutions within the cluster group were stored as well.

13



S Results: All Solvable Configurations

Using the solvable configuration generation and solvable cluster group generation
algorithms, all solvable configurations were found, solved and subsequently stored
within roughly 100 hours. This performance was obtained on an Intel(R) Core i5-
2500K(TM) CPU 3.3GHz while using less than 200MB of ram for the generation
algorithms, and around 1.5GB of ram for the database. The algorithms were imple-
mented in Java, and the database was created in MySQL with InnoDB as storage
engine. The size of the database containing just the cluster groups was roughly
3GB.

5.1 Different Results

The results from the study by Collette et al. were not obtained. The database
contains 31,501, 642,578 solvable configurations of which 10, 275, 383,941 are
solutions. Yet Collette et al. found only 29.8+ 10? solvable configurations of which
around 10 * 109 are solutions. As such the results of this work deviate roughly
5.7% and 2.8% respectively. An explanation for this difference is not easily found.
Mainly for Collette et al. have not reported how they managed to obtain all possible
solutions, which is crucial as their method, similarly to the method used in this
work, rests on breadth-first search from the solutions.

When the difference in results was found, an algorithm was designed to try and
replicate the other results Collette et al. mention: 36 * 10° legal configurations
of which 7 % 10% are unsolvable. This algorithm is very similar to the algorithm
described to generate solutions, only now the search space is not limited to a cluster
group but to the entire configuration space within 6x6 Rush Hour. As such, all
configurations cannot be kept in memory. This however does not pose a problem
as they do not need to be. One simply applies the solution generation algorithm
on every possible filling while not limiting the line on which the red car resides to
only lines with a car at the end. Instead of collecting all configurations found, each
configuration is counted. This is possible since the solution generation algorithm
does not find a configuration more than once.

The problem here is the definition of legal. Collette et al. never explicitly
mention whether they deem it legal for any other vehicle than the red car to leave
the field. Assuming they deem it illegal, then there exist 40, 148, 868, 698 legal
configurations, which is roughly 11.5% more. If they deem it legal there would
only exist more configurations. With 31,501, 642,578 solvable configurations
that would mean there exist 8,647,226, 120 unsolvable configurations, which is
roughly 23.5% more than reported. Which means that roughly 21.5% of the entire
configuration space is unsolvable.
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With the differences found between every result, a possible explanation was
sought. A most likely cause is missed solutions, and therefore missed clusters. As
Collette et al. did not store their results checking for missed clusters is not feasible.
What is possible however is finding the clusters within each cluster group for every
cluster group, which provides insight in the scope of how missed solutions lead to
missed clusters. This can essentially be done by applying the solution generation
algorithm, still limited to the scope of a cluster group, only now no longer limited
to lines for the red car where there is a car at the end. Using this algorithm all legal
configurations within a cluster group are found. For every legal configuration found
a cluster is made by applying breadth-first search on the configuration until no new
configurations are found, unless the legal configuration is already within a cluster
then it is simply ignored. As such all clusters are found, yet not every configuration
within every cluster is solved. Firstly, some configurations within clusters of a
solvable cluster group cannot be solved as they lie within an unsolvable cluster.
So solving every configuration within every cluster group is impossible, however
the unsolvable clusters within these cluster groups are easily identified by the lack
of solutions within them. Therefore all that needs to happen is to identify the
solvable clusters, and generate them again by starting with the solutions that were
found during the first generation, and simply applying the cluster group generation
algorithm on these solutions.

Applying this algorithm and storing the results in the same database lead to an
increase in size of roughly 12GB. By doing so, access was gained to not only all
solvable cluster groups, but also all solvable and unsolvable clusters within them.
Other than simply having access to more data on 6x6 Rush Hour this also gives
insight in the scope of how missing solutions can impact the number of configu-
rations found in total. On average 85% of the solutions within a solvable cluster
groups lie within the cluster with the most configurations. Moreover 85% of the
configurations lie within the cluster with the most configurations of a solvable clus-
ter group. Thus when one picks one solution for every cluster group and keeps just
the cluster formed by that solution atleast roughly 70% of the total number of con-
figurations are found. The results by Collette et al. lie within this scope, thus it is
definitely not proven that such an error was made but it is seemingly plausible.

5.2 New Hardest Configuration

In accordance with the definition for a move used in this work, the claimed hardest
configuration by Collette et al.[1] is not deemed the hardest. In fact, the hardest
configuration by Collette using the definition for a move used in this work shares
a spot with 21 other configuration in four clusters as third hardest at a distance of
49 moves from the nearest solution. The hardest configuration sits at a distance
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of 51 moves from the nearest solution and is illustrated in figure 3. Although this
configuration has never been reported as the hardest configuration, it had already
been found by Collette et al. and was reported at a distance of 83 moves from the
nearest solution, where moves are measured using their definition of a move. In-
terestingly, the number of configurations reachable from the hardest configuration
is 4780. This is relatively small in comparison to the number of configurations
reachable from the hardest configuration claimed by Collette et al. which is 24132.

Figure 3: One of three configurations with the longest minimal path of 51 moves
to the nearest solution within 6x6 Rush Hour. The remaining two configurations
reside within the same cluster.

5.3 Influence On Maximum Distance

When looking for features that have an impact on the maximum longest minimal
path that a configuration can have from a solution, a logical candidate would be the
size of the cluster group and cluster, that is the number of configurations within it.
As a small size limits the maximum distance as for a path of length n there need to
exist at least n 4 1 configurations within the cluster group. Though a large cluster
group does not mean the maximum distance, that is the maximum longest minimal
path that a configuration has from a solution within that cluster group, is large. For
instance there exists a cluster group with 541934 configurations, yet the maximum
distance within that cluster group is 15. A large number of configurations within a
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cluster group indicates that the cluster group contains fillings that have many lines,
mostly fairly empty fillings containing only one car or truck. As such fillings do
not have a large effect on the movement of vehicles on the field, generally these
clusters are very large yet the longest minimal path from a configuration to the
nearest solution is small. This effect is visible in figure 4. Clearly a small cluster
group is not beneficial on average for a large maximum distance, though the gain
in maximum distance comes to a hold at roughly 20000 configurations per cluster
group. At that point other factors come into play, such as the number of solutions
within the cluster group.

Influence of number of configurations within a cluster group
on maximum distance.

oKX ® x
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0 10000 20000 30000 40000 50000 60000
Number of configurations within a cluster group

Figure 4: Influence of number of configurations within a cluster group on the max-
imum distance. Each point represents a bin of cluster groups. There is a bin for
every 1000 configurations within a cluster group.

Similarly to the cluster group size, the number of vehicles within a cluster
group strikes out as an interesting feature. As very few vehicles on the field would
seriously hinder the maximum distance. Though many vehicles also indicate a
small maximum distance. For instance three cars on every row and nothing on ev-
ery column will always have a maximum distance of one. This effect is illustrated
in figure 5. As can be seen in the figure, there exists a maximum at roughly eleven
to thirteen vehicles in the cluster group. Moreover, all configurations with a dis-
tance of forty or more to the nearest solution have ten to fourteen vehicles on the
field.
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Influence of number of vehicles
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Figure 5: Influence of number of vehicles within a cluster group on the maximum
distance. Each point represents a cluster group.

5.4 Identifying Unsolvable Configurations

As Flake et al.[3] showed, deciding whether a configuration is solvable or not is a
PSPACE-complete problem. The 6x6 version of Rush Hour contains

40, 148, 868, 698 legal configurations of which 8,647,226, 120 configurations are
unsolvable. 34,811, 208, 267 configurations lie within 68, 478, 733 solvable clus-
ter groups which contains 172, 234, 727 clusters. This means that 5, 337, 660, 431
unsolvable configurations do not lie within a solvable cluster group and as such lie
within an unsolvable cluster group. Thus for roughly 61.7% of the unsolvable con-
figurations no solutions can be found as the chosen fillings for those configurations
simply cannot form a solution. Which in turn means that when one picks a con-
figuration at random from the entire configuration space there is a 21.5% chance
that that configuration is unsolvable. Yet only searching for a solution and not the
path to the solution reduces that percentage to just 8.2% when a solution is found.
Sadly the solution generation algorithm introduced in this work still requires ex-
ponential time. Though the search space for a solution given a cluster group is
severely limited in comparison to the search space for finding the shortest path
from a configuration to the solution within the same given cluster group. Because
the line containing the red car must have a car at the end for a configuration to be
a solution, which is a subset of the number of configurations within that cluster

group.
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5.5 Distributions

With 34,811, 208, 267 solvable configurations and 172,234, 727 clusters, the av-
erage number of configurations per cluster that lies within a solvable cluster group
is 202.1 with a variance of 2, 370, 214.12. The minimum number of configurations
within a cluster is one. That is a completely frozen configuration, for instance all
empty lines except the line with the red car which has three cars. The maximum
number of configurations within a cluster and cluster group is 541934. Thus there
exists a set of 541934 reachable configurations. This cluster with 541934 config-
urations has the same filling for each line, that is one car. The distribution of the
number of configurations per cluster is illustrated in figure 6. This shows the lack
of clusters with many configurations and the large presence of very small clusters.
Striking is also the lack of any cluster with 360000 to 420000 configurations while
there exists a few clusters with more than 420000 configurations. Need be noted
that the largest cluster, the one with 541934 configurations, is barely visible in the
figure thanks to the logarithmic scale.

Histogram: Number of configurations within a cluster
which lies in a solvable cluster group.

107

Number of cluster groups

100000 200000 300000 400000 500000 600000
Number of configurations

Figure 6: The distribution of configurations over clusters that lie within a solvable
cluster group.

With 68,478, 733 solvable cluster groups which contain 172,234, 727 clusters,
the average number of clusters within a cluster group is 2.52 with a variance of
1.62. The minimum number of clusters per solvable cluster group is obviously
one. The maximum however is 136. There exist fourteen cluster groups with 136
clusters, and they are all very similar. For all these clusters have a line that is
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completely filled, thus that line has either two trucks or three cars. This line is
always the third of fourth row or column. If the completely filled line is a column
than each row contains one car, three columns contain one car, and one column
contains two cars. Conversely if the filled line is a row. The distribution of the
number of clusters per cluster group is illustrated in figure 7. As can be seen, there
exist many cluster groups with few clusters and very little cluster groups with many
clusters. Also visible in the figure are gaps as there are no cluster groups with 100
to 105 clusters and none with 115 to 125 clusters. While there exists a cluster group
with 136 clusters.

10° Histogram: Number of clusters per cluster group.
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Figure 7: The distribution of clusters over solvable cluster groups.

As mentioned earlier the maximum distance from a configuration to its nearest
solution is 51 and there only exists one cluster with that maximum distance. In
fact, as can be seen in figure 8, configurations with large maximum distances are
very rare. This illustrates the difficulty of finding hard configurations, because less
than two percent of the configurations have a distance of ten or more to its nearest
solution. There is also a trend visible. The line in figure 8 is fitted through the
logarithm of the number of cluster groups per maximum distance within that cluster
group. This trend indicates that it is possible to predict the maximum distance of
6x6 Rush Hour and possibly larger versions of Rush Hour.
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Figure 8: The distribution of hardness in the entire configuration space.
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6 Conclusion

An attempt was made to replicate the results by Collette et al.[1]. The results how-
ever do not match as more configurations were found in total. An explanation for
the difference remains absent. As all the results were stored, access was gained to
the entire configuration space within 6x6 Rush Hour. With this access and another
definition for a move, a new hardest configuration was found at a distance of 51
from its nearest solution. Moreover access to the entire configuration space shed
light on some previously unknown statistics such as the distribution of hardness
over the entire configuration space within 6x6 Rush Hour.

Furthermore in this work an attempt was made to answer the following ques-
tion: For the game of Rush Hour, what features, if any, exist that are distinctive
for hardness of a configuration? Though some success was achieved as clearly
the number of vehicles and number of configurations in a cluster group impact the
hardness, this question is not completely answered. After the database of cluster
groups and clusters had been constructed the search began for features which are
distinctive for the hardness of a configuration. The initial search for these features
included many more features such as the distance from the red car to the gap or
the number of solutions in a cluster group. Yet not many features showed any
promise and were quickly discarded. During the search for these distinctive fea-
tures it became apparent that in fact the definition of hardness was lacking and did
not fully describe hardness. In this work just the distance of the shortest path to
the nearest solution is used to classify a configuration on hardness. This however
does not grasp what hardness is in essence, which is the difficulty of solving a
configuration. Figure 9 and 10 show two configurations both with the same mini-
mal distance to the nearest solution. Though one is substantially easier to solve as
very few configurations are reachable from the configuration and very few config-
urations are directly reachable for each configuration that is reachable. When one
explores the graph underlying the game this difference becomes more apparent. In
the underlying graph each node represents a configuration and each connection the
direct transition from one configuration to another, which is essentially performing
a move. These graphs are illustrated for both configurations mentioned earlier in
figure 11 and 12 respectively. These graphs give an indication that not just the
minimum distance from a configuration to a solution defines the hardness but also
the number of reachable configurations from that configuration, the branch factor
of the configurations that are on the path to the nearest solution, and finally the
solution density within the cluster. These four characteristics would lead to a more
fitting description of hardness. As very few reachable configurations make for a
game that is quite easily navigated through without any need for directed search. A
small branch factor of the configurations that are on the path to the nearest solution
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gives nearly no choices for the player or solving algorithm to make, essentially this
creates a narrow tunnel within the graph where not many mistakes can be made.
Finally, a high solution density generally indicates a very small maximum distance
within the cluster. How this characterisation of hardness should be defined is open
for future study.
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Figure 9: A configuration that has a pathlength of 31 to the nearest solution, but is
fairly easy to solve.

Figure 10: A configuration that has a pathlength of 31 to the nearest solution, but
is relatively hard to solve.
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Figure 11: Graph of a cluster group of the configuration depicted in figure 9 where
each node represents a configuration and each connection a move. Maximum dis-
tance within this cluster is 31. The green nodes indicate solutions and the red node
the hardest configuration and the configuration depicted in figure 9.
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Figure 12: Graph of a cluster group of the configuration depicted in figure 10 where
each node represents a configuration and each connection a move. Maximum dis-
tance within this cluster is 31. The green nodes indicate solutions and the red node
the hardest configuration and the configuration depicted in figure 10.
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