
Building a rudeness classifier:
a word-based approach

Freek Boutkan
6303846

Bachelor thesis
Credits: 18 EC

Bachelor Opleiding Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor
Drs. T.M. Kenter

Informatics Institute
Faculty of Science

University of Amsterdam
Science Park 904

1098 XH Amsterdam

June 26th, 2015

Abstract

The main objective of thjs research is to build a rudeness classifier with a
high F1-score; a classifier that can correctly classify a sentence in the Dutch
language. A training set of 36,000 non-rude sentences and 313 rude sen-
tences has been provided. A word-based approach will be used, meaning
that all text features are based on single words and do not rely on document
properties or sentence structures. This approach is easy to comprehend, to
debug and to implement parallelly.

The text features used in this research are semantic similarity measure-
ments, key-word presence indicators, part-of-speech tags, key-word based
sentiment analysis and word-length distribution. The semantic vectors are
built using Word2Vec and their quality will be tested with a semantic task. A
Support Vector Machine (SVM) will be used to learn from the word-based
features. An F1-score of 0.84 is reported on a test set that is manually anno-
tated. It can be concluded that word-based features, some of which are based
on semantic vectors, are successful in combination with SVMs.

1

Contents

1 Introduction 3

2 Theoretical Foundation 5
2.1 Related works . 5
2.2 Word2Vec . 6
2.3 Support Vector Machines . 7

2.3.1 SVM in combination with Word2Vec 8

3 The word-based approach 10
3.1 The word-based approach explained 10
3.2 Word-based features . 10

3.2.1 Semantic Similarity features 10
3.2.2 Other features . 11

3.3 Motivation for word-based approach 11

4 Experimental Setup 13
4.1 Feature Computation . 13
4.2 The training set . 14
4.3 Applying SVM . 14
4.4 Evaluation . 14

5 Results 15
5.1 Semantic Vectors . 15
5.2 Feature Sets . 15
5.3 Rudeness classification performance 15

6 Discussion 19
6.1 Semantic Vectors . 19
6.2 Feature set 1 . 19
6.3 Feature set 2 . 19
6.4 The training set . 20
6.5 Classifier quality . 20

7 Conclusion and future research 21

References 22

Appendix A Figures 24

2

1 Introduction

The main goal of this research project is to build a rudeness classifier. The rudeness
classifier will be used in future research which will examine the possible develop-
ment in the quantity of rude utterances in newspapers over time. A rudeness clas-
sifier is needed for automatic classification of considerable large amounts of text
since, it cannot be done manually. In order for the classifier to be of any use, have
a good sensitivity and precision. Detecting rudeness in written natural language
is a hard task, not only for a computer algorithm but also for humans. In gen-
eral, any subtle emotion in natural language is difficult to detect as opposed to the
identification of vague emotions such as general happiness or sadness which senti-
ment analysis can detect reasonably well (Saif, He, & Alani, 2012). Moreover, the
quantity of training data for this classification task is quite low and the training of
the classifier is therefore challenging. Identification of the aforementioned subtle
emotions requires an advanced algorithm that understands the meaning of words
and sentences.

Semantic Models are widely used in Natural Language Processing tasks such
as information retrieval systems, translation systems and question-answer applica-
tions. The determination of rudeness in written text is a difficult task which can
be approached better by the use of semantic models since rudeness cannot be de-
termined by merely by keywords: all possible lists of keywords would be either
incomplete or too broad to detect rudeness accurately. Semantic Models attempt to
capture and model the meaning of words rather than its number of occurrences. A
complete list of rude keywords is no longer required if the meaning of texts can be
modelled accurately, because the list of keywords can be extended by searching for
similar words in the semantic vector space (Mikolov, Sutskever, Chen, Corrado, &
Dean, 2013; Zhang, Xu, Su, & Xu, 2015). Semantic Models are therefore required
in more complex text classification tasks to overcome the keyword list problem.

Semantic Vectors are becoming more popular since they are uncomplicated in
their implementation and computational efficiency. They have however various
properties that can be problematic in this classification task. Firstly, semantic vec-
tors do not take ambiguity into account. A word that has different meanings like
‘bank’ will have only one semantic vector. However, in natural languages the word
has two different meanings. Subtleties such as these cannot be taken into account
since every word can only have one associated semantic vector. Secondly, seman-
tic vectors have a scope that is limited to a single word, i.e. a vector can represent
only a single word. This is problematic for word combinations such as ‘New York’,
preprocessing the data can solve this problem though. Moreover, the creation of
semantic models for whole sentences or whole texts from separate word vectors is
a non-trivial task. A sentence is constructed of separate words which each have

3

their own representation, though building a model that captures the actual relation
between those words is a challenge. Lastly, creating vectors for words that do not
appear often in training corpora tend to be of poorer quality.

This research project will investigate the results and suitability of a classifier
that uses semantic models and other word-based properties, for the construction of
its features. If the classification is successful, the detection of other subtle linguis-
tic utterances of emotions and sentiment such as cynicism, sarcasm or humour in
written natural language might benefit form this approach. The resulting algorithm
can be trained using a relatively small quantity annotated data containing the sub-
tleties of interest in combination with a relatively large amount of general written
language. Other advantages of this method are that the algorithm is fast to train,
can use existing text corpora and might be used to find other subtleties apart from
rudeness as well.

The rest of the paper is structured as follows: in section 2 the theoretical foun-
dation of this research will be outlined and related works will be reviewed. Section
3 will explain the approach used in this paper in more detail. The following section
will explain the technical details of the conducted experiments, the results of which
will be shown in section 5 and discussed in section 6. The final section, 7, states
the conclusions of this research paper and proposes new research subjects in this
field.

4

2 Theoretical Foundation

2.1 Related works

Text and document classification has been researched extensively. Drucker, Wu,
and Vapnik (1999) examine the results of support vector machines for the detection
of spam messages, a typical document classification task. Text and document clas-
sification methods have gained popularity since then mainly because the amount
of documents that is publicly available has enormously grown with the rise of the
internet (Khoo, Marom, & Albrecht, 2006). Moreover, document classifiers are
used in information retrieval systems and search engines that became much more
important with the rise of the internet. The terms and words in such documents
describe the document and are therefore used in text classification tasks. Because
documents tend to contain a considerable amount of text, the vectors represent-
ing those document can become high dimensional. In order to make an algorithm
that can quickly classify a document, feature selection is an important part of the
creation of the classifier (Khoo et al., 2006).

Sentence classification differs from text classification in the scope. Text clas-
sifiers try to add labels to documents (or to emails, articles, etc.) and sentence
classifiers try to label sentences. Some sentiment analysis tasks can be seen as a
classification problem. Sentence classification can also be used in automated sum-
mary generation tasks (Khoo et al., 2006).

Nowadays, most sentence classification tasks use either neural network tech-
niques (Kim, 2014) or vector space models (Erk & Padó, 2008). Neural network
techniques and other unsupervised learning methods require a large amount of data
and are therefore not suitable for this problem. Vector space or semantic space
models do not require special data to train on, as they can be trained on any suf-
ficiently large enough corpus of natural language in which the presence of rude
sentences is not relevant. The main assumption underlying all the semantic/vector
space model algorithms is that the Harris’s Distributional Hypothesis is true. The
Distributional Hypothesis states that words that occur in the same contexts tend
to have similar meanings, so the meaning of words is characterised by the words
around it (Harris, 1954). The meaning of the words is therefore determined by
the context in which it normally appears. This property of natural language is the
theoretical foundation for vector space models.

Vector space models use vectors as representations of the object of interest. In
case of semantic models the object of interest can be the semantics of a sentence
or a document. Each dimension of the vector corresponds to a single term needed
to represent the object, for example the count of certain keywords in the sentences.
Distributional Semantic Models such as Latent Semantic Analysis (LSA) use vec-

5

tors that count occurrences of words with respect to the context of that word (e.g.
the neighbouring words in a certain window size) in large corpora of text. Then
those vectors will be transformed using geometric techniques to meaningful se-
mantic word-vectors in such a way that similar words will have similar vectors i.e.
the distances between those vectors is small (Baroni, Dinu, & Kruszewski, 2014).

2.2 Word2Vec

Mikolov, Chen, Corrado, and Dean (2013) have proposed a new method for syn-
thesising semantic vectors, called Word2Vec, that uses a supervised learning task
for an unlabelled data set as opposed to the older DSM techniques that use simple
count matrices and arithmetic transformations. Mikolov, Chen, et al. thought of
techniques that created supervised learning tasks form the unlabelled text. They
transformed the unsupervised learning task of learning the correct semantic vec-
tors to a set of supervised learning task. They showed that accurate semantic word
vectors could be learned from unlabelled training that, i.e. a large corpus of text.
Their algorithm is efficient; it focuses on processing large quantities of text rather
than on capturing complicated structures of language in advanced models. Their
big-data like approach resulted in good performance on all syntactic and semantic
evaluation test.

Word2Vec has two methods to transform the unlabelled training data into su-
pervised learning tasks, namely CBOW and Skip-gram, as illustrated in figure
1. CBOW (continuous bag of words) tries to predict a word (w(t)) given the
next/previous N words (context of the word) wheres Skip-gram tries to predict
the context of a word. Both tasks work well, whereas there are some differences
in performance (Mikolov, Chen, et al., 2013). Word2Vec creates a large number of
those training tasks (CBOW or Skip-gram). Thus, the unlabelled text input is used
to create many classification tasks (predicting the words) resulting in a multi-class
classification problem. A two-layered neural network is used to find the solution to
the classification tasks of all the words. The weights in the first layer in the neural
network correspond to the semantic words vectors (Rong, 2014).

Word2Vec is a state-of-the-art performance in numerous syntactic and semantic
tasks (Baroni et al., 2014; Levy, Goldberg, & Dagan, 2015; Mikolov, Chen, et
al., 2013; Mikolov, Sutskever, et al., 2013). The performance of Word2Vec has
been extensively examined and performs better in all tasks compared to traditional
count models (Baroni et al., 2014). Although the performance of Word2Vec is
better, the inner working of the algorithm was not well understood: it was not clear
what the optimisation objective is and what it means (Levy & Goldberg, 2014).
Levy and Goldberg have discovered that one variant of Word2Vec, being skip gram
with negative sampling, is implicitly equal to factorising a word-context matrix,

6

Figure 1: Tasks used to learn word embeddings: CBOW and Skip-gram
Image taken from Mikolov, Chen, et al. (2013, p.5)

which cells are the Point-wise Mutual Information (PMI) of the respective word
and context pairs, shifted by a global constant. Therefore it can be concluded
that there is no difference between the count models and the predict models in
aforementioned cases. Predict models like Word2Vec, GloVe and NCE seem to
optimise the same property as count models do, though in a very efficient manner
and therefore resulting in superior performance.

2.3 Support Vector Machines

Support Vector Machines are a set of supervised learning algorithms that can be
used for classification or regression problems. SVM became popular after Cortes
and Vapnik (1995) developed the existing algorithm in such a way that SVMs were
able to perform non-linear classification problems, which was not possible before.
SVM finds the optimal decision boundary by placing a line through the vector
space that maximises the distance between both classes. The usage of a kernel
function is a well-known method nowadays. It maps the input, in the case of SVM
being the data of the training examples, to a higher (possibly indefinite) dimen-
sional vector space. In this new vector space the algorithm searches for a decision
boundary, so that all training examples are in the right class in this new vector
space. For an illustrated example see figure 2. SVM does not need to transform

7

Figure 2: Mapping data to higher dimensional space, the yellow plane is the found
decision boundary
Image taken from https://www.dtreg.com/solution/view/20

each vector to the new vector space explicitly, because the only value SVM needs
to have as an input is the pair-wise dot product between two vectors in this new
vector space. Kernel functions can implicitly calculate the dot product between
two vectors in this higher dimensional space without explicitly transforming the
vectors into that space.

2.3.1 SVM in combination with Word2Vec

Zhang et al. (2015) demonstrate that the use of semantic vectors in combination
with SVM yields positive results in certain sentiment classification tasks, a task that
seems related to the rudeness classification. An F1 score of 0.90 has been reported
for a binary sentiment classification task (which is to classify each sentence as
either positive or negative). Word2vec is used to get the word embeddings for
the Chinese texts, following a clustering method is applied to find similar features
in the vectors, i.e. different words with similar meanings such as synonyms or
singular/plural pairs.

Each text has been given a score based on the Word2Vec-vectors (and afore-
mentioned clusters to account for synonyms) and is enriched with other features
(either part-of-speech or lexicon-based features). A support vector classifier is

8

trained using this feature set and is evaluated. The results reported are state-of-the-
art: a 90 percent accuracy for both feature sets, one containing part-of-speech tags
and the other set containing lexicon-based vectors. The results obtained by Zhang
et al. indicate that Word2Vec and SVM are useful tools for semantic binary classi-
fication tasks such as a rudeness classifier. Furthermore, they indicate that use of
part-of-speech tags can be a suitable feature for this classification problem.

9

3 The word-based approach

3.1 The word-based approach explained

The rudeness classifier must be able to correctly classify a given sentence as either
rude or non-rude; no additional rudeness scores will be returned other than a binary
return value. This task can thus be seen as a binary classification task. The training
examples consist of an annotated data set consisting of 1,000 articles from Dutch
newspapers. The total number of sentences is 36,000 of which 313 phrases have
been given a label indicating rude language utterances. If a sentences contains a
rude part the sentence as a whole is marked as rude. The training set contains
therefore 36,000 negative examples and 313 positive examples of rudeness. The
classifier must learn on these 36,000 annotated sentences.

A sentence is a set of words and for each of the words in the set properties will
be computed, resulting in properties for the sentence as a whole. Those properties
will be used as features in the classifier. All the features that the classifier uses are
based on properties of the single words that combined characterise the sentence,
hence the name word-based approach1.

Other approaches try to do the opposite by using features based on sentences
or documents as a whole, for example Mikolov, Sutskever, et al. (2013). Numerous
other studies compare and cluster documents or use document properties as learn-
ing features, both of which will not be used in this approach that is purely word
based.

3.2 Word-based features

Feature engineering is an essential part of building an accurate classifier (Khoo
et al., 2006) because that is all the information a classifier can use. In this study
a variety of features will be used. The features can be divided into the follow-
ing categories: semantic similarity, indicator, newspaper, part-of-speech tag, word
length and sentiment. Based on the work of Zhang et al. the semantic similarity is
expected to be the most important feature, because it encodes much more informa-
tion than for example a part-of-speech tag or information about the word length in
a sentence.

3.2.1 Semantic Similarity features

The features in the semantic similarity category are based on the semantic vectors,
created by a Word2Vec implementation. For each of the 313 rude sentences a

1There is one exception, see section 4 for details.

10

semantic vector is calculated by adding the semantic vectors of the single words
combined with a weighting term together. The weighting term favours words that
contain more information, i.e. rare words. Words like ’and’, ’or’, ’the’, ’of’ appear
in almost all sentences and are therefore not relevant.

For every sentence in the training and test set a semantic vector is computed
just as described above. That vector is being compared to the 313 rude sentences
vectors. The highest similarity score of those 313 vectors is used as a feature as
well as information about the distribution of the similarity scores i.e. how many of
all known rude sentences are closely, vaguely, not at all related to this sentence.

3.2.2 Other features

The other features are easy to compute: part-of-speech tags are counted and re-
ported as a feature, presence of keyword or names in a sentence is indicated by a
set of binary features. The newspaper in which the sentence has been found is the
only non-keyword-based feature. The reason that it has been implemented is that
future research might want to use that feature. Word-length-distribution is imple-
mented in the same way as semantic similarly score is used: it indicates how many
words are longer than x chars for some values of x. The final feature is a sentiment
score consisting of two numbers: the first one indicates the sentiment (very bad to
very high) and the second number is a objectivity measurement. Both calculations
are based on a keyword-based so it can be called a word based feature.

3.3 Motivation for word-based approach

For this particular classification task no specific requirements have been set, other
than high recall and precision scores. However, for the practical application of this
classifier it is important not to be dependent on too many resources such as memory
usage and running time. Moreover, a simple algorithm is favourable as opposed to
a more complex version, because of more human ease in its comprehension and
thus in its development and the debugging process.

A third advantage of word-based approach is the fact that it is computationally
cheap: no complex calculations are needed. Once the shared resources have been
calculated the scoring process for the newly to be classified sentences is simply
a matter of searching values in dictionaries and simple arithmetics. The sharable
resources that might have a longer duration to be calculated (such as the seman-
tic vectors) can be produced before running the algorithm which effectively has a
positive impact on the total classification time. Another benefit of the aforemen-
tioned resources is that they can be shared across multiple applications, so they
might already be available. Lastly, this algorithm is easy to apply parallelly. The

11

properties for each single word can be computed independently and therefore this
can be executed for large quantities of data divided over several CPUs.

12

4 Experimental Setup

4.1 Feature Computation

The semantic vectors are created in Python using the gensim library (Řehůřek &
Sojka, 2010). A high-quality Dutch corpus, called COW (corpora from the web)
(Schäfer & DFG, n.d.) was used as training set for the semantic vectors. Various
parameters for the training of the semantic vectors have been tried but the used
model is in all cases skip-gram. The accuracy of each set has been tested using a
semantic task that tries to find the correct capital for each country, e.g. Athens is to
Greece as Baghdad is to ...(Iraq). Semantic tasks are more complex than syntactic
tasks. The accuracy of the task is however not a perfect indicator for the quality of
the vectors, the quality of the semantic vector can only be tested by using it in the
application. The Python package Pattern (De Smedt & Daelemans, 2012) has been
used for the generation of the part-of-speech tags and sentiment analysis (see table
1 for the number of features in each category.) All data is stored in an SVM-light
file format.

The semantic similarity measure is defined as the cosine similarity between the
semantic vector for each sentence. The semantic vector for a sentence is simple the
sum of the inverse document frequenty (IDF) weighted vectors of all the words of
that sentence.

Feature Category Number

Semantic similarity 7
Word length 4

Part-of-Speech 12
Entity Indicators 30

Newspaper 3
Sentiment 2

Total 58

Table 1: This table shows the
number of features for each cate-
gory

13

4.2 The training set

The training of the classifier will be done using the manually annotated set of 1,000
newspaper articles. As mentioned before, all sentences that contain one or more
words that have been annotated as rude will be marked as rude, whereas all other
sentences will be assumed to be non-rude, although those sentences are not la-
belled as non-rude. The following preprocessing steps are applied to the data:
all sentences in the articles are tokenized using the Python package NLTK (Bird,
2006) that contains a special tokenizer that has been optimised for the Dutch lan-
guage. Following, all punctuation was removed and the text was converted to all
lowercase characters.

4.3 Applying SVM

The used kernel for the SVM is rbf. The rbf kernel has one hyper-parameter γ that
has to be set. SVM itself also has a hyper-parameter that can be set, being C. Each
classifier is therefore characterised by these two hyper-parameters: C and γ. All
data is normalised using the mean and standard deviation of each feature, so that
the mean is 0 and the variance is 1 after normalisation. Both the training set and the
test set are normalised using the mean and standard deviation of the training set. A
grid search will be conducted to find the optimal hyper-parameter settings. A part
of the training set (313 rude sentences + 1000, 2000, 3000 or all of the non-rude
sentences) is used to evaluate the performance. Evaluation is done by leave-one-out
cross-validation and the classifiers with the highest F1-scores are selected for test
set evaluation. The experimental setup follows the recommendations from Hsu,
Chang, Lin, et al. (2003).

4.4 Evaluation

The classifiers are evaluated by comparing its performance on a test set that is
annotated by humans. The generation of the test set was done using a heuristic
function because rude sentences appear infrequently in texts. If 1000 sentences
were randomly selected it could be the case that not a single rude or far too few
sentences emerge in the test set. The test set contains 999 lines and has been
annotated manually resulting in 120 rude sentences. It can therefore be conclucde
that the used heuristic has an accuracy of 12%.2 The used evaluation measure is
the F1-score.

2Actually, two heuristic functions were used, each selecting 500 lines, their accuracy was 8%
resp. 16%

14

5 Results

5.1 Semantic Vectors

The results of the accuracy test are shown in table 2. When hierarchical soft-max
is used the accuracy is very low as shown in the table. The size of the training
set is reported as the number of sentences. Min c indicates the minimal number of
occurrences for each word in the training set in order to be considered as part of the
vocabulary. An accuracy of 11.2% percent is reported, indicating that the training
size is more important than the number of dimensions of the semantic vectors.

5.2 Feature Sets

Two different feature sets have been tested; table 3 shows the distribution of fea-
tures in each set. Feature set 1 contains almost all features whereas feature set 2
only contains a subset of those features extended with an extra similarity measure
and sentiment analysis.

The grid search for the best parameters has been successfully conducted. Fig-
ure 3 shows the F1 scores obtained via leave-one-out cross-validation. Following
the data in the table, generaly speaking the performance is better for higher C val-
ues and lower γ values. This pattern has also been observed in feature set 2 (see
figure 6 in appendix A on page 25 for the heatmap plot).

5.3 Rudeness classification performance

After the optimal hyper-parameters were found the test set could be evaluated.
Feature set 1 did not result in any usable results, the results are therefore omitted,
see section 6 for more information. The results for feature set two are shown in
figure 4 and table 4.

Size Dimensions Window min c sample neg hs acc

1000000 200 5 1 0.000000 3 0 3.1
1000000 300 5 10 0.000010 x 1 0

10000000 200 5 5 0.000000 5 0 11.2
10000000 300 5 5 0.000010 x 1 0.5

Table 2: This table shows the accuracy on the Word2Vec training task

15

(a) 1,000 non + 313 rude examples (b) 2,000 non + 313 rude examples

Figure 3: Grid Search results for feature set 1, F1-score is shown

Feature Category Set 1 Set 2

Semantic similarity 6 7
Word length 4 0

Part-of-Speech 12 0
Entity Indicators 29 1

Newspaper 3 0
Sentiment 0 2

Total 54 10

Table 3: the number of features in each feature set

The best classifier in terms of the averaged F1-score is the classifier charac-
terised by C = 100, 000 and γ = 0.000001 with an average F1-score of 0.84 on
the test set containing 120 rude examples and 879 non-rude examples. The accu-
racy for this classifier is 86% which is near the best score of 88%.

The best classifier in terms of the F1-score for just the class of rude sentences
is characterised by C = 100 and γ = 0.01 resulting in an F1-score of 0.36 and an
accuracy of 82%. In all cases, the F1-scores for the rude-sentences class is lower
than the ones for the non-rude sentences. In some cases the F1-score for rude sen-
tences is even 0, which means not a single example has been classified(correctly).
The averaged F1 score is largely determined by the F1 score for non-rude exam-
ples because the number of non-rude examples in the training set is considerably
bigger.

16

F1-score Accuracy

C γ R NR avg total

10 0.01 0.90 0.34 0.84 0.83
0.001 0.90 0.31 0.83 0.82
0.0001 0.94 0.00 0.82 0.88
0.00001 0.94 0.00 0.82 0.88
0.000001 0.94 0.00 0.82 0.88

100 0.01 0.89 0.36 0.83 0.82
0.001 0.89 0.32 0.82 0.81
0.0001 0.91 0.30 0.83 0.84
0.00001 0.94 0.00 0.82 0.88
0.000001 0.94 0.00 0.82 0.88

1000 0.01 0.84 0.29 0.77 0.74
0.001 0.85 0.34 0.79 0.75
0.0001 0.90 0.31 0.83 0.83
0.00001 0.94 0.00 0.82 0.88
0.000001 0.94 0.00 0.82 0.88

10000 0.01 0.82 0.28 0.76 0.71
0.001 0.84 0.33 0.78 0.74
0.0001 0.90 0.32 0.83 0.83
0.00001 0.91 0.30 0.83 0.83
0.000001 0.94 0.00 0.82 0.88

100000 0.01 0.82 0.28 0.76 0.72
0.001 0.85 0.33 0.79 0.76
0.0001 0.83 0.32 0.77 0.73
0.00001 0.90 0.30 0.83 0.83
0.000001 0.92 0.27 0.84 0.86

Table 4: F1-scores for rude (R) non-rude (NR) classes, averaged and overall accu-
racy for various classifiers characterised by C- and γ-values.

17

Figure 4: F1-scores and accuracy for various classifiers. The full resolution graph
can be found in Appendix A on page 24.

18

6 Discussion

6.1 Semantic Vectors

The semantic vectors are successfully trained for the Dutch language. The accuracy
scores are low compared to the original study by Mikolov, Chen, et al. for similar
semantic tasks, though this can be explained by the size of the training corpus.
Mikolov, Chen, et al. used a corpus containing 6 billion tokens as opposed to 10
million sentences in the corpus used in this study.

The evaluation of the semantic vector can not be done using only artificial
tasks, the quality can only be tested in the application in which it will be used. The
semantic vectors are used in the similarity measure that is used in the algorithm that
created the test set. The accuracy of the test set is 16% and the test set is generated
only using semantic similarity. If the semantic vector were of poor quality, the
number of rude sentences in the test set would probably be lower. So it can be
concluded that the semantic vectors are sufficiently trained for the goals of this
study.

6.2 Feature set 1

As noted in the results, feature set 1 did not yield any useful classifiers. All classi-
fiers predicted either random classes or just one class (a naive predictor). A classi-
fier (C = 10, γ = 0.1) predicted a non-rude class for all entries in the test set. The
accuracy of this classifier was 879/999 = 88%, which is fairly good. But the recall
and precision for the rude-class are consequently 0, so it can be concluded that the
classifier did not learn anything and is of no use.

It is not known why this feature set performed so poorly. Zhang et al. (2015)
reported high quality results using part-of-speech tags, which are present in this
feature set, for a similar binary classification task for sentences. They also used
semantic vectors produced by the Word2Vec algorithm and an SVM classifier. It
may be the case that there were too many features (58) for 313 positive examples
in the training set.

6.3 Feature set 2

The smaller feature set, only containing semantic similarity measures, sentiment
scores and a single indicator indicating whether one or more of the keywords from
a list is present in the sentence or not, performed significantly better than the first
feature set. The smaller number of features (10) in this features set can be a reason
why it performed better. It is also possible that the features in the first set are
completely independent of the rude/non-rude label and therefore do not contribute

19

any useful information to the classifier. In fact they might add noise to data of the
classifier, that complicated the classification process.

The best classifier is characterised by C = 100, 000 and γ = 0.000001 but the
same score is achieved by classifier characterised by C = 10 and γ = 0.01 which
is other then expected. The latter also has an F1-score for rude sentences of .34
which approximates the best score. This result is as expected since the training set,
evaluated using leave-one-out cross-validation, performed well with the indicated
values in any case (see figure 3).

6.4 The training set

Initially, the number of rude examples in the training set (313) was much lower
than expected and indicated a possible problem, because it appeared that more
data would be needed to build a detector for such a subtle linguistic property as
rudeness. But the second feature set resulted in reasonably acceptable results.

6.5 Classifier quality

The test set contains 120 rude sentences, 12% of the total file. In the training
set only 313 of 36000 (0.9%) of the sentences is rude. The rudeness distribution
in natural languages is clearly very skewed. Building classifiers for such skewed
data sets is difficult, especially if a large training set is not available. The reported
averaged F1-scores depend much more on the classification of non-rude sentences
than on the classification of the rude sentences, simply because there are much
more non-rude sentences.

The question remains which classifier is the best in rudeness detection: the
one with the highest overall F1-score or the one with the highest F1-score for rude
sentences. The answer to that depends on the exact needs for the classifier. If
its goal is to classify a sentence as rude or non-rude the best classifier is the one
with the highest averaged F1-score. If one would be interested in detecting rude
sentences without any concern for the non-rude sentences the classifier with the
highest F1-score for rude sentences would be the best classifier.

20

7 Conclusion and future research

The main objective of the research project was to build a rudeness classifier with a
high F1-score; a classifier that can correctly classify a new Dutch sentence as either
rude or non-rude. The main problem was the small amount of positive examples in
the training data.

A word-based approach has been chosen, meaning that all text features are
based on single words, not on document properties or sentence structures. This
approach is easy to comprehend to debug and to implement parallelly. The text
features used in this research are semantic similarity measurements, key-word
presence indicators, part-of-speech tags, key-word based sentiment analysis and
word-length-distribution. Part-of-speech tags and word-length features did not
contribute to successful classification of sentences, whereas semantic similarity
measurements and sentiment analysis did.

As discussed, Word2Vec is used to acquire semantic vectors. Different param-
eters have been attempted each providing different results. The creation of the test
set heavily relies on the semantic vectors’ quality. Since the quality of the test set
was high, 16% rude sentences as opposed to 0.9% in the training set, it can be
concluded that the quality is indeed high. The word-based approach in this study
did yield positive results for certain classifiers. Overall, averaged F1-scores of 0.84
have been reported on the final test set.

For future research the key-word approach should be extended. Results from this
study can be considered as satisfactory, as well as promising for future research
given the fact that the use of semantic vectors in the current approach is simple.
More complicated features based on semantic vectors can be considered. Further,
a structured study to feature importance and selection will be needed in order to
determine which features do in fact contribute and which do not. It can be bene-
ficial to annotate polite sentences as well so that the binary classification problem
becomes a 3-class-classification problem consisting of neutral, polite and rude sen-
tences.

21

References

Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting semantic vectors. In
Proceedings of the 52nd annual meeting of the association for computational
linguistics (Vol. 1, pp. 238–247).

Bird, S. (2006). Nltk: the natural language toolkit. In Proceedings of the coling/acl
on interactive presentation sessions (pp. 69–72).

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning,
20(3), 273–297.

De Smedt, T., & Daelemans, W. (2012). Pattern for python. The Journal of
Machine Learning Research, 13(1), 2063–2067.

Drucker, H., Wu, D., & Vapnik, V. N. (1999). Support vector machines for spam
categorization. Neural Networks, IEEE Transactions on, 10(5), 1048–1054.

Erk, K., & Padó, S. (2008). A structured vector space model for word meaning in
context. In Proceedings of the conference on empirical methods in natural
language processing (pp. 897–906).

Harris, Z. S. (1954). Distributional structure. Word.
Hsu, C.-W., Chang, C.-C., Lin, C.-J., et al. (2003). A practical guide to support

vector classification.
Khoo, A., Marom, Y., & Albrecht, D. (2006). Experiments with sentence clas-

sification. In Proceedings of the 2006 australasian language technology
workshop (pp. 18–25).

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882.

Levy, O., & Goldberg, Y. (2014). Neural word embedding as implicit matrix
factorization. In Advances in neural information processing systems (pp.
2177–2185).

Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving distributional similarity
with lessons learned from word embeddings. Transactions of the Association
for Computational Linguistics, 3, 211–225.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Advances
in neural information processing systems (pp. 3111–3119).

Řehůřek, R., & Sojka, P. (2010, May 22). Software Framework for Topic Mod-
elling with Large Corpora. In Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks (pp. 45–50). Valletta, Malta: ELRA.
(http://is.muni.cz/publication/884893/en)

22

http://is.muni.cz/publication/884893/en

Rong, X. (2014). word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738.

Saif, H., He, Y., & Alani, H. (2012). Semantic sentiment analysis of twitter. In
The semantic web–iswc 2012 (pp. 508–524). Springer.

Schäfer, R., & DFG, L. W. C. (n.d.). Processing and querying large web corpora
with the cow14 architecture.

Zhang, D., Xu, H., Su, Z., & Xu, Y. (2015). Chinese comments sentiment classifi-
cation based on word2vec and svm perf. Expert Systems with Applications,
42(4), 1857–1863.

23

A
pp

en
di

x
A

Fi
gu

re
s

Fi
gu

re
5:

F1
sc

or
es

an
d

ac
cu

ra
cy

fo
rv

ar
io

us
cl

as
si

fie
rs

24

Figure 6: F1 scores for GridSearch for feature set 2

25

	Introduction
	Theoretical Foundation
	Related works
	Word2Vec
	Support Vector Machines
	SVM in combination with Word2Vec

	The word-based approach
	The word-based approach explained
	Word-based features
	Semantic Similarity features
	Other features

	Motivation for word-based approach

	Experimental Setup
	Feature Computation
	The training set
	Applying SVM
	Evaluation

	Results
	Semantic Vectors
	Feature Sets
	Rudeness classification performance

	Discussion
	Semantic Vectors
	Feature set 1
	Feature set 2
	The training set
	Classifier quality

	Conclusion and future research
	References
	Appendix Figures

