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Abstract

Robots have proven to be useful for a wide range of industrial and commercial applications,
principally in controlled, indoor environments. However, there are many outdoor scenarios

where the use of robots could be beneficial, for instance by reducing the cost of labour-intensive
tasks. The outdoor environment brings its own challenges and complications. For instance,
when operating in an outdoor environment, lighting intensity is more dynamic, reducing the

robustness of visual perception. People tracking and following is considered a valuable feature
in robotics. This can be achieved with a HOG descriptor, which is at the moment considered
one of the most robust solutions to detect people. Another recent development is the upward
availability of affordable depth cameras, most notable the Kinect for Windows, of which the

second version was released in September 2014. This research evaluates the performance of the
HOG descriptor on both the colour and infrared images produced by the Kinect 2 for Windows
in various lighting conditions. It was shown that the performance was higher in all conditions
when using the infrared images. Furthermore, the algorithm was extended with a depth filter

using the depth data of the Kinect 2. This improved the algorithm significantly by reducing the
number of false positives, resulting in a feasible solution for outdoor person tracking.
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1 Introduction

Robots have proven to be useful for a wide range of industrial and commercial applications,
principally in controlled, indoor environments.[10] However, there are many outdoor scenarios
where the use of robots could be beneficial, for instance by reducing the cost of labour-intensive
tasks.[6] Some robots intended for outdoor use are indeed becoming popular, e.g. drones for
recreational use and video capturing.[16] The outdoor environment brings its own challenges
and complications. For instance, when operating in an outdoor environment, lighting intensity
is more dynamic, reducing the robustness of visual perception. Another potential issue is un-
even terrain, which results in movement of the sensors and therefore less stable image data.
Furthermore, occlusions are more likely and of more complex form: since plants and bushes
are often shaped complexly compared to objects encountered in indoor environment, e.g. tables
and chairs. This calls for robust techniques performance adequately under these challenging
circumstances.

1.1 Hortimotion

The topic of this research arose as a use-case of the Hortimotion robot. The start-up company
Hortimotion produces this robot of the same name intended to reduce the labour cost by automat-
ing labour-intensive tasks on small- to middle-sized greeneries. This enables horticulturists to
produce high-quality products at a lower cost, without the use of harmful pesticides. The Horti-
motion is still in the prototype stage, and possible applications are now being explored. One of
these applications is using the Hortimotion as an assistant, i.e. assisting horticulturists in tasks
the robot cannot perform autonomously. For instance, the Hortimotion could follow a person
and supply that person with tools or plants, eliminating the cumbersome task of drawing a heavy
cart through the greenery.

1.2 People tracking

Detecting people in images is valuable in a wide variety of areas, such as visual surveillance,
autonomous and auxiliary vehicle driving, human interaction, domestic service applications and
image understanding. While image processing techniques to track people have been developing
rapidly and with great success over the past years, there are still scenarios imaginable where
the performance of these methods could perform substandard. This field of research will be
described in more detail in section 2.

1.3 Research Goals

The main goal of this thesis is to explore the different available methods for the tracking of
people in outdoor environments, with the aim to use this knowledge to propose a method that
is optimal for this task. The secondary objective is to examine how the results obtained from
testing the proposed method relate to the Hortimotion use-case.
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1.4 Outline

This thesis is organised as follows. In section 2 related work is reviewed, exploring the methods
currently available, in order to create a selection of algorithms that will be used for further
experiments. The research method and its implementation are described in section 3. Section
4 lists the experiments conducted, and is where the produced results are evaluated. In section 5
conclusions are drawn based on this evaluation, both in respect to people tracking in general and
to the Hortimotion use-case.

2 Related Work

The past years have seen increasingly rapid progress in the field of object recognition in gen-
eral, and specifically vision-based person tracking. These advances were achieved with many
different approaches that differ primarily in sensor type, feature extraction and the process of
modelling motion.[12]

However, the tracking of objects can also be accomplished without people recognition by
the use of beacons[15]. The most notable beacons in this context are: GPS trackers, RFID tags
and visual markers. An example of a visual marker is a pair of coloured circles with a defined
radius and distance between them. These methods require an extra item that has to be carried by
the user at all times to enable tracking, which is both inconvenient and inflexible. Furthermore,
these methods have additional complications: RFID performs poorly in tracking moving objects
[11]; GPS is either very expensive with precise licensed sensors, or performs insufficiently;
visual marker systems are extremely prone to occlusion or require numerous markers to ensure
visibility from different angles.[2]

Another means of tracking people is by the use of static cameras. This is extensively im-
plemented in various applications, most importantly surveillance camera systems. The methods
used with static cameras almost all depend on background subtraction to define a region of inter-
est; background subtraction detects displacement of objects. Sequentially, the found regions are
examined for features of relevant objects. The use of multiple cameras ensures robust detection
outdoors, since occlusions and problematic lighting in one field of view are likely to be absent
from another perspective.[18] However, robots generally hold the benefits of autonomy, while
the use of static cameras limits the area in which they are able to operate. Background subtrac-
tion is a challenging method for mobile platforms, since the movement of the camera results in
a moving background.

Systems with (omnidirectional) colour cameras mounted on mobile platforms make use of
different feature detection algorithms to determine the position of the person being tracked.
These features can be based on (skin) colour, shape or gradients. The performance of these
approaches differs in application and environment. The use of colour requires clothing of prede-
fined hue or the presence of visible skin. This is cumbersome, although it can be combined with
other features, e.g. by saving a histogram of colours after the person is detected by said features
in an initialisation phase.[13] Since the shape of a person differs significantly between individ-
uals as well as resulting from difference in angle, this method appears inferior. Presently, one
of the most robust solutions for tracking people is a histogram of oriented gradients descriptor
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(HOG descriptor) due to its invariance to geometric and photometric transformations.[8][5]
When coping with difficult lighting, as is often the case in outdoor environments, the per-

formance of the HOG descriptor decreases significantly. Low light conditions in particular are
a great complication for the use of any algorithm based on a colour camera. Methods that are
based on depth mapping are more potent in this scenario. A powerful sensor to create such a
depth map is a 3D laser range finder. 3D laser range finders are, however, prohibitively expen-
sive and are often not available in mobile robot platforms, except for the Google car.1 A more
procurable sensor is the Kinect 2 for Windows. The Kinect 2 creates a depth-map by analysing
infrared images of objects on which it projects a dense non-uniform array of infrared dots. This
method has a downside: The presence of sunlight saturates the infrared image to such an extent
that the projected depth map is near impossible to reconstruct, which results in the low per-
formance in outdoor environments during daytime, at least for the Kinect 2’s predecessor, the
Kinect 1.[17][1]

Since the Kinect 2 also includes a colour camera, it can be used for people tracking using
a HOG descriptor in bright lighting conditions. This can be combined with the depth-map
analysis for the tracking task in low light conditions. The aim of this research is to evaluate
if these algorithms prove to be robust in different lighting conditions encountered in an outdoor
environment, possibly by combining them by the use of a fusion algorithm.

3 Method

This section lists which hardware, software tools and libraries were used to conduct the exper-
iments. Firstly, the specifications of the Kinect 2 for Windows are described. Secondly, the
different software utilities used to both capture and modify the sensor data are explained and
exemplified. Lastly, the means to control and evaluate the experiments are specified.

3.1 Kinect 2 for Windows

In November 2010 Microsoft introduced the first version of the Kinect RBG-D camera, the
Kinect 1 for the Xbox 360 video game console.[3] Designed to be positioned below or above the
display, it enabled the users to interact with the system through body and hand motion without
holding or wearing sensors. Both the RGB and depth images created had a resolution of 640x480
pixels. The first software release to use the Kinect 1 with the computer, Kinect 1 for Windows,
followed in December of the same year. This was the fist time computer vision had played a
such a great role in a mass-market product intended for consumer use.[9]

Besides its original purpose, the Kinects also enabled scientific research in many fields,
including computer vision an robotics. For example by using the Kinect for autonomous nav-
igation, to reconstruct detailed models of indoor environments, and to allow surgeons to ex-
amine patient’s CT and MRI scans while performing surgery without the need to disinfect
peripherals.[9]

The Kinect 2 for Windows is the second major version of the Kinect product line, which was
released in September 2014. Both in hardware and software various improvements were made

1http://googlesautonomousvehicle.weebly.com/technology-and-costs.html
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to increase performance in several aspects and thus enhance the user experience; and most likely
increase performance in other applications as well. The Kinect for Windows 3 sensor contains
both a colour camera and an infrared camera. The colour camera has a resolution of 1920x1080;
a field of view of 84.1°and 53.8°; and focal distances of 1036.32±3.72 and 1030.4±3.87. The in-
frared camera has a resolution of 512x424, a field of view of 70.6°and 60.0°; and focal distances
of 364.15±1.45 and 362.40±1.45. Al values in the preceding enumeration were respectively the
horizontal and vertical directions. Because of these differences and other distortion coefficients,
the camera has to be calibrated to obtain appropriate transformations to be applied in order to
align the colour, infrared and depth images.[7]

The Kinect infrared camera detects infrared light with a wavelength between approximately
827 and 850 nm.2 This is a much smaller range than used by conventional infrared cameras used
for night vision. This makes sense since the Kinect uses the camera to record the projected dots
of a certain wavelength to construct the depth map, while night visions cameras aim to capture
as much light as possible to capture the scene in low-light conditions. The Kinect 2 uses several
algorithms to create a depth map, most notable a time-of-flight algorithm. This results in much
hihger resolution depth data compared to the structured light method of the Kinect 1, which is
very similar to triangulation used by in stereo-vision cameras.
Note that from this point on ‘Kinect’ will refer to the Kinect 2 for Windows.

3.2 Libfreenect2

To access the data generated by the Kinect, the open source driver libreenect2 for Kinect for
Windows 2 devices was used. this driver supports3 colour image, infrared image and depth
image transfer. The libreenect2 driver is developed and maintained by OpenKinect4, and open
source community with the main purpose of enabling the use of the Xbox Kinect 1 and 2 on
Linux, Mac and Windows.

3.3 ROS

The Robot Operating System5 (ROS) is a framework that enables rapid development due to the
numerous functionalities it offers in the form of tools, libraries, and conventions. Through sim-
plifying various solutions to problems that occur in robotics applications frequently, it helps to
create robust software for many purposes. ROS was designed specifically for groups of different
expertise to collaborate and build upon each other’s work.

Since the architecture of ROS is highly modular, it grants the advantage of straightforward
including and excluding functionalities from ROS, keeping the system as lightweight as pos-
sible. Furthermore, it facilitates easy implementation of functionalities written by other ROS
programmers. Another considerable advantage is that the modules can operate on different sys-
tems and communicate on the standard Internet Protocol. This enables parts of the program that

2https://social.msdn.microsoft.com/Forums/en-US/e92e6f9b-4800-4b48-8ae7-5c8b1353d661/
infrared-wavelength?forum=kinectv2sdk

3https://github.com/OpenKinect/libfreenect2
4http://openkinect.org/
5http://www.ros.org/
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require high computational power, such as image processing, to run on computers power while
simultaneously other modules can run on a robot with the means of for instance perception and
actuation.

In this thesis the ROS Indigo Igloo version was used, because this is the currently supported
distribution release that is currently better documented and for which considerably more mod-
ules are available than the younger supported distributions. This release is also targeted at the
Ubuntu 14.04 LTS distribution, the system used for this project.

3.4 IAI Kinect2

IAI Kinect26 is a collection of tools and libraries for the ROS Interface to the Kinect. It contains
a calibration tool for calibrating the IR sensor of the Kinect to the RGB sensor and the depth
measurements. This tool enables was designed specifically for the Kinect 2 using OpenCV,
which is described in the next subsection. It enables almost effortless calibration, since the pro-
cess is highly automated. It makes use of an included chess or circle board image, of which
the latter was used for this research. The image has to be printed in the right size and subse-
quently placed in the view of the Kinect. While ensuring neither the Kinect nor the printed image
change position, the calibration program is run. This process is repeated, varying the orientation
and distance of the calibration image in respect to the Kinect.

Furthermore, the IAI Kinect package provides communication between the libfreenect2 li-
brary and ROS, a viewer for images and point clouds and a library for depth registration with
OpenCL support. The use of OpenCL enables computation using the GPU and therefore grant-
ing a higher frame rate, from approximately 5 to 25 frames per second on the machine used in
this research.

3.5 OpenCV

OpenCV7 is an open source computer vision library, which centralises computational efficiency
to enable use in real-time applications. This is achieved through its implementation in optimised
C/C++ and the ability to take advantage of multi-core processing. Furthermore, it is enabled
with OpenCL, through which it can take advantage of hardware acceleration of the underlying
platform. OpenCV offers plentiful computer vision and machine learning algorithms including
to recognise, identify, classify and track objects and persons. In addition, the library offers tools
to extract, modify and process 3D models and is able to process 3D point clouds as produced by
the Kinect.

In this research, OpenCV was used for various minor functionalities, such as reading, writ-
ing, resizing and cropping images. It was also used to measure the relative illuminance, which
is further explained in subsection. However, the particular function that was of great importance
in this research, is its fast implementation of the HOG descriptor, which is described in the next
subsection. The version of OpenCV that is used for this thesis, is 2.4.8, since OpenCV 3 is not
yet compatible with the used ROS and IAI Kinect2 libraries.

6https://github.com/code-iai/iai_kinect2
7http://opencv.org/
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3.6 Histogram of Oriented Gradients

The Histogram of Oriented Gradients (HOG) descriptor is a feature descriptor proposed by
Navneet Dalal and Bill Triggs in 2005.[8] It is an algorithm that extract features from an im-
age, which can be used to train object detection algorithms. It generalises properties of objects
by rendering various conditions invariant in describing the feature. In the original research, a
linear support vector machine (SVM) was used for human detection as a test case.

The HOG descriptor returns global rather than local features, in contrast to for instance the
SIFT or SURF feature detectors.[14][4] This means objects are represented by a single, global
feature vector, in stead of a collection of smaller, local features representing different parts of
the object.

In short the algorithm is as follows: In the first stage colour and gamma are normalised.
Subsequently the descriptor first slides a window of size 64x128 pixels over the image. At
each position the window is divided in cells of size 8x8 pixels. Of each pixel in this block, the
gradient vector is calculated and stored in a 9-bin histogram. Since the gradient is unsigned, each
bin is 20 degrees wide. This stage of the algorithm serves two purposes: 64 values are stored
in nine values enabling faster training, and small changes in gradient values will contribute less
to the overall histogram value, generalising the information of the block. These histograms are
normalised in magnitude, which makes them robust to variation in illumination. In the next
stage, groups of 2x2 cells are combined to form blocks. This means the windows is divided in
15 blocks in the vertical direction and 7 in the horizontal direction. The histograms of the cells
in these blocks are concatenated, which results in vector of 36 values. These blocks overlap
each vertically and horizontally surrounding block by half its size, and are normalised in respect
to the blocks they overlap. This means cells are contributing to the feature vector several times
with different weightings, which increases invariance to illumination and contrast with respect
to the background.

The final descriptor of the detection window contains 105 of vectors of 36 values, resulting
in a single vector of 3,780 values for every window. Every vector is passed to the SVM detector,
which returns whether the image contains a person or not. After the image is analysed, the image
size is reduced by a scale parameter and the process is repeated. This results in a relatively larger
window, detecting taller persons as well as persons closer to the camera.

3.7 Depth filter

To improve the performance, the depth data was used to verify whether detections of the HOG
descriptor were justified with the following algorithm: In the first stage, the area where the HOG
descriptor detected a person is projected on the depth image provided by the IAI Kinect tool.
Subsequently, the areas is reduced in size by a factor 10. This area is translated upwards by 30
percent of the original height of the area in order to be positioned on the torso of the detected
person, considering this is the part of the human body most likely to provide correct depth in-
formation. The average pixel value of this area is now considered to be the distance from the
detected person. In the next stage, the focal length f of the camera and the distance are to cal-
culate the angular extent α:
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α = 2 ∗ arctan( ds2f ); d = distance

The angular extend relates linearly with the actual size of the person. When the the size of the
object is 10% smaller or larger than a predefined value, the detection is regarded incorrect and
thus rejected.

3.8 Infrared & lighting conditions

As described earlier, sunlight differs from light in indoor environments in several aspects. The
electromagnetic spectrum is normally divided into ultraviolet, visible, and infrared light. Differ-
ent light sources produce different distributions over this spectrum. Furthermore, the spectrum
of sunlight changes over time, since the amount of atmosphere it traverses changes with the angle
of incidence and different layers of the atmosphere absorb different ranges of the electromag-
netic spectrum. The overall intensity of the light varies as well: light in indoor environments is
of relatively moderate and stable intensity, whereas sunlight may vary due to overcast and again
the angle of incidence.

To simulate sunlight in a controlled procedure, experiments need to be conducted in an
environment obtained from light sources. To produce light with a similar spectrum of sunlight,
floodlights with 300W tungsten halogen lamps were used accounting for 4000 lumen each8. As
can be seen in figure 1, halogen lamps create light that is continuous in spectrum and, relative to
other lamps, similar to sunlight in distribution over the spectrum.

The light intensity was measured in the quantity illuminance is measured in lux (lx) and
describes the total luminous flux incident on a surface per unit area; incident light is simply light
reflecting from a surface. It is determined using the luminosity function to correlate with human
brightness perception. This is appropriate for colour cameras, since they are constructed corre-
spondingly to resemble the human vision as closely as possible. To measure the illuminance,
a Samsung Galaxy S6 with the Light Meter 9 app was placed next to the Kinect, which has a
maximum error of 5%.

3.9 Labelling

In order to evaluate the performance of the algorithm, the results of the HOG descriptor were
to be quantised. The frames were labelled in terms of true positives: the actual person was
detected; false positives: something other than the person was classified a a person; and false
negatives: the person was not found on the frame, while it was completely visible on the image.

With these results, the ratio of correctly labelled frames is calculated: These are the frames
where solely the person was detected and no false detections occurred, and additionally the
frames where no person was detected while there was no person visible on the images. If the
subject was partially on screen, it should not be classified, since the HOG descriptor is trained on
images where the person is entirely visible. Lastly the F1 score, the harmonic mean of precision
and recall, is calculated from these results as well, since this yields a better representation of the
algorithms performance, as will be clarified in the evaluation.

8Philips Halogen Double Ended Linear RS7 300W T3 CL 2BC (3222 640 56171)
9https://play.google.com/store/apps/details?id=com.bti.lightMeter&hl=en
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Figure 1: Average spectra of sunlight and halogen

The labelling was performed manually, observing one colour and one depth frame at a time.
Since the infrared images were recorded at a higher frame rate than the colour images, i.e. ap-
proximately 10 and 20 frames per second, the colour frames were opened in order of recording,
subsequently finding the infrared image with the closest created at time in milliseconds.

4 Experiments

4.1 Set-up

The experiments were conducted with the aim to exclude variance in other determinants as much
as possible. To accomplish this, a track was plotted on the floor using markers and duct tape,
in order to ensure that the filmed subject would traverse an equal path through the room in all
recordings, consequently producing similar images to be analysed. This path was chosen in
such a manner, that the subject is recorded from all perspectives: namely the front, side and
back view. Similarly, the track ensures images with the subject on varying distances from the
Kinect, varying from 0 to 5 meters.

Furthermore, the Kinect and the floodlights were placed at fixed positions, which can be
seen in figure 2. The location where the experiments were conducted is the Game Studies lab,
situated at Amsterdam Science Park. This location is exceedingly suitable, since all windows
are equipped with darkening curtains and there are relatively few reflecting surfaces. This allows
almost full control of the lighting intensity using the floodlights. The ceiling is also provided
with vertical panels, which also contributes to eliminating reflections.

The floodlights were placed at four positions, as shown in figure 2. Two groups of two
floodlights each were directed to the ceiling, which provided diffuse light increasing the overall
lighting of the environment. Furthermore, two floodlights in the back and one floodlight in the
front provided direct light into the camera, simulating direct sunlight as it would be perceived
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outdoors in certain conditions.

Figure 2: Overview of the Game Studies lab at the University of Amsterdam. The four groups
of flashlights are labelled A-D.

Four recordings were made in different lighting conditions, producing a set of images from
the Kinects colour and infrared camera. Additionally, a depth cloud was recorded and used to
created depth images using the IAI Kinect2 library. These are grey scale images where the pixel
values represent the distance of every corresponding pixel of the colour image and infrared im-
ages, i.e. the pixels on the same x and y location of the image. Each recording was about 20
seconds in length and the frame rate 10 frames per second, providing approximately 200 images
per recording. In total 1677 frames were labelled. The first recording (i) was in almost total
darkness; in the second recording (ii) the lights providing diffuse light were turned on; in the
third recording with both diffuse light and direct light into the camera; and the fourth recording
was shot with all the lights turned on.

14
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4.2 Results

The results listed in this section are divided in two sets. In the first set, table 1 and figure 1, the
performance of the HOG descriptor is described. The results listed in the second set, table 2 and
figure , are of the HOG descriptors performance after filtering the results using the depth filter.

Table 1: Results of HOG descriptor before depth filtering

Ratio Properly Labeled Frames F1 score

Experiment Floodlights Illuminace (lx) Colour Infrared Colour IR
i none 0 0.338 0.662 0.027 0.737
ii AB 13 0.728 0.832 0.761 0.851
iii ABC 26 0.209 0.874 0.441 0.881
iv ABCD 44 0.488 0.813 0.480 0.832

Table 2: Results of HOG descriptor after depth filtering

Ratio Properly Labeled Frames F1 score

Experiment Floodlights Illuminace (lx) Colour Infrared Colour IR
i none 0 0.374 0 0.813 0.845
ii AB 13 0.759 0.793 0.834 0.881
iii ABC 26 0.791 0.775 0.935 0.945
iv ABCD 44 0.704 0.673 0.846 0.856

Figure 3: Results of HOG descript before depth filtering

4.3 Evaluation

In the first set of results, where no depth filtering was applied, it is shown that in low-light condi-
tions the HOG descriptor was able to correctly classify over one quarter of the analysed images.
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Figure 4: Results of HOG descriptor after depth filtering

However, these are the frames where no person was in the image, and the HOG descriptor there-
fore correctly classified it as a true negative. Hence the F1 Score provides a much better metric
for evaluation, since the recall is nearly zero in this situation.

Not surprisingly, the performance of the HOG descriptor was much higher with the use of
infrared images. It should be noted that this high performance is also achieved because of to the
infrared lighting the Kinects infrared projector produces. The infrared projector of the Kinect
illuminates the scene with light of the spectrum that the infrared camera records, resulting in
very bright images even without other light sources.

The performance of the HOG descriptors on the colour and infrared images is nearly the
same when there is enough diffuse light for the colour camera to capture the scene. However,
when there is bright light aimed directly towards the camera, the performance of the HOG de-
scriptor on the colour image decreases greatly. An intuitive explanation would be that the light
distorts silhouettes and therefore decreases the chance of a correct classification. However, the
number of true positives does not decline; the major cause for this decrease in performance is
the increase of false positives. This seems to be a result of the many extra gradients that the light
directed at the camera produces, resulting in complex shapes the HOG detector can classify as
persons. The results of the HOG descriptor using the infrared images do not demonstrate such a
decrease in performance. This can be explained by the fact that the Kinect records on a narrow
band of the infrared spectrum, thus preventing bright light sources from overexposing the image.

When depth filtering is used to eliminate incorrect detection of the HOG descriptor, the
performance of the HOG descriptor on both the colour and infrared images increases. This
is due to the decrease of false positives that are eliminated since the depth data shows these
detections would of persons that are unreasonably short or tall. This effect is much larger in
when applied when using the colour camera, since it produced more false positive detections.

5 Conclusion

As expected, the HOG descriptor used with the Kinects infrared camera has a much higher
performance compared to the HOG descriptor used on colour images in low-light environments.
However, in moderate lighting conditions the performance does not differ significantly. When
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light is directed directly at the camera, the colour image is distorted much more in comparison
to the infrared image. Therefore, direct light results in a great decrease of performance when
using the colour camera, but no significant change in performance was found when using the
infrared image. Furthermore, using the Kinects depth map to eliminate false positives increases
the performance for both the use of colour and infrared images, although this effect is much
greater for the colour images. In all experiments the use of infrared images resulted in higher
performance, and in low-light environments this difference is immense. Combined with the
depth filtering algorithm, this appears robust enough to be a feasible solution for outdoor person
tracking. The detections in the colour and infrared images could be combined as well, although
this does not appear promising, since in none of the lighting conditions examined in this research
the use of colour images resulted in a better performance.

6 Discussion & future work

To prove if this approach would hold in real world scenarios, it should be tested in actual di-
rect sunlight in outdoor environments, since the intensity and spectrum of sunlight differs from
halogen lamps. These experiments should be conducted at different times and preferably also in
different weather conditions, since the spectrum and intensity of sunlight changes accordingly.
Furthermore, this research did not focus on the computational power required for an implemen-
tation in a robot, i.e. method might be computational too expensive for certain commercial
applications.

To implement this algorithm to enable the tracking and additionally following of people, as
in the Hortimotion use-case, it should be extended to uphold performance in various scenarios.
It should for instance be determined what the robot does when not a single person is detected, or
what the do in the opposite case when more than one person is found. Another choice to be made
is the maximum distance of a person to be followed; limiting this distance would also accelerate
the detection algorithm. Furthermore, solutions have to be found to cope with situations where
a person is detected, but the robot is prevented from reaching that person due to obstacles on its
path. The HOG descriptor only detects persons that are completely within field of view of the
camera, which, despite the great vertical field of view of the Kinect, will not be the case when
the robot gets close to the followed subject. Other features, possibly defined on the go when
the person is detected from a greater distance, could account for this. For instance, a colour
histogram of the area returned by the HOG descriptor. However, this will only work when the
person in question wears clothing of colours differing significantly from the environment.
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