
University of Amsterdam

Artificial Intelligence

Bachelor Thesis, 18 EC

DeepChess: Deep Reinforcement
Learning applied to the endgame

of chess

In this thesis the creation and performance of DeepChess is discussed, the first
chess engine that is based on the findings of DeepMind’s AlphaGo.

DeepChess’s performance reached a 88 % winning-rate in winning positions in
the King Pawn King endgame against chess engine SunFish. With more

experiments and an extension to the full game of chess, I will provisionally
conclude that it is possible to apply Deep Reinforcement Learning to the game

of chess, and that such a chess engine could perhaps improve on the current
chess engines based on brute-force methods.

Author:
Sierk Kanis, 10688528

Supervisor:
Efstratios Gavves

June 24, 2016

Contents

1 Introduction 3

2 Literature overview 4
2.1 Reinforcement Learning . 4
2.2 Deep Learning . 6
2.3 Deep Reinforcement Learning . 7
2.4 Deep Reinforcement Learning in chess 8

3 Methods 10
3.1 King Pawn King positions . 10
3.2 State representation . 11
3.3 Network architecture . 13
3.4 Hyper-parameters . 14
3.5 Reward function . 15
3.6 SunFish . 15
3.7 Evaluation methods . 16

4 Results 18
4.1 Experiments . 18

4.1.1 The king in a grid world 18
4.1.2 The addition of the pawn. 19
4.1.3 The addition of a random playing opponent king 20

4.2 Playing against SunFish . 20

5 Discussion 22

6 Conclusion 23

7 References 25

1

Acknowledgements

I would like to thank my supervisor Efstratios Gavves and my co-supervisors
Matthias Reisser, Changyong Oh and Berkay Kicanaoglu for support during
this project. Without their support it would not have been possible to achieve
the aims for this project within the available time.

2

1 Introduction

During the last two decades machine readable information has increased expo-
nentially, and with that, so has the need to understand and use this information.
A technique gaining more and more interest is Machine Learning, which pro-
vides tools with which large quantities of data can be automatically analysed
(Hall, 1999), and thereby easing the burden of hand-programming growing vol-
umes of increasingly complex information (Michalski et al., 2013). Machine
Learning proved to be helpful in tasks which are difficult to program by hand,
such as data mining, machine translation, speech recognition, face recognition
and robot motion (Pierre Lison, 1996).

The theory of reinforcement learning provides an account of how agents may
optimise their control of an environment. While reinforcement learning agents
have achieved some successes in a variety of domains, it could only be used in
fields where useful features could be handcrafted (Mnih et al., 2015). In more
complex tasks, features can not be handcrafted sufficiently, as is the case of
tasks that are so deeply familiar to humans that it is hard to explain their be-
haviour explicitly, driving a car for example (H. Tsoukas, 2005), or of tasks that
are not yet fully examined, example given, just developed drones that should
perform flips. To use the concept of reinforcement learning successfully, without
explicitly stating features and in situations approaching real-world complexity,
agents are confronted with a difficult task: they must derive efficient represen-
tations of the environment from high-dimensional sensory inputs, and use these
to generalise past experience to new situations (Mnih et al., 2015).

With the rise of Deep Reinforcement Learning, agents can now successfully
learn policies from high-dimensional input data. This is tested by DeepMind in
the domain of classic Atari games, where the agent, when only receiving pixel
data, surpasses the level of all previous algorithms and achieved a level compa-
rable to professional human gamers (Mnih et al., 2015). Also, the game of Go,
long viewed as one of the most challenging games for artificial intelligence, has
been tackled with the use of deep reinforcement learning, achieving a winning-
rate of 99.8% against all other Go programs and defeating the human World Go
Champion Lee Sedol (Silver et al., 2016).

For the game of chess, however, the current best engines are based on brute
force calculation of a limited amount of moves, in combination with a handmade
evaluation function tweaked both manually and automatically over several years
(Lai, 2015). Being inspired by the trend of applying deep reinforcement learning
to games, which DeepMind started by achieving superhuman performance on
Atari games, a natural question arises: could an agent, which would be able
to form more complex evaluation functions, improve on the current chess en-
gines, while being independent and not restricted by any human knowledge? As
an attempt of answering this question DeepChess has been created, an engine
based on Deep Reinforcement Learning, which has learned to play the endgame

3

of chess, specifically, the endgame of King and Pawn against King (KPK).

In the literature overview, Reinforcement Learning will be explained, to-
gether with its disadvantages. Subsequently, the benefits of connecting a deep
neural network as function approximator will be stated, to finally discuss some
research within deep reinforcement learning. In the method section, the liter-
ature will be applied directly to chess, consisting of state representation, the
network architecture and evaluation methods. In the result section, the perfor-
mance of DeepChess will be evaluated, resulting in winning 88% of theoretically
won positions against chess engine SunFish, and winning 99% of winning po-
sitions against a random playing opponent. This corresponds, according to
Silman’s classification of chess endgames, to DeepChess being able to play this
endgame with an approximated Elo-rating of 1400 (Silman, 2007). On the basis
of these results I will conclude that, with tweaks, DeepChess could be able to
play the KPK endgame optimally. As recommendations for future research, the
architecture and hyper-parameters of DeepChess could be further optimised,
together with an extension of learning a broader variety of chess endgames.

2 Literature overview

In the following section, relevant literature concerning different machine learn-
ing methods is discussed, concluding that Deep Reinforcement Learning could
be used best as an attempt to improve on the current chess engines. Firstly,
Reinforcement Learning is discussed, subsequently, Deep Learning and Deep Re-
inforcement Learning are described. Finally, previous work on applying Deep
Reinforcement Learning to chess is discussed.

2.1 Reinforcement Learning

In this section the basic idea of Reinforcement Learning is discussed, subse-
quently an application in chess is described and finally the motivation to add
Deep Learning is stated.

Tasks are considered in which an agent interacts with an environment; se-
lecting actions, observing states and receiving rewards. The goal of an agent
is to interact with the environment by selecting actions that maximise future
rewards. A position that covers all information necessary to formulate the best
action is called a Markov State. Whenever these states terminate in a final
number of steps, a large but finite Markov Decision Proces (MDP) is formed.
As a result, Reinforcement Learning methods may be applied to solve these
MDP’s, resulting in an optimal strategy for receiving future rewards (Mnih et
al., 2015).

The goal of Reinforcement Learning is to learn the optimal policy, in other
words, the optimal way of acting in an environment. This policy is found by

4

finding the optimal action-value function Q*(s,a), which pairs each state with
the action that maximises the expected future reward. This optimal action-
value function obeys the Bellman optimality equation (1), which is based on
the following: when the Q values of all actions from the next state are known,
Q*(s’,a’), the optimal strategy is to select the action that maximises the ex-
pected value of r + Q*(s’,a’).

Q∗(s, a) = [r + γmax Q∗(s′, a′)|s, a] (1)

in which γ is the discount factor determining the agent’s horizon, and r the
reward the agent receives for performing move a. In the case of solely termi-
nal rewards, the agent only receives a reward when a terminal state is reached.
Only at this moment, the agent retrieves the real value of a state. The next
iteration, using the Bellman equation, it gives this information back to the one
but last state; the next iteration it gives this information to the second to last
state, and so one. Eventually, the whole action-value function is known, using
this iterative update based on the Bellman optimality equation (Silver, 2015).

The idea behind many Reinforcement Learning algorithms is to approximate
the action-value function, using the above stated iterative update. It is proven
that such iterative algorithms converge to the optimal action-value function
(Sutton & Barto, 1998). However, this basic approach is totally impractical,
since all states are visited before reaching this optimal action-value function,
without using any generalisation. To this end, it is common to use a function
approximator, which is typically a linear function, but a non-linear function
such as a neural network could be used instead. The parameters of this approx-
imator are updated in such a way that it optimises the following loss function (2):

Li(θi) = (r + γmax Q(s′, a′, θ−i)−Q(s, a, θi))
2 (2)

in which θi are the parameters of the trainable Q-network at iteration i and θ−i
the parameters of the target network at iteration i. In contrast to supervised
learning, the targets are not fixed before learning, but formed by predictions of
a fixed target Q-network. More precisely, every C updates the trainable network
gets cloned to obtain the target network, which is then used for generating the
targets for the following C updates to the trainable network (Mnih et al., 2015).
Using this loss function the network is not tested on its ability to predict the
outcome of the game from the current state, but on its ability to predict its own
evaluation in the next state. As long as some states receive fixed rewards, the
network is claimed to eventually achieve temporal consistency, meaning that
sequential states have similar Q values (Lai, 2015).

It may not be necessary to iterate until the minimum of the action-value
function is reached, since the optimal policy could already be reached. There-
fore, it is more efficient to use stochastic gradient descent. Also, the agent learns

5

on-policy, meaning that its learning is based on already learned behaviour, which
is often selected by an epsilon-greedy strategy: during training the amount of
exploration (doing random moves) will be decreased to ensure more exploitation
(choosing the best move following the current policy) (Mnih et al., 2015).

In 2001 chess program KNIGHTCAP achieved an Elo-rating of 2500 based
on temporal difference learning, which is a form of Reinforcement Learning
(Baxter, Tridgell & Weaver, 2001). The value of being in a specific position
(the value function) was formulated as a combination of handcrafted features
multiplied by their weights, which were learned by an iterative reinforcement
process (Block et al., 2008). The algorithm would then repeatedly select the
action that results in the highest valued position and would play according to
this rule.

However, using handcrafted features has two drawbacks. Firstly, it is depen-
dent on expert knowledge of chess, which is necessary for creating handcrafted
features. Secondly, knowledge chess players use is so practical and deeply fa-
miliar to them, that it is hard to express this knowledge in words (Tsoukas,
2005). This difficulty of explicitly stating features that characterise a chess
position, adds to the disadvantage of handcrafted features. Fortunately, a tech-
nique called Deep Learning has risen up recently, which makes the system itself
perform feature extraction. The idea of Deep Learning is illustrated in the
following paragraphs.

2.2 Deep Learning

To go beyond weight tuning with hand-designed features and actually have a
learned system perform feature extraction, a highly non-linear function approx-
imator is necessary. In this section, the idea of Deep Learning is expressed,
followed by recent achievements of the technique.

To perform classification directly on pixels, or large input data, a simple
model is not sufficient. The system would have to memorise all different input
data, which would require high computational power and would not be able
to generalise well (Lai, 2015). Bengio (2009) states in the book Learning deep
architectures for AI : “when a function can be compactly represented by a deep
architecture, it might need a very large architecture to be represented by an
insufficiently deep one.” This claims that a more efficient approach for classi-
fying complex structures is to use a deep architecture, where each layer would
identify a different level of features. The first layer would identify low-level fea-
tures like corners and edges, whereas the second layer could use the output of
the first layer to identity slightly higher-level features such as different shapes.
In this way, one could imagine that higher-level abstractions which characterise
the input could emerge (Bengio, 2009).

In 2012, Krizhevsky et al. trained a deep neural network for the ImageNet

6

competition and achieved an error of 15,3%, when the previous best was 26,2%.
Deep Learning has also been used for handwriting recognition, where deep net-
works are approaching human performance with 0.3% error (Krizhevsky et al.,
2012). Also, between 2010 and 2014, the two major conferences on signal pro-
cessing and speech recognition, IEEE-ICASSP and Interspeech, have seen a
large increase in the numbers of accepted papers in their respective annual con-
ference papers, on the topic of Deep Learning for speech recognition (Deng &
Yu, 2014). These successes have led to a wide usage of deep neural networks
in the fields of speech recognition, image recognition, natural language process-
ing and recommendation systems (Bengio, 2009). Recently, the combination of
Deep Learning with Reinforcement Learning has gained interest, which will be
discussed in the next section.

2.3 Deep Reinforcement Learning

In this section the basic idea of Deep Reinforcement Learning is illustrated, fol-
lowed by some achievements of this recent combination. Finally, two changes
to the original Reinforcement Learning algorithm are stated.

The idea of Deep Reinforcement Learning is to connect a deep neural net-
work to approximate the action-value function used in Reinforcement Learning,
thereby, combining Deep Learning with Reinforcement Learning (Mnih et al.,
2013). This way the agent is able to learn directly from board positions, with-
out having to implicitly state features as a guide to the learning process. There
are two major benefits of this learning method. Firstly, no expert knowledge is
required at all, since the agent can come up with features itself. As an example,
it is not required to introduce strategic chess concepts, like the distance of both
kings to the pawn, the concept of opposition, the distance of the pawn to the
queening square, etc., which should have been necessary for basic Reinforce-
ment Learning. Secondly, Krizhevsky, Sutskever and Hinton (2012) state that
by feeding sufficient data in the deep network, it is often possible to learn better
representations than was possible with handcrafted features.

Tesauro’s TD-Gammon (1992) was the first showing the power of the com-
bination of Deep Learning and Reinforcement Learning, by greatly surpassing
all previous computer programs in the ability to play backgammon (de Dios,
Caj́ıas & Mart́ınez, 1992). Inspired by this success, a novel Q-learning algo-
rithm was published by Google’s Deepmind in 2015, that achieved superhuman
performance in several classic Atari games, using the same algorithm, network
architecture and hyper-parameters. The agent’s input only contained pixel data
and score information from the game emulator and thereby, bridging the divide
between high-dimensional input data and output actions (Mnih et al., 2015).
In 2016 Deep Reinforcement Learning was combined with supervised learning
from human expert games and Monte Carlo simulation, to pioneer the victory
of a computer program over a human professional on the full-sized game of Go
(Silver et al., 2016).

7

However, in Human-level control through Deep Reinforcement Learning Mnih
et al. (2015) state that Reinforcement Learning is known to be unstable when
a non-linear function such as a neural network is used to represent the action-
value function. This instability has several causes: the correlations present in
the sequences of states; the fact that small changes of the network can drasti-
cally change the policy, leading to a change of the state distribution; and the
correlations between the trainable network and the target network.

Figure 1: The final Q-learning algorithm in pseudo-code

To address these instabilities two changes were made to the original Q-
learning algorithm. Firstly, a replay memory was added, which stores the last N
experiences. Random tuples (s, a, r, s’) were picked from this replay memory and
were used for training. This breaks the correlation between states and smooths
the distribution of the data, avoiding stagnation in local minima. Meanwhile,
the agent was playing games to refresh the replay memory. Secondly, the target
network was only updated periodically, which adds a delay between the time of
an update to Q and the time the update affects the targets, making divergence
or oscillations much more unlikely (Mnih et al., 2015), see Figure 1.

2.4 Deep Reinforcement Learning in chess

In this section, the current state of chess computers is illustrated, followed by
the problem of evaluation functions in chess. Thereafter, the achievements of
chess engine Giraffe are discussed, ending with the difference between Giraffe’s
and DeepChess’s approach.

8

In 1997 World Chess Champion Garry Kasparov got defeated by IBM’s Deep
Blue. For the first time in the history of chess, computers proved to be stronger
than humans. The strongest chess computers rely heavily on brute-force meth-
ods: calculating all possible combinations of moves to a certain depth (Hsu,
2002). How can a human searching 3 to 5 positions per second be as strong as a
computer searching 200 million positions per second? Apparently, humans cal-
culate much more effectively and rely on their intuition gained by experience.
It is hard to define concrete rules to increase computer’s search effectiveness
without overlooking strong moves (Lai, 2015).

A problem with most current chess engines is their evaluation functions,
which assign scores to positions without calculating further. These functions
contain most of the domain-specific knowledge in chess engines. The best chess
engine at the moment, Stockfish, has an evaluation function which is designed
with the help of many grandmasters, and consist of more than 100 handcrafted
features, slightly manipulated over the last few years (Lai, 2015).

As an attempt to solve the problem of evaluation functions in chess, Giraffe
was engineered, a chess engine based on Deep Reinforcement Learning. Gi-
raffe is the first successful attempt at using machine learning to create a chess
evaluation function, with minimal hand-coded knowledge. It reached a level
of International Master (Elo-rating of 2400) and achieved at least comparable
positional understanding compared to the top engines of the world. This is
quite remarkable, since the evaluation functions of the top engines have all been
tuned both manually and automatically over several years, and many of them
have been worked on by human grandmasters (Lai, 2015). M. Lai states about
Giraffe: “Unlike most chess engines in existence today, Giraffe derives its play-
ing strength not from being able to see very far ahead, but from being able to
evaluate tricky positions accurately, and understanding complicated positional
concepts that are intuitive to humans, but have been elusive to chess engines
for a long time.”

Giraffe uses the TD(λ)-Leaf algorithm as a way of generating error signals.
It randomly selects 256 positions from the training set and lets the agent play 12
moves. The results of the 12 moves are used to optimise the loss function. The
evaluation function is approximated using a 3-layer neural network, consisting
of two hidden layers and one output layer. Giraffe, however, does not contain
the usage of a replay memory, nor does it contain the addition of a delay be-
tween the time of an update to the trainable network and the time the update
affects the targets.

To summarise, Baxter, Tridgell & Weaver have focused on creating a chess
engine based on Reinforcement Learning. However, features characterising an
evaluation function still remains a challenging problem. Since Deep Reinforce-
ment Learning methods have achieved considerable successes in addressing this

9

issue of feature creation, it is natural to wonder whether Deep Reinforcement
Learning applied to chess might produce significant progress to current chess
engines. In contrast to Giraffe, DeepChess has been trained both with a replay
memory and a delay between the updates of the trainable and target network.
The specific methods of creating DeepChess is discussed in the next section, see
section 3.

3 Methods

In this section, the literature of Deep Reinforcement Learning is applied to
chess specifically. It addresses the theory behind winning King Pawn King
endgames, the state representation of chess, the Q-learning network and its
hyper-parameters, the addition of an opponent, and finally, the methods of
evaluating DeepChess performance.

3.1 King Pawn King positions

Since the whole game of chess is very complex, the endgame has been chosen
as a start to apply Deep Reinforcement Learning to chess. The endgame of
chess is reached, when most of the pieces are taken. Specifically, the endgame
of King and Pawn versus King (KPK) has been chosen to train DeepChess on.
In this subsection, the possible positions occurring in this specific endgame are
sketched, together with the theory of won and drawn positions.

KPK positions are the situations where all pieces are taken, except for one
pawn, resulting in positions with two kings and one side having a pawn. Exam-
ples are shown in Figure 2.

From whites point of view, KPK positions could be both theoretically won
or drawn. Since a position with only two kings is drawn, these positions can
never lead to a loss. The strategy for the winning side is to promote the pawn;
in other words, to move the pawn up to the 8th rank where it may promote to a
queen. It could be said that whenever white is able to promote the pawn, white
wins. Winning a game with an extra queen is basic, and therefore, is left out of
this project.

The borderline between a theoretically won and a drawn position can be
quite narrow, which can be seen in Figure 2. However, these positions can
be classified in three difficulty degrees, which have different winning strategies.
Firstly, when the pawn is out of reach for the black king, the strategy is to move
the pawn up the board before the black king can catch up. Secondly, when the
black king is able to take the pawn, the white king should support the pawn in
its way to promotion. Thirdly, when the black king is nearly able to keep the
white king from supporting its pawn to promotion, the white king should shield

10

(a)

This position is won, since
the black king will not be

able to catch up with the pawn
(the pawn is out of reach).

This position is drawn, since
the black king will take the

pawn in a few moves.

(a)

This position is won, since
the white king supports its

pawn up its way to promotion.

This position is drawn, since
the black king is able to keep

the white king from moving into
a position like Figure 5. This

results in a repetition of moves.

away the black king to enter the second situation.

For training DeepChess, a random position generator has been created,
which places all three pieces at a random location on the board.

3.2 State representation

In this section, the state representation is discussed, such that it can be used
to apply Reinforcement Learning methods on. It addresses the Markov state,
multi-channels and zero-averaging.

For Reinforcement Learning methods to apply, Markov States should be cre-
ated. A Markov State is a state that is sufficient to formulate a winning strategy
only based on the information captured by that state. Chess is a perfect in-
formation game, which means no information is hidden to both players. This
means that solely the current chess position is enough to tell the best move,
resulting in every possible chess position being a Markov state.

11

This position is drawn, since
the black king is in stalemate.

This position is drawn, since
the white king is not able to
make space for the pawn

(a) Note: Whenever 50 moves have been played without a capture
or a pawn move, the game results in a draw too (the 50-move rule).

Figure 2: Different KPK positions. White to move.

To represent a chess position of KPK such that it can be fed to the Q-
network, an 8 x 8 x 3 matrix has been created, with numbers corresponding to
the location of the pieces. Every piece has its own channel within the represen-
tation to avoid stating any implicit ordering between the different pieces, see
Table 1. Also, the average of each channel has been made zero, since for some
non-linearities, such as a sigmoid function, the gradient is on its steepest around
zero, and therefore, the loss function would be optimised faster and would avoid
saturated neurons.

Figure 3: Stalemate position (4 x 4)

12

[15/16 -1/16 -1/16 -1/16
-1/16 -1/16 -1/16 -1/16
-1/16 -1/16 -1/16 -1/16
-1/16 -1/16 -1/16 -1/16]

[15/16 -1/16 -1/16 -1/16
-1/16 -1/16 -1/16 -1/16
-1/16 -1/16 -1/16 -1/16
-1/16 -1/16 -1/16 -1/16]

[15/16 -1/16 -1/16 -1/16
-1/16 -1/16 -1/16 -1/16
-1/16 -1/16 -1/16 -1/16
-1/16 -1/16 -1/16 -1/16]

Table 1: The state representation of Figure 3

The agent would also have to get the number of moves left as an input, would
the agent be able to take the 50-move rule into account. Therefore, the 50-move
rule is discarded while training, meaning that the game goes on until another
terminal state is reached. While training, the game cannot result in a repetition
of moves, since the agent will always have a chance of 0.1 of performing a
random move. This ensures that the game finishes in a finite number of moves,
a requirement of a Markov Decision process1.

3.3 Network architecture

This section states the architecture of the neural network used to train DeepChess
with, followed by the meaning of the output of the neural network.

The network has been made with the use of the libraries Theano and Lasagne.
The neural network used to train DeepChess with consists of 5 layers: 1 input
layer, 3 hidden layers, and one fully connected output layer. All hidden layers
involve a ReLU non-linearity, except for the output layer, which is linear. The
architecture of the number of units per layer is pyramided, see Figure 4.

1While testing, however, the agent acts greedy to the learned policy, meaning that it never
performs a random move. To make up for a repetition of moves, the game is cancelled after
50 moves, resulting in no result (which will count as no-win).

13

Figure 4: A schematic representation of the trainable network, with the number
nodes per layer indicated.

The output layer consists of all possible moves from the agent’s side, even
moves that result in illegal positions. The possible moves are defined relatively
to all piece positions, so the king could move up, or down etc., and not defined
as absolute coordinates, since that would make the action space too large. The
network outputs a list of Q values that correspond to the value of performing
each possible move from the given position.

3.4 Hyper-parameters

This section discusses the hyper-parameters of the epsilon-greedy strategy, the
replay memory and the target updates, concerning the Q-learning network.

Size replay memory, N 10.000
Delay update target, C 100 games
Epsilon decay-rate, E 6000 moves
Learning rate, α 0.001
Discount, γ 0.99
Batch size 32
Training games 150.000

Table 2: Hyper-parameters

DeepChess has been trained with an epsilon-greedy strategy, which means
that the number of random moves decays over time, while training. When hav-
ing a simple case, for example, a grid world, where the agent gets a reward when
moving into the direction of a particular spot on the grid, epsilon does not have
to decrease in order to make the agent learn this task. However, in tasks with
only delayed rewards, the epsilon-greedy strategy is necessary for the agent to
learn.

14

All visited states are, together with the chosen actions and the resulting
rewards, saved in a replay memory of size 10.000. Every time the agent performs
a move, 32 random tuples from the replay memory are picked and used to
optimise the loss function. Also, following DeepMind’s procedure, discussed in
section Deep Reinforcement Learning 2.3, the Q target network gets updated
every 100 games, by replacing the old Q target with a clone of the trained
network. For a list of all hyper-parameters, see Table 2.

3.5 Reward function

In this section, the rewards of the agent are discussed, together with the han-
dling of illegal moves.

For the agent to learn while playing games, it is necessary that it receives
feedback from the environment, which is given in the form of rewards. The agent
learns to predict the cumulative future reward for each possible action in each
state, by minimising the loss function discussed in Reinforcement Learning, see
section 2.1. For reaching a winning state it gets a positive reward, for reaching
a drawn state it gets a negative reward (since in white’s point of view this is
actually losing). If the agent would play the black side too, drawing could be
given zero rewards, however, this is outside of the achievements of this project.
To encourage DeepChess to find a quick solution, performing a move is also
given a small negative reward, see Table 3.

Win + 10
Draw - 10
Illegal move - 10
Any move - 1

Table 3: Rewards
Note: there is no reward for breaking the 50-move rule.

To restrict DeepChess from performing illegal moves, the agent is given the
same negative reward as drawing when its outputted move is an illegal one. The
same state will be fed to the neural network, without any move from both sides.
This way the agent learns to avoid illegal moves. While testing, however, the
agent should do a move (if not in stalemate), even when the outputted move is
illegal. In this case, the agent performs a random move instead. However, this
should not happen if the agent has sufficiently learned.

3.6 SunFish

DeepChess has currently only been trained to play the white side, the side with
the pawn. To train it properly, a non-random playing opponent is necessary.

15

This section discusses the specifics of using chess engine SunFish as the oppo-
nent.

Python chess engine SunFish has been chosen as the opponent, due to its
simplicity and the fact it is written in 111 lines of python code. Whenever
DeepChess performs a move, the position is given to SunFish, which returns a
move for the black side. SunFish allows the control of the maximal amount of
nodes it may search before returning a move, which makes it possible to evaluate
DeepChess’s performance against different levels of SunFish.

SunFish’s representation of a chess position contains a string with dots for
empty squares and the first letter of a piece for occupied squares. It is always
playing in whites point of view, so the positions needed to be rotated before
making it search for a move. SunFish’s moves are represented in algebraic chess
notation, which had to be encoded to DeepChess’s representation.

Unfortunately, SunFish is able to perform illegal moves. Whenever this oc-
curs, the black side performs a random move instead. Fortunately, this happens
only when the maximum number of searchable nodes is low, and even when this
is low, for example, 200, this happens only in 5% of the games. Also, relative to
the maximum number of searchable nodes, SunFish may return no move at all.
This is probably a memory issue and has been fixed by rerunning the training
loop multiple times.

3.7 Evaluation methods

In this section the evaluation of DeepChess is discussed, together with the the-
oretical best results achievable and ending with the division of positions into
different levels.

In section King Pawn King, see 3.1, we have seen that KPK endgames can re-
sult in either a win or a draw. Therefore, it is necessary to separate DeepChess’s
performance in winning and drawing positions, since DeepChess is only expected
to win in a winning position and is not expected to win in a drawn position.
Therefore, as an evaluation method, the number of wins in winning positions
and the number of wins in drawing positions have been tracked separately.

To know which random starting position theoretically results in a draw or a
win, a connection with table base Gaviota was created. Gaviota is a table base
including all possible chess endgames with less than 6 pieces, for which each
specific endgame’s theoretical result is stated.

The theoretical best results DeepChess could achieve playing against a per-
fect opponent, would be to win all winning positions and draw all drawn posi-
tions. Playing against SunFish, however, DeepChess could also strive to win in
drawn games, since SunFish does not play perfectly, especially when the maxi-

16

mum number of searchable nodes is low.

Another intuitive evaluation method is to track the number of moves it takes
DeepChess to win. However, in different starting positions DeepChess is aiming
for different optimal lengths. Therefore, the amount of moves to win should be
tracked per level of starting positions.

Since the difference between the difficulty of starting positions is quite large
in KPK endgames, its test environment has been set up with 3 different levels
of starting positions: easy, intermediate and hard positions. In easy positions,
the white pawn is out of reach for the black king, which means it is only re-
quired to move the pawn up the board to win, see the theory of winning such a
position in section 3.1 King Pawn King positions. In intermediate positions, the
white king is in front of its pawn and the black king next to it. Therefore, it is
required to support the pawn with the king. In hard positions, both the white
king and the black king are in front of the pawn, which requires knowledge of
keeping the black king from controlling the promotion square. In Figure 3-5,
boxes are drawn that state where the kings can be randomly placed according
to the classification of the different starting positions.

(a)

Easy starting positions Intermediate starting positions

Figure 5: Hard starting positions

Note: The red box indicates the possible positions of the white king, the blue
box indicated the possible positions of the black king

17

As justification for this classification, the number of theoretically won start-
ing positions have been compared to the amount of theoretically drawn starting
positions, for each of the different levels. In the easy positions 98 % of the
positions are won, in the intermediate positions 74 % of the positions are won
and in the hard positions 40 % of the positions are won, see Table 4. Whenever
a winning position is more similar to a drawn position, its winning strategy
requires more subtle movements, and therefore increases in difficulty. There-
fore, the ratio between won and drawn positions serves as a justification for the
classification of different levels of starting positions.

- All Easy Intermediate Hard
KPK endgame 73 % 98 % 74 % 40 %

Table 4: Winning position rates in the different levels

To track the performance during training, the following numbers are plotted:
the average loss per move, the highest Q value per state and the amount of wins
in winning positions per winning position.

4 Results

To build up the Reinforcement Learning setup, small steps have been conducted
before reaching to the final KPK endgame. These are discussed in section 4.1
Experiments. Thereafter, DeepChess has been tested against SunFish, whose
results are shown in section 4.2.

4.1 Experiments

4.1.1 The king in a grid world

The first step conducted was to make the agent move the king up to the top of
the board, from one specific starting point, with immediate rewards given for
every step forward, see Figure 6.

Figure 6: Grid world example with terminal states indicated in red.

18

Subsequently, the starting position was changed to a randomly placed king,
and the agent would only receive a reward for reaching the top of the board.
Thereafter, a temporarily fixed opponent king was added, which created a sit-
uation where the agent should move the king around the opponent king while
walking to the terminal state.

Moves outside the board and moves that would lead into an illegal position
were made impossible to perform for the agent. It would choose the best legal
move from the output of the network. Also, while training, the agent was only
exploring, meaning performing random moves.

The neural network consisted of the input layer with one linear layer for all
possible output moves.

4.1.2 The addition of the pawn.

The next step conducted was to add the pawn, and make the king and pawn
both move to the top of the board, where they would be positioned such that
the king would support the pawn to promotion, see figure 7.

Figure 7: A terminal state with King and Pawn

Firstly, the initial position of the pawn was set at one specific spot on the
top of the board, where it would already be in its final destination. Later the
pawn was placed randomly on the top of the board, to finally place both the
king and pawn randomly on the board. Now, epsilon should decay over time,
to give more weight to the greedy policy, like stated in Hyper-parameters, see
section 3.4.

When testing, with the agent performing greedy with respect to the learned
policy, the agent found itself getting stuck in infinite loops once in a while,
mostly at the borders of the board. Until now, it was impossible for the agent
to perform illegal moves. This led to the agent sometimes outputting a high Q
value for an illegal move - without knowing the move would actually be illegal
- which subsequently, would not even be performed. To make the agent learn
to avoid illegal moves, a negative reward was given when the agent would try

19

to perform an illegal move, see section 3.5 Reward function . This resulted in a
decrease of infinite loops.

To increase its performance, the network was extended to the final network
stated in section 3.3 Network architecture.

4.1.3 The addition of a random playing opponent king

A random playing opponent king was added, see figure 8, with the terminal
states being the same as in the full KPK endgame. Besides the pawn reaching
the top of the board, also draws could occur, namely, the pawn being taken and
one of the kings getting stalemated, see section 3.1 King Pawn King positions.

Figure 8: A final KPK endgame situation

The opponent king should only perform a move when the agent has already
performed its move, and should always perform a move if it is not in stalemate.
To make the learning more stable, a replay memory was added, see section 3.4
Hyper-parameters.

Being trained against a random playing opponent, DeepChess achieved a
win-rate of 99 % in winning positions and a win-rate of 86 % in drawn positions,
see Table 5.

4.2 Playing against SunFish

Finally, SunFish has been connected to perform the opponent’s moves, see sec-
tion SunFish 3.6. SunFish has been set to play on different levels, corresponding
to the maximum number of searchable nodes (maxnodes). DeepChess achieved
an overal win-rate of 90 & in winning positions against a SunFish (2000 maxn-
odes) and an overall win-rate of 88 % in winning positions against a SunFish
(10.000 maxnodes), see Table 5 and Figure 9 . The results of a non-learned
agent have been added as a baseline.

20

- All Easy Intermediate Hard
Random 99 % 99 % 95 % 89 %
SunFish 200 94 % 99 % 76 % 54 %
SunFish 2000 90 % 95 % 67 % 39 %
SunFish 10.000 88 % 92 % 57 % 35 %

Table 5: Winning rates in winning positions

Figure 9: Winning rates every 100 games of training

Noticing the low win-rate in drawn positions, SunFish performs well in keep-
ing the draw when possible, see Table 6.

- All Easy Intermediate Hard
Random 86 % 90 % 77 % 78 %
SunFish 200 30 % 40 % 19 % 20 %
SunFish 2000 19 % 5 % 10 % 7 %
SunFish 10.000 5 % 5 % 0 % 17 %

Table 6: Winning rates in drawn positions

Also, the amount of moves to win, see Table 7, and the highest Q value
outputted by the network per state, see Figure 10, have been tracked.

21

- All Easy Intermediate Hard
Random 4.08 3.70 4.84 5.76
SunFish 200 4.14 3.87 5.00 8.35
SunFish 2000 4.01 3.70 4.95 7.41
SunFish 10.000 3.40 3.67 4.66 6.88

Table 7: Moves to win

Figure 10: Highest Q values per state

5 Discussion

This section discusses DeepChess’s performance, followed by ideas of ways of
improving these results. Subsequently, ideas for different opponents are put
forward, together with suggestions for future research.

Examining the results in section 4 Results one can notice that DeepChess
performs worse in harder positions and against a stronger SunFish. Both of
these results fit into the expectations. Also, the number of moves to win cor-
responds to the degree of difficulty. Looking at the results, it is clear that
DeepChess performs well in easy positions, although not 100 %. When a posi-
tion requires a coordination between king and pawn DeepChess’s performance
decreases. The concept of opposition, for example, appears to be too subtle for
DeepChess to learn.

As an attempt to improve the results, DeepChess’s performance in hard po-
sitions could be examined, since DeepChess is already able to perform well in

22

easy positions. DeepChess could be trained with only hard positions, to discover
whether the network is actually able to learn these positions well. Experiments
with the network architecture and the hyper-parameters could be conducted to
ensure the neural network is also able to cope with play hard positions. Also,
following DeepMind’s procedure of tackling Atari games, convolutional layers
could be added. To finally train DeepChess to be able to cope with all possible
situations, the distribution of training positions could be generated in such a
way that the hard positions appear more often than the easy ones.

When examining the games DeepChess and Sunfish played, it appeared that
SunFish did not always perform sensible moves, especially in hard positions.
This failure made it easier to win for DeepChess. To make up for this, DeepChess
should be tested against a stronger chess engine. Also, to finish the contest be-
tween DeepChess and Sunfish, losing positions should be added too. Having
a fair match, one could compare their winning rates against each other. Ad-
ditionally, to be independent of existing chess engines, DeepChess should be
trained against itself. The agent would always strive for the maximum amount
of reward, and accordingly, would also strive to limit the negative rewards when
facing a losing position. Therefore, one and the same agent could play both
sides, since it would be striving for maximum achievable rewards in every posi-
tion.

For future research, I would suggest that DeepChess performance should be
increased in such a way that it is able to achieve a 100 % win-rate in winning
positions in the KPK endgame. Only then it would be able to compete with the
traditional brute-force methods, which are able to solve these endgames easily.
Subsequently, DeepChess abilities should be extended to a broader variety of
chess endgames, to finally be able to play the full game of chess.

6 Conclusion

With the rise of Deep Reinforcement Learning techniques and the recent suc-
cesses in the game of Go, chess cannot stay behind in these developments. With
respect to current chess engines being mostly based on brute-force methods with
help from many grandmasters, I am confident that a new chess engine, inde-
pendent of any restrictions of human knowledge, could have a good chance of
improving on the current state-of-the-art concerning chess engines.

Some attempts have already been realised in applying Reinforcement Learn-
ing methods to chess, however, DeepChess is, to my knowledge, the first engine
without hand-crafted features that uses DeepMind’s findings. DeepChess is
based on a 4-layer deep neural network, receiving board positions as input, and
has trained against chess engine SunFish. In winning positions it is able to
win 88 % of the games against SunFish. However, DeepChess’s performance is
worse in hard positions, and, to compete with brute-force methods, it should

23

eventually win 100 % of winning positions.

On the basis of the results of DeepChess, I will provisionally conclude that it
is possible to apply Deep Reinforcement Learning to the KPK endgame of chess.
As future research, DeepChess should be extended to all chess endgames and
eventually the full game of chess, testing against current state-of-the-art chess
engines. Only then, it could be confirmed that Deep Reinforcement Learning is
a good alternative for the current brute-force methods.

24

7 References

Baxter, J., Tridgell, A., & Weaver, L. (2001, January). Reinforcement learning
and chess. In Machines that learn to play games (pp. 91-116). Nova Science
Publishers, Inc..

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and
trends R© in Machine Learning, 2(1), 1-127.

Block, M., Bader, M., Tapia, E., Ramı́rez, M., Gunnarsson, K., Cuevas, E.,
... Rojas, R. (2008). Using reinforcement learning in chess engines. Research
in Computing Science, 35, 31-40.

de Dios, D. R., Caj́ıas, R., & Mart́ınez, V. S. Temporal Difference Learning
and TD-Gammon.

Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. Foun-
dations and Trends in Signal Processing, 7(3–4), 197-387.

Hall, M. A. (1999). Correlation-based feature selection for machine learning
(Doctoral dissertation, The University of Waikato).

Hsu, F. H. (2002). Behind Deep Blue: Building the computer that defeated
the world chess champion. Princeton University Press.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems (pp. 1097-1105).

Lai, M. (2015). Giraffe: Using Deep Reinforcement Learning to Play Chess.
arXiv preprint arXiv:1509.01549.

Lison, P. (1996). An introduction to machine learning.

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). (2013). Ma-
chine learning: An artificial intelligence approach. Springer Science Business
Media.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., ... Petersen, S. (2015). Human-level control through deep reinforcement
learning. Nature, 518(7540), 529-533.

25

Silman, J. (2006). Silman’s Complete Endgame Course: From Beginner to
Master. Urban Media Comics.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driess-
che, G., ... Dieleman, S. (2016). Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587), 484-489.

Silver, D. Reinforcement learning course - Lecture 3: Planning by dynamic
programming

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduc-
tion. MIT press.

Tsoukas, H. (2005). Do we really understand tacit knowledge?. Managing
Knowledge: An Essential Reader, 107.

26

