
Game level generation with
recurrent neural networks

Banno Postma
10444602

Bachelor thesis
Credits: 18 EC

Bachelor Opleiding Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor
Dr. E. Gavves

QUVA Lab
University of Amsterdam

Science Park 904
1098 XH Amsterdam

June 24th, 2016

1

1 Abstract

Procedural content generation is to create game content with limited to no human
interaction. A general problem is creating diversity in the generated content and
making it believable in the sense that it gives the player the impression that a human
made it. In the case of game levels it would be useful if existing levels can be
used as a base to generate more levels. Recurrent neural networks have had much
recent success with handling sequential data in classification problems such as text
prediction. In the case of a linear level a recurrent neural network can predict new
data from a training set such as existing levels. In this paper a recurrent neural
network model is created to generate Super Mario bros levels. By fitting the model
to the original levels it becomes able to return a set of possibilities for next steps in
the sequence. A new level is generating by sampling from this set of possibilities.
The believability and diversity of these levels are measured with a set of metrics and
a human feedback experiment. The system is becomes able to generate levels with
sufficient believability and diversity however it is not able to do this consistently.

2

Contents

1 Abstract 2

2 Introduction 4

3 Literature review 5
3.1 Recurrent Neural Networks . 6

3.1.1 LSTM . 7

4 Research Method 8
4.1 Super Mario Bros. 9
4.2 Generation with Keras . 11

4.2.1 Input . 12
4.2.2 Model . 12
4.2.3 Sampling . 13

4.3 Evaluation . 13
4.3.1 Consistency . 14
4.3.2 Metrics . 14
4.3.3 Human feedback . 15

5 Results 16
5.1 Column based generation . 16
5.2 Character based generation . 17
5.3 Human feedback . 17

6 Conclusion 18

7 Discussion 19
7.1 Future work . 20

8 Bibliography 21

9 Appendix A: Metrics 22
9.1 Column based generation . 22

9.1.1 Subsequence length 3 . 22
9.1.2 Subsequence length 10 24
9.1.3 Subsequence length 50 25

9.2 Character based generation . 27
9.2.1 Subsequence length 52 27
9.2.2 Subsequence length 104 28

3

2 Introduction

Procedural content generation or PCG refers to algorithmic generation of game
content such as levels, textures or characters with limited or no human contribu-
tion. Procedural content has been used in games from the early eighties. In 1980
PCG was used in the game Rogue to generate dungeons at runtime. A more recent
example is Minecraft, a popular sandbox game where an entire world complete
with trees, caves, animals, monsters and structures is procedurally generated. Cur-
rently PCG is also widely used in mobile games to create infinite levels. The goal
of these levels range from achieving high-scores to simply the joy of being able to
infinitely play the game without having to replay the same levels.

A general problem with level generation is creating diversity. It is important
that there is some diversity inside the levels themselves and between the different
generated levels. A level where the player needs to jump over the same obstacle a
hundred times is quite boring. Similar to this is a game where the only difference
between levels is the color palette . The other extreme is a level that is completely
randomly generated. This level would probably be unplayable and senseless. There
is a need for balance between these two extremes.

Another goal of level generation is achieving some creativity and believability.
The player should not feel like the level has been generated by a procedural content
generator. Not many people would believe that the randomly generated level from
previous example was designed by a human. A sense of purpose and structure is
important for believability.

To achieve these goals there are multiple solutions that range from generation
grammars and rule sets to premade patterns that are controlled by a range of vari-
ables. An apparent weakness is that these grammars or patterns need to be designed
beforehand which takes time and is prone to errors. A different approach could be
generating the new levels out of already existing levels. A possible way to achieve
this is with use of deep learning techniques such as recurrent neural networks.

This leads to the question can deep learning techniques be used to improve
procedural content generation of game levels?. There is definitely potential seen
from recurrent neural network based text generators that already are able to gen-
erate coherent sounding text. With use of deep learning techniques the diversity
and believability of human created levels could be achieved by the generator. This
of course is a broad question since many deep learning techniques can deployed.
This project will focus on the use of recurrent neural networks and the following
research question:

Can a recurrent neural network while trained on the original levels of a game
generate new levels with the same believability and diversity?

4

This question will be addressed by generating levels for the game Super Mario
Bros from 1985. A neural network will be trained on the original levels of this
game. After training the network should be able to generate new Super Mario lev-
els. By comparing the generated levels to the original levels the performance of
the generator can be measured. The goal is to generate levels with as much diver-
sity and believability as the original levels but also that there is enough diversity
between the generated levels.

The expected results are that as the model is fit to the training data it should
be able to generate similar content with the same believability. As the training
set becomes larger more different combinations between levels become possible
allowing the model to generate levels with the same or even more diversity.

3 Literature review

According to Togelius [3] there is a fine balance in procedural level generation
between using repetitive structures and a sense of purpose for the player. When
the generated level seems too random to a player it loses it sense of purpose but
when the structures are too repetitive it becomes boring. The generated levels need
to provide the same ’feel’ to a player as a human created level would but also
provide a substantial challenge for the player to complete. Dahlskog, Togelius and
Nelson [2] investigated the possibilities of using existing levels as a base for level
generation by creating a level generator that made use of n-grams. They broke
down Super Mario levels into sequential columns containing 15 blocks each and
acquired the n-grams of column sequences up to n = 3. By making use of the
probabilities of the n-grams they were able to generate new column sequences.
They acquired the n-grams of all the column sequences in the original Super Mario
Bros. levels and generated levels using the associated probabilities. They found
that the resulting levels were similar in visual appeal and playability as the levels
used to create the model. When they expanded the amount of levels used to learn
the model the variety increased together with surprising shifts in style.

5

With the rise of deep learning in AI it is interesting to investigate how this
can be applied to the problem of procedural content generation. Recurrent neu-
ral networks (RNN) as described in [1](Chapter 10) have been proved to provide
excellent results when predicting sequential data. Especially the long short-term
memory RNN architecture has produced one of the best known results in handwrit-
ing and speech recognition. Making use of a LSTM RNN to generate Super Mario
levels can be described as a variation of the n-gram technique as described above.
The difference being that with n-grams the vocabulary of columns is limited to the
columns present in the original levels while LSTM RRN’s have the possibility to
use character based generation or a intermediate representation of columns.

A difficult aspect of procedural level generation is automatically evaluating the
generated levels. There are two main reasons that make evaluation important. In
the first place without automatic evaluation the only way of knowing that the gener-
ator performs well is to actually play the levels which is highly inefficient. Finally
integrating evaluation into the generation process can highly improve performance
by preemptively eliminating bad generation cycles. This project will make use of
evaluation as described in [4](Chapter 12) and the paper [5].

3.1 Recurrent Neural Networks

Recurrent neural networks or RNNs are a form of neural networks for processing
sequential data. In traditional neural networks it is assumed that the inputs and
outputs are independent of each other. When working with sequential data there is
a need for ’memory’ of some sort where the information of the already processed
parts of the sequence is stored. In RNNs the same calculation is performed for
each part of the sequence where the input to the recurrent network is not only the
observation xt but also a memory state st computed from the previous time steps
in the sequence. Figure 1 shows how a recurrent network can be unfolded into a
regular network with a repetitive structure.

6

Where xt is the input at time t. st the hidden state at t and ot is the output at t.
Image source: Nature

Figure 1: Unfolded recurrent neural network

The time variable t does not need to refer to actual time but more to the position
in the sequence. In theory RNN can operate on a sequence with t ranging from 1
to any natural number. In practise the network operates on minibatches of such
sequences.

3.1.1 LSTM

RRN use the the previous information of a sequence on the current calculation.
This works well when the relevant information is close, for example predicting the
next word in ”The color of snow is ...”. The recent information from the words
”color” and ”snow” makes it clear what word is expected. Cases where this infor-
mation is further back in the sequence called long-term dependencies are trouble-
some. In theory classic RNNs are capable of learning these dependencies however
in practice they do not seem to be able to handle them. This is explored in [6].

The most commonly used RNN called LSTMs for Long short term memory
solves the problem of long-term dependencies. As they are explicitly designed to
avoid this problem. LSTMs have roughly the same structure as a regular RNN but
the repeating inner layer cells are upgraded with additional inner layers. These lay-
ers determine what information is forgotten, what information is added and what
the output is for the next cell. This way the information of important parts of the
sequence are remembered and less important information is forgotten.

7

Where the cells upper input is the previous cellstate ct−1 and bottom input is
memory Mt−1 and observation xt. Outputs ct and Mt.

Figure 2: graph of inner LSTM structure. Source: ”Understanding LSTM net-
works”

The first σ layer outputs a number from 0 to 1 deciding how much to remember.
Where 0 is forget everything and 1 remember everything. The second σ and tanh
layer decide what new information will be added by respectively modulating the in-
put and generating candidate memories. The final σ layer modulates the output and
together with the tanh gate over ct generates a new memory. By fitting the weights
of these four layers the model becomes able to learn long-term dependencies.

4 Research Method

Necessary for this project is a target game which original levels can be used as
a dataset, a neural network, algorithms that can evaluate generated levels and a
method to play the generated levels. The target game for which levels will be
generated is the game Super Mario bros. The Neural network will be created using
Python and the library Keras. The evaluation methods will be writen in python as
well. Finally a python implementation of Super Mario bros. will be used to enable
playing generated levels.

8

4.1 Super Mario Bros.

Originally released for the NES in 1985. Super Mario bros. is a side-scrolling
platform game were the player controls Mario and needs to reach the end of the
level while avoiding monsters and jumping over gaps. The levels are linear and
are transversed by Mario from left to right. Most objects in the game world are
blocks of the same size. This size will be 1x1. There are some exceptions such
as pipes or moving platform that are 2x2+n and 2x1 respectively. Mario himself is
1x1 normally and 1x2 when powered up. Levels themselves average around 200
by 13. This makes the levels a set of 200 sequential columns of length 13. The
sequential nature of the levels allows them to be used in a sequential model such
as a recurrent neural network.

Figure 3: A basic Super Mario bros. level

There are different types of blocks in a Mario level. The basic types are:

Non-solid
This includes air and coins. These blocks have no effect on Mario’s movement.
The coin gives the player a higher score when picked up.

9

Solids
Include ground, pipes, coinblocks or powerup blocks and breakables. Mario can
not pass through these blocks making standing on these blocks the primary way
to navigate a level. Some solids have a special effect when hit from below. Coin
blocks give the player a coin, powerup blocks give a powerup and breakables are
destroyed.

Monsters
Monster blocks can more accurately be described as monster spawn points and can
be regarded as non-solid. When the level starts a specific type of monster will start
on the location of the monster block and assume the movement pattern associated
to this type of monster. When a monster hits Mario in his normal form the player
loses a life and starts the level from the start. When hit while powered up Mario
returns to normal. Monsters are generally defeated by jumping on top of them.

Moving
Finally there are moving platforms. Platforms will move vertically or horizontally
and continue to do so back and forth for a set distance. Besides moving they behave
like solids. When Mario becomes stuck between a moving platform and another
solid it will cause the player to lose a life. Moving platforms are not designed to
collide with other solids. A collision of such would be a generation error.

All these different types of blocks make up a level. This information needs to
be in an appropriate format to be used by the neural network. Text seems to be
fulfilling this need. Every different block encodes to a different character. A disad-
vantage is that that a pipe which is a 2x2+n structure needs to divided into different
pieces. Figure 4 shows the results of encoding a Super Mario level. Notice that one
line of text does not give much information about the level opposed to the informa-
tion gained from looking at each column. For convenience the text file used in the
neural network will be flipped in such a way that every line represents a column of
the original level. This is shown in figure 5. This way all original outside levels
from super Mario are encoded and used as data set. In the game there are outside
and inside levels. The inside levels are not used in the data set because there is
too much of a stylistic difference between the two level types. For example the
presence of a roof in all the inside levels.

10

Figure 4: From original level to text

Figure 5: Final form of input

4.2 Generation with Keras

The neural network is created with Keras. Keras is a neural network library for
python build on top of Theano. Theano is a python library that allows fast calcula-
tion of mathematical expressions by making use of the GPU especially ones with
multidimensional arrays. The level generator will be a python script that takes the
text file of original levels as input and outputs a text file with a variable amount of
levels.

11

4.2.1 Input

The input is text file of the original Mario levels. There are two different sequences
that can be derived from this file. First is the character sequence. This sequence
simply consist of all the characters in the file including the new line character. The
new line character states when a new column starts. The other sequence is the
column sequence. Instead of looking at every single character the input is split at
the new line characters, the result is a list that is a sequence of all the columns in
the text file. This means that the levels generated from column subsequences are
limited to only contain columns found in the dataset. The system will work with
columns or characters as tokens.

In both cases the input is processed the same way. A set is created of all the
different tokens. By enumerating this set two dictionaries are created that translate
index to token and token to index. The next step is cutting the input into smaller
sequences of variable length. Two parameters are involved here. First there is
the length of subsequences. Secondly there is the step between the start of each
subsequences. For example the string ”abcdefg” with length=3 and step=2 will
result in ”abc”,”cde” and ”efg”. For every of these subsequences the subsequent
token is stored as a label of this subsequence. The final step of preparing the input
is vectorization. Vectorization transforms all the input tokens into one hot vectors.
These are vectors with length equal to all possible tokens where all values are 0
except the one value associated to that particular token. The vectorization of the
array of subsequences and the array of corresponding subsequent tokens leaves the
final input shape. The first will act as the input data, the second as the associated
labels.

4.2.2 Model

The model used is a sequential model in Keras with one LSTM layer, one Dense
layer and a Activation layer. The Dense layer is used to get the output in the right
format which is a vector with the same length as the token set. The softmax Acti-
vation layer makes the output add up to 1 so that the output can be interpreted as
probabilities. This makes the output a vector with probabilities for every different
token in the token set. The model is compiled to make use of ”categorical cross
entropy” also know as ”multi class log loss” as a loss function. This loss function
is recommended when dealing with classification problems such as predicting the
next token in a sequence.

12

The model is now ready to be fit to the input data. Next to the input data and
the corresponding label set there are two additional arguments required to fit the
data: the batch size and the number of epochs. The batch size refers to the amount
of samples per gradient update. This is used to conserve memory. The number of
epochs is the number of times every input sequence is used to update the weights
of the network. Since for this project the data set is relatively small a large number
of epochs is necessary to optimize results.

4.2.3 Sampling

A model fit to the input data can be used to make a prediction by taking as input
a sequence of tokens with the same length as the previously defined subsequences
length. The output is the list of probabilities of every different token. To start
generating a level a seed is needed to act as the first sequence. To obtain this
seed a random section with the desired length from the input data is chosen. This
sequence is used as input for the first prediction.

There are several ways to obtain the newly generated token from the set of
probabilities. The most simple way is to find the index of the highest probability
and get the corresponding token from the index to token dictionary created earlier.
However the token with the highest probability is not always the best choice. The
highest probability is a safe choice that results in less mistakes but also in less di-
versity. Another option would be to pick a random token based on the probabilities.
To give more control on the sampling process, a diversity parameter and sampling
function are introduced. The sampling function makes use of the diversity param-
eter to either increase or decrease the difference in probabilities of each token by
dividing the natural logarithm of the probabilities by the diversity. Diversity = 1
changes nothing, diversity > 1 makes the higher probabilities even more likely to
be picked and diversity < 1 levels the probabilities of all tokens.

4.3 Evaluation

It is difficult to evaluate game levels on face value. Evaluation based on user sat-
isfaction is impractical, as computing the gradients during optimization would re-
quire constant user interaction. For this project the generator will be evaluated on
consistency. Which evaluates the generators ability to consistently generate solv-
able levels. Generated levels will be compared to the original super Mario levels
with a set of metrics that measure level structure and diversity. Finally believability
will be tested with human feedback.

13

4.3.1 Consistency

It is important that a level is solvable. In this case solvable means that Mario is
able to reach the end of the level. There are two main obstacles that can prevent
this. The first is a gap that is too wide for Mario to jump over. Second is a wall or
structure that is too high for Mario to jump over. There is also a combination of the
two where a wall that is normally not too high is placed at the end of a gap making
progress impossible.

Consistency is measured by looping through the columns of a level and finding
all platforms in this column. A platform is a solid with a non-solid above it so
that Mario is able stand on top of it. Marios jump height is 4. So from the highest
platform in a column the new height Mario can reach is platform height + 4. The
system makes use of a simplified way of tracking gravity. When moving at constant
forward speed when Mario jumps he will keep rising for 3 columns. Afterwards he
will fall one block in the next column, two in the column after and so on. Tracking
Marios maximum potential height allows the system to know if Mario can reach
the top of a wall or the end of a gap.

4.3.2 Metrics

The following metrics are used to evaluate a level. Leniency, linearity and density
give a measure of the levels structure while pattern density, pattern variation and
column diversity give a measure of diversity present in the level.

Leniency
This metric attempts to capture the difficulty of a level. To calculate this the sum is
taken of values assigned to the following elements, in similar fashion as proposed
in [7]

• Gaps: -0.5

• Average gap width: -1

• Regular enemies: -1

• Powerups: +1

Linearity
Captures the height differences of the individual paths through a level. By calcu-
lating the difference in height of platforms between subsequent columns. If there
are multiple platforms in a column the average height is used.

14

Density
Captures how many different heights Mario can stand on throughout a level giving
an approximation of how many paths there are through a level. This is calculated
by the average amount of platforms per column.

Figure 6: Low and high density respectively

Pattern density
Measures how many patterns from the original Super Mario Bros game can be
found in the level. This calculated by the amount of four column blocks from the
generated level that are present somewhere in the original levels.

Pattern variation
Measures the unique occurrences of patterns. The opposite of pattern density, cal-
culates the amount of four column blocks in the generated level that are not present
in original game.

Column variation
The amount of different columns present in the level.

4.3.3 Human feedback

To test believability a human feedback experiment was conducted. Participants
were asked to play four levels and rank them in the following categories: Enjoy-
ment, difficulty and aesthetics. Finally the participants were asked what levels they
thought were made by a computer. Before the four levels started a practise level
was played. This level was mostly flat and contained a few gaps and monsters to
make the participant get used to the controls. For each participant the levels were
presented in a random order.

15

The chosen levels for this experiment included two levels from the original
super Mario bros and two generated levels. The first generated level was chosen
because the evaluation metrics were close to the averages of the original levels.
The second was chosen based on it having a relatively low leniency.

5 Results

The following results are obtained by generating 100 levels with a length of 200
columns for every combination of the following parameters: column or character
based generation, number of epochs to train the model, diversity parameter during
sampling and subsequence length. The diversity parameter set to increasing means
that the temperature is initialized low and is increased when a column equal to the
previous was generated. The tables with the actual numbers can be found at the
end op the paper.

5.1 Column based generation

Consistency is fairly high in column based generation with a large number of con-
sistency ratings above 85%. Increasing the subsequence length and diversity pa-
rameter both seemed to lower consistency. In the case of the diversity parameter
this corresponds to the idea of the system taking safer choices at lower values of
diversity. A similar effect can be noted for all other metrics. Leniency, linearity
and pattern density all become lower when diversity increases. Meaning that with
higher diversity there is more height difference, more obstacles and less patterns
from the original super Mario bros in the generated levels. With the same increase
in diversity pattern variation and column diversity also increase. Meaning more
unique patterns and different kind of columns per level. With diversity = 1 most
metrics overlap with the values from the original levels while pattern density and
pattern diversity are almost equal. This means that the levels have similar structure
to the original levels and half of the four block patterns are not found in the origi-
nal levels. Levels generated with diversity < 1 have low column diversity and high
linearity. This means those levels consist mostly of straight lines. The resulting
levels are comparable to the low density example from figure 6.

16

5.2 Character based generation

Compared to column based generation character based generation took signifi-
cantly more time to train the model and to generate levels. This resulted in the
data consisting of only ten generated levels per variable combination. The trends
of increasing diversity seems to be the same in character based generation. With
the increase of diversity the metrics leniency, linearity and pattern density go down
and pattern variation and column diversity go up.

There are two main differences. Firstly the consistency of character based gen-
eration is lower and a larger amount of epochs is needed to start getting consistent
results. Secondly the maximum of the metrics pattern variation and column di-
versity is significantly higher compared to column based generation. This is due
to the fact that character based generation can generate column that are not in the
dataset. A flaw can be detected in subsequence length 52 pattern variation. The
maximum pattern variation is greater than 200 while there are only supposed to be
that amount of four column patterns in the level. This is caused by the newline
character. Character based generation is capable of generating columns of variable
length. Notable is that there is not much of a difference in average column diversity
except in diversity = 1.2.

5.3 Human feedback

Below the percentages that participants ranked the different levels. Average is a
level where all metrics were close to the average of the original levels. The partic-
ipants were ten students around the ages 21 to 26. They had no earlier experience
with Super Mario bros. and had limited to no experience with similar games.

Enjoyable First Second Third Fourth
Original 1 40 0 50 10
Original 2 10 40 30 20
Average 0 40 20 40
Low Leniency 50 20 0 30

Difficulty First Second Third Fourth
Original 1 0 10 50 40
Original 2 0 60 0 40
Average 0 30 50 20
Low Leniency 100 0 0 0

17

Aesthetics First Second Third Fourth
Original 1 20 20 50 10
Original 2 10 40 30 30
Average 10 20 20 50
Low Leniency 60 20 0 10

Computer Generated Yes No
Original 1 50 50
Original 2 50 50
Average 60 40
Low Leniency 30 70

The most notable results are that the level with a low leniency is unanimous
voted for as the most difficult level and that the participants were not able to spot
what levels were generated. The other results are very varied and point towards
the participants not knowing a definite answer. From the participants comments
they voted for the difficult level as most enjoyable because they liked a challenge
or voted low because this level was frustrating for them. The rating of aesthetics
can be discarded since most participants did not have a strong opinion about it.
A reason why 70% of the participants did not think the low leniency level was
generated was because they thought the level was too difficult to be generated by a
computer.

6 Conclusion

Can a recurrent neural network while trained on the original levels of a game gen-
erate new levels with the same believability and diversity? A majority of the partic-
ipants in the human feedback experiment could not find the generated levels. This
accounts for believability. Looking at the results of the metrics evaluation many of
the structural metrics such as linearity, leniency and density overlapped with origi-
nal levels while pattern variation was equal or higher than pattern density. Column
variation was also at points higher than in the original levels. This accounts for
diversity. Combined this states that it is possible for a recurrent neural network
trained on original levels to generate new levels with the same believability and
diversity.

18

However this only accounts for a certain amount of the levels. There is a possi-
bility for outliers with sub optimal results. Most of the results are dependent on the
diversity parameter. With the best results coming from diversity = 1. This means
that the best results are achieved from the basic probabilities of every sequences.
The seed that starts of the generation is also randomly decided. This makes the
generation process highly dependent of chance and the possibility exist that a in-
sufficient level is generated. Insufficient levels range from inconsistent levels that
can not be finished to consistent levels that are not diverse or believable. Without
a reliable way to filter out the suitable levels there is a chance that levels of lower
quality are used. Creating a complicated filter for this purpose is highly inefficient.
With modifications this filter could generate levels of its own making the system
unnecessary.

Training a recurrent neural network to generate game levels has potential. A
percentage of the generate levels are suitable to be used in the actual game. How-
ever as long as the system is inconsistent it will be inefficient to actually use this
method in practise. The model or the sampling function need to be improved to a
point where no inconsistent levels are generated.

7 Discussion

Character based generation has potential to generate more diverse levels than pos-
sible with column based generation. Not exploring the possibilities of character
based more is a flaw of this project. The lack of level data makes comparing with
column based generation difficult. Having the column size be equal to each other
would also help making a more accurate comparison. Now sequence length 54 and
108 translates to column sequence length 4 and 8 respectively.

An apparent weaknesses of this project is the lack of depth of the human review
experiment. The number of participants is too low for significant results. The lack
of experience of the participants with Super Mario bros works in advantage of
believability. It is not a far off assumption that a person more experienced with the
game would have more success classifying a human or computer made level.

The model used for training and generation is relatively simple. It would have
greatly benefited the research to try what results could be obtained from more ad-
vanced models. Would this improve performance or would it not make a differ-
ence? These are important questions still to be answered. The whole system in
general is too much dependent on the diversity variable and the sample function.
These had the most effect on the results obtained and were not explored further.
Improvement in any of these three would solidify or falsify the research results.

19

7.1 Future work

As mentioned above a much more extensive human review experiment can provide
more insight in the believability of the generated levels. Different groups with
varying level of experience with super Mario will have different opinions about
enjoyment, difficulty and aesthetics of a level. More experienced players could be
more likely to find which levels were computer generated levels. Another option is
making use of a Mario AI instead of human evaluation. The performance of the AI
on the generated levels can directly be used as feedback by the model to improve
generation.

A weakness of column based generation is the inability to generate columns
that are not existent in the dataset. By making use of some sort of intermediate
representation of columns and a encoder/decoder this weakness could be solved.
There is a possibility that by making use of this method not earlier seen columns
will be generated.

There are two ways to improve the system as a whole. First is improving the
model. This can be done by experimenting with different configuration of more
neuron layers but another possibility is improving the loss function. By integrating
evaluation metrics into the loss function itself. This will make the model more
controllable and in the case that the consistency function is integrated less likely to
make inconsistent levels. By making the generator more controllable experiments
with different parameters can result in configurations that yield more interesting
levels.

Secondly the sample function can be improved. In its current form the systems
results are highly dependent on the sample function. By using the same principle
as described for improving the model. The sample function can also become more
controllable. A technique such as beam search can already be used to sample so
that the outcome fits to certain parameters.

Finally there is a more extreme way of trying to use deep learning for game
level generation. This is changing it from a classification problem to a reinforce-
ment learning problem. By rewarding the system for generating consistent level or
levels with a selected property there is a possibility that new level structures will
be generated. There might be no need for such a system to use the original dataset
as input.

20

8 Bibliography

References

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep learning,
http://www.deeplearningbook.org, 2016.

[2] Steve Dahlskog, Julian Togelius, Mark J. Nelson, Linear levels through n-
grams, 2014.

[3] Julian Togelius, Mark J. Nelson, Alex J, Champandard Procedural Content
Generation: Goals, Challenges and Actionable Steps, 2013.

[4] Shaker, Noor and Togelius, Julian and Nelson, Mark J. Procedural Content
Generation in Games: A Textbook and an Overview of Current Research, 2016.

[5] Horn Britton, Steve Dahlskog, Noor Shaker, Gillian Smith, Julian Togelius
A Comparative Evaluation of Procedural Level Generators in the Mario AI
Framework, 2014.

[6] Bengio, et al. Learning Long-Term Dependencies with Gradient Descent is
Difficult, 1994.

[7] N. Shaker, M. Nicolau, G. N. Yannakakis, J. Togelius, and M. O’Neill. Evolv-
ing levels for Super Mario Bros using grammatical evolution 2012

21

9 Appendix A: Metrics

Original levels

Leniency Linearity Density Column Diversity
Min Average Max Min Average Max Min Average Max Min Average Max
-66 -22.96 -4.5 0.43 0.58 0.76 0.60 0.98 1,2 19 33.53 49

9.1 Column based generation

The diversity parameter set to increasing refers to that the diversity is initialized
low and is increased when a column equal to the previous is generated.

9.1.1 Subsequence length 3

Diversity Epoch Consistency Leniency Linearity
Min Average Max Min Average Max

0,2 100 95 -13.0 -1.205 -0.5 0.86 0.94 0.98
0,2 300 95 -7.5 -1.28 -0.5 0.67 0.93 0.97
0,2 600 99 -11.0 -1.36 -0.5 0.70 0.94 0.98
0,5 100 97 -7.5 -2.4 -0.5 0.69 0.93 0.96
0,5 300 92 -12.5 -3.76 0.5 0.74 0.90 0.96
0,5 600 97 -22.0 -3.44 -0.5 0.79 0.92 0.96
1 100 99 -42.0 -23.885 -14.0 0.37 0.51 0.73
1 300 95 -43.0 -25.965 -14.0 0.37 0.49 0.68
1 600 90 -37.5 -25.06 -12.5 0.44 0.56 0.67

1,2 100 97 -49.0 -33.055 -20.5 0.27 0.36 0.45
1,2 300 96 -52.5 -30.575 -18.0 0.31 0.40 0.49
1,2 600 97 -45.5 -29.625 -18.5 0.35 0.44 0.58

Increasing 100 84 -27.0 -12.2 -3.5 0.63 0.75 0.90
Increasing 300 64 -28.5 -16.335 -6.0 0.56 0.73 0.90
Increasing 600 80 -25.5 -16.575 -5.5 0.57 0.72 0.95

22

Diversity Epoch Density Pattern Density
Min Average Max Min Average Max

0,2 100 0.87 1.04 2.99 0 181.76 200
0,2 300 0.74 1.03 2.00 0 177.09 200
0,2 600 0.87 1.01 1.99 0 187.6 200
0,5 100 0.90 1.01 1.98 0 190.26 200
0,5 300 0.86 0.99 1.16 114 191.09 200
0,5 600 0.82 0.99 1.08 72 194.23 200
1 100 0.78 1.00 1.21 39 105.16 152
1 300 0.77 1.00 1.21 30 101.98 166
1 600 0.79 1.01 1.26 68 131.21 179

1,2 100 0.82 1.01 1.22 13 43.6 100
1,2 300 0.76 1.01 1.27 15 61.89 114
1,2 600 0.77 1.02 1.30 48 93.16 139

Increasing 100 0.83 1.00 1.56 15 163.02 194
Increasing 300 0.83 1.00 1.23 106 173.72 200
Increasing 600 0.76 0.99 1.17 132 172.58 193

Diversity Epoch Pattern Variation Column Diversity
Min Average Max Min Average Max

0,2 100 1 19.24 201 2 3.68 11
0,2 300 1 23.91 201 2 4.22 14
0,2 600 1 13.4 201 2 3.82 17
0,5 100 1 10.74 201 2 4.87 13
0,5 300 1 9.91 87 2 7.36 26
0,5 600 1 6.77 129 2 5.91 25
1 100 49 95.84 162 17 43.49 68
1 300 35 99.02 171 28 46.88 71
1 600 22 69.79 133 24 38.4 57

1,2 100 101 157.4 188 51 76.16 102
1,2 300 87 139.11 186 44 63.82 89
1,2 600 62 107.84 153 27 54.37 74

Increasing 100 7 37.98 186 10 17.96 26
Increasing 300 1 27.28 95 9 19.45 31
Increasing 600 8 28.42 69 6 21.11 34

23

9.1.2 Subsequence length 10

Diversity Epoch Consistency Leniency Linearity
Min Average Max Min Average Max

0,2 100 97 -23.5 -2.215 -0.5 0.42 0.90 0.96
0,2 300 96 -72.5 -11.585 0.5 0.54 0.88 0.96
0,2 600 98 -57.5 -13.2 -0.5 0.50 0.84 0.96
0,5 100 93 -13.0 -3.345 -0.5 0.52 0.87 0.96
0,5 300 88 -67.5 -16.765 -0.5 0.47 0.81 0.96
0,5 600 95 -49.0 -9.47 -0.5 0.50 0.80 0.96
1 100 96 -31.5 -17.31 -4.5 0.37 0.58 0.82
1 300 93 -50.5 -29.4 -16.0 0.37 0.52 0.74
1 600 87 -42.5 -22.495 -10.0 0.39 0.55 0.85

1,2 100 93 -43.0 -28.815 -14.0 0.32 0.42 0.59
1,2 300 88 -52.0 -33.0 -19.0 0.31 0.45 0.60
1,2 600 93 -41.5 -25.935 -14.5 0.35 0.47 0.61

Increasing 100 82 -27.5 -12.105 -4.5 0.34 0.72 0.86
Increasing 300 86 -70.5 -35.875 -8.0 0.40 0.71 0.95
Increasing 600 91 -58.5 -27.12 1.0 0.43 0.62 0.92

Diversity Epoch Density Pattern Density
Min Average Max Min Average Max

0,2 100 0.82 1.00 1.98 3 196.66 207
0,2 300 0.76 1.02 1.93 8 193.73 207
0,2 600 0.72 0.98 1.46 109 189.65 207
0,5 100 0.72 0.97 1.14 99 191.57 207
0,5 300 0.66 0.98 1.25 99 181.5 207
0,5 600 0.68 0.97 1.16 104 183.15 207
1 100 0.72 0.99 1.16 37 124.41 185
1 300 0.73 1.01 1.25 53 103.79 158
1 600 0.76 0.97 1.20 62 120.37 189

1,2 100 0.78 1.02 1.24 38 70.21 108
1,2 300 0.71 1.03 1.19 23 79.22 126
1,2 600 0.73 1.01 1.29 41 95.41 142

Increasing 100 0.58 0.95 1.09 32 163.65 197
Increasing 300 0.61 0.96 1.14 61 161.18 206

24

Diversity Epoch Pattern Variation Column Diversity
Min Average Max Min Average Max

0,2 100 1 11.34 205 2 6.71 31
0,2 300 1 14.27 200 2 9.41 40
0,2 600 1 18.35 99 2 11.61 39
0,5 100 1 16.43 109 2 8.45 33
0,5 300 1 26.5 109 2 14.5 43
0,5 600 1 24.85 104 2 16.22 47
1 100 23 83.59 171 13 31.31 64
1 300 50 104.21 155 27 40.12 68
1 600 19 87.63 146 22 38.36 66

1,2 100 100 137.79 170 30 52.12 77
1,2 300 82 128.78 185 32 51.87 73
1,2 600 66 112.59 167 31 46.19 68

Increasing 100 11 44.35 176 8 20.0 37
Increasing 300 2 46.82 147 5 23.01 55
Increasing 600 1 57.47 142 8 30.11 54

9.1.3 Subsequence length 50

Diversity Epoch Consistency Leniency Linearity
Min Average Max Min Average Max

0,2 100 67 -20.0 -7.56 -1.5 0.62 0.83 0.94
0,2 300 83 -62.5 -35.85 -12.5 0.46 0.74 0.92
0,2 600 63 -46.0 -28.22 -7.5 0.41 0.58 0.79
0,5 100 69 -32.5 -11.61 -2.0 0.55 0.81 0.94
0,5 300 69 -53.5 -33.66 -8.5 0.40 0.66 0.82
0,5 600 68 -49.5 -28.145 -12.0 0.37 0.59 0.81
1 100 80 -47.5 -31.065 -17.5 0.39 0.56 0.79
1 300 70 -49.0 -30.84 -12.5 0.35 0.51 0.79
1 600 74 -49.0 -30.04 -13.0 0.35 0.52 0.73

1,2 100 83 -56.0 -36.68 -20.0 0.33 0.46 0.58
1,2 300 83 -50.5 -34.915 -15.5 0.29 0.45 0.59
1,2 600 73 -45.5 -32.715 -16.5 0.30 0.48 0.74

Increasing 100 37 -34.5 -19.405 -6.5 0.33 0.64 0.81
Increasing 300 58 -38.5 -24.02 -5.0 0.45 0.62 0.86
Increasing 600 63 -60.5 -33.905 -14.5 0.44 0.57 0.74

25

Diversity Epoch Density Pattern Density
Min Average Max Min Average Max

0,2 100 0.69 0.96 1.16 133 222.65 247
0,2 300 0.68 0.99 1.26 85 199.07 247
0,2 600 0.63 0.92 1.20 99 162.62 226
0,5 100 0.75 0.96 1.15 119 213.86 247
0,5 300 0.57 0.97 1.33 39 175.73 242
0,5 600 0.50 0.93 1.20 51 158.09 219
1 100 0.67 0.97 1.18 76 145.0 209
1 300 0.45 0.97 1.24 43 126.53 186
1 600 0.62 0.95 1.30 57 133.92 192

1,2 100 0.74 1.00 1.31 56 102.31 151
1,2 300 0.63 0.97 1.26 9 103.71 166
1,2 600 0.49 0.95 1.30 37 116.27 174

Increasing 100 0.30 0.93 1.69 85 180.63 228
Increasing 300 0.56 0.92 1.19 87 168.71 231
Increasing 600 0.68 0.95 1.24 69 150.84 218

Diversity Epoch Pattern Variation Column Diversity
Min Average Max Min Average Max

0,2 100 1 25.35 115 6 15.29 38
0,2 300 1 48.93 163 8 21.69 48
0,2 600 22 85.38 149 17 37.71 66
0,5 100 1 34.14 129 6 17.23 44
0,5 300 6 72.27 209 11 27.44 63
0,5 600 29 89.91 197 19 35.76 62
1 100 39 103.0 172 16 37.97 68
1 300 62 121.47 205 24 47.4 81
1 600 56 114.08 191 25 45.37 70

1,2 100 97 145.69 192 34 55.03 81
1,2 300 82 144.29 239 40 60.72 90
1,2 600 74 131.73 211 29 52.86 83

Increasing 100 20 67.37 163 13 25.74 44
Increasing 300 17 79.29 161 12 29.11 49
Increasing 600 30 97.16 179 18 34.98 57

26

9.2 Character based generation

9.2.1 Subsequence length 52

Diversity Epoch Consistency Leniency Linearity
Min Average Max Min Average Max

0.2 100 30 -3.5 -2.3 -1.0 0.91 0.94 0.95
0.2 300 10 -4.0 -1.85 -1.0 0.93 0.94 0.95
0.2 600 60 -4.5 -1.9 -1.0 0.84 0.93 0.95
0.5 100 40 -5.0 -2.7 -1.0 0.91 0.94 0.96
0.5 300 10 -6.5 -3.15 -1.0 0.81 0.89 0.95
0.5 600 60 -11.0 -4.25 -1.0 0.84 0.92 0.95
1 100 20 -27.0 -19.8 -7.5 0.33 0.59 0.74
1 300 10 -61.0 -27.4 -15.0 0.15 0.48 0.60
1 600 70 -75.0 -33.15 -18.0 0.31 0.60 0.76

1,2 100 0 -42.0 -33.15 -23.5 0.05 0.27 0.48
1,2 300 10 -63.5 -34.75 -17.5 0.14 0.32 0.54
1,2 600 10 -69.5 -55.3 -30.0 0.13 0.28 0.40

Diversity Epoch Density Pattern Density
Min Average Max Min Average Max

0.2 100 0.93 0.97 0.99 196 198.7 200
0.2 300 0.94 0.98 0.99 0 163.3 200
0.2 600 0.97 0.99 0.99 171 196.3 201
0.5 100 0.95 0.98 0.99 191 197.8 200
0.5 300 0.95 1.02 1.13 163 187.8 200
0.5 600 0.96 0.98 1.00 181 196.7 201
1 100 0.84 0.93 1.05 66 102.4 142
1 300 0.52 1.07 1.41 7 75.1 113
1 600 0.10 0.85 1.08 0 109.3 166

1,2 100 0.88 1.39 2.44 0 19.9 77
1,2 300 0.57 1.07 1.44 3 29.3 75
1,2 600 0.13 0.45 1.07 0 24.7 83

27

Diversity Epoch Pattern Variation Column Diversity
Min Average Max Min Average Max

0.2 100 3 4.3 7 4 5.8 7
0.2 300 3 39.7 203 4 6.0 10
0.2 600 2 6.7 32 3 6.4 16
0.5 100 3 5.2 12 4 5.9 8
0.5 300 3 15.2 40 4 9.9 18
0.5 600 2 6.3 22 4 6.7 13
1 100 61 99.7 137 28 39.9 52
1 300 90 147.5 356 36 57.2 119
1 600 37 182.4 1093 21 45.2 98

1,2 100 78 134.9 198 57 78.9 109
1,2 300 128 191.5 328 56 89.8 133
1,2 600 112 474.5 1083 66 99.9 131

9.2.2 Subsequence length 104

Diversity Epoch Consistency Leniency Linearity
Min Average Max Min Average Max

0.2 100 40 -13.0 -2.9 -1.0 0.33 0.81 0.95
0.2 300 40 -53.0 -8.65 -1.0 0.88 0.93 0.96
0.2 600 20 -31.0 -5.45 -1.0 0.27 0.85 0.96
0.5 100 30 -13.5 -4.15 0.0 0.42 0.80 0.95
0.5 300 30 -11.0 -3.35 -1.0 0.78 0.92 0.95
0.5 600 10 -28.5 -7.95 -1.0 0.27 0.81 0.96
1 100 20 -39.5 -30.5 -21.0 0.15 0.29 0.35
1 300 50 -32.5 -20.4 -12.0 0.55 0.62 0.70
1 600 50 -33.5 -22.25 -13.0 0.42 0.55 0.75

1,2 100 0 -63.5 -49.9 -39.0 0.18 0.25 0.32
1,2 300 30 -47.5 -31.75 -16.5 0.37 0.47 0.57
1,2 600 30 -31.5 -24.95 -17.5 0.41 0.48 0.58

28

Diversity Epoch Density Pattern Density
Min Average Max Min Average Max

0.2 100 0.03 0.80 0.99 73 183.8 204
0.2 300 0.50 0.90 1.01 18 184.0 205
0.2 600 0.02 0.84 1.02 15 179.0 204
0.5 100 0.33 0.87 0.99 22 148.8 204
0.5 300 0.82 0.96 1.01 107 190.4 205
0.5 600 0.02 0.79 1.01 13 151.3 204
1 100 1.03 1.15 1.30 0 6.2 14
1 300 0.78 0.93 1.10 61 118.6 163
1 600 0.34 0.68 0.87 27 75.2 156

1,2 100 1.30 1.40 1.63 0 3.6 11
1,2 300 0.78 0.97 1.10 35 57.9 97
1,2 600 0.66 0.85 0.99 27 56.5 89

Diversity Epoch Pattern Variation Column Diversity
Min Average Max Min Average Max

0.2 100 3 23.2 134 4 6.2 11
0.2 300 2 22.9 188 2 5.6 9
0.2 600 3 27.8 192 4 6.1 13
0.5 100 3 51.1 179 4 10.5 26
0.5 300 2 16.6 100 3 7.0 16
0.5 600 3 55.7 195 5 9.4 21
1 100 175 196.0 206 99 118.5 156
1 300 44 88.0 145 28 39.9 59
1 600 52 131.9 180 26 47.6 65

1,2 100 189 200.2 215 151 162.0 173
1,2 300 111 148.7 170 56 79.6 103
1,2 600 117 151.0 183 51 64.1 75

29

