
Expertise in
Qualitative Prediction

of Behaviour

Ph.D. thesis (Chapter 5)

University of Amsterdam
Amsterdam, The Netherlands

1992

Bert Bredeweg

Chapter 5

Problem Solving Behaviour in

GARP

This chapter describes how the conceptual framework for qualitative prediction of be-

haviour can be transformed into a design model for the construction of a computer pro-

gram. A design model in KADS consists of three views. The functional view (5.1)

describes the functions that must be realised by the artifact. In particular, this section

discusses some of the additional functionality that is required, besides problem solving,

for implementation of the artifact (for example, the interaction with the user).

The most interesting problem to solve in this chapter is the construction of a be-

havioural view of the artifact. Algorithms must be developed that realise the problem

solving behaviour required by the inferences in the conceptual model. Our solution to this

problem is described in two sections. Section 5.2.1 describes how the meta-classes from

the conceptual model are mapped onto design elements, and section 5.2.2 describes how

these design elements are used by algorithms for realising the problem solving behaviour

that is speci�ed by the knowledge sources.

The physical view describes how the design elements and algorithms are composed into

the di�erent physical modules which constitute the actual artifact (5.3). The implemented

program is called GARP , which is an acronym for General Architecture for Reasoning

about Physics.1

The last section describes two prediction models, one of the cooling mechanism of

a refrigerator and one of heart diseases. Both models are implemented in GARP and

illustrate important aspects of the problem solving behaviour manifested by GARP .

5.1 Functional Description of GARP

In KADS a functional decomposition takes as input:

� a model that represents the problem solving expertise,

� a model of the external requirements on the artifact as a result of the environment

in which it has to operate, and

1GARP is implemented in SWI-Prolog [139]. Both GARP and SWI-Prolog are distributed without

charge for non-commercial purposes. Please contact the author for more details.

111

� a model of cooperation (modality) that represents how the system interacts with its

environment, in particular with its user.

The research reported here does not include an analysis of the external requirements and

a model of cooperation. However, guidelines for the design and implementation can be

derived from the purpose that the artifact must serve.

A major problem in qualitative reasoning is the construction of prediction models. An

artifact that implements an integrated framework for qualitative prediction of behaviour is

particularly interesting when it supports the development of these models. The following

three requirements are essential for providing such support:

� prototyping,

� cognitive plausibility, and

� adequate computational performance.

KADS de�nes the notion of interpretation model as a model of expertise that describes

inference, task and strategic knowledge of a certain problem solving task. During the

development of a knowledge based system, an interpretation model guides the acquisition

and structuring of the domain speci�c knowledge relevant to the application. We take

this approach one step further, because we implement such an interpretation model. The

resulting artifact, GARP , embodies a shell for qualitative prediction of behaviour. This

reasoning shell can be �lled by a knowledge engineer with domain knowledge and as such

can be used for developing and experimenting with di�erent prediction models. The latter

is relevant for theory formation concerning qualitative reasoning.

The knowledge engineer should be able to use the reasoning shell for examining di�erent

aspects of the domain knowledge. As prediction models are often large, it is relevant that

these studies can be performed on small subsets of the total model. The implementation

should therefore facilitate prototyping of partial prediction models.

Related to prototyping is the ability to interact with the control on the prediction

inferences. Qualitative problem solvers, in particular when insu�cient domain knowledge

has been represented, often encounter ambiguity and because of that explosively generate

behaviour states. Providing the user with partial control of the reasoning process, allows

focusing of the prediction engine without requiring all the necessary knowledge to be

present in the artifact. In fact, each intervention of the knowledge engineer may be

considered as an indication that a speci�c piece of knowledge is missing in the simulation

model.

The knowledge engineer is concerned with modelling the knowledge that is used in

a reasoning process. The development of a prediction model should therefore not be

hampered by implementation details. Moreover, the understandability of the behaviour of

the artifact increases when the required input, the reasoning process itself, and the output

of the artifact, are presented to the user in a cognitively plausible way. In other words, it is

important that the knowledge engineer has access to the program at the conceptual level.

In particular, the program should provide conceptual tracing of the reasoning steps that

it carries out, i.e. notify the user about its reasoning activities in terms of the knowledge

entities present in the conceptual model.

Finally, the problem solver must be implemented in a computationally adequate way,

i.e. the artifact should provide solutions within a reasonable amount of time.

112

5.1.1 Principal Design Decisions

The important constraints on the functional decomposition that follow from the above

mentioned requirements are:

� Type-to-type mapping

This constraint embodies the idea that the design model, and consequently the

implementation of the artifact, should follow the knowledge types represented in the

conceptual model as closely as possible. This is particularly relevant for providing

conceptual access to the artifact. With a type-to-type mapping the realisation of

this functionality is less complicated, because the transformation step between the

artifact and the conceptual model is relatively small. In general, all functionalities

that follow from required interactions between the artifact and the user bene�t from

a type-to-type mapping.

� Mixed control and intervention

The user should be able to intervene in the control of the reasoning process. The user

must therefore have control of the problem solving functions and of the reasoning

process as a whole. The user should be able to manipulate the reasoning process

completely, but should also be able to leave parts of the control, or all of it, to the

artifact. It is in this respect important that inference packages (functional units)

are put together in such a way that they allow controlling the inference capabili-

ties in su�cient detail. The type-to-type mapping can in this respect be used for

determining the appropriate grainsize for the inference steps.

� Visualisation of the problem solving process

Functions must be de�ned for visualisation of the reasoning process that is carried

out, its intermediate results, and its �nal output. The level of detail at which the

information is presented to the user is crucial. Although the presented information

must contain a su�cient amount of detail, it should not be represented to the user

below the knowledge level, i.e. it should not consider machine speci�c aspects of

the reasoning process, but only focus on the knowledge that is manipulated by the

prediction engine. The type-to-type mapping provides the necessary information for

�nding the appropriate level of detail for the visualisation.

� Feedback on solvability

The usability of the artifact for prototyping greatly improves when the artifact pro-

vides feedback about the type of faults that it encounters during its reasoning pro-

cess. In particular, feedback should be given on the solvability of a prediction prob-

lem.

� Modi�cation access

For prototyping and building prediction models it is relevant that the knowledge

engineer has `easy' access to modi�cation facilities for changing the knowledge rep-

resented in the artifact.

113

5.1.2 Functional Decomposition of GARP

Following the design decisions described above and the conceptual framework described in

the previous chapter, the functional decomposition of GARP starts with three top-level

functions:2 <problem solving>, <interface> and <storage>. Figure 5.1 depicts how these

functions are decomposed into subfunctions. This �gure also shows the input and output

relations and the division of the control between GARP and the user. In the following

sections these aspects of the functional decomposition will be further discussed. It should

be noted that there is no explanation function. As a result GARP cannot explain its

reasoning process.

5.1.2.1 Storage Functions

The storage functions result from both the conceptual model and the additional constraints

imposed on the design and implementation of GARP . The top-level function <storage>

can be decomposed into the subfunctions shown in table 5.1.

Storage function Represented knowledge

<store input system> The prediction problems that have to be solved.

<store library knowledge> The general knowledge that can be used to solve

prediction problems.

<store P.S. trace> A `permanent' record of the problem solving

results.

<store intermediate P.S. results> The intermediate results of the problem solving

process.

<store P.S. output> The output of the problem solving process.

Table 5.1: Storage functions

The output of the problem solving process is a subset of the intermediate results, both

their storages can therefore be addressed by a single functional unit (see �gure 5.1). All the

storage functions are controlled by GARP . The user has access to the knowledge stored by

these functions, only by calling upon other functions. The storage functions provide input

for (=storage functions output), and receive output from (=storage functions input), both

the interface functions and the problem solving functions.

5.1.2.2 Interface Functions

The interface functions result mainly from the additional requirements imposed on the

implementation of GARP . They are essential for the interaction between GARP and

the user. The top-level function <interface> can be decomposed into the functions

<visualise>, <modi�cation access> and <user control>. The function <visualise> is

concerned with showing the user what is going on inside the problem solver. It can be

decomposed into the following functions:

� <show errors> noti�es the user about the assessment of solvability (see 5.1.2.3).

2We write names of functions as follows: <function name>.

114

P1 P2 P3

P4 P5 P6

Problem solving

Assessment of
Solvability

Syntactic analysis Semantic analysis

Behaviour prediction System control

Specify SMD Transform SMD

Select
terminations

Order
terminations

Apply
terminations

S1

S2

S3

S4

S5

Store input
system

S6

Store P.S. trace

S7

Store intermediate
P.S. results

S8

V2

V1

V3

V4

M2

M3

M4

M5

InterfaceUser control

Visualise

Modification
access

Change library
knowledge

M1

Show errors

Show P.S. status

Show P.S. ouput

Show library
knowledge

Change input
system

Change system
element hierarchy

Change quantity
space

Change rules
(term., prec., cont.)

Change partial
models

Storage

Store library
knowledge

Store P.S. output

Store system
element hierarchy

Store quantity
spaces

Store calculi

Store rules
(term., prec., cont.)

Store partial
models

(M2)

(P1-3,V4,M2)

(M3)

(P1-3,V4,M3)

()

(P3)

(M5)

(P1-3,V4,M5)

(M4)

(P1-2,P4-6,M4)

(S1-2,S4-5)

(P3-6,S8)

(P3-6)

(P1-2)

(user)

(S6)

(S1)

(S2)

(S5)

(S4)

(P1-6)

(permanent file)

(M1)

(P1-3,V5,M1)

(P3-6)

(P3-6,V3)

(S1-6) (V1,S7) (S1-6) (V1,S7) (S1-4,S6,S8) (S7-8,V2-3)

(S5,S8) (S7-8,V2-3)

V5

Show input
system

(S6)

(user)

(user)

(user)

(user)

(user,S6)

(user,S1)

(user,S2)

(user,S4)

(user,S5)

(user)

(S5,S8) (S7-8,V2-3) (S5,S8) (S7-8,V2-3)

S8 = Reference number (nr.)

= Consist-of relation

(nr.) = Provides input for function with nr.

(nr.) = Provides output for function with nr.
= System controlled function
= User controlled function
= Mixed controlled function
= Decomposable function

•

•

•

•

•

•

•

•

•

•

•

Figure 5.1: Functional decomposition of GARP

115

� <show P.S. status> informs the user about what kind of inference is being carried

out by GARP . This function gets input from all problem solving functions about

their problem solving activities (=status).

� <show P.S. output> displays all the output that is derived by GARP . This function

also gets input from all problem solving functions, but in addition may get input

from the storage function <store intermediate P.S. results>. The former is used for

showing output during problem solving whereas the latter is used for showing output

after problem solving is �nished or interrupted.

� <show library knowledge> and <show input system> allow the user to read through

all the knowledge that is present in the library of GARP . These functions get their

input from the corresponding storage functions.

When the visualisation is active, it always presents its output to the user. The user

determines the amount of detail that each problem solving function presents to the function

<show P.S. output>. The interface functions <show errors> and <show P.S. status> are

controlled by GARP and are always active whenever GARP is active. The <show library

knowledge> is also completely controlled by the user.

The second group of interface functions is concerned with modifying the knowledge

base of GARP . There is a modi�cation function for changing the input system and for

changing each part of the library knowledge, except for the function <store calculi>. The

modi�cation functions do not allow changes to the calculi. The input for the modi�cation

functions comes from the related storage functions and their output results in actual

changes in the knowledge stored by these storage functions. All the modi�cation functions

are controlled by the user.

The user's control over GARP is managed by the function <user control>. This

function has access to all the functions that can or must be controlled by the user.

5.1.2.3 Problem Solving Functions

The function <assessment of solvability>, results from the additional requirements im-

posed on the implementation. It can be decomposed into two functions. The <syntactic

analysis> analyses whether knowledge is presented to GARP in the appropriate language.

The <semantic analysis> analyses whether the knowledge written in this language can be

understood in terms of the knowledge already present in GARP .3 Both functions can be

controlled by GARP or by the user, but the <syntactic analysis> should always precede

the <semantic analysis>. GARP automatically invokes the assessment functions when

it receives new knowledge. The two functions get their input from the storage function

<store input system> and <store library knowledge>. The output of both functions is

presented to the user via the interface function <show errors>, either as a noti�cation

that the knowledge is understood or as feedback about the problems encountered.

The second problem solving function, <behaviour prediction>, follows directly from the

conceptual model. Each function refers to a knowledge source in the inference structure.

These problem solving functions can be controlled by GARP or by the user.

3Being solvable in terms of being syntactically and semantically correct does not imply that the problem

can be solved by GARP within a reasonable amount of time.

116

The knowledge sources assemble and compute are realised by a single functional unit

(<specify>), because they are closely related with respect to control. An assemble step,

for example, often requires a computation for determining whether the additional pa-

rameter relations introduced by a partial model are consistent with the already known

mathematical model.

The function <specify> requires input from all storage functions, except from <store

rules> and <store P.S. trace>. The transformation functions get their input from the

storage functions <store rules> and <store intermediate P.S. results>.

All problem solving functions present information about their status and the derived

output to the user by respectively using the interface functions <show P.S. status> and

<show P.S. output>. In addition they present their output to the storage functions

<intermediate P.S. results> and possibly to <store P.S. trace>. The amount of infor-

mation presented to <show P.S. output> and <store P.S. trace> is controlled by the

user.

The function <system control> is concerned with the task and strategic knowledge

from the conceptual model. It has access to all the functions that must be controlled by

GARP . The function itself is controlled by the function <user control>.

5.2 Behaviour Description of GARP

This section describes the methods that are used in GARP for realising the problem solving

behaviour required by the functions in the functional decomposition. In particular we are

faced with the nontrivial problem of transforming the problem solving functions, resulting

from the conceptual model, into algorithms that, by manipulating design elements, realise

the machine speci�c behaviour needed for implementing those functions. The major part

of what follows is therefore concerned with

� describing the design elements that are used to implement the meta-classes (5.2.1),

and

� how these design elements are manipulated by algorithms in order to realise the

machine speci�c behaviour (5.2.2).

Some important properties of the developed methods can be pointed out. Firstly, the

algorithm for speci�cation implements an e�cient depth-�rst search, that not only tests

whether conditions can be inferred from the knowledge present in the system model de-

scription (SMD), but that in addition uses an assumption mechanism for �nding all partial

models that are consistent with that knowledge. Secondly, the computation of parameter

relations, which is part of the speci�cation, proposes an advanced method for coping with

problems related to transitivity reasoning. Thirdly, the transformation to successive states

of behaviour allows an explicit selection and ordering of possible terminations.

In section 5.2.5 the required behaviour for the other functions from the functional

decomposition is discussed. However, the emphasis of our work is concerned with realising

machine speci�c behaviour for problem solving competence, and not so much with the

interaction of the artifact with the user and the environment. We will therefore discuss

these other functions only brie
y.

117

5.2.1 Design Elements

For implementing GARP we chose a Prolog environment. The declarative nature of

Prolog allows a direct (one-to-one) mapping between meta-classes and design elements.

The design elements are therefore relatively easy to read and are not confused with implicit

procedural notions.

The central design decision that determined the characteristic of the design elements

used in GARP , was to ensure that at all times in the problem solving process, all the

knowledge taken into account by GARP could be made available to the user in a way that

closely matched the knowledge entities de�ned in the conceptual model. Recall that the

one-to-one mapping was an essential constraint imposed on the implementation of GARP .

This design decision turns out to be well supported by the declarative nature of Prolog.

The examples presented in this section are all taken from the actual implementation

of GARP .4

5.2.1.1 System Elements

The hierarchy of generic system elements is represented by the predicate isa with the

generic names of the lower and the higher concepts in the isa-hierarchy. The predicate

instance is used for creating instances from the generic isa-hierarchy. Its arguments specify

the instance name for representing the real-world entity and the generic name that refers

to the isa-hierarchy. The predicate has
�

attribute is used for modelling relations between

instances. Its arguments specify the instance names of two system elements and the

relation that holds between them. The relation is represented directly in the predicate

by the name of the second argument (see table 5.2). Relations can be used in two ways.

They can either model a structural relation between two instances or an attribute of

an instance. In the latter case the attribute is represented as an atom, for example

has
�

attribute(Con1; openness; open). Additional examples of how these design elements

are used are given in table 5.7. A isa-hierarchy is shown in table 5.3.

System element facets Design element

- generic isa(SubName, SuperName).

- instance instance(InstanceName, GenericName).

- relation has attribute(InstanceName1, relation, InstanceName2).

Table 5.2: Design elements for system elements

It is important to notice that all instances are created and further managed by GARP .

In the instance predicate, for example, GARP will create a unique identi�er for the in-

4GARP is implemented in SWI -Prolog [139]. The following guidelines help to understand the examples.

Predicate names are written in small characters, followed by a bracket, and ending with a bracket followed
by a point, thus: predicate

�

name(). Variables start with a capital, followed by a string of characters, thus:

This
�

is
�

a
�

variable12. Variables with exactly the same name appearing within a single predicate, share

their information (this is called uni�cation). A stand alone underscore represents a variable that does not
share information with other variables. An underscore has two uses in GARP : representing default and

unknown (or not speci�ed) knowledge. When encountering an underscore GARP �rst tries to insert the

default, if default knowledge is not present it treats the underscore as representing unknown or unspeci�ed
knowledge. A list of predicates or variables starts with `[' and ends with `]'. A List as a whole can also be

represented as a variable.

118

stance name, by extending the generic name with a unique number,5 by which it can

recognise the instance at any time and any place in the prediction model.

isa(entity, nil).

isa(heat exchangeable object, entity).

isa(physical object, heat exchangeable object).

isa(substance, heat exchangeable object).

isa(container, physical object).

isa(gas, substance).

isa(liquid, substance).

isa(solid, substance).

isa(water, liquid).

isa(ice, solid).

isa(path, entity).

isa(
uid path, path).

isa(heat path, path).

Table 5.3: Design elements implementing a generic isa hierarchy

5.2.1.2 Parameters and Parameter Values

A parameter is represented by a four place predicate with the same name as the parameter

and as arguments a reference to the system element the parameter applies to, the instance

name of the parameter, the type of the parameter and a reference to the quantity space

that speci�es the values the parameter may have:

parametername(InstanceName; ParInstanceName; Type;Qspace):

The type can be either discrete, qualitative or quantitative. The type qualitative is default.

None of the examples that we have implemented in GARP uses the type quantitative. The

quantity space of a parameter is further discussed in the next section.

The value of a parameter is represented by the predicate value. Its arguments repre-

sent the instance name of the parameter to which it belongs, the quantitative value the

parameter has (optional), the qualitative value the parameter has, and the value of the

derivative of the parameter.

value(ParInstanceName;Quantitative
�

V alue;Qualitative
�

V alue;Derivative):

Examples of how design elements for parameters and parameter values are used, are given

in table 5.7.

5.2.1.3 Quantity Space

The design element for quantity spaces is the predicate quantity space. Its arguments are

a unique symbol by which it can be referred to, an instance name of the parameter for

5In the text we will write a V ariable12 with a capital and a numerical extension when we refer to an

instance name that is going to be, or should have been, created by GARP .

119

which the quantity space is instantiated, and a list of alternating points and intervals:

quantity
�

space(zp
�

max;X; [point(zero); plus; point(max
�

plus(X))]):

The identi�er (zp max) can be used in the parameter predicate for referring to the type

of quantity space that the parameter uses. In the list of alternating points and intervals

(third argument), the points are made speci�c for a certain parameter as soon as the

instance of the quantity space is created by GARP for that parameter:

quantity
�

space(zp
�

max;Height18; [point(zero); plus; point(max
�

plus(Height18))]):

This means that in each instance of a quantity space the points are unique for a certain

parameter and in principle unrelated to points in other quantity space instances, except

for point(zero) which is the same for each quantity space that uses it.6 Parameter relations

between quantity spaces have to be de�ned in order to further relate these points (see also

section 4.2.1.4).

5.2.1.4 Parameter Relations

Parameter relations are represented by a number of predicates. The name of the predicate

refers to the speci�c constraint that the relation imposes on the two parameters (see table

5.4).

The arguments of the inequality, subtraction and addition relations may refer to

both instantiated parameter names and instantiated point values of quantity spaces.

If, for example, Height18 and Height19 are two instantiated parameter names and

max
�

plus(Height18) and max
�

plus(Height19) are two instantiated point values (of two

di�erent quantity spaces), then inequality relations can be speci�ed as given in table 5.5.

The two arguments for the predicate representing inequalities between derivatives are

more restricted. The relations d
�

equal, d
�

greater, and d
�

smaller are primarily used for

specifying the derivative of a parameter. Parameter Height18 is increasing, for example,

is modelled as:

d
�

greater(Height18; zero):

Giving a parameter a value and a derivative by using inequality relations is another

way of specifying the value predicate. Instead of the d
�

greater mentioned above and the

relation with point max
�

plus(Height18) as given in table 5.5 we also could have written:

value(Height18;
�

; max
�

plus(Height18); plus):

Using the parameter relations has the advantage that the assumption mechanism can be

used. The inequality relations between parameters that are consistent with the knowledge

already present in an SMD, but that cannot be derived from that knowledge, are assumed

to be true by the speci�cation inference. This mechanism is further discussed in section

5.2.3.

The predicates min and plus7 are context sensitive and can therefore be used both

for inequalities between qualitative values and between derivatives (see table 5.6). Notice

6Notice that any name can be used for representing points and intervals. We could, for example, have

de�ned point(max
�

plus(Height18) as point(maximum(Height18) or point(max(Height18).
7The predicate names min and plus should not be confused with values from a quantity space that

may have the same name.

120

Parameter relations Design element

Inequalities equal(Arg1, Arg2).

greater(Arg1, Arg2).

greater or equal(Arg1, Arg2).

smaller(Arg1, Arg2).

smaller or equal(Arg1, Arg2).

Subtraction min(Arg1, Arg2).

Addition plus(Arg1, Arg2).

Inequalities for derivatives d equal(Arg1, Arg2).

d greater(Arg1, Arg2).

d smaller(Arg1, Arg2).

Correspondences v correspondence(Par1, Val1, Par2, Val2).

dir v correspondence(Par1, Val1, Par2, Val2).

q correspondence(Par1, Par2).

dir q correspondence(Par1, Par2).

Proportionalities prop pos(Par1, Par2).

prop neg(Par1, Par2).

In
uences inf pos by(Par1, Par2).

inf neg by(Par1, Par2).

Implications i�(List1, List2).

if(List1, List2).

Table 5.4: Design elements implementing parameter relations

Related entities Instantiated relation

Two parameters equal(Height18; Height19)

Two quantity space points equal(max
�

plus(Height18);max
�

plus(Height19))

Parameter and Q. space point equal(Height18; max
�

plus(Height18))

Table 5.5: Examples of inequality relations

that the subtraction and the addition relation are always used as arguments in inequality

relations.

The predicates representing the correspondence relations must be interpreted as fol-

lows:

Value correspondence: a certain value (V al1) of one parameter (Par1) always appears

together with a certain value (V al2) of another parameter (Par2), and therefore, if

one of the values is known the other can immediately be derived (v
�

correspondence).

Directed value correspondence: is a value correspondence that only holds if the

second argument is known (dir
�

v
�

correspondence). If only the �rst parameter

value is known then the relation does not give any additional information. The

substance
�

flow through a pipe, for example, will be zero if the flow
�

area of the

pipe is zero (and not the other way around):

dir
�

v
�

correspondence(substance
�

flow14; zero; flow
�

area12; zero)

121

Contexts of min and plus Relates

equal(min(Height18; Height19); zero): Interval values

d
�

equal(plus(Height18; Height19); zero): Derivatives

Table 5.6: Context sensitive use of min and plus

Quantity space correspondence: is a value correspondence that holds for all values

in the quantity spaces (q
�

correspondence), i.e. for each value of parameter (Par1)

there is a corresponding value in the quantity space of parameter (Par2). Recall that

an essential precondition for using a quantity correspondence is that the quantity

spaces of the two parameters have an equal number of points and intervals in their

quantity spaces.

Directed quantity space correspondence: is a quantity space correspondence, spec-

ifying that parameter (Par1) can be determined only when the corresponding val-

ues(s) of parameter (Par2) are known (dir
�

q
�

correspondence).

The predicates representing the proportionality relations and the in
uences must be

interpreted as follows:

Proportionalities: a change in parameter (Par2) causes a change in parameter (Par1)

in the same direction (prop
�

pos), or in the opposite direction (prop
�

neg).

In
uences: if the qualitative value of Par2 is greater than zero, then Par1 tends to

increase (inf
�

pos
�

by) or decrease (inf
�

neg
�

by) as a result of Par1.

If the qualitative value of Par2 is less than zero, then Par1 tends to decrease

(inf
�

pos
�

by) or to increase (inf
�

neg
�

by).

If the value of Par2 is zero then it has no e�ect on the derivative of Par2.

Finally, there are two predicates for representing implications which can be used for

modelling conditional statements between two lists of relations. The relation:

if(List
�

of
�

Relations1; List
�

of
�

Relations2)

is directed, meaning (contrary to other directed relations) that the �rst list of rela-

tions (List
�

of
�

Relations1) has to be true in order for the second list of relations

(List
�

of
�

Relations2) to hold. Both lists may contain either a single relation or a whole

conjunction of relations. For example:

iff([equal(Arg2;Arg3); d
�

equal(Arg3; zero)]; [prop
�

pos(Arg1; Arg2)]):

The predicate iff represents the undirected implication. The implication allows the ex-

pression of relations that do not have a separate status in GARP .

5.2.1.5 Input Systems

The design element for input systems is an assembly of other design elements and is

represented by the predicate smd with �ve arguments. These arguments represent the

name of the input system, the system elements, the parameters, the parameter values, the

122

smd(input system(`U-tube �lled with water'),

sysem elements([

instance(Con1, container),

has attribute(Con1, openness, open),

instance(Con2, container),

has attribute(Con2, openness, open),

instance(Water1, water),

instance(Water2, water),

has attribute(Con1, contains, Water1),

has attribute(Con2, contains, Water2),

instance(Path,
uid path),

has attribute(Path, connected, Con1),

has attribute(Path, connected, Con2)]),

parameters([

height(Water1, Height1, , zp max),

height(Water2, Height2, , zp max)]),

par values([

value(Height1, , plus,),

value(Height2, , plus,)]),

par relations([

greater(Height1, Height2)]),

system structures([])).

Table 5.7: A design element implementing an input system for the U-tube

parameter relations and the system structures. The example given in table 5.7 represents

a possible input system for the U-tube. The list of system elements describes the physical

situation of a U-tube, namely that it consists of two containers (Con1 and Con2), both

containing water (Water1 and Water2), and connected by a
uid path (Path). The list

of parameters speci�es a height for each column of water. The reference to the quantity

space (zp
�

max) de�nes that the values of these parameters can be zero (point), plus

(interval) or a certain maximum (point) (more parameters can of course be introduced by

the qualitative inference engine during the behaviour analysis). The list of values speci�es

that at the beginning both Height1 and Height2 have value plus. Finally, the list of

parameter relations speci�es that, although both parameters are in an interval directly

above zero, they are unequal. Height1 is currently greater than Height2.

In GARP each quantity space is speci�c to a single parameter. The input system

for the U-tube, as de�ned in table 5.7, leaves open whether the maximum values for

Height1 and Height2 are equal, i.e. GARP allows the representation of partially ordered

parameter values. The missing knowledge may lead to ambiguity in the �nal behaviour

prediction. Adding an inequality relation between the maximum values of both quantity

spaces, such as:

equal(max
�

plus(Height1); max
�

plus(Height2))

would remove this ambiguity.

123

The last argument of the input
�

system predicate (system
�

structures) allows partial

models to be prespeci�ed in the input system. In this way the input system can already

be speci�ed in a certain (partial) state of behaviour. The notion of system structures will

be further discussed in the next section.

5.2.1.6 Partial Models

The design element for modelling partial models is, similar to that used for input

systems, an assembly of other design elements. It is represented by the predicate

system
�

structures and has four arguments. The �rst argument speci�es the name of

the partial model being represented by the predicate. The name is a predicate in itself. It

has one argument that is a list of the instantiated names of the system elements that are

subject to the behaviour represented by the partial model. In the example presented in

table 5.8 the name speci�es that the partial model is a liquid
ow involving two containers

(Con1 and Con2) and a path (Path). The name can be used by other partial models as

a conditional statement in both their isa and their system
�

structures argument.

system structures(liquid
ow((Path, Con1, Con2)),

isa([process model]),

conditions([

system elements([

instance(Path,
uid path),

has attribute(Path, connected, Con1),

has attribute(Path, connected, Con2)]),

parameters([

pressure(Liquid1, Pressure1, , zp),

pressure(Liquid2, Pressure2, , zp)]),

par relations([

greater(Pressure1, Pressure2)]),

system structures([

open contained liquid((Con1, Liquid1)),

open contained liquid((Con2, Liquid2))])]),

givens([

parameters([

amount(Liquid1, Amount1, , zp),

amount(Liquid2, Amount2, , zp),

ow rate((Con1, Con2), Flow rate, , zp)]),

par relations([

equal(Flow rate, min(Pressure1, Pressure2)),

inf neg by(Amount1, Flow rate),

inf pos by(Amount2, Flow rate)])])).

Table 5.8: Design element implementing a partial model of the liquid-
ow process

The second argument of the system
�

structures predicate represents the super-

type relation (isa) that exists between partial models. The top-nodes can be either

124

process
�

model, single
�

description
�

model, composition
�

model, decomposition
�

model,

or agent
�

model. The super-type relation speci�es the place of the partial model in one of

these hierarchies by either referring to the top-node or to some other partial model in the

hierarchy. Multiple inheritance is achieved by having the name of more than one partial

models present in the list of the isa argument.

The third and the fourth argument represent the conditions and givens that are

speci�c for the partial model. The conditions specify which entities must be present before

the system
�

structure is applicable, the givens specify the new information (consequences)

that can be added to the SMD that the partial model applies to when the conditions are

true. Both the conditions and the givens may, similar to the input system, contain

lists of system elements, parameters, parameter values, parameter relations and system

structures.8

The system
�

structures in the conditions di�ers from the isa because it represents

an applies-to relation instead of a supertype. The liquid
�

flow((Path; Con1; Con2)) in

the example is not a subtype of open
�

contained
�

liquid((Con1; Liquid1)), but it applies

to this partial model, i.e. it refers to other system
�

structures that must be present in

order for the system
�

structure itself to be applicable. In a way, the applies-to hierarchy,

together with the list of system elements represents the structural view on the real-world

system to which the partial model that has them as conditions, adds new properties.

There are three places where inconsistencies can occur: (1) the givens of a partial

model can be inconsistent with the knowledge already present in the SMD, and the knowl-

edge speci�ed in partial models that are related by (2) a supertype relation, or (3) by an

applies-to relation, may be inconsistent. In GARP , these inconsistencies are all inter-

preted as incorrect domain models. Di�erent behaviours should always be speci�ed by

exclusive (sub hierarchies of) partial models. Inconsistencies, as described above should

not occur (see also section 5.2.3).

5.2.1.7 Transformation Rules

All transformation rules are represented by the predicate rule. The �rst argument of the

predicate speci�es its type, either termination, precedence, or continuity. The second

argument of the predicate is the name of the transformation rule. Similarly to the name

argument of the system
�

structures predicate, this argument may include instance names

that refer to knowledge (such as, system elements or parameter names) which is relevant

for using the precedence rules.

The predicate for termination rules has in addition to its type and name argument two

other arguments, the condition and the result. The condition argument speci�es under

which conditions the rule is applicable, whereas the result argument speci�es how the

entities in the condition argument, that turned out to be present in the current SMD, will

have changed in the next SMD. Both the condition and the result arguments consist of lists

of predicates representing system elements, parameters, parameter values and parameter

relations (system structures may not be used). In addition, the condition argument may

8Proportionality relations and in
uences may not be de�ned as conditions. Also it is unusual to de�ne
a complete system

�

structure in the givens of another system
�

structure. Especially from an incremental

approach to modelling, it would be more appropriate to de�ne this new system
�

structure as a separate

entity, possibly with only the other system
�

structure as a condition, or as being a subtype of the latter.

125

include speci�c requirements about quantity spaces. The quantity
�

space argument can

be used for:

� testing if a value is an interval or a point, and

� �nding the adjacent value in the quantity space.

In table 5.9 an example is shown of the termination rule to
�

point
�

below(Par). The

knowledge that is modelled by this rule is explained in table 4.7 in the previous chapter

(section 4.2.1.14). Basically it de�nes that the parameter value Interval must change in

the next SMD to Point.

rule(termination, to point below(Par),

condition([

par values([

value(Par, Q, Interval, min)]),

quantity space([

interval(Par, Interval),

meets(Par, Point, Interval)])]),

result([

par values([

value(Par, Q, Point,)])])).

Table 5.9: Design element implementing a termination rule

The predicate representing precedence rules has two arguments in addition to its type

and name argument. The condition argument speci�es the conditions under which the rule

applies whereas the action argument speci�es the manipulation that must be carried when

the rule is applicable. The condition argument may contain lists representing predicates

of parameters, parameter values, and parameter relations (system elements and system

structures may not be used). In addition, the termination argument must specify the two

terminations that are going to be ordered by the rule. The action argument of the prece-

dence rules can manipulate these terminations in two ways: merging or removing.9 In ta-

ble 5.10 an example is shown of the precedence rule merge
�

correspondence(Par1; Par2).

It contains the knowledge that two terminations towards an interval can be treated as one

termination if the parameter values are corresponding values. More details concerning

the knowledge represented in this rule can be found in table 4.8 in the previous chapter

(section 4.2.1.14).

The condition argument of the predicate representing the continuity rules may only

contain a list of predicates representing parameter values. The givens argument may

contain lists of predicates representing parameter values and parameter relations. Usually,

the continuity rule speci�es the degree of freedom that one allows for parameter values

and derivatives that do not change between two SMD's. The givens argument in this

9In most cases one termination is removed in favour of keeping the other, but removing both termina-

tions is also possible.

126

rule(precedence, merge correspondence(Par1, Par2),

condition([

terminations([

to interval below(Par1),

to interval below(Par2)]),

par values([

value(Par1, , Value1,),

value(Par2, , Value2,)]),

par relations([

correspondence(Par1, Value1, Par2, Value2)])]),

action([

merge([

to interval below(Par1),

to interval below(Par2)])])).

Table 5.10: Design element implementing a precedence rule

respect refers to conditions that should be satis�ed in the new state of behaviour in order

for the transformation to be valid. The example given in table 5.11 de�nes that if the

parameter was decreasing in the old SMD, then it should keep its qualitative value and

be either steady or decreasing, but not increasing, in the next SMD.

rule(continuity, unde�ned(Par),

condition([

par values([

value(Par, Q, I1, min)])]),

givens([

par values([

value(Par, Q, I1,)]),

par relations([

d smaller or equal(Par, zero)])])).

Table 5.11: Design element implementing a continuity rule

5.2.1.8 System Model Descriptions and their Ordering

The SMD is represented by the predicate smd and refers to all the knowledge that has been

inferred for a single state of behaviour. It has arguments for representing knowledge about

all the system elements, parameters, parameter values, parameter relations, and partial

127

models that have been derived for a certain input system.10 In addition, it has arguments

to represent the input system to which the knowledge it represents applies, which SMD's

are predecessors (from
�

relation), and which ones are successors (to
�

relation). The

latter also represents the cause of the transformation, i.e. an enumeration of the used

termination and precedence rules that lead to the new state of behaviour. The total set

of SMD's represents the behaviour description of the input system.

5.2.2 Problem Solving Methods

An important aspect of the behavioural view in the design model is the set of problem

solving methods, used for realising the problem solving potential. This section describes

these methods as they are used for GARP . In particular, it shows how the design elements,

described above, are used by speci�c algorithms in order to realise the problem solving

goals. Section 5.2.3 describes how GARP searches for partial models that apply to an

input system. Sections 5.2.3.4 and 5.2.3.5 focus on the constraint satisfaction that is

needed to support the speci�cation inference. Finally, section 5.2.4 explains how GARP

identi�es successive states of behaviour.

5.2.3 Speci�cation of a System Model Description

An input system contains a description of real-world entities in terms of system elements,

parameters, parameter values, parameter relations and system structures. This description

can be:

� the initial input system supplied by the user, or

� the result of transforming an SMD (section 5.2.4).

The task carried out by the speci�cation method is to develop a full description of an SMD

in terms of partial models that apply to the input system. Developing such a full SMD

starts by �rst adding the input system to this description and then proceeds by gradually

augmenting it with instances of applicable partial models.

5.2.3.1 Depth-�rst Speci�cation

Developing a graph of possible behaviours can be done in a depth-�rst or a breadth-�rst

way. The breadth-�rst method is used in the component centred approach by taking the

cross-product of all qualitative states. This results in the generation of all possible states of

behaviour (=total-envisionment). The depth-�rst method is used in the �rst implementa-

tion of the process centred approach (GIZMO) where only those behaviours are generated,

for a particular con�guration of system elements, that match the conditions introduced

by the input system and the applicable partial models (=attainable envisionment).11.

Given the constraints that were put on the functional decomposition (see section 5.1.1)

a step by step development of the behaviour graph, resulting in an attainable envisionment

must be preferred. For supporting the development of prediction models it is bene�cial

10The knowledge present in each of the system structures is also present in overall lists of system elements,
parameters, etc. This knowledge is represented twice for e�ciency.

11The QPE implementation [73; 68] is essentially a breadth-�rst method

128

that the knowledge engineer can focus on, and interact with the prediction of a single

state of behaviour. This appears to be more intuitive and therefore easier to handle than

a breadth-�rst approach. However, the algorithm developed for the speci�cation inference

in GARP is such that if it is presented with an underspeci�ed input system (for example,

an input system that contains only a list of system elements) then it will �nd all possible

behaviours of such an input system. While retaining the advantages of the depth-�rst

method, a total-envisionment is then generated.

Constructing an e�cient depth-�rst search algorithm introduces two problems that

have to be dealt with. Firstly, �nding applicable partial models essentially means retrieving

generic partial models from the library and matching their description with what is already

included in the SMD. However, the SMD will be extended with new instances when partial

models are included and thereby allow other partial models to be applicable that were not

applicable previously. Furthermore, multiple instances of partial models may be found for

di�erent sets of system elements. Hence, the complete library must be taken into account

at all times. Simply matching partial model descriptions against what is already included

in the SMD means that the same instances will be found over and over again, which is not

di�cult to recognise afterwards, but which can be expensive. To avoid this cost, subsets

of instances, that match with partial model conditions, need to be generated in such a

way that each subset is unique. However, we do not want to generate all possible subsets,

but prefer to be guided by the conditions that match with them. This is accomplished

in the algorithm by distinguishing between new and known instances. The new instances

are used one by one to �nd all partial models that have one matching condition. All other

conditions must match with the known instances. Any instance that is used in this manner

will from then on be a known instance. By this means a set of candidates is generated,

i.e. partial models that apply to the instances of both system elements and partial models

included in the SMD.

Secondly, for a candidate to be applicable, its parameter relations and values must

be derivable from, or at least be consistent with, those already in the SMD (see section

5.2.3.4). When values or relations are not derivable, but can be assumed, there may be mu-

tually exclusive candidates, depending on which assumptions are made, each resulting in

a possible SMD. The speci�cation algorithm must therefore distinguish carefully between

derivable and assumable candidates and determine which of these candidates exclude each

other. This is done by associating an assumption-level with each assumption and marking

the (in)consistency of any other assumable candidate at that or any further level. Upon

backtracking an alternative candidate is chosen that has always been marked as incon-

sistent with that or any further level. Hence at a single level only mutually exclusive

alternatives are found.

It is advantageous to postpone the assumption of candidates until no other candidates

can be included in the SMD. This is not only computationally more e�cient, it will also

clarify which partial models depend on the assumptions being made.

Finally, the speci�cation inference must result in a sound description of an SMD, in

particular in terms of parameter values and parameter relations. Two constraint satisfac-

tion methods are therefore necessary to implement the speci�cation inference.

� Inequality reasoning determines the consistency and derivability of parameter values

and inequality relations. As this determines the applicability of partial models, this

129

method is carried out in parallel with the speci�cation inference.

� Resolving in
uences and proportionality relations establishes the behaviour of pa-

rameters. As all in
uences on a speci�c parameter are known only when the SMD

is completed, this method is applied after the speci�cation inference.

These methods are described in further detail in the sections 5.2.3.4 and 5.2.3.5. In partic-

ular, we propose an advanced method for coping with the problems related to transitivity

in inequality reasoning.

5.2.3.2 Extending the Set of Design Elements

During speci�cation, the most important objects used in the algorithm are maintained as

the sets:

� Instances: the instances of system elements and partial models included in the SMD,

where we distinguish between:

{ NewInstances: instances not yet used to �nd applicable partial models.

{ KnownInstances: instances already used to �nd applicable partial models.

� BaseRelations: inequality relations equivalent to the parameter relations and values

existing in the SMD.

� DerivableRelations: the closure of BaseRelations under the inference rules for in-

equality reasoning (see section 5.2.3.4).

� Candidates: partial models that apply to Instances, but whose parameter values and

relations have not yet been tested.

� AssumableCandidates: partial models whose parameter relations are not in Deriv-

ableRelations, but consistent with BaseRelations.

5.2.3.3 The Speci�cation Algorithm

To start with, let the instances of system elements and partial models (=their names with

instantiated system element names) from the input system (either provided by the user

or resulting from a transformation step, 5.2.4) be the set NewInstances. Let KnownIn-

stances, Candidates and AssumableCandidates be empty sets. BaseRelations is the set of

inequality relations equivalent to parameter relations and values from the input system or

the previous state.

1. Finding the Candidates: for each i in NewInstances:

(a) Find all partial models S that apply to i and instances from KnownInstances.

Find generic parent structures for S that apply to KnownInstances or already

existing instances of these parents. Add S and its new parents to the set of

Candidates. As a partial model inherits all attributes from its super-concepts,

it and its new parents form a single Candidate.

(b) Remove i from NewInstances and add it to KnownInstances.

130

2. Test the Candidates: for each partial model in Candidates, consider the parameter

values and relations in its conditions:

(a) If derivable from BaseRelations (thus in DerivableRelations), include it in the

SMD. Create instances for the partial model and system elements in its givens

and add these to NewInstances. Add the parameter relations and values to

BaseRelations.12 In
uences and proportionality relations are collected, but

cannot be resolved before the SMD is completed.

(b) If inconsistent with the BaseRelations, ignore the Candidate.

(c) If assumable, i.e. adding the relations is consistent with the BaseRelations,

move the Candidate to AssumableCandidates,

3. If NewInstances is non-empty: goto 1

4. Test AssumableCandidates. Reconsider the assumptions (inequality relations) that

are necessary for each assumable candidate:

(a) If now derivable from BaseRelations, as a result of the inclusion of other can-

didates, add the partial model as in 2a. Mark it as being consistent with the

current assumption level.

(b) When going through this loop for the �rst time (i.e no assumptions have yet

been made):

i. then: if now inconsistent with the BaseRelations, ignore the Candidate,

ii. else: (i.e. when assumptions have been made) if now inconsistent with

BaseRelations, mark the partial model as being inconsistent with the cur-

rent assumption level.

5. If NewInstances is non-empty: goto 1

6. Make an assumption: At this point, there are no more NewInstances that can be

used to �nd new Candidates. The Candidates found so far are either:

� included in the SMD, because their conditions are derivable from the SMD, or

� ignored because their conditions are inconsistent with the SMD, or

� in the set AssumableCandidates because one or more conditions is not derivable

from, but consistent with the SMD.

If AssumableCandidates is non empty, create a new assumption level and repeat:

(a) Make a copy of the current SMD.

(b) When going through this loop for the �rst time (i.e each time when a copy of

the SMD is made):

i. then: assume the parameter-relations and values for some partial model in

AssumableCandidates. The partial model and its givens are added to the

copied SMD as in 2a,

12This may cause a contradiction, which usually is a result of an erroneous model and implies that the

SMD is invalid.

131

ii. else: �nd an assumable candidate that was always marked inconsistent

with the current assumption level or any further level in step 4. Add this

candidate to the copied SMD.

(c) The copied SMD is completed by going through the steps from 1 and eventually

returned as a result.

When the speci�cation algorithm is �nished the SMD that has been subject of the rea-

soning process should marked as being interpreted (=augmented SMD).

5.2.3.4 Inequality Reasoning

The qualitative calculus, as originally proposed in [57; 92] cannot derive the result of

the addition of a positive and a negative quantity, even if additional information about

the ordering between the magnitude of these quantities is known. This leads, among

other reasons, to spurious behaviour, which is a well known problem [127].13 As a simple

example, consider the energy system of �gure 5.2. In this closed system the total amount

of energy exchange must be zero. Suppose that a working washing machine consumes more

EGenerator Wash. machineBatteryE E+ + = 0

Plus Min?

-+

Figure 5.2: Energy system

energy than the windmill can produce. We would then like to derive that the accumulator

(battery) must release energy in such a case, i.e. if the washing machine is working. For

us it is easy to see that substitution of:

Egenerator +Ewashingmachine < 0

in:

Ebattery + Egenerator +Ewashingmachine = 0

will provide that result. However the qualitative calculus mentioned above does not allow

that. When evaluating:

Ebattery +Egenerator +Ewashingmachine

13If we de�ne spurious behaviour as predicted behaviour that can never occur in the real-world, there can

be two causes for spurious behaviour: a lack of proper inference rules (calculus) or incomplete information

in the model (ambiguity). This section is concerned with the �rst type of spurious behaviour.

132

the result of:

Egenerator + Ewashingmachine

(plus+min) is ambiguous, thus we may assume Ebattery to be positive, negative or zero.

Especially when conservation of energy,
ow or force should be modelled, this is a serious

problem.

Forbus [71] maintains a partial ordering of inequality relations between quantities.

When provided with proper inference rules for maintaining this partial ordering it is pos-

sible to eliminate this kind of spurious behaviour. Various proposals concerning the deriva-

tion of such a partial ordering have been made. Simmons [120] applies a set of axioms for

reasoning about inequalities and arithmetic expressions, for example:14

a > b! a+ c > b+ c

As Simmons recognises, applying such axioms on every quantity in the system will lead

to an in�nite set of new expressions. Therefore the additional constraint is imposed that

expressions (e.g. a+b and b+ c) must already exist in the system, thereby impeding some

necessary derivations that require expressions not in the system as an intermediate result.

For example, when searching for the inconsistency in:

a > c; b > d; a+ b < c+ d

we need the intermediate result:

a+ b > c+ b

where c+ b does not already exist as an expression. In Simmons' approach, an inequality

relation between quantities is determined by applying these axioms in a breadth-�rst way

whenever some part of the system queries that relation. This is probably preferable if there

is a large, but �xed, set of equations in a single world. However, for our purposes this is

not a satisfactory method. During the course of the reasoning process new relations will

be added to the partial ordering. Therefore a search path that was previously a dead end,

may later provide the desired result. This means that the same paths must be inspected

over and over again. Moreover, �nding a contradiction (N > N) in the partial ordering in

e�ect means inspecting the transitive closure. Searching for inequality relations between

quantities whenever the system needs to establish the derivability of that relation is thus

far more ine�cient than maintaining the closure under the applied inference rules in the

�rst place, so that all queries can be answered without redundant search.

The method Forbus [73] uses for reasoning with inequalities maintains the closure for

inferences concerning transitivity. However, these inferences are oriented towards �nding

inconsistencies and do not apply to arithmetic summation. This method applies an As-

sumption based Truth Maintenance System (ATMS) [54], which enables re-usability of

derivations in multiple contexts (caching). This is of course more advantageous if:

� derivations are expensive, and

� there is a large amount of overlap in derivations between di�erent problem solving

contexts.

14[120] also provides axioms for reasoning about multiplications. These are not applied in our approach,

as the related functions are usually expressed in terms of in
uences and proportionality relations.

133

In GARP these two criteria are only partially ful�lled. The speci�cation inference employs

a form of backtracking when it makes assumptions. Each assumption is made in a di�erent

problem solving context, but these contexts share (a copy of) the derivations made so far,

including those for inequality reasoning. This will not cover all the overlap in derivations

between di�erent contexts, but the inference rules, described below, are fairly inexpensive

to execute. Finally, the use of the ATMS involves some overhead, especially the prevention

of inferences that are useless because the antecedents do not occur in any problem solving

context. Therefore, we concluded that the application of the ATMS in our approach is

not worthwhile at this level of inference.

The speci�cation of an SMD, makes explicit the derivability, assumability or incom-

patibility of partial model conditions, i.e. parameter values and parameter relations. In

order to reason about inequalities, parameter values are rewritten as inequality relations

between the parameter and points on its quantity space. Furthermore, the ordering of

points on any quantity space is asserted as a set of inequalities. We also assert that a

parameter cannot receive a value, or change to a value, beyond a value in its quantity

space. This rewriting system allows the speci�cation and reasoning about quantity spaces

containing any number of values.

In order to solve problems such as the energy problem above, we need axioms for

transitivity, elimination, and substitution with regard to inequality relations and arith-

metic summation. As mentioned, these axioms are cumbersome because search can go

in many directions, unless it is restricted to result in arithmetic expressions within the

system. The technique we use combines the axioms for transitivity and reasoning about

arithmetic summation in a simple and e�cient inference mechanism, based on summation

of inequality relations, in such a way that the restriction to expressions actually in the

system is not necessary to prevent search from going out of bounds. Table 5.12 summarises

the possible inferences (A,B,C and D are single quantities or sums of quantities).

A = B A >= B A > B

C = D A+ C = B +D A+ C >= B +D A+ C > B +D

C >= D A+ C >= B +D A+ C >= B +D A+ C > B +D

C > D A+ C > B +D A+ C > B +D A+ C > B +D

Table 5.12: Inference rules for inequality reasoning

In order to guarantee progress we impose three additional constraints: 15

1. the result of a summation can be simpli�ed (at least one quantity occurs on both

sides of the result, thus in A & C and in B & D in table 5.12);

2. the result may not contain the same quantity twice on one side (which would result

in ever growing sums);

3. a relation cannot be combined with any of its antecedents.

Some additional inference rules are necessary, expressing that some results are stronger

than others. For example, when a > b and a >= b are both derived, a > b is preferred.

15The implementation represents sums as bitmaps, which allows for fast testing of these constraints.

134

For the energy system above, it is now possible to determine the value of the battery's

energy dissipation (�gure 5.3).

E
Generator Wash. machineBattery

E E+ + = 0

E
Generator Wash. machine

E+0 >

E
Generator Wash. machineBattery

E E+ + E
Generator Wash. machine

E+>

E
Generator0 >

Figure 5.3: Solution for energy system

These inferences are applied in an exhaustive breadth-�rst way, incrementally when

a new parameter-relation or value is added to the SMD. Thereby the closure under the

inference rules is generated, so that it is always known if a partial model's conditions

are derivable. Computing the full closure can still be costly. Two optimisations greatly

reduce these costs. Firstly, most quantities will be related to zero. It is not necessary

to derive all transitive relations between quantities less than and greater than zero, in

fact the largest part of the closure. If such a relation is mentioned as a condition, the

derivability is established easily. Note that this optimisation will not prevent us from

�nding a contradiction, e.g. when a < 0 and a = 0 or a > 0. A second optimisation that

reduces the closure of inequality relations is accomplished by treating two equal quantities

as a single quantity.

By combining axioms for reasoning about transitivity and arithmetic summations,

and under the constraints described above, it is possible to establish the derivability,

assumability, or incompatibility of system structure conditions at reasonable costs, thereby

avoiding the problems associated with the approaches of [120; 73] when applied to the same

problem. In this way we are able to reduce spurious behaviour and allow quantity spaces

using any number of values.

5.2.3.5 Resolving In
uences and Proportionality Relations

In
uences and proportionality relations are collected during the speci�cation of an SMD

and evaluated after a full speci�cation is accomplished. In contrast with the treatment

of sums in inequality relations through inequality reasoning, the summation of in
uences

and proportionality relations must be evaluated according to a weaker calculus:

� two or more positive in
uences on a parameter combine to a single positive in
uence,

� two or more negative in
uences on a parameter combine to a single negative in
u-

ence, and

� the combination of (one or more) positive and (one or more) negative in
uences is

ambiguous.

Resolving in
uences and proportionality relations is done through a straightforward con-

straint satisfaction algorithm. When evaluation is not ambiguous or undetermined, the

135

resulting value is provided to the inequality reasoner in order to �nd further consequences.

Occasionally this leads to an inconsistency, thereby invalidating the SMD. When no more

progress can be made and some relations are unresolved, two assumptions can be made:

� The value of a parameter is zero if that parameter directly in
uences (in
uence

relation) other parameters, but is not in
uenced itself.

� The derivative of a parameter is zero if that parameter indirectly in
uences (pro-

portionality relation) other parameters, but is not in
uenced itself.

Both assumptions specify that if a parameter is not in
uenced itself, it can not in
uence

other parameters either.

5.2.4 Finding Successive System Model Descriptions

The transformation inference is concerned with identifying successive states of behaviour.

Section 5.2.4.1 describes how the termination rules are used for �nding potential termi-

nations. Section 5.2.4.2 describes how the precedence rules are applied for ordering the

applicable terminations. Finally, section 5.2.4.3 describes how the resulting set of termi-

nations is used for �nding a termination to an already existing SMD or how they initialise

the speci�cation of a new SMD. The algorithm as a whole is depicted in �gure 5.4.

Search
terminations

Order
terminations

Possible
terminations

Ordered
terminations

Determine
changes

Current SMD

Input system

Partial models

Next SMD

(New) input system

Still applicable
partial models

Find
consistency
constraints

Consistency
constraints

Re-evaluate

SpecifySubsume

(New SMD)(Old SMD)

Transformation

= Algorithm step
= Design element

Continuity
rules

Termination
rules

Precedence
rules

Figure 5.4: Transformation algorithm

136

5.2.4.1 Search for Possible Terminations

Finding potential terminations requires a relatively simple match between SMD and the

termination rules. The input consists of:

� a fully speci�ed SMD, and

� the termination rules in the library.

The algorithm goes as follows:

� For the SMD that is subject of the termination inference:

1. Match the conditions of each rule from the list of termination rules with the

SMD. If the match succeeds then save the instantiated rule in the list of possible

terminations of the SMD.

2. When no more termination rules can be found then mark the SMD as termi-

nation (also if no terminations could be found at all).

With respect to the parameter relations it is relevant that the algorithm performs a di-

rect match and does not include any transitivity inferencing. In other words, terminations

apply only to the knowledge that is directly present in the SMD.

5.2.4.2 Order Possible Terminations

The ordering of possible terminations takes as input:

� a terminated SMD with a list of possible terminations, and

� the precedence rules present in the library.

For ordering possible terminations it is important to distinguish between terminations

that belong together, since they represent aspects of a single transformation (merge),

terminations that exclude each other (remove), and terminations that can neither be

merged nor removed. The algorithm consists of the following steps:

1. Find a precedence rule that has as condition argument two terminations which ap-

pear in the list of terminations of the SMD. If such a precedence rule is found then

go to 2. If no (more) applicable precedence rules can be found then go to 4.

2. Find out whether the additional conditions of the precedence rule match with the

contents of the SMD. If the conditions match then go to 3, else go back to 1.

3. Carry out the action part of the rule:

� In the case of merge:

137

(a) Merge both the condition and the result arguments of one termination rule

into the condition and result arguments of the other termination rule (the

two separate terminations are merged into a single composite termination).

The name of the composite termination will be a list that contains the

names of each individual termination and the name of the precedence rule

that merged them.16

(b) Remove the two individual terminations from the list of possible termina-

tions and add the composite termination to the remaining list.

(c) Go back to 1.

� In the case of remove:

(a) Remove the termination(s) speci�ed in the remove action argument of the

precedence rule from the list of possible terminations.

(b) Go back to 1.

The order between merging and removing is not explicitly controlled by the algo-

rithm, but depends on the order in which the rules are stored in the library. Generally

it is better to �rst enumerate all merging rules and then all removing rules in the

library. This approach guarantees that all terminations related to a termination that

must be removed, are indeed removed.

4. At this moment the list of possible terminations cannot be modi�ed any further.

Each composite or individual termination in the list is a termination that can occur

independently of the other terminations in the list. This implies that the termina-

tions may occur simultaneously or separately. In e�ect, this means that all possible

combinations of the terminations are potential terminations (=cross-product), there-

fore: add to the list of possible terminations all combinations of terminations from

that list and go to 5.

5. Mark the SMD as being ordered (also if no terminations were present.)

5.2.4.3 Apply Transformation: Subsumption, Speci�cation and Continuity

For each ordered SMD that is object of the apply transformation algorithm the following

information is available:

� the input system on which the SMD is based,

� the partial models that are part of the SMD,

� the list of possible terminations (each termination in this list speci�es: (1) the aspects

from the old SMD that will terminate (condition), and (2) how these aspects will

reappear in the new SMD (result)),

� the continuity rules present in the library, and

16It could be that the merged knowledge is inconsistent, because of errors in the domain knowledge.

This will not be detected here, but when the resulting termination is used for specifying the next state of

behaviour.

138

� the total list of all system elements, parameters, parameter values and parameter

relations that are present in the SMD.17

The problem to solve is to determine on the basis of this information what aspects of

the old (current) SMD still hold in the next SMD. It will, for example, not be su�cient to

simply copy the information from the old SMD into the new SMD and meanwhile replace

the information from the old SMD that is mentioned in the condition argument of the

termination by the information present in the result argument of the termination, because

such an approach ignores the dependencies between partial models. If, for example, partial

model A is based on the parameter relation X > Y and partial model B is based on A

(e.g. by an applies to or is supertype of dependency). Then simply substituting X > Y

by X = Y (if this was the termination) would be insu�cient, because partial models A

and B must also be removed.

This dependency does not apply to the contents of the input system. The knowl-

edge represented in the input system is not derived from any other knowledge during the

speci�cation step. The �rst step of the algorithm is therefore as follows:

1 Take the input system from the old SMD and remove those aspects from the input

system that match the information in the condition argument of the termination.

Merge the remaining aspects of the input system with the information in the result

argument of the termination and add this to the new SMD as its input system.

The next problem is to ensure continuity between the old SMD and the new SMD.

If we would directly specify the above derived input system then discontinuity between

the old and new SMD may (and is very likely) to occur. The following step is therefore

required:

2 Take for each parameter value from the old SMD that is not mentioned in the

condition argument of the termination and �nd a continuity rule that speci�es how

the value should reappear in the next SMD (if it appears in that SMD). The resulting

list of continuity constraints is not visualised in the reasoning process of GARP

(except for noti�cation of inconsistency when it prevents certain partial models from

being added to the new SMD).

The third step in the transformation algorithm concerns the speci�cation of the new

SMD, based on the newly de�ned input system and the continuity constraints. One way

of realising this is by presenting the new input system to the speci�cation algorithm as

described in section 5.2.3. However, this approach neglects all the information derived

in the old SMD, which is undesirable both from a conceptual and from a computational

point of view. The information in the old SMD provides a focused view on the total set

of partial behaviour models in the library. Examining the partial models in this subset

for their applicability to the next SMD shortens the inference process and matches better

with the intuitive understanding of how a certain state of behaviour transforms into the

next state of behaviour. The algorithm therefore proceeds as follows:

3 Re-evaluate each partial model (system
�

structures) from the old SMD with respect

to its applicability in the new SMD (this inference is basically the same as that

17This total list also includes the information present in the input system and in each partial model.

139

described in section 5.2.3). The result of this inference is a partially augmented

SMD, representing all the information from the old SMD that either changed (via

the input system), or stayed constant but was consistent with the changes.

The last part of the algorithm is concerned with further specifying the partially aug-

mented SMD. There is however a possibility that the partially augmented SMD is a subset

of an already existing SMD (notice that by de�nition this can never be the SMD that just

terminated). The algorithm therefore continues with a subsume step. If the subsume step

fails a new speci�cation follows:

1. Find all the existing SMD's that contain the partially augmented SMD as a subset.

If there is no such existing SMD then go to 2, else create a transformation link

between each existing SMD that obeys this constraint and the old SMD that was

subject of the transformation algorithm as de�ned in 3.

2. Fully specify the partially augmented SMD as de�ned in the speci�cation algorithm

described in section 5.2.3. For each SMD that results from this speci�cation create

a transformation link between the old SMD, that was subject of the transformation

algorithm, as de�ned in 3. If no new SMD results from the speci�cation algorithm,

then go to 4.

3. A transformation link between two SMD's is created by adding the termination

(notice that this is the set of termination and precedence rules that were used)

that was used for the transformation algorithm as the cause in the to argument of

the SMD that terminated. Also include the identi�er of the new SMD in the to

argument of the terminated SMD and the identi�er of the terminated SMD in the

from argument of the new SMD. Go to 4.

4. Remove the termination from the list of possible terminations. Mark the SMD as

being closed (transformed), when all terminations have been object of the algorithm,

otherwise redo the whole procedure for the next termination.

The apply transformation algorithm must be applied for each termination in the list

of possible terminations that belongs to an SMD.

5.2.5 Other Functions and their Required Behaviour

In table 5.13 additional functions are enumerated that are required for implementing

GARP . Most of these functions are realised by traditional software engineering tech-

niques. The operating system that controls the software is used for realising the storage

functions. The editors provided by the operating system are used for realising the di�er-

ent modi�cation access functions, they can be called from within the artifact. In other

words, while running GARP it is possible to call editors and change the knowledge used

by GARP .

The visualisation function uses `pretty-print' routines that format the knowledge

present in GARP such that it can be read and understood by the user. The function

for user control is realised by a command interface that facilitates access to the function-

alities that are controlled by user. The system control function uses a loop that controls

140

Function name Method used

Syntactic analysis Syntax checker (SWI-Prolog feature)

Semantic analysis Grammar and reference checker

System control Control loop

User control Command interface

Visualise `Pretty-print' routines

Modi�cation access Calls to editor(s)

Store library knowledge Operating system �le management

Store input system Operating system �le management

Store intermediate P.S. results Assert routines (SWI-Prolog)

Store P.S. trace Write protocol �les

Table 5.13: Overview of other functions and their operationalisations

the GARP functions. The syntactic analysis is carried out by the syntax checker of SWI-

Prolog. However, the semantic analysis uses a speci�c grammar that reads the knowledge

presented to GARP and tests whether

� all the design elements have their required semantics, and

� all the relevant references between design elements are adequately represented.

5.3 Physical Modules

The physical (software) modules of the implementation of GARP can be divided into:

� modules that represent the knowledge that is used,

� modules that implement the reasoning process, and

� a module that implements the traditional software engineering functionalities (which

is not discussed further).

The design elements for representing the declarative knowledge are enumerated in table

5.14. These modules basically relate to the storage functions from the functional decom-

position, except for the function <store calculi>. This function has been implemented as

an integrated part of the algorithms described below.

The modules that contain the algorithms do not have a one-to-one relation with the

functional decomposition. Instead, the algorithms are distributed across a number of

modules. They are brie
y described below:

Class This module contains the specify algorithm. It calls upon other algorithms for

detailed inferences.

Initquantity Algorithm to create parameter speci�c instances of quantity spaces.

Interface This module contains all the algorithms needed to facilitate the interaction with

the user. In addition, it contains `pretty-print' routines for implementing the visu-

alisation function and a grammar for implementing the semantic analysis function.

141

Module name Description of the module

Input system A library of input systems that can be used by GARP for behaviour

prediction.

Isa The isa-hierarchy of generic system elements.

Library All the partial models that GARP can use for generating SMD's.

Quantity space A list of generic quantity spaces from which instances can be

created.

Rules The termination, precedence and continuity rules for SMD

transformation.

GARP scratch A module representing a permanent �le that GARP uses for storing

the history of the problem solving process.

GARP database The SWI-Prolog database that GARP uses to store its intermediate

problem solving results.

Table 5.14: Modules containing data structures

Intern This module translates the inequality relations, present in the knowledge presented

to GARP , into machine speci�c counterparts, in order to allow fast computation.

Methods This module implements the top level control structure. It interacts with the

interface module and speci�c algorithms that carry out detailed inferences (for ex-

ample, Class and Reclass). It also contains large parts of the algorithms taking care

of the transformation between SMD's.

Pl-bit A module containing C-code for e�cient reasoning about inequalities. It forms the

basis for Solve.

Pllib A module that contains all kinds of small prolog algorithms (in particular list ma-

nipulations) that are often used by other modules.

Reclass Algorithms for re-evaluating the knowledge in the old SMD. This module calls

upon algorithms in Class.

Selector As SMD's can become very large Prolog predicates, e�cient shortcuts are needed

for sharing variables. This module contains algorithms for this purpose.

Semantic This module speci�es the inheritance algorithm, which is used for inheritance

between (1) partial models and (2) between system elements.

Solve Algorithms for solving inequalities.

Types Type declarations for GARP to discriminate between parameter relations. In par-

ticular between inequalities, correspondences, in
uences, and proportionalities.

The minimising coupling and maximising coherence (cf. [148]), that was applied for

most of the declarative part, could not be maintained for the algorithms (also knowledge

redundancy is not always guaranteed). The construction of algorithms was mainly guided

by the control on the inference process and less by the type of design elements and algo-

rithms that were used. As a result the module composition given above is characterised

142

according to the di�erent types of inference competence that must be realised, instead of

the di�erent types of data that are used.

5.4 Examples of Prediction Models in GARP

This section describes two models that have been implemented in GARP : the cooling

mechanism of a refrigerator and two heart diseases. The model of the cooling mechanism

of the refrigerator is primarily based on inequality relations between the di�erent tem-

peratures in this system. The model of the heart diseases is more orientated towards the

values of speci�c parameters. For each value of the important parameters of the heart a

partial behaviour model is speci�ed, which results in states of behaviour that are easily

understood by the names of the applicable partial models. Both prediction models show

the need for an integrated set of modelling primitives for representing partial behaviours.

5.4.1 Model of a Refrigerator

This section illustrates the problem solving behaviour performed by GARP on a model

of the cooling mechanism of a refrigerator. Figure 5.5 visualises the important physical

objects of the refrigerator. The following behaviour description applies to this structure:

Evaporator

Cooling area

Throttle-valve Compressor

Condensor

Surrounding area

Figure 5.5: A model of the refrigerator

In a refrigerator based on the compression principle, gas is sucked out of the

evaporator and compressed by the compressor. The compressed gas is then

transformed into liquid in the condensor by cooling it with air or water. Next,

the liquid goes through the throttle-valve, which decreases its pressure, and

arrives in the evaporator. In the evaporator the liquid evaporates as a result

143

of this low pressure and, by doing so, withdraws heat. This is where the actual

cooling takes place.

At a �rst glance the refrigerator typically seems to be a system that can be modelled

with the component centred approach, in particular, the behaviour of the compressor and

the throttle-valve. However, the evaporator and the condensor cannot be represented by

this approach, because their behaviour depends on the interaction with the environment

(heat exchange) in which they operate (see section 2.3.1.1). This problem can be avoided

when process models are used in combination with behaviour models of components.

It is also not possible to model the behaviour of the refrigerator using only the mod-

elling primitives provided by the processes centred approach. In particular, because this

approach does not have modelling primitives for representing the e�ects caused by compo-

nents. For modelling the behaviour of the refrigerator the ontology for partial behaviour

models presented in section 4.2.1.6 is essential.

5.4.1.1 System Elements

The hierarchy of system elements represents a functional abstraction of the objects and

substances of the refrigerator (see �gure 5.6). In this hierarchy of system elements the

Heat
exchangeable

object

Entity

Path

WorldSubstance

Gas

Liquid

Solid

Physical
object

Cooling
area

Thermostat Component Container

Heat
path

Condensor EvaporatorCompressor
Throttle
valve

Figure 5.6: Hierarchy of system elements for the refrigerator

compressor and the throttle valve are modelled as components, whereas the condensor

and the evaporator are modelled as containers. The thermostat is modelled as a physical

object.

5.4.1.2 Input System, Parameters, Values and Relations

A large part of the input system (see table 5.15) is used for instantiating the structural

description of the refrigerator. Instances have to be created for the outside world, the

144

cooling area, the thermostat, the compressor, the throttle valve, the evaporator, the con-

densor and the substances contained by these last two containers. Two `heat-paths' are

needed for relating the world to the condensor and the evaporator to the cooling area.

Only the parameters that we want to give values or additional constraints must be

de�ned in the input system. All the other parameters are created by GARP during the

reasoning process as it �nds the partial behaviour models that apply to the input system.

In total 16 parameters are used for predicting the behaviour of the model described here

(see table 5.16).

For reasoning about the behaviour of the refrigerator the parameter relations between

the temperatures are important. In fact, it must be predicted that:

equal(Temp
�

world; Temp
�

C
�

area)

changes to:

greater(Temp
�

world; Temp
�

C
�

area)

This allows for modelling the quantity space of the temperature as a single interval. All

temperatures therefore use the quantity space:

quantity
�

space(p;
�

; [plus]):

except for the temperature of the cooling area. This temperature uses the quantity space:

quantity
�

space(minimum
�

p;X; [point(minimum(X)); plus]):

The parameter relations specify that at the beginning of the behaviour prediction all

temperatures are equal. The list of parameter values speci�es that the temperature of the

cooling area is plus.

5.4.1.3 Static Models

The hierarchy of partial behaviour models is depicted in �gure 5.7. There are seven partial

behaviour models that describe the static properties of the system elements: �ve single

description models and two composition models. The substance model is used for describ-

ing the basic parameters, values, and relations of the substances in the compressor and the

evaporator (see table 5.17). In particular, it de�nes the proportional dependency between

the heat and the temperature. The behaviour model for the cooling area and the world

are essentially similar to the behaviour model for substances. Although the behaviour

model for the world slightly di�ers with respect to temperature. The temperature of the

world is modelled as always being constant. Each in
uence on the heat of the world is

countered with an opposite in
uence on the heat. As a result, the changes in the heat and

temperature of the world are neglected with respect to the behaviour of the refrigerator.

The closed container model speci�es that a closed container is a container with relation

has
�

attribute(Container; openess; closed). The closed contained substance is a composi-

tion model that speci�es the behaviour of a substance when it is contained by a container

with a �xed contain volume. It requires both a behaviour model for the substance and

a behaviour model for the closed container to exist before it can be applied (it also re-

quires a contain relation between the container and the substance). The closed contained

145

smd(input system('Simple Refrigerator'),

system elements([

instance(World, world),

instance(C area, cooling area),

instance(Condensor, condensor),

has attribute(Condensor, openness, closed),

instance(Substance Con, substance),

has attribute(Condensor, contains, Substance Con),

instance(Evaporator, evaporator),

has attribute(Evaporator, openness, closed),

instance(Substance Evap, substance),

has attribute(Evaporator, contains, Substance Evap),

instance(Path Con, heat path),

has attribute(Path Con, connected, World),

has attribute(Path Con, connected, Substance Con),

instance(Path Evap, heat path),

has attribute(Path Evap, connected, C area),

has attribute(Path Evap, connected, Substance Evap),

instance(Compressor, compressor),

has attribute(Compressor, from, Evaporator),

has attribute(Compressor, to, Condensor),

instance(T valve, throttle valve),

has attribute(T valve, from, Condensor),

has attribute(T valve, to, Evaporator),

instance(Thermo, thermostat),

has attribute(Thermo, from, C area),

has attribute(Thermo, to, Compressor)]),

parameters([

temperature(World, Temp world, , p),

temperature(C area, Temp C area, , minimum p),

temperature(Substance Con, Temp Sub Con, , p),

temperature(Substance Evap, Temp Sub Evap, , p)]),

par values([

value(Temp C area, , plus,)]),

par relations([

equal(Temp world, Temp C area),

equal(Temp Sub Con, Temp Sub Evap),

equal(Temp world, Temp Sub Con),

equal(Temp C area, Temp Sub Evap)]),

system structures([])).

Table 5.15: Input system for reasoning about the refrigerator

146

Property of system element Parameter

Outside world Heat

Temperature

Cooling area Heat

Temperature

Substance in condensor Heat

Temperature

Pressure

Substance in evaporator Heat

Temperature

Pressure

Compressor Compressing rate

Throttle valve Expansion rate

From cooling area to evaporator Flow rate

From condensor to outside world Flow rate

Substance in condensor Condensing rate

Substance in evaporator Evaporation rate

Table 5.16: Parameters for reasoning about the refrigerator

Partial
behaviour

models

Single
description

models

composition
models Decomposition

models

Agent
models

Closed
container

Cooling
area

Substance

World
view

Thermostat

Closed
contained
substance

Fridge
configuration

Compressor

Throttle
valve

Process
models

Heat
flow

Condensation

Evaporation

Figure 5.7: Hierarchy of partial models for the behaviour of the refrigerator

147

system structures(substance(Sub),

isa([single description model]),

conditions([

system elements([

instance(Sub, substance)])]),

givens([

parameters([

heat(Sub, Heat, , p),

temperature(Sub, Temperature, , p)]),

par values([

value(Heat, , plus,),

value(Temperature, , plus,)]),

par relations([

prop pos(Temperature, Heat)])])).

Table 5.17: Single description model for substances

substance is a composition model because it speci�es static behaviour that results from a

con�guration of system elements.

The thermostat behaves similarly to a switch. The switch is on when the value of

the temperature of the cooling area is plus and o� when the value of the temperature is

minimum. The behaviour of the thermostat is used for determining the activity of the

compressor.

5.4.1.4 Process and Agent Models

The knowledge represented in the heat-
ow process is similar to the one de�ned by Forbus

[70]. Our process model di�ers in the sense that it allows only heat-
ows between heat

exchangeable objects (see table 5.18).

There are two agent models in this model of the refrigerator: one for the compressor

and one for the throttle valve.18 The agent model for the compressor is given in table 5.19.

It speci�es that when the thermostat is active that the compressor increases the pressure

in the closed contained substance into which it compresses the substance (the condensor).

The throttle valve is modelled similar to the compressor. It is an agent that decreases the

pressure of the substance in the evaporator.

In addition to the heat-
ow process there are two other processes: condensation and

evaporation. Both are used to the strengthen the e�ect of the heat-
ows. In the case of

the condensor, the condensation of gas into liquid generates energy. In the case of the

evaporator, the evaporation of liquid into gas requires energy. During both processes the

temperature of the substance is kept constant.

18The behaviour models that describe these components when they are not active are of type single
description models. However, they specify only behavioural properties when they are active and therefore

are modelled only as agent models.

148

system structures(heat
ow((Path, Object1, Object2)),

isa([process model]),

conditions([

system elements([

instance(Object1, heat exchangeable object),

instance(Object2, heat exchangeable object),

instance(Path, heat path),

has attribute(Path, connected, Object1),

has attribute(Path, connected, Object2)]),

parameters([

temperature(Object1, Temperature1, ,),

temperature(Object2, Temperature2, ,)]),

par relations([

greater(Temperature1, Temperature2)])]),

givens([

parameters([

heat(Object1, Heat1, , p),

heat(Object2, Heat2, , p),

ow rate((Object1, Object2), Flow rate, , zp)]),

par relations([

equal(Flow rate, min(Temperature1, Temperature2)),

inf neg by(Heat1, Flow rate),

inf pos by(Heat2, Flow rate)])])).

Table 5.18: Process model for heat-
ow

5.4.1.5 Transformation Rules

Termination rules that are often used during the behaviour analysis of the refrigerator

are those that model changes in inequality relations, in particular: from equal to greater

and the from greater to equal. In table 5.20 an example is given of an equal to greater

termination rule. It speci�es that when two parameters are equal and change in opposite

directions, that they become unequal. This rule also puts continuity constraints on the

values of the derivatives of the parameters in the next state.

5.4.1.6 The Behaviour Prediction

Given the input description and the partial behaviour models described above, GARP

predicts eight SMD's. In �gure 5.8 the important aspects of the behaviour description are

depicted. In particular, it shows the inequality relations between the di�erent tempera-

tures, the value of the temperature of the cooling area, the status of the agent models

for the compressor and throttle valve and the activity of the heat-
ow processes.19 In

SMD1 the thermostat senses that the temperature of the cooling area is greater then its

19The condensation and evaporation processes are active when the heat-
ow processes are active for the

condensor and the evaporator.

149

system structures(compressor on(Comp),

isa([agent model]),

conditions([

system elements([

instance(Comp, compressor),

has attribute(Comp, from, From),

has attribute(Comp, to, To)]),

parameters([

pressure(To Sub, Pressure to, , p)]),

system structures([

closed contained substance((From,)),

closed contained substance((To, To Sub)),

thermostat activates()])]),

givens([

parameters([

compressing rate(Comp, Comp rate, , zp)]),

par values([

value(Comp rate, , plus, zero)]),

par relations([

inf pos by(Pressure to, Comp rate)])])).

Table 5.19: Agent model for the compressor

rule(termination, [from equal to greater(Par1, Par2)],

condition([

par relations([

equal(Par1, Par2)]),

par values([

value(Par1, Q1, Value1, plus),

value(Par2, Q2, Value2, min)])]),

result([

par values([

value(Par1, Q1, Value1,),

value(Par2, Q2, Value2,)]),

par relations([

greater(Par1, Par2),

d greater or equal(Par1, zero),

d smaller or equal(Par2, zero)])])).

Table 5.20: Termination rule for changing from equal to greater

150

Parameter relations

Agent models

Temp-world = Temp-C-area
Temp-condensor = Temp-evaporator
Temp-condensor = Temp-world
Temp-C-area = Temp-evaporator

Process models

Compressor: active
Throttle valve: active

SMD 1

Parameter values
Temp-C-area has value: plus

Parameter relations

Agent models

Temp-world = Temp-C-area
Temp-condensor > Temp-evaporator
Temp-condensor > Temp-world
Temp-C-area > Temp-evaporator

Process models

Compressor: active
Throttle valve: active

SMD 2

Parameter values
Temp-C-area has value: plus

Parameter relations

Agent models

Temp-world > Temp-C-area
Temp-condensor > Temp-evaporator
Temp-condensor > Temp-world
Temp-C-area > Temp-evaporator

Process models

Compressor: active
Throttle valve: active

SMD 3

Parameter values
Temp-C-area has value: plus

Parameter relations

Agent models

Temp-world > Temp-C-area
Temp-condensor > Temp-evaporator
Temp-condensor > Temp-world
Temp-C-area = Temp-evaporator

Process models

Compressor: active
Throttle valve: active

SMD 5

Parameter values
Temp-C-area has value: plus

Parameter relations

Agent models

Temp-world > Temp-C-area
Temp-condensor > Temp-evaporator
Temp-condensor > Temp-world
Temp-C-area > Temp-evaporator

Process models

Compressor: off
Throttle valve: not active

SMD 4

Parameter values
Temp-C-area has value: minimum

Parameter relations

Agent models

Temp-world > Temp-C-area
Temp-condensor > Temp-evaporator
Temp-condensor = Temp-world
Temp-C-area = Temp-evaporator

Process models

SMD 7

Parameter values
Temp-C-area has value: minimum

Parameter relations

Agent models

Temp-world > Temp-C-area
Temp-condensor > Temp-evaporator
Temp-condensor > Temp-world
Temp-C-area = Temp-evaporator

Process models

SMD 8

Parameter values
Temp-C-area has value: minimum

Parameter relations

Agent models

Temp-world > Temp-C-area
Temp-condensor > Temp-evaporator
Temp-condensor = Temp-world
Temp-C-area > Temp-evaporator

Process models

SMD 6

Parameter values
Temp-C-area has value: minimum

Heat flow from Condensor to World
Heat flow from C-area to Evaporator

Heat flow from Condensor to World
Heat flow from C-area to Evaporator

Heat flow from Condensor to World

Compressor: off
Throttle valve: not active

Compressor: off
Throttle valve: not active

Compressor: off
Throttle valve: not active

Heat flow from Condensor to World
Heat flow from C-area to Evaporator

Heat flow from C-area to Evaporator
Heat flow from Condensor to World

Figure 5.8: System model descriptions predicted by GARP

151

minimum value, which causes the activation of the compressor. The compressor increases

the pressure in the condensor. This activates the throttle valve, which causes the pressure

in the evaporator to decrease. The changes in the pressures have an e�ect on behaviour of

the temperatures in each of the `closed containers'. The temperature of the substance in

the condensor increases and the temperature in the evaporator decreases. The di�erent di-

rections of change for these temperatures leads to three inequality changes (see �gure 5.9).

These three inequality changes are merged during the ordering of possible terminations,

resulting in one inequality change to SMD2.

SMD1

∂ Temp-condensor = plus
∂ Temp-evaporator = min

(inequality change)
&

∂ Temp-world = zero
∂ Temp-condensor = plus

(inequality change)
∂

∂ Temp-C-area = zero
∂ Temp-evaporator = min

(inequality change)

SMD2

∂ Temp-world = zero
∂ Temp-C-area = min
(inequality change)

SMD3

∂ Temp-C-area = min
(change to point below)

SMD4

∂ Temp-world = zero
∂ Temp-condensor = min

(inequality change)
&

∂ Temp-C-area = min
∂ Temp-evaporator = plus

(inequality change)

SMD7

∂ Temp-world = zero
∂ Temp-condensor = min

(inequality change)

∂ Temp-C-area = min
∂ Temp-evaporator = plus

(inequality change)

SMD6 SMD8

∂ Temp-world = zero
∂ Temp-condensor = min

(inequality change)

∂ Temp-C-area = min
∂ Temp-evaporator = plus

(inequality change)

SMD5

∂ Temp-C-area = min
∂ Temp-evaporator = zero

(inequality change)

∂ Temp-C-area = zero
∂ Temp-evaporator = min

(inequality change)

Figure 5.9: Causes of behaviour transitions

In SMD2 the temperature of the substance in the condensor is higher than the temper-

ature of the world and the temperature of the substance in the evaporator is lower than

the temperature of the cooling area. This results in two heat-
ow processes, one from the

condensor to the world and one from the cooling area to the evaporator. The behaviour

of the world is modelled such that its temperature does not change, despite the heat-
ow

152

from the condensor. The temperature of the cooling area, on the other hand, starts to

decrease, which leads to an inequality change between these two temperatures to SMD3.

In SMD3 the temperature of the cooling area is lower than the temperature of the

world, but has not yet reached its minimum value. As a result all processes and agent

models are still active. The heat-
ow from the cooling area to the evaporator may cause the

temperatures of these to objects to become equal. This inequality change leads to SMD5.

In this state of behaviour the heat-
ow between the cooling area and the evaporator is

not active. SMD5 immediately changes back to SMD3, because the throttle decreases the

temperature of the substance in the evaporator.20

Instead of changing to SMD5, SMD3 may change to SMD4. In SMD4 the value of the

temperature of the cooling area has reached its minimum value. This value is sensed by the

thermostat and causes the compressor to stop working. The activity of the throttle valve

is directly related to the pressure increase of the compressor. No pressure increase causes

the throttle valve to become inactive. The heat-
ows still continue as a result of unequal

temperatures. Three terminations are now possible, the temperature of the condensor

becomes equal to the temperature of the world (SMD6), the temperature of the cooling

area becomes equal to the temperature of the evaporator (SMD8), or both inequality

changes happen simultaneously (SMD7). In SMD6 the heat-
ow between the condensor

and the world disappears and in SMD8 the heat-
ow between the cooling area and the

evaporator disappears. Eventually both SMD6 and SMD8 change to SMD7 because the

remaining heat-
ow causes the unequal temperatures to become equal.

SMD7 is the �nal state of behaviour in this behaviour description. There is no change

possible from this SMD to any other SMD, because there is no heat-
ow possible from the

world into the cooling area. Introducing a heat-path between these two system elements,

would facilitate such a heat-
ow and lead to an increase in the temperature of the cooling

area.

5.4.2 Model of Heart Diseases

This section describes a model of the heart diseases angina pectoris and myocardial in-

farction which has been developed and implemented in GARP . A myocardial infarction

happens when the blood supply to the heart is blocked immediately. No blood supply

results in a lack of oxygen, that manifests itself as pain and, most of the time, the dying

of some muscle-tissue, causing a severe malfunctioning of the heart. Angina pectoris, on

the other hand, is caused by a relative shortage of blood as a result of a decrease in the

available
ow area of the artery (see �gure 5.10). Angina pectoris typically manifest itself

when the heart muscle has high activity and as a result the amount of blood supplied to

the heart is less than the amount of blood needed by the heart. Pain in combination with

a high level of activity are therefore its symptoms.

5.4.2.1 System Elements

The isa-hierarchy of system elements is shown in �gure 5.11. The body is modelled as a

container that can supply an in�nite amount of blood. The artery is modelled as a `
uid

20The changes from SMD1, SMD2 and SMD5 to other SMD's are all immediate because they change

from being equal at a point to being unequal in intervals.

153

Body

Artery

Heart

Blocking of the artery

Figure 5.10: A model of heart diseases

path' that transports blood from the body into the heart. The heart is modelled as a muscle

that, depending on its activity, needs an amount of blood. There are three components:

a fat increaser, a
uid path decreaser and a muscle activity increaser. They are used in

the model as actors that can in
uence speci�c features of the heart con�guration (see also

section 5.4.2.3).

Entity

Path

Fluid
path

Artery

Substance
Physical
object

Liquid

Blood

Container

Muscle

Body

Heart

Component

Fat
increaser

Fluid
path

decreaser

Muscle
activity

increaser

Figure 5.11: System element hierarchy for heart diseases

5.4.2.2 Input System, Parameters, Values and Relations

A part of the input system is used for instantiating the structural description of the heart

con�guration. Instances have to be created for the heart itself, the body, the blood in the

heart and in the body, and the artery that connects the body with the heart. In addition,

there are two components speci�ed in the input system which will trigger agent models

and as such enforce changes in the heart con�guration. The `
uid path decreaser' causes

the
ow area of the artery to decrease. The `muscle activity increase' causes the activity

of the heart to increase. Together these two components will cause malfunctioning of the

heart.

154

smd(input system('Heart with artery decr. and muscle activity incr.'),

system elements([

instance(Body, body),

instance(Heart, heart),

instance(Artery, artery),

has attribute(Artery, from, Body),

has attribute(Artery, to, Heart),

instance(Blood1, blood),

instance(Blood2, blood),

has attribute(Body, contains, Blood1),

has attribute(Heart, contains, Blood2),

instance(,
uid path decreaser),

instance(, muscle activity increaser)]),

parameters([

ow area(Artery, Flow Area, , zlnh),

use of O2(Heart, Use of O2, , zlnh),

amount(Blood1, Amount, , zlnh),

amount of fat(Blood1, Fat, , nh max),

amount of lumps(Blood1, Lumps, , nh max),

pressure(Blood1, Press Bl1, , p),

pressure(Blood2, Press Bl2, , p)]),

par values([

value(Flow Area, , normal(Flow Area),),

value(Use of O2, , normal(Use of O2),),

value(Amount, , normal(Amount),),

value(Fat, , normal(Fat),),

value(Lumps, , normal(Lumps),)]),

par relations([

greater(Press Bl1, Press Bl2)]),

system structures([])).

Table 5.21: Input system for reasoning about the heart diseases

In order not to generate all possible states of behaviour belonging to this con�guration

of system elements, we can add additional information. In this input system we included

a pressure di�erence between the blood of the heart and the blood of the body:

greater(Press
�

Bl1; Press
�

Bl2)

This causes a blood
ow from the body to the heart (and not the other way around). Also

some parameters have been given initial values. They all refer to the normal value that

the parameter should have.

As mentioned before, only the parameters that we want to give values or additional

constraints must be de�ned in the input system explicitly. All the other parameters are

created by GARP during the reasoning process, as it �nds the partial models that apply

to the input system. In total GARP can use 18 parameters for predicting the behaviour

155

of the model described here (see table 5.22). Each parameter models a speci�c property

Property of system element Parameter name Quantity space

Blood in the body Amount zlnh

Amount of O2 zlnh

Amount of fat nh max

Amount of lumps nh max

Pressure p

Blood in the heart Amount zlnh

Amount of O2 zlnh

Amount of fat nh max

Amount of lumps nh max

Pressure p

Artery Flow area zlnh

Flow rate zp

Substance
ow zlnh

Disposition rate zp

Heart Use of O2 zlnh

Fluid path decreaser Decreasing rate zp

Muscle activity increaser Increasing rate zp

Fat increaser Fattening rate zp

Body Dummy zp

Table 5.22: Parameters for reasoning about heart diseases

of the heart con�guration that is relevant for the heart diseases we want to reason about:

� Amount refers to the amount of blood.21.

� Amount of O2 refers to the amount oxygen in the blood.

� Amount of Fat indicates the amount of fat in the blood

� Amount of Lumps the amount of `solid' blood present in the blood.

� Pressure the pressure of the blood.

� Flow area the area in the artery available for blood
ow.

� Flow rate the speed at which blood
ows through the artery.

� Substance
ow the
ow of blood through the artery.

� Disposition rate the speed at which the artery becomes smaller.

� Use of O2 the amount of oxygen used by a muscle (in this model the heart).

� Decreasing rate the speed at which the `
uid path decreaser' narrows the
ow area.

This parameter di�ers from the disposition rate because it is introduced by a com-

ponent (and not by a process).

21Contained by the heart or the body

156

� Increasing rate the speed at which the `muscle activity increaser' increases the use

of oxygen.

� Fattening rate the speed at which the `fat increaser' increases the amount of fat in

the blood.

� Dummy is used in the body to make sure that the amount of blood in the body stays

constant.

To give the parameters a speci�c value, a number of quantity spaces must be de�ned.

The most complicated quantity space distinguishes four values. Starting at point zero it

moves on to an interval called low, a point called normal and an interval called high:

quantity
�

space(zlnh;X; [point(zero); low; point(normal(X)); high]):

This quantity space typically represents the intuitive notion that some parameters, such

as the substance
ow through the artery, can have values zero, low, normal or high.22 The

second quantity space starts at normal then moves on to some positive interval called high

and stops at a maximum called max:

quantity
�

space(nh
�

max;X; [point(normal(X)); high; point(max(X))]):

This quantity space is typical for parameters such as the amount of fat in the blood,

namely the amount is normal, high, or has reached its maximum. The third quantity

space starts at zero and has only one positive interval:

quantity
�

space(zp;
�

; [point(zero); plus]):

This quantity space is used for modelling the values of parameters that are either zero or

plus, for example, the
ow rate of the blood when it
ows through the artery. Finally,

there is a quantity space that has only one positive interval:

quantity
�

space(p;
�

; [plus]):

This is used for parameters that do not reach any signi�cant values within this model, as

for example the pressure.

5.4.2.3 Static Models

The hierarchy of partial behaviour models is depicted in �gure 4.10. In this section we

describe the most important models from that hierarchy in more detail. The partial model

for blood describes the properties of blood in general (see table 5.23). It introduces four

parameters: the amount of blood, the amount of oxygen in the blood, the amount of

fat in the blood, and the amount of lumps in the blood. The four relations between the

parameters amount of blood and amount of oxygen are used to synchronise the values and

the derivates of these two parameters. They specify that the amount of oxygen in the

blood is directly related to the amount of blood. The greater relation is used to de�ne

157

system structures(blood(Blood),

isa([single description model]),

conditions([

system elements([

instance(Blood, blood)])]),

givens([

parameters([

amount(Blood, Amount of Blood, , zlnh),

amount of O2(Blood, Amount of O2, , zlnh),

amount of fat(Blood, , , nh max),

amount of lumps(Blood, , , nh max)]),

par relations([

equal(normal(Amount of O2), normal(Amount of Blood)),

q correspondence(Amount of O2, Amount of Blood),

equal(Amount of O2, Amount of Blood),

prop pos(Amount of O2, Amount of Blood),

greater(Amount of Blood, zero)])])).

Table 5.23: Partial behaviour model for blood

that the amount of blood is at least greater than zero. In other words: there is an amount

of blood.

The quality of the blood is de�ned by three subtypes of the blood single description

model namely: normal, clotted, and fattened blood. The latter is listed in table 5.24.

Blood is classi�ed as fattened when the amount of fat is greater than normal. Clotted

system structures(fattened blood(Blood),

isa([blood(Blood)]),

conditions([

parameters([

amount of fat(Blood, Amount of Fat, , nh max)]),

par relations([

greater(Amount of Fat, normal(Amount of Fat))])]),

givens([])).

Table 5.24: Partial behaviour model for fattened blood

blood implies that the amount of lumps in the blood is greater than normal. Blood is

classi�ed as normal when both the amount of fat and the amount of lumps are equal or

22Note that from a quantitative point of view normal is di�erent for every human being, but from a

qualitative point of view it is the same for everyone. Normal refers to `normal' behaviour of a human

being.

158

less than normal.

The artery is modelled as a liquid path (see table 5.25). The givens of the partial

model for a
uid path de�nes three parameters:
ow area,
ow rate, and substance
ow.

In this model we assume that the
ow rate is always positive and does not change. In

other words, the
ow rate through the artery is constant. As a result of this the substance

ow through the artery is completely determined by the
ow area. Notice that, there is no

substance
ow when there is no
ow area and that each value of the
ow area corresponds

with a value of the substance
ow. Only the value normal is equal for both quantity

spaces.

system structures(
uid path(Fluid path),

isa([single description model]),

conditions([

system elements([

instance(Fluid path,
uid path)])]),

givens([

parameters([

ow area(Fluid path, Flow area, , zlnh),

ow rate(Fluid path, , , zp),

substance
ow(Fluid path, Subst
ow, , zlnh)]),

par relations([

prop pos(Subst
ow, Flow area),

dir v correspondence(Subst
ow, zero, Flow area, zero),

equal(normal(Subst
ow), normal(Flow area)),

q correspondence(Subst
ow, Flow area)])])).

Table 5.25: Partial behaviour model for
uid path

There are six subtypes of the
uid path model. A
uid path is closed when the
ow

area is zero, narrowed when the area is low, normal when the area is normal, and enlarged

when the
ow area is high. A
uid path is clogged when the
ow area is low and the

amount of lumps has reached its maximum. It refers to the situation in which a speci�c

lump blocks the small area available for liquid
ow. Finally, a
uid path is turbulent when

there is a liquid
ow process going on in the
uid path and the
ow area is low. Turbulence

is a precondition for the increase in the amount of lumps in the blood.

The body is regarded as a container, containing blood, and capable of endless blood

supply. The behaviour model for the muscle is a subtype of a contained liquid. The

properties of a muscle are described by three relevant parameters: amount of oxygen,

amount of blood, and the use of oxygen by the muscle. The use of oxygen has a negative

in
uence on the amount of oxygen and the amount of blood in the muscle. The muscle

has four states of activity. It can be a `dead' muscle in which case the oxygen use is zero,

it can be a low active muscle meaning that the use of oxygen is low, it can be a normal

active muscle, meaning that the use of oxygen is normal, and it can be a high active muscle

which means that the use of oxygen is high. The latter is listed in table 5.26

159

system structures(high active muscle(Muscle),

isa([muscle(Muscle)]),

conditions([

parameters([

use of O2(Muscle, Use of O2, , zlnh)]),

par values([

value(Use of O2, , high,)])]),

givens([])).

Table 5.26: Partial behaviour model for muscle with high activity

In order to relate the parameter values of the body, the artery, and the heart, we

use the notion of a heart con�guration. In this composition model the quantity spaces of

the parameters describing these system elements are related to each other. One of the

important connections made here is:

q
�

correspondence(Amount
�

of
�

Blood; Substance
�

Flow)

This correspondence de�nes that the amount of blood in the heart is equal to the amount

of blood
owing through the artery.

The heart itself is seen as a speci�c subtype of the muscle model. There are �ve models

describing the state of the heart. They all depend on the activity of the muscle and the

amount of oxygen available for that activity. Only two of these models re
ect `normal'

states of behaviour, namely when the muscle is normal or high active and the amount of

oxygen in the heart is su�cient for that type of muscle activity. The three other models all

re
ect pathophysiological states: pain in heart (short of oxygen and a low active muscle),

angina pectoris (short of blood and a high active muscle) (see table 5.27), and heart infarct

or myocardial infarction (short of blood due to a clogged artery).

5.4.2.4 Process and Agent Models

The liquid
ow process facilitates a blood
ow through the artery when there is a pressure

di�erence and some area for blood to
ow through (similar to the liquid
ow process show

in table 5.8).

The clotting of blood is an indirect process in the sense that liquid
ow is conditional

for a turbulent
uid path (see table 5.28). When the artery grows smaller the turbulence

increases (turbulent
uid path). This turbulence results in an increase in the amount of

lumps.

Depending on where we want to start a simulation, there will be a need for one or more

agents that act upon speci�c system elements in the heart con�guration. In this model

we have de�ned three such agents, namely a `fat increaser', a `
uid path decreaser', and

a `muscle activity increaser'.23 `The fat increaser' can be used to increase the amount of

23The input system shown in table 5.21 speci�es only the `muscle activity increaser' and the `
uid path

decreaser'.

160

system structures(angina pectoris heart(Heart),

isa([muscle(Heart)]),

conditions([

parameters([

amount of O2(Blood, Amount of O2, , zlnh),

use of O2(Heart, Use of O2, , zlnh)]),

par relations([

greater(Use of O2, normal(Use of O2)),

greater(Amount of O2, zero),

greater(Use of O2, Amount of O2)]),

system structures([

heart con�guration((, , Heart)),

contained liquid((Heart, Blood))])]),

givens([])).

Table 5.27: Partial behaviour model for angina pectoris

system structures(clotting(Blood),

isa([process model]),

conditions([

system elements([

has attribute(Fluid Path, from, Container)]),

parameters([

amount of lumps(Blood, Amount of Lumps, , nh max)]),

par relations([

smaller(Amount of Lumps, max(Amount of Lumps))]),

system structures([

turbulent
uid path(Fluid Path),

contained liquid((Container, Blood)),

blood view(Blood)])]),

givens([

parameters([

ow rate(Fluid Path, Flow Rate, , zp)]),

par relations([

inf pos by(Amount of Lumps, Flow Rate)])])).

Table 5.28: Partial behaviour model for clotting of blood

161

fat of the blood in the body. `The muscle activity increaser` can be used to increase the

oxygen use by the muscle. Finally, `the
uid path decreaser' can be used to decrease the

ow area of the artery (see table 5.29). Agent models are in fact shortcuts for a number

of complex processes that we do not want to consider in detail. If for example we are

not interested in what happens to the fattening rate (etc), and only want to simulate the

e�ects of the
uid path growing smaller, then we can use the
uid path decreaser and

ignore what happens to the amount of fat in the blood.

system structures(
uid path decreaser(Decreaser),

isa([agent model]),

conditions([

system elements([

instance(Decreaser,
uid path decreaser)]),

parameters([

ow area(Fluid path, Flow area, , zlnh)]),

par relations([

greater(Flow area, zero)]),

system structures([

uid path view(Fluid path)])]),

givens([

parameters([

decreasing rate(Decreaser, Rate, , zp)]),

par values([

value(Rate, , plus, zero)]),

par relations([

inf neg by(Flow area, Rate)])])).

Table 5.29: Partial behaviour model for `
uid path decreaser'

5.4.2.5 The behaviour prediction

Given the input description and partial behaviour models described above, GARP predicts

seven SMD's. The important aspects of this behaviour prediction are shown in �gure

5.12. In SMD1 the heart is in normal condition, but because the `
uid path decreaser'

and the `muscle activity increaser' are active the
ow area decreases and the use of oxygen

increases. The resulting terminations cannot be ordered and therefore lead to three new

SMD's. In SMD2 the
ow area is decreased (low) and therefore insu�cient blood can
ow

to the heart. As a result the heart is state of pain. In SMD4 the use of oxygen is higher

than normal. The artery provides insu�cient blood, because of the `
uid path decreaser'.

As a result, the heart is in state of angina pectoris. SMD3 includes both the changes that

lead to SMD2 and SMD4. The muscle activity is high and the artery provides insu�cient

blood, leading to an angina pectoris state for the heart. There three di�erent ways to get

to SMD5: via SMD2, via SMD3, or via SMD6. In SMD5 the area for liquid is low, the

use of oxygen high, and the amount of available oxygen low. Moreover the blood starts

162

Normal blood
Normal fluid path

Normal active muscle
Normal heart

Normal blood
Narrowed fluid path
Turbulent fluid path

Normal active muscle
Pain in heart

Normal blood
Normal fluid path

High active muscle
Angina pectoris heart

Clotted blood
Fattened blood

Narrowed fluid path
Turbulent fluid path
High active muscle

Angina pectoris heart

Clotted blood
Fattened blood

Narrowed fluid path
Turbulent fluid path

Normal active muscle
Pain in heart

SMD 1

SMD 2 SMD 4

SMD 5

Clotted blood
Fattened blood

Narrowed fluid path
Turbulent fluid path
Clogged fluid path
High active muscle

Angina pectoris heart
Heart attack

SMD 6 SMD 7

∂ Subst. flow = min
∂ Flow area = min

∂ Use O2 = plus

Normal blood
Narrowed fluid path
Turbulent fluid path
High active muscle

Angina pectoris heart

SMD 3

∂ Use O2 = plus

∂ Use O2 = plus
∂ Flow area = min
∂ Subst. flow = min

∂ Flow area = min
∂ Subst. flow = min

∂ A. of Lumps = plus
∂ Use O2 = plus∂ A. of Lumps = plus

∂ Use O2 = plus

∂ A. of Lumps =plus

∂ A. of Lumps = plus

Figure 5.12: System model descriptions predicted by GARP

clotting, which may lead to a heart attack. The latter is the transition to SMD7.

5.5 Concluding Remarks

The design model provides a detailed description of an implemented system (GARP) that

performs state of the art qualitative reasoning. GARP cannot only simulate the reasoning

processes from the traditional approaches, but implements a new approach to qualitative

reasoning that is more general than its predecessors.

Two basic constraints guided the design process:

� the design model must re
ect a structure preserving transformation from the model

of expertise, i.e. a type oriented mapping, and

� the artifact must be easy accessible for prototyping prediction models.

The type oriented mapping is particular relevant for knowledge level re
ection, because

the type-to-type relation between the design model and the model of expertise provide the

basis for accessing the di�erent types of knowledge described in the model of expertise

and implemented in GARP (see also chapter 7). The usability of GARP for prototyping

makes it better suited to be used as an operationalised interpretation model that is part

of a model driven methodology for knowledge based systems development.

163

Both constraints had a direct e�ect on the functional decomposition of the conceptual

model. The type oriented mapping required that the design elements had a rich semantics,

capable of representing the di�erent knowledge items from the conceptual model as closely

as possible. The accessibility constraint resulted in additional functions imposed upon

the �nal artifact. In particular, the functions: modi�cation of the domain knowledge,

visualisation of di�erent aspects of the reasoning process, and the assessment of solvability,

resulted from this constraint.

Some important properties of the algorithms used for realising the problem solving po-

tential of the knowledge sources can be pointed out. Firstly, the algorithm for speci�cation

implements an e�cient depth-�rst search, that not only tests whether conditions can be

inferred from the knowledge present in the system model description (SMD), but that in

addition uses an assumption mechanism for �nding all partial models that are consistent

with that knowledge.

Secondly, the computation of parameter relations, which is part of the speci�cation, re-

alises an advanced method for coping with problems related to transitivity reasoning. The

qualitative calculus, as originally proposed in [57; 93], exhibits spurious behaviour, espe-

cially with regard to conservation of quantities such as energy,
ow, and force. We reduced

the generation of spurious behaviours by applying reasoning about inequalities and arith-

metic summations. Our method combines the axioms for reasoning about transitivity and

arithmetic summations and thereby avoids the problems associated with the approaches

of [120; 73]. Furthermore, it enables the speci�cation of quantity spaces containing any

number of values.

Thirdly, in GARP the control on the algorithms is organised such that all the states

of behaviour are found that apply to, or follow from, a certain input system. When the

input system speci�es only a con�guration of system elements, this leads to generating all

possible states of behaviour (total envisionment). When additional parameter values and

parameter relations are added to this input system, then the behaviour prediction will be

more directed, resulting in a more speci�c trace of behaviour (attainable envisionment).

The control on the algorithms is also accessible by the user. The user can decide to

give control to the prediction engine (resulting in full autonomous execution of the task as

described above), or the user can decide to control the prediction by him- or herself and

manipulate the prediction engine such that a required trace of behaviour is derived.

164

