
VisiGarp:

Graphical Representation of

Qualitative Simulation

Models

Anders Bouwer

Bert Bredeweg

Department of Social Science Informatics (SWI)

University of Amsterdam

Roetersstraat 15,

1018 WB Amsterdam,

The Netherlands

Email: {anders, bert}@swi.psy.uva.nl

Publication details: (in book) Artificial Intelligence in Education:
AI-ED in the Wired and Wireless Future. J.D. Moore, G.
Luckhardt Redfield, and J.L. Johnson (eds), pages 294-305, 2001,
IOS-Press/Ohmsha, Japan, Osaka.

VisiGarp: Graphical Representation of
Qualitative Simulation Models

Anders Bouwer & Bert Bredeweg
Social Science Informatics
Department of Psychology
University of Amsterdam

Roetersstraat 15, 1018 WB, Amsterdam, The Netherlands
E-mail: {anders, bert}@swi.psy.uva.nl

Qualitative simulation models can play a useful role in computer-based learning
environments, since they explicitly represent the domain knowledge required for
causal reasoning about system structure and behaviour. However, the amount of
information involved in a simulation is often large, which makes it difficult to
transform the computer's reasoning trace to effective explanations. Research on
natural language explanation generation has made a lot of progress in the last two
decades, but in addition to text, graphical representations also play an important
role in the communication of knowledge. For example, state-transition diagrams,
causal networks, structural hierarchies, tables and graphs all use different visual
primitives to create a context for communication, and to denote relationships
between the different kinds of entities. The structural information encoded in these
graphical representations is hard to communicate using only text. Although several
kinds of automatic visualization already exist, many of these are tailored to
specific domains, or types of data, e.g., numerical data. Our goal is to develop
generic mechanisms for automatic visualization of qualitative simulation models,
and to integrate these mechanisms into a framework for generating multimedia
(text and graphics) explanations. Currently, we have developed an interactive
model inspection tool, VisiGarp, which automatically generates several kinds of
diagrams from a qualitative simulation model; a mouse and menu interface allows
flexible switching between these different views on the model, providing both
overview and detail. Further work includes layout optimization, aggregation and
abstraction mechanisms, and integration of graphics and text generation.

1. Introduction

Simulation-based learning environments are powerful tools for learning, but expensive to
build – especially when they are built for a specific domain. Another problem with many
simulation-based learning tools is that there is often too much focus on numerical data and
formulae, and too little attention for the causal reasoning involved in making predictions, or
explaining results. This may be alright if students already have a good causal understanding
of the domain, but not if they do not yet possess such knowledge. Qualitative simulation,
based on qualitative reasoning (QR) theory and techniques, employs models of the domain
which encode the system studied explicitly, in terms of structure, parameters and causal
dependencies between them. Because the knowledge in these models is represented in a
generic way, different simulation scenarios can be run with the same model, by adjusting
parameters or system elements which trigger different parts of the model (model
fragments). Furthermore, model fragments for certain kinds of systems, situations, or
processes can be reused in other, similar domains which reduces development costs for
future applications.

Besides these advantages for the development process, qualitative simulation models offer
important educational advantages. First, by using qualitatve information rather than (or in
addition to) numerical data, students are stimulated to think about the distinctions that
matter. Second, the program’s predictions about system behaviour are based on analysis of
structural descriptions of the system, which are accessible to students. Therefore, students
are empowered to learn to do the same – relating behaviour to structure. Finally, the com-
positional nature of the model library allows a generic form of didactic planning within
domains, e.g., by shifting attention from a model fragment to a more specific subtype
model fragment, or to a set of model fragments which are conditional for it.

This paper will focus on the first two of these potential advantages, arguing that to ful-
fil this potential, the communication bottleneck has to be broken. Section 2 describes in
more detail the type of information contained in qualitative simulation models and how this
may be used in educational settings. In section 3, our approach to visualization is described.
The core of the paper is section 4, which explains how the information can be visualized in
different ways, with their particular advantages and disadvantages. Section 5 describes the
preliminary results of an evaluation study. Section 6 points at directions for further work
and section 7 concludes this paper.

2. Qualitative Simulation Models

Qualitative simulation models are meant to represent the essential characteristics of a sys-
tem’s structure and behaviour (e.g., see [1, 2]). In our research, we use GARP as our
qualitative simulation engine [3]. The GARP framework contains the following building
blocks. First, a representation of the (physical) entities as parts of the system studied,
together with their structural relations. Second, a representation of time-varying properties
in terms of quantities (the parameters of the system) and quantity spaces. A quantity space
specifies the relevant possible values of a quantity in terms of alternating points and
intervals (e.g., zero, plus, max, for a parameter which can have the value zero, max, or
something in between). Third, a representation of all kinds of dependencies between
parameters and parameter values, such as influences and proportional relationships.

Using these building blocks, initial situations (scenarios) can be specified as well as
model fragments, encapsulating knowledge about specific processes, or situations. Scena-
rios usually consist of a structural description of the system and some initial values for
certain parameters. Model fragments are rule-like, in terms of having conditions and conse-
quences. The former specify the structural constraints and the specific quantity conditions
that must hold for the model fragment to be applicable. The consequences specify the
behavioural features that can be derived. An important part of this is the specification of the
causal model underlying the behaviour.

Given a library of model fragments and a scenario, GARP will start to reason about the
structural aspects of the system and see which model fragments are applicable to the situa-
tion; from this, the simulation engine derives the system’s behaviour in terms of processes
becoming active or inactive, and consequently, values of parameters changing. When a
parameter changes significantly (i.e., it reaches another value in its quantity space), or
when it changes in relation to another parameter (i.e., after two quantities being equal, one
becomes greater than the other), a qualitative state transition occurs. For the resulting suc-
cessor states, the whole process of applying model fragments and deriving changes
continues, until no more successor states can be found.

Traditional problems of qualitative reasoning related to ambiguity (e.g., multiple pos-
sibilities for the net result of positive and negative influences, and multiple behaviour
trajectories) can be kept to acceptable levels due to our compositional modelling approach,
using conditions in model fragments as constraints. In the case of multiple possibilities
which may all be valid predictions, these are not viewed as a problem, but as a possible
educational goal: to consider everything that may happen.

2.1. Using simulation models in learning environments

How to use simulation models in computer-supported educational settings? This depends
on the kinds of learning goals to be supported. If the goal is to learn how to operate (e.g.,
see [4]), or design a system [5], the simulation should be faithful to reality in all ways rele-
vant to the task. These educational goals are outside the scope of this research, however.
The learning goals we do address relate to understanding a system’s behaviour, in terms of
making predictions, and explaining events. A computer-based learning environment for this
purpose should support students in inspecting the model components, and simulation
results. To guide their explorations, students will need to state hypotheses, check their pre-
dictions, and construct causal explanations for events taking place in the simulation (e.g.,
see [6]). Given a certain simulation scenario in its initial state, a possible exercise is to
predict the possible changes of several parameters, and in what order they might occur. In
order to test the hypothesis, the student can run a complete simulation—an envisionment
[7]. By looking at the state transitions, and the order in which they occur in the behaviour
graph, the student can test the accuracy of his/her predictions. A common mistake is to con-
sider only one, or a few possibilities, when in fact underdetermination leads to multiple
branches– hence, unforeseen results.

Qualitative simulation supports the construction of explanations by allowing access to
the causal and structural relationships underlying changes in the simulation. Contrary to
events in the real world, events happening in the simulation can always be traced back to a
starting state, providing at least a kernel for explanation.

The idea is that by interacting with the simulation, possibly working through a set of
assignments, students will eventually understand the important characteristics of the sys-
tem’s behaviour in reality. When the behaviour of a simple partial system is understood
successfully, one can progress to more complex models and scenarios, in terms of number
of components, the amount of detail, or the level of generality (e.g., see [8]).

3. Ontology and principles of visualization

How to communicate the contents of qualitative simulation models to a user? The output
generated by the GARP simulation engine consists of a large amount of complex proposi-
tional statements in Prolog code format, which is hard to read, search, and oversee, except
for experienced knowledge engineers. However, the knowledge contained in the qualitative
simulation models is highly structured. This structure can be exploited to generate appro-
priate visualizations, surpassing the possibilities of linear text. Graphical representations,
such as block diagrams, trees and graphs can facilitate search, recognition and inference
processes [9], which helps relating and comparison of different information elements.
These visualisations make structural aspects of knowledge explicit, which can facilitate
internalisation of complex concepts.
Our visualisation ontology consists of circular, rectangular and oval shapes of variable
sizes for different kinds of entities, and lines, arrows, inclusion, ordering, and indentation
for different kinds of relations. In contrast to other work on simulation-based learning en-
vironments (e.g., [4, 5, op.cit.]), our visualization approach is generic and does not use
domain-specific pictures or symbols. Instead, abstract shapes are used with text labels to
denote specific entities and relation types.
These visual elements are combined in different ways to form views: particular visua-
lizations supporting specific reasoning tasks. The design of these visualizations is based on
the following principles1:

1 Note that our approach does not use animation to show changes in behaviour – changes are represented as
qualitative steps between different states.

• Information related to a specific entity is displayed within the visual element
representing that entity, using the container-metaphor as much as possible.

• Information related to multiple entities is displayed as a separate visual element,
connecting the entities involved, as much as possible.

• If an information element has more detailed information associated with it, it should be
displayed as a separate visual element, large enough to be selected, and to incorporate
connections.

• Information which is only meaningful in a context should be displayed within that
context, highlighted if necessary.

• If an information element is shown in a context in which further detail is not necessary,
a simple textual label will suffice.

• Time-ordered information is displayed with time progressing along the x-axis as much
as possible.

The benefits of our approach are that it does not require domain-specific knowledge, and
the representations are more flexible, which is useful in diagrammatic reasoning. Also, the
fact that they are more abstract can help when students are learning to model, generalizing
insights, or need to transfer knowledge from one domain to another (e.g., see [10]). It is
important to note, however, that some domains (e.g., electronics) already have standardized
visual languages with domain-specific symbols; our more abstract representations are not
intended to replace these specialized visualizations.

4. VisiGarp: Visualization of Qualitative Models

Based on the ontology and principles discussed in the previous section, we have designed a
tool, VisiGarp, which supports investigation of the simulation model and results. VisiGarp
offers a number of views, each of which focuses on certain kinds of information, while
using others to form the context, or to provide links to more detailed information. For each
view, we have designed a mapping from the ontology of qualitative simulation to the
ontology of visualisation primitives, to facilitate specific reasoning tasks (identifying,
searching, counting, associating, and sequencing) and interaction types (reading, selecting,
dragging, resizing, etc). Multiple views can be opened simultaneously, allowing users to
navigate between global overviews and more detailed descriptions and to switch between
different types of reasoning. An overview of all the views currently available in VisiGarp is
shown in table 1. To highlight the important characteristics of the different visualizations,
some of these views will be discussed in more detail.

Table 1. Description of all views available in the VisiGarp tool

View Information displayed and characteristics of the visualization
Entities and attributes Block diagram showing the elementary structure of the system in terms of

entities and attribute relations
Entity is-a hierarchy Subtype-relationships between different kinds of entities, indicated by

horizontal indentation to allow textual labels to be read accurately, using
collapsible nodes to allow various levels of detail

State-transition diagram Shows progress and allows control of simulation in terms of states, possible
terminations and completed transitions. States, transitions, and state-
transition paths can be selected and investigated in detail using one of the
views below

Table 1 (continued).

Transition history Shows a high-level tabular overview of all transitions in a selected path, with
access to further details of individual transitions

Transition details Shows the type of transition, the conditions leading to it, its results, and the
status of the transition (open, terminated, ordered, or closed)

Parameter relations Shows parameters, grouped within their entities, and the causal and
mathematical relationships between different parameters, as a higraph

Parameter values Shows parameter values and their derivatives for a specific state in tabular
format

Parameter value history Displays a graph for the values of a selected parameter changing over time
during a selected path in the state-transition graph

Model fragments A list of all model fragments which are applicable in a selected state, with
access to further details in either text or graphics format

Model fragment: text Structured text display of the contents of a particular model fragment, with
conditions and results separated vertically, and indentation for the different
categories of knowledge types

Model fragment: graphics Graphical display based on the parameter relations view, with the contents of
the particular model fragment highlighted in colour (blue for conditions, red
for results) and the rest in light-grey to show the context

Model fragment is-a
hierarchy

Subtype-relationships between different model fragments (processes, agents,
situations, and combinations), indicated by horizontal indentation to allow
textual labels to be read accurately, using collapsible nodes to allow various
levels of detail

Model fragment applies-to
hierarchy

Similar to the previous one, but this one shows which model fragments are
conditional for which other model fragments.

The state-transition graph, or behaviour graph, shows an overview of the progress of the
simulation in terms of states and state transitions (see figure 1). This can be compared to
the kinds of diagrams generated by the QSIM software [11]. An interesting difference is
that in their approach it is not the individual states which are numbered, but the possible
paths of states (called behavior, in the QSIM framework).

This can be useful, when the simulation consists of several distinct sequences of states,
but not when there are many branches in the simulation, because that makes the number of
paths grow exponentially. And although domain experts and researchers (the target users
of QSIM) may be interested more in the possible outcomes of the simulation, for our target
users (undergraduate students) it is important to be able to refer to specific states, because
VisiGarp offers a lot of conceptual information associated with each state.

Alongside the diagram in figure 1, buttons are provided to control the simulation: a
state can be selected to pursue the simulation in one direction only, or, alternatively, all
branches can be pursued until no further progress is possible (the Full Simulation button).
Terminations, which have not (yet) resulted in a state transition, are shown as tiny circles,
connected to their originating state. They can also be hidden, to simplify the display.

States, terminations and transitions can be investigated in more detail by selecting
them and clicking one of the other view buttons. When two or more states are selected in
Path-mode, a path through these states (if one exists) is automatically selected. This is
especially useful for the transition history and the parameter value history views, since they
show behavioural aspects of multiple transitions/states in a single screen.

The transition history button pops up a small screen with a short textual description of
all terminations/transitions in the selected path, or connected to the selected states (partly
visible in figure 1). This gives a brief overview of all events that triggered a state transition.
A more detailed description of individual terminations is also available by selecting one in
the popup window. In the parameter value history view (the foremost window in figure 1),
parameters can be selected from a list – when selected, the values of this parameter will be
plotted over time (the sequence of states selected in the behaviour graph).

Figure 1: State-transition graph for the Cerrado simulation. For the selected path between state 1 and 12, the
transition history is opened, as well as the value history for the parameter number_of(shrub), which shows an

increase from zero to high.

Like a traditional x-y graph that plots a dependent variable against time, a graph format is
used with the quantity space of the parameter value on the y-axis, and the state sequence on
the x-axis. Point values are plotted on horizontal lines indicating specific value points,
whereas interval values are plotted between two lines, corresponding to the values border-
ing the interval. Note that connecting these points to form a line-graph would suggest too
much, because the exact slope of ascent/descent within intervals is unknown in our quali-
tative simulation framework (nevertheless, straight dotted lines are used in the QSIM
approach – but with the comment that ‘dots connecting symbols have no significance’ [11,
op. cit., p. 23].

4.1. Representing mathematical and causal relationships

To find out the causes for changes which have been spotted, e.g., in the transition history,
or parameter value history described earlier, VisiGarp offers a view on the causal and ma-
thematical model - the parameter relations view. Figure 2 shows a screenshot of the causal
model for state 1 in a simulation of the Brazilian Cerrado vegetation with three populations
(grass, shrubs and trees), and fires [12]. In the diagram, all parameters are shown, together
with the dependencies between parameters, between parameter values, and parameter
derivatives. As shown, all parameters belonging to the same entity are grouped together
within the block representing that entity, creating a graph of nodes and subnodes, resem-
bling a higraph [13], but with edges occurring only between nodes of the same type. This
facilitates recognition of dependencies within subsystems, and dependencies crossing sub-
system borders. Toggle-buttons are supplied alongside the diagram which can be turned on
or off to show or hide specific types of information. This way, also the value, the quantity
space and the derivative of parameters can be shown. If turned on, the quantity space of a
parameter is displayed within the parameter node in vertical orientation, with the current
value highlighted and an arrow beside it, indicating increase or decrease. In addition, it is
possible to show or hide the entities and attribute relations to clarify the system structure.

Figure 2: The parameter relations view for state 1 of the cerrado simulation, showing parameters within the
entity they belong to, and relationships as labelled arrows. The I-relations denote influences, P-relations

denote proportional relationships. Together, they specify the causal model in the domain. Also shown are the
quantity spaces of the parameters, with the current value highlighted, and their derivative displayed alongside.

To show what kinds of decisions have been made in the design of this visualization,
consider the following alternative representation, developed earlier by members of our
group [14], in figure 3.

Figure 3. Fragment of a screenshot from GarpApplet: causal and mathematical
relationships between parameters in the Brazilian cerrado vegetation domain.
Alternative representation of the same information as displayed in figure 2.

When comparing figure 2 and 3, several differences can be noted:

Parameters inside entities vs. entity names connected to parameters
An argument for the representation in figure 3 is that the layout of the parameters is not

restricted to a rectangular entity block, as in figure 2, which can be exploited to reduce the
number of crossing lines if there are many parameter relationships between different
entities. However, displaying the entity name alongside each parameter node results in
repetition which is avoided in the representation of figure 2. Furthermore, in figure 2, it is
easier to see which parameters belong to the same entity, as they are grouped together
within the entity block. This representation also facilitates determining at which points in a
causal chain the connection is made between parameters of different entities, as these
parameter relations literally cross entity boundaries.

Mathematical relations inside parameters or as connections between parameters
Both figures use a labeled arrow between the two parameters involved for binary relation-
ships like greater, and smaller than, but they differ with respect to their representation of
formulae like outflow = dead + emigrated. In figure 3, the labeled arrow representation is
expanded to incorporate such formulae, by splitting the ternary relationship into represen-
tations of the equal-sign part (outflow =), and the operator part (dead + emigrated), and
connecting the two with an extra line. A colour difference between the lines to the left and
right argument is used to encode directional information (to distinguish x – y from y – x).
Because this representation was judged as quite hard to read without experience, the design
of figure 2 includes the original formula simply as text inside the node for the parameter it
defines. It was judged more important to support a correct and natural reading of the for-
mula than to have greater graphical uniformity and greater visibility of the existence of a
mathematical relation connecting all parameters involved.

Representing the quantity space and value of a parameter
In figure 2, the quantity space is shown within each parameter node, with the current value
for this state highlighted in red. This way, it is made clear that a value belongs to a parti-
cular domain (i.e., quantity space), and that this quantity space is specific for the parameter
in question. Because the display of such detailed information may distract attention from
the parameters and their relations, it is important to note that they can be hidden from the
display by depressing the toggle-button for quantity spaces, which makes the parameter
nodes collapse to a format closer to the one in figure 3.

Use of colour
Figure 3 makes use of colour to encode several kinds of information.2 As discussed above,
the two parts of a labeled connection line/arrow are coloured differently to indicate the
intended direction of reading; this is not necessary in figure 2, since the mathematical
relations are represented differently there. More importantly, different types of relations are
coloured differently in figure 3, e.g. shades of green for causal relationships, light blue for
addition and subtraction, and purple for (in)equality. This helps the distinction of the
different ontological groups of relationships, but the choices made are not the only ones
possible. For example, to emphasize positive versus negative relationships, one might use
one colour for positive proportionalities and influences, and another for negative propor-
tionalities and influences. By contrast, the use of colour is kept to a minimum in figure 2,
but more flexible and customized colouring and highlighting schemes may be included in
future versions of VisiGarp.

4.2 Visualizing the contents of model fragments

To investigate the role of the different model fragments during a simulation, a view is
supplied which lists all model fragments which apply in a particular state (see figure 4).
Such a list gives a high-level overview of what is true, and what is happening in that state.

2 Colours are invisible in this black/white version; we hope some of the differences in greyscale can be seen.

A model fragment can be selected, and more details can be requested in a structured text
format, or a graphic format. The text format clearly distinguishes the conditions - which
must be true for the model fragment to be applicable (shown at the top, in blue) - from the
results - the knowledge introduced by the model fragment (shown at the bottom, in red).
Also, the different knowledge categories are shown, with the actual content indented.

The grapical format is based on the causal model view (shown in figure 2), with colour
used to highlight the contents of the specific model fragment (again, blue for conditions,
and red for the results). This gives an overview of the context while drawing special atten-
tion to the specific knowledge introduced by that model fragment. Note that the graphical
format alleviates the need for repetition of information elements, as is the case in the text
format. Second, the graphics format includes also contextual information in the background
(in grey), to support integration of the specific information of the particular model fragment
into the model as a whole. The textual format, however, is more compact and gives a con-
cise overview of what types of knowledge are introduced.
It is also possible to view how the different model fragments are structurally related to each
other in the model library. Two views (not shown in this paper) are supplied for this
purpose: the is-a hierarchy of model fragments, which shows the hierarchical subtype-
relationships between model fragments, and the applies-to hierarchy, that shows which
model fragments are conditional for which other model fragments. In both views, a model
fragment can be selected for further inspection.3

Figure 4: The list of model fragments that are active in state 1. The contents of the selected model fragment
natality process for the grass population is shown in detail, both in text and graphics format.

3 Because this kind of knowledge is more abstract than the kinds described previously, it should not be used
before students have had some experience with the more concrete aspects of the simulation model. It is
especially useful, however, for the system modeller, or students learning to model.

5. Evaluation of VisiGarp

VisiGarp has been evaluated by twenty-five third-year undergraduate students at our de-
partment (Social Science Informatics) at the University of Amsterdam. Participation in the
study was mandatory, as a part of a course on evaluation of software. All but one of them
had no experience with qualitative simulation models, nor with the domain of cerrado
ecology, but most of them were reasonably computer-literate. The participants were given a
short (30 min.) introduction to qualitative simulation and VisiGarp, explaining its research
goals, its interface, and the domain model about the Brazilian cerrado vegetation.

Then, the participants had to work out ten small exercises on a paper handout sheet,
using the VisiGarp interface, and a paper user guide. They spent about thirty-five minutes
on average to complete these tasks. Afterwards, they filled in two questionnaires, of which
one was aimed at usability and potential usefulness; the other consisted of VisiGarp
screenshots and test questions, intended to test whether the graphical representations could
be understood after such a short period of experience with the system. The results indicated
that people could use VisiGarp to run a simulation, investigate paths of transitions, find out
the amount and direction of change in parameters, and determine causal paths leading to
such changes. However, there were also points of criticism. In the current implementation,
the automatic layout mechanism is not optimal, causing chunks of graphical elements to be
scattered over the screen too widely, sometimes partly out of sight. Hence, diagram layout
was rated 2.16 on average (SD = 1.25), on the answer scale of 1 (negative) to 5 (positive).
Consequently, the participants had to spend a considerable amount of time scrolling and
dragging to manipulate the layout of the visualizations. The participants considered it
relatively easy to modify the layout to fit their needs, however (average score: 3.72, SD =
1.24). Not surprisingly, given the short time available and their unfamiliarity with the
domain, some participants complained they were not given enough time to interpret the
domain knowledge presented to them, beyond the level of reading off information from the
diagrams. Some participants rated the qualitative modelling primitives as hard to under-
stand (five people scored the minimum score of 1), but there was a lot of variation in the
scores for this question (2.88 on av., SD = 1.42). A hypothesis to be tested is whether
translation of the English terms (both domain-specific and generic QR concepts) into Dutch
(most participants’ native language) could help to overcome the two last points. The results
from the knowledge-test questionnaire indicated that most easy questions were answered
correctly, but the trickier questions were answered wrongly fairly often (in total, 75% of all
answers was correct). In retrospect, some of the questions were probably not formulated
clearly enough to rule out alternative interpretations, or did not specify clearly enough
where to look for the answer. Overall, the results and comments indicated that VisiGarp
needs more work on the layout and navigation mechanisms, but also that it is considered a
useful tool to investigate predictions, and (to a lesser extent) explain causal events, especi-
ally when users are given a little more time to learn to use and experiment with the system.

6. Current status and further work

VisiGarp is implemented in SWI-Prolog/XPCE [15]. All figures in the VisiGarp screen-
shots were automatically generated, with some manual layout adjustments, using a large
simulation model developed for GARP by Salles and Bredeweg [12, op.cit.]. This mecha-
nism works for GARP models in any domain, e.g., a piston system with a heat-flow, a
balance system with leaking fluid containers [16], and the ecology of Brazilian cerrado
populations illustrated in this paper. Other work in our group concentrates on a JAVA
implementation of some of these, and other visualization ideas [14, op. cit.]. The results of
the evaluation indicated that the layout of the diagrams is often suboptimal, especially

when the models get larger. More intelligent layout algorithms, or alternative browsing
techniques (e.g., automatic zooming or hyperbolic browsing) may alleviate parts of these
problems. But even more leverage may be acquired by selecting the most interesting
information in a simulation model. For instance, certain parameters sometimes deserve
more attention than others, because they highlight the main difference between different
states. Automating this selection process may benefit from research on aggregation and
abstraction mechanisms (e.g., see [16, op.cit., 17]).

A second goal of future work is to combine graphic representations with textual ex-
planations, which can describe (e.g., see [18]), contrast (e.g., see [19]), or add information
to the figures. This involves thinking about explanatory dialogue (e.g., see [20, 21]), and
educational settings in which the student is no longer only inspecting simulations, but also
asked to form hypotheses, solve exercises and given feedback on his/her performance.

A third direction for further research is to integrate model inspection tools such as
VisiGarp with model building tools, such as MoBuM [22]. This allows students to build
their own models, which can then be used to run simulations. Integration of the two sys-
tems will lead to interactive model building environments which empower students to
articulate their thoughts, experiment with the results generated by their own model, and
reflect on the outcomes.

7. Conclusions

This paper has described the design and implementation of VisiGarp, a tool for inspection
of qualitative simulation models. Based on the output of the GARP simulation engine,
which takes a library of model fragments and scenarios as input, VisiGarp generates dia-
grammatic representations of the knowledge and information involved. This includes views
on structural aspects of the model, parameter values changing over time, and causal and
mathematical relationships. Different visualization options have been illustrated, with a
discussion of their particular advantages and disadvantages and the underlying motivations.
Preliminary evaluation has shown that third-year undergraduate students can use the
VisiGarp diagrams to complete exercises asking for simple qualitative predictions and
causal explanations about domains unfamiliar to them. Suggestions for improvements are
directed especially at enhancing the automatic layout mechanism, because students had to
spend too much time on scrolling and manipulating the layout. Further work will also ad-
dress mechanisms for automatic selection of the most interesting information to visualize,
and integration of diagrams and textual explanation.

Acknowledgements

We would like to thank Peggy Tjaris for her contribution to the evaluation study, and to prof. Bob Wielinga,
prof. Joost Breuker and the anonymous reviewers for their valuable comments on earlier drafts of this paper.

References

[1] Bobrow, D.G. (ed.) (1984). Qualitative Reasoning about Physical Systems. Elsevier Sience Publishers,
Amsterdam.

[2] Weld, D., & Kleer, J. de (eds.) (1990). Readings in qualitative reasoning about physical systems. Palo
Alto, CA: Morgan Kaufmann Publishers.

[3] Bredeweg, B. (1992). Expertise in qualitative prediction of behaviour. Ph.D. thesis, University of
Amsterdam, The Netherlands.

[4] Hollan, J.D., Hutchins, E.L., & Weitzman, L. (1987). STEAMER: An interactive inspectable,
simulation-based training systems. In G.Kearsley (ed.). Artificial intelligence and instruction:
applications and methods. Addison-Wesley, Reading (Mass), pp. 113-134.

[5] Forbus, K.D., & Whalley, P.B., & Everett, J.O., Ureel L., & Brokowski, M., & Baher, J., Sven E.
Kuehne, S.E. (1999). CyclePad: An articulate virtual laboratory for engineering thermodynamics.
Artificial Intelligence, 114 (1999), pp. 297–347

[6] Joolingen, W.R., & Jong T., de (1991). Supporting hypothesis formation by learners exploring an
interactive computer simulation. Instructional Science, 20, pp. 389-404.

[7] Kleer, J. de & Brown, J. (1984) A Qualitative Physics Based on Confluences. Artificial Intelligence, 24,
pp. 7-83.

[8] White, B.Y., & Frederiksen, J.R. (1990). Causal model progressions as a foundation for intelligent
learning environments. Artificial Intelligence, 42: pp. 99–157

[9] Larkin, J. H. & Simon, H. A. (1995). Why a diagram is (sometimes) worth ten thousand words. In J.
Glasgow, N. H. Naranayan & B. Chandrasekaran (eds.), Diagrammatic Reasoning: Cognitive and
Computational Perspectives. AAAI/MIT Press, Cambridge, MA/London.

[10] Falkenhainer, B., Forbus, K. and Gentner, D. (1989). The Structure Mapping Engine: Algorithm and
Examples. Artificial Intelligence, 41, pp. 1-63.

[11] Kuipers, B. (1994). Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge.
Cambridge, Massachusetts / London, England: MIT Press.

[12] Salles, P., & Bredeweg, B. (1997). Building Qualitative Models in Ecology. Proceedings of the
International workshop on Qualitative Reasoning, QR'97. Istituto di Analisi Numerica C.N.R. Pavia,
Italy, L. Ironi (ed.). pp. 155-164.

[13] Harel, D. (1995). On Visual Formalisms. In J. Glasgow, N. H. Naranayan & B. Chandrasekaran (eds.),
Diagrammatic Reasoning: Cognitive and Computational Perspectives. MIT Press, London, pp. 235-271.

[14] Arnbak, N., Dyk, T. van, Groen, R., Werf, R. van der. (2000), The GarpApplet. Internal report, Dept. of
Social Science Informatics, University of Amsterdam, The Netherlands.

[15] Wielemaker, J. & Anjewierden, A. (1992). Programming in PCE/Prolog. Dept. of Social Science
Informatics, University of Amsterdam, The Netherlands.

[16] Koning, K. de, Bredeweg, B., Breuker, J., and Wielinga, B. (2000), Model-based reasoning about
learner behaviour. Artificial Intelligence, 117: pp. 173-229.

[17] Mallory, R. S., & Porter, B. W., & Kuipers, B. J. (1996). Comprehending complex behavior graphs
through abstraction. In Iwasaki, Y., and Farquhar, A., eds., Proceedings of the Tenth International
Workshop on Qualitative Reasoning, 137–146. Menlo Park, CA, USA: AAAI Press.

[18] Pilkington, R. M., & Grierson, A. (1996). Generating explanations in a simulation-based learning
environment. International Journal of Human-Computer Studies, 45, pp. 527-551.

[19] Ferguson, R. W., & Forbus, K. D. (1998). Telling juxtapositions: Using repetition and alignable
difference in diagram understanding. In K. Holyoak, D. Gentner, & B. Kokinov (eds.), Advances in
Analogy Research. Sofia: New Bulgarian University, pp. 109-117.

[20] Moore, J.D. (1995). Participating in Explanatory Dialogues. Interpreting and Responding to Questions
in Context. Cambridge, Massachusetts / London, England: MIT Press.

[21] Baker, M.J. & Lund, K. (1997). Promoting reflective interactions in a computer-supported collaborative
learning environment. Journal of Computer Assisted Learning, 13, pp. 175-193.

[22] Bessa Machado, V. (2000). MoBuM: A Model Building Environment. Technical report, Dept. of Social
Science Informatics, University of Amsterdam, The Netherlands.

