
Artificial Intelligence 117 (2000) 173–229

Model-based reasoning about learner behaviour

Kees de Koning, Bert Bredeweg∗, Joost Breuker, Bob Wielinga
Department of Social Science Informatics (SWI), University of Amsterdam,

Roetersstraat 15, 1018 WB Amsterdam, Netherlands

Received 23 August 1999

Abstract

Automated handling of tutoring and training functions in educational systems requires the
availability of articulate domain models. In this article we further develop the application of
qualitative models for this purpose. A framework is presented that defines a key role for qualitative
models as interactive simulations of the subject matter. Within this framework our research focuses
on automating the diagnosis of learner behaviour. We show how a qualitative simulation model of
the subject matter can be reformulated to fit the requirements of general diagnostic engines such as
GDE. It turns out that, due to the specific characteristics of such models, additional structuring is
required to produce useful diagnostic results. A set of procedures is presented that automatically
maps detailed simulation models into a hierarchy of aggregated models by hiding non-essential
details and chunking chains of causal dependencies. The result is a highly structured subject matter
model that enables the diagnosis of learner behaviour by means of an adapted version of the GDE
algorithm. An experiment has been conducted that shows the viability of the approach taken, i.e.,
given the output of a qualitative simulator the procedures we have developed automatically generate
a structured subject matter model and subsequently use this model to successfully diagnoses learner
behaviour. 2000 Elsevier Science B.V. All rights reserved.

Keywords:Qualitative reasoning; Model aggregation; Model-based diagnosis; Student modelling; Interactive
learning environments

1. Introduction

Both in professional and every-day life people have to interact with and reason about
a large number of systems. Computer simulations can be used to construct interactive
environments by means of which people can develop knowledge about the behaviour of
these systems. The steady increase in computing power has in fact given simulation a

∗ Corresponding author. Email: bert@swi.psy.uva.nl.

0004-3702/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(99)00106-X

174 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

solid position within the area of educational systems [26]. However, several studies have
shown that simulations are only effective when proper guidance is provided [36,51,67,
69]. Automating certain tutoring and training functions in order to provide such guidance
requires the simulation model to bearticulate[12,39,41]. Two further requirements follow
from this. Firstly, a specific simulation model should manifest all the behavioural features
of the ‘real’ system as far as those are relevant to the educational goals. Secondly,
a simulation model should contain the appropriatehandles, by means of which these
features are indexed, to enable a knowledgeable communication with the learner about the
model contents. Qualitative simulators, such asQPE [39] andGARP [8], provide a basis
for generating articulate simulation models. Given such models, a remaining challenge
concerns the automated handling of guidance by the educational system.

Providing guidance means that the learning environment should be able to adapt the
interaction to the situation at hand, both with respect to the specific subject matter that
is considered and to the individual learner it is interacting with. Guidance may take on
many forms, such as providing explanations, presenting counter examples, suggesting
assignments, and the like. Whatever the specific form, individual guidance requires
knowledge about the learner and hence involves assessment of his or her knowledge.
More specifically, the educational system has to diagnose the learner’sproblem solving
behaviour. 1 The subject matter we are dealing with in this article concerns ‘behaviour
analysis’, i.e., learners should acquire problem solving skills such as predicting or
‘postdicting’ (explaining) the behaviour of systems using qualitative terms. Hence, the
learner’s problem solving behaviour consists of a set of inferences about the behaviour
of these systems. The way the student interacts with the learning environment reflects
this problem solving behaviour. The educational system therefore has to monitor this
interaction (performance assessment) and diagnose deviations, with respect to some norm,
in terms of problem solving errors made by the learner (behaviour diagnosis).

In research on artificial intelligence in education, diagnosis of problem solving
behaviour is generally considered extremely difficult, or even infeasible [75]. One
important reason is that behaviour diagnosis is usually based on hand-crafted catalogues
of misconceptions, or bugs, which makes diagnostic systems very expensive to develop.
Moreover, a catalogue of bugs is only applicable to one specific domain. When the
subject matter changes, a new catalogue has to be developed and implemented. Alternative
approaches that try to overcome these difficulties, e.g., by generating bugs dynamically
[18], have also proven to be difficult. Although no hand-crafted catalogues are needed,
domain specific filters have to be used to avoid generation of implausible bugs. In addition,
the construction of generative theories has turned out to be problematic, mainly as a result
of lacking operational theories on how people acquire knowledge.

In this article we propose a different,model-based, approach [47] to diagnose learner
behaviour. Following [62], this choice is based on the fact that model-based diagnosis is an
extensively studied and well-understood field of research, and hence we can reuse existing
techniques and representations. Model-based diagnosis claims to be generic and domain

1 Throughout this article, the term ‘learner behaviour’ refers to the ‘problem solving behaviour of a learner’.
‘Learner behaviour’ should not be confused with ‘system behaviour’ which refers to the subject matter that the
student has to master.

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 175

Fig. 1. Model-based diagnosis of device versus learner behaviour.

independent. It does not require explicit fault models or bug catalogues for its operation,
but instead reasons from a representation of the correct behaviour of the system to be
diagnosed. More specific, in model-based diagnosis the behaviour of a device is compared
to the behaviour predicted by a model of that device. In the case of diagnosing learner
behaviour we propose to automatically generate this model using a qualitative simulator.
On the basis of the output of the simulator a subject matter model can be constructed that
acts as a normative model of the learner behaviour and as such can be used for model
based diagnosis. Deviations in the problem solving behaviour of the learner, i.e., incorrect
predictions or postdictions concerning the behaviour of the system that is the subject of the
teaching activity, are then diagnosed as inferences made by the qualitative simulator that
the learner cannot have applied correctly given the observations. Fig. 1 illustrates the high-
level mapping between model-based diagnosis of device behaviour and learner behaviour.

The same diagnostic component (e.g., GDE [30]) can be applied to different (subject
matter) models, as long as they comply with the modelling principles required by the
diagnostic algorithms. One of the main requirements is that the system under diagnosis
can be modelled as a set ofconnected components, for which the behaviour can be
defined individually. These components should model the smallest entities that can be
individually repaired; diagnosis is only useful down to the level of possible repairs. In the
context of learning, this means that these components should represent the smallest units
of problem solving knowledge that are still relevant in an educational setting (e.g., that
can be individually explained). The constraints that the component-connection paradigm
puts on the subject matter models are not only a requirement for diagnosis, but are also
useful for other educational functions: a clear separation of the knowledge in terms of
indexed elements that make sense in education is a prerequisite for automated structured

176 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

explanation, generation of questions, or subject matter sequencing. Only with such a
modular structure, different components can be freely combined, selected, and sequenced.

Following the above argumentation, we propose a framework for the construction
of interactive learning environments based on qualitative models. These models are
used as simulations of the subject matter and provide the basis for the construction of
advanced educational functions to support the interaction with the learner. The procedures
implementing this approach should be domain independent, i.e., they should not depend on
the specific system that is being simulated by the qualitative simulator, and they should do
their work fully automatic. In the research presented we focus on the function ‘diagnosis
of learner behaviour’ because it is central to any form of individualised interaction.

The following topics must be addressed. First, it should be shown that the qualitative
simulator represents knowledge that fits the way teachers and learners communicate about
system behaviour. The qualitative simulator should produce a description of the system
behaviour that is useful in an educational setting, i.e., it should bedidactically plausible. It
should produce a description that learners can comprehend and in principle learn. Although
important, the construction of such articulate models is not the main focus of the research
presented here. Section 2.3 reports on previously published research [33] that supports the
hypothesis that the simulator we use produces such models.

The second topic concerns the mapping of the simulation model onto the component-
connection paradigm (Section 3). Recall that the simulation model reflects all the necessary
inference steps that must be made in order to produce a correct behaviour analysis.
Thus, the simulation model provides the ingredients for the norm model of the model-
based diagnostic engine and hence all the inferences must be represented as ‘inference
components’ in this norm model. Typically, each inference should be represented as an
individual, context independent inference component that derives output from input using
a behaviour rule. In addition, behaviour rules should be defined for deriving input from
output. Being able to construct a component-connectionmodel out of the simulation model
means that we can represent the skill ‘qualitative behaviour analysis’ as the norm model
to be used by the diagnostic engine. Hence, we are able to diagnose learner behaviour in
terms of how it deviates from this model.

The third topic concerns the tractability of the general diagnostic engine (Section 4). It
turns out that due to the specific characteristics of qualitative simulation models, additional
structuring is required in order to deliver useful diagnostic results. One reason is that the
component’s behaviour rules make use of qualitative calculi, which are relatively weak
compared to the behaviour rules used in typical applications of model-based diagnosis such
as electronic circuits. In artifacts, solving the tractability problem can be done by using the
hierarchical structure that is often evident from the physical or functional structure of the
device. Such a natural decomposition is not available for the kind of norm models that we
use. The inference components that are part of this model do not necessarily map onto
components in the ‘real’ system. Alternative structuring principles have to be developed
for these models. As mentioned before, an additional requirement is that the structuring
must be performed automatically on the basis of the component-connection model that has
been generated using the output of the simulator.

A fourth and related topic concerns the fact that the diagnostic engine has to operate in
the context of an educational system. Measurement selection, and candidate discrimination

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 177

in general, are bound to the ongoing discourse between the education system and the
learner. Putting the diagnostic engine to work in the context of an educational system is
subject of Section 5. In the next section (Section 2) we will first discuss the theoretical
background of our approach.

2. Theoretical background

Important to the research presented in this article is the idea of using a qualitative
simulation model as the kernel of an educational system. Section 2.1 describes the main
characteristics of the simulator that we use for this purpose. How the qualitative simulator
can be embedded in an interactive learning environment is subject of Section 2.2, which
presents an architecture for simulation-based educational systems. Putting the qualitative
simulation in the heart of the educational system puts specific requirements on the
simulator. Section 2.3 discusses research that supports the hypothesis that the simulator
we use produces didactically plausible models. Finally, Section 2.4 discusses the role of
diagnosis in educational systems. We emphasise the importance of ‘behaviour diagnosis’,
in contrast to ‘learner modelling’, and the usefulness of model-based techniques for
performing the former diagnostic task.

2.1. Generating articulate simulation models

Qualitative simulation models typically represent knowledge about the structure and
the qualitative distinct behavioural features of a system. To produce such models we use
GARP [8], an interactive simulator that predicts behaviour starting from a user selected
scenario. The scenario captures the initial structural description of a system, possibly
augmented with some initial behavioural facts.GARP can be controlled to produce a
full simulation at once, or to work on specific states of behaviour in interaction with the
user. Model fragment libraries [37] are used to feed the simulator with domain specific
knowledge. The simulator itself implements a domain independent qualitative reasoning
shell.2

The primitives that can be used within the model fragments for representing the
behaviour of a system include: quantities, values, behavioural constraints, and causal
dependencies. Quantities represent the changing properties of the system. Values are
represented in quantity spaces (Qsp), i.e., ordered sets of alternating points and intervals.
Values are assigned to quantities using a dedicated predicate. Values from different quantity
spaces are considered unrelated except when these quantity spaces include the value
‘zero’, which is universal to all quantity spaces. In such cases, simple transitive inequality
reasoning is in principle possible, e.g.,value(Q1,V1), value(Q2,V2), Qsp1 : V1 < 0,
Qsp2 : V2 > 0→ Q1 < Q2. Behavioural constraints are implemented by inequality
statements and serve a number of purposes. They can be used to specify a range of
values that a quantity may have (e.g.,temperature1> freezingpoint1), they can be used
for specifying dependencies between quantities (e.g.,temperature1> temperature2), and

2 GARP is freeware and implemented inSWI-Prolog [77].

178 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

they can be use to relate the values of different quantity spaces (e.g.,freezingpoint1>
freezingpoint2).

In a specific state a quantity has a value, or its value is unknown. In addition,
behavioural constraints may hold. If a quantity does not have a value and is not involved
in any constraints it obviously has no effect on the simulation and can be considered
superfluous in that state of behaviour. When the value refers to an interval, notice the
subtle difference between ‘having the same value’ and ‘being equal’. Quantities may
have the same qualitative interval value and at the same time be unequal. For example,
two similar containers filled with different amounts of liquid, may be represented as
value(Level1, plus) andvalue(Level2, plus) andLevel1> Level2.

Knowledge about causality is represented using an adapted version ofQPT [38].
Changes are ‘caused by’ influences as defined byprocessesand agents. The former
represent flows that occur because entities differ on some quantity, for example, a flow of
energy between two objects because they differ in temperature. Agents represent external
factors, e.g., someone controlling a device. Changes are propagated to other quantities by
proportionalities. Correspondences can be used to relate certain quantity values. However,
the notion of correspondence inGARP is different from the one used inQPT. First,
correspondences are defined to be directed or undirected, referring to a causal dependency
or to a non-causal one. Second, correspondences are defined for either specific values of
two quantities (value correspondence), or for all the values that two quantities can have
(quantity space correspondence). In the case of the latter, such quantities have the same
type of quantity space.

Qualitatively distinct states of behaviour are characterised by differences in the set of
quantity values and/or inequality statements that hold in each state.Termination rules
implement knowledge about state changes. Two sets of termination rules exist. One set
deals with individual quantities. These rules specify the value that a quantity will have in
the next state, given the value it has in the current state and the sign of its derivative (i.e.,
its direction of change). The limit rule [28] is an example of such a rule. The second set of
rules deals with inequalities between quantities. They specify how inequality statements in
the current state will change, given the signs of the derivatives of the involved quantities.
For example, two quantities may become unequal because one of them increases whereas
the other remains constant. Not all potential changes will lead to actual state changes. Some
will have to be ignored because other changes precede them. In addition, changes may be
merged because they are related. Knowledge on these issues is implemented byprecedence
rules. The simulator uses these rules to merge related changes first. It then removes those
sets of changes that are preceded by other sets. The remaining sets of changes are (by
definition) fully independent. State changes are therefore generated for each individual
set and for all possible combinations of these sets. Some quantities have derivatives with
sign ‘zero’ and may therefore not be involved in any change.Continuity rulesare used to
explicitly specify non-changing quantities between states.

2.2. Architecture for learning environments

Fig. 2 illustrates how a qualitative simulator can be embedded in an interactive learning
environment. The figure presents an abstract view on the interaction between the learner

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 179

Fig. 2. Conceptual architecture for an educational system.

and the simulation, showing the most important tutoring and training functions (functional
units). Exactly how a learning environment presents itself to a learner depends on
the realisation of these functional units (see [13] and [80] for general discussions on
architectures for educational systems). Below we discuss the specific implementation of
the architecture as used for the construction ofSTARlight; the prototype educational system
that we have developed for evaluation purposes (Section 6).

In Fig. 2 the ‘generic qualitative knowledge’ refers to the library of model fragments, the
different sets of rules for determining state changes, and the scenario’s that can be used to
generate new prediction exercises. The output of the qualitative simulator forms the basis
for the subject matter model. By manipulating the interface objects the learner can control
the simulator, give answers to questions or ask for help. Two main control flow loops exist:
as long as the learner’s behaviour is consistent with the subject matter model, the main
loop is learner interface → performance assessment → subject matter sequencing →
question/assignment generation. When all the topics related to a specific prediction
exercise have been dealt with sufficiently, thesubject matter sequencing can switch to
a new prediction exercise (after which the previous loop continues). When a discrepancy
is detected between the learner’s behaviour and the subject matter model, the diagnoser
is activated, and the main loop becomeslearner interface→ performance assessment→
behaviour diagnosis→ question/assignment generation. This loop continues until the
diagnosis is satisfactory (e.g., a single deviating inference step is found); if this is the
case, the diagnostic process ends, and an explanation is generated on the basis of the

180 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

diagnosis. The learner model may provide additional means for keeping track of learner
specific information to further refine the activities performed by the functional units.

As shown in Fig. 2, a central role is assigned to the output that is generated by the
simulator. This subject matter model is input to all the functional units in the educational
system, as shown by the grey arrows. An important requirement for our research approach
is to ensure that the different training and tutoring functions in the educational system
operate domain independently; they must work independent of the specific system that is
being simulated by the qualitative simulator. This means that the output of the simulator,
i.e., the subject matter model, must consist of two intertwined but still well distinguishable
parts. The first part consists of all the facts that together represent the behaviour of
the system that is being simulated, i.e., the simulation model itself (e.g.,volume > 0
& increasing, etc.). The second part implements a kind of meta-level view [70] on the
contents of this model. It consists of the qualitative vocabulary, as discussed in Section 2.1,
by means of which the domain specific facts are indexed (e.g., ‘volume’ is a quantity, ‘>’
is an in-equality statement, ‘0’ is a value fromQsp1, etc., see [7,8] for details). In this
way, the functional units can assess the subject matter model using domain independent
terms. In fact, each functional unit should only assess the subject matter model using these
domain independent terms. In addition, all the reasoning within these units should either
be in terms of this vocabulary or fully independent from the simulation model all together
(e.g., knowledge on discourse management [80]). Following this approach, we accomplish
that the learning environment as a whole is domain independent to the extent that the
simulator is domain independent. This is an important advancement.

2.3. Articulate models

When using simulation models in an educational system, these models should be
didactically plausible. Two requirements follow from this. The model should manifest all
the behavioural features of the real system as far as those are relevant to the educational
goals and the model should be suitable for communication. The latter means that the
model should providehandles(indexes) for interaction, which are needed to extract the
right knowledge from the model [12,39–41]. Although qualitative reasoning has historical
links to educational systems, it is not self-evident that qualitative simulation models indeed
contain the right knowledge, in the right format, to support an educational interaction [10].
We therefore investigated whether the knowledge, terminology and reasoning, used in
a real educational interaction could be covered by models generated by qualitative
simulators, such asGARP andQPE. To this end, we conducted aWizard of Ozexperiment,
in which a learner and a teacher communicate about a problem solving task via computer
terminals [33]. Eight learners participated in the experiment, and three teachers. The
learners were first year psychology students who had passed their final in physics at high
school. The problem solving task was predicting the behaviour of abalance system, as
is shown in Fig. 3. This physical system is also used as a running example throughout
the article. On each side of the balance sits a container partially filled with water. The
containers are equal in weight when empty, and have an equally sized outlet in the bottom.
Through this outlet, the water flows out of the container, thereby decreasing the weight
on that side of the balance. The flow rate of the two contained liquids can be different,

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 181

Fig. 3. The balance system.

corresponding to the pressure at the bottom. As a consequence, the balance moves to new
positions, but the final state is always an equilibrium. In the experiment, a teacher and a
learner discuss the behaviour of the balance system once the outlets are opened.

The analysis of the dialogue protocols showed that the terminology as it is used in the
interaction is sufficiently covered by the simulation models: all concepts that appear in
the protocols can be mapped to counterparts in a simulation model. This is similar to the
results reported in [11]. However, the reasoning patterns employed by human reasoners
differ substantially from the simulator’s. One reason is that qualitative simulators usually
generate all derivations in a breadth-first way; people, on the other hand, use heuristic,
focused search based on “best-first” strategies [32]. A second difference is in thegrain
sizeof the reasoning steps taken: the inferences made by the simulators do not always
map directly to the reasoning steps made by learners. For instance, a reasoning step like
“the pressure is higher on the left, so the outflow is higher there as well” (inequality
proportionality) is at a higher level of aggregation than those produced by the simulators.
Nevertheless, the analysis of the dialogue protocols showed that this level of inference is
considered primitive (i.e., the lowest useful level of detail) both by learners and teachers.

The analysis of the dialogue protocols has resulted in a vocabulary and a set of basic
inferences (see also Table 1, Section 3) that can be used to model the way teachers
and learners perform behaviour prediction. The vocabulary consists of a set of semi-
formalexpressionsabout entities, quantities, values, etc., that map onto the representational
primitives of the qualitative simulatorGARP. The basic inferences do not have direct
counterparts in the simulator’s output, mainly because they are at a different grain size
level. The expressions and basic inferences form the basis for the definition (and the
generation) of our subject matter models, which is further discussed in Section 3. For a
detailed discussion of the protocol analysis and the experimental results, see [31,33].

2.4. Diagnosis and learner behaviour

Assessment of learner behaviour is often referred to as cognitive diagnosis and viewed
as similar to student modelling [58]. In this section we review the most typical approaches
in this area (Section 2.4.1), and argue that there is an important difference between the
diagnosis of learner behaviour and the maintenance of a learner model (Section 2.4.2). We
then discuss model-based techniques for diagnosing device behaviour (Section 2.4.3), and

182 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

present the hypothesis that the realisation of behaviour diagnosis in educational systems
may benefit from using these techniques (Section 2.4.4).

2.4.1. Cognitive diagnosis and learner modelling
Extensive research exists on learner modelling and cognitive diagnosis in Intelligent

Tutoring Systems (ITS) [24,35,45,63,75]. Two dominant approaches emerge from this
literature:overlayandperturbation. Overlay models keep track of the knowledge that a
learner has acquired by recording for each entity in the subject matter model whether it is
known by the learner or not. The underlying idea is that the subject matter model represents
the expert behaviour, and that all differences between the learner’s behaviour and that of
the expert model can be explained in terms of the learner lacking certain knowledge. An
overlay model was used in many early educational systems [3,21–23]. The overlay model
works well in situations where the knowledge represented in the subject matter model
can be transferred directly to the learner. This is true for teaching factual knowledge such
as geography or English vocabulary, and for a limited set of procedural domains (e.g.,
training fixed safety-critical procedures in nuclear power plants). The usability of overlay
models significantly decreases when the subject matter requires the acquisition of complex
problem solving skills and the learner is allowed an increasing freedom in how to approach
the teaching material.

The second approach views the learner’s knowledge not as a subset of an expert’s
knowledge, but as intersecting with it: part of the learner’s knowledge will be ‘correct’
(i.e., identical to the subject matter model), and part of it will be different. This ‘different’
knowledge is usually referred to asmisconceptionsor bugs. Hence, the learner model
consists of an overlay of the subject matter model, possibly extended with a number
of buggy facts or procedures. One of the key ideas behind the perturbation approach
is that these extensionsexplain the learner’s erroneous problem solving behaviour. Two
approaches exist. One approach uses explicit representations of the bugs stored in a
bug catalogue[16,17,19,25,44,50]. The advantage of a bug catalogue is that, once it is
available and complete, the diagnostic process is reduced to ‘comparing’ erroneous facts
and procedures (mal-rules, [65]) with the learner’s problem solving behaviour. However,
the usability of bug catalogues is hampered by the fact that their construction is extremely
laborious. Furthermore, bug catalogues are domain-specific and hence not reusable. Also
it is impossible to ensure that a bug catalogue is complete. The alternative approach tries to
overcome these difficulties byreconstructingor generatingbugs dynamically. To this end,
generative theories of bugs were developed [6,18,72]. Generative systems are based on
cognitive theories on how bugs come into being. For instance,REPAIR Theory [18] centres
around the idea of repair of impasses inimpasse-driven problem solving; an impasse
occurs when no further relevant knowledge is available or when conflicting knowledge
is applied, resulting in the learner being unable to proceed. Learners will now search for
repairs to fill this knowledge gap. Applying the repair to an impasse may lead to a bug.
Although no hand-crafted bug catalogues are needed, a disadvantage of generative theories
is that domain-specific filters have to be used to avoid the generation of implausible bugs.
Moreover, the construction of generative theories has proven to be difficult, mainly as a
result of lacking operational theories on how people acquire knowledge.

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 183

Fig. 4. A functional decomposition of performance-based learner modelling.

2.4.2. Behaviour, bugs and misconceptions
In contrast to most existing approaches we explicitly distinguish between behaviour

diagnosis and learner model construction. The different roles are illustrated in Fig. 4 by
means of afunctional decompositionof the learner modelling task [9,13]. The global part
of learner modelling refers to the actual construction of the learner model. This model
typically contains data of very different types such as the name of the learner or the number
of errors made in the last exercise, and may persist over several educational sessions. In
addition, this model may include information about what the learner is believed (not) to
know, including certain misconceptions. However, as mentioned before, a full realisation
of the latter requires an operational theory about human learning. The research presented
in this article is concerned with the local part of learner modelling. This part, which in
principle is independent from the global part, can be divided into three major functions:
monitoring, diagnosis, and repair [14,80]. As indicated in the figure, these functions
correspond to three educational functions in terms of our architecture (Fig. 2): performance
assessment, behaviour diagnosis and explanation generation. The function of diagnosis
is limited to finding a consistentexplanationof some behavioural deviation and is not
concerned with identifying the deviation itself. The latter is part of the monitoring function,
i.e., performance assessment [15]. The repair function comprises the activities that can be
undertaken to remediate the deviation in the learner’s problem solving behaviour. Notice,
that the learner model may be used as an additional input for each of these functions (see
also Fig. 2), but this is not a prerequisite. In the case of diagnosis such extra input could be
used as afocus[27].

In existing approaches, thepurposeof diagnosis is often said toexplainor indicate the
causeof errors made by the learner. Such causes are referred to by various terms, such
asbugsor misconceptions. However, there is an important distinction between the two,
as observed in [35]. The difference can be clarified by placing bugs on thebehavioural
level, and misconceptions on theconceptual level. Hence, misconceptions are higher-
level deviating or erroneous conceptions about the domain, such as “heat and temperature
are the same thing”. Bugs are behavioural errors, and can as such be manifestations
of misconceptions. For instance, the derivation “the heat is constant, and therefore the
temperature as well” can be a bug. To complete the terminology,errors are deviations
in the output of the learner. The answer “the temperature is constant” is an example of
a possible error. Summarising, errors are manifestations of bugs, which in turn may be
caused by misconceptions.

184 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

We focus on detecting bugs rather than misconceptions. This means that we restrict
ourselves to diagnosing the problem solving of the learner at the behavioural level, rather
than trying to find explanations of the learner’s (mis)conceptions about the domain. Each
problem solving process can be viewed as the application of a set of individual inference
or reasoning steps (cf. [78]). Hence, we define a diagnosis as follows:

A diagnosis is a (minimal) set of reasoning steps that cannot have been performed
correctly by the learner given the observations

A diagnosis explains the behaviour of the learner in terms ofhow this behaviour deviates
from the norm behaviour, rather thanwhy this happened. A major advantage of this
approach is that it can be based solely on a model of the reasoning steps that are
required for the problem solving process; no knowledge is required about the specific
misconceptions that learners may have about the domain. Note that by concentrating on
individual reasoning steps, we do not prescribe the order in which reasoning steps are
applied (i.e., the problem solving strategy). For instance, it does not matter whether a
learner derives the boiling of a liquid by first recognizing that the temperature of a liquid
is below it’s boiling point, and then that it is increasing, or the other way around.

2.4.3. Model-based diagnosis
In model-based diagnosis [47], the basic idea is that faults appear as a discrepancy

between the behaviour of a device, and the prediction of that behaviour made by using
a model of the device. An important consequence is that all erroneous behaviour is defined
in terms of its deviation from the correct behaviour (i.e., the behaviour as represented
in the model). Therefore, model-based diagnosis does not necessarily incorporate fault
models, and thus does not depend on the completeness of these fault models. The
notion of consistencyis mostly used to define diagnoses. Initially, all components are
assumed to be operating correctly. In the case of a discrepancy these assumptions are
reconsidered. The diagnosis, defined as a set of model components for which the behaviour
is unspecified, is the set of components for which the correctly operating assumption has
to be retracted in order for the system behaviour as a whole to be consistent with the
observations.

One of the most influential diagnostic frameworks that has been developed is theGeneral
Diagnostic Engine[30]. This approach is meant to provide a general framework for model-
based diagnosis, being capable of handling single as well as multiple faults. The diagnostic
process is completely separated from the mechanism for the prediction of behaviour. The
device model used inGDE consists of the device components, their connections, and the
behavioural constraints for each component. Furthermore, with each component an initial
assumption is associated stating that the component is functioning correctly. The diagnostic
procedure consist of three main steps: conflict recognition, candidate generation, and
candidate discrimination. Aconflict is a set of component assumptions that conflicts with
the observations. That is, if each component in a conflict is assumed to behave correctly, the
predicted behaviour of the device is inconsistent with the observations. Conflict generation
is guided by observations: after each measurement, the new observation is employed to find
new conflicts. Only subset-minimal conflicts have to be located, because each superset of
a conflict is automatically a conflict as well. The search for minimal conflicts is done by

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 185

selecting so-calledenvironments, sets of assumptions which are all assumed to be true.
Each environment is tested for consistency with the observations. If an inconsistency is
encountered, then the current environment is a conflict. Acandidatein theGDE paradigm
is a hypothesis about the difference between the actual artifact and the correct model.
A candidate defines a set of components that are all considered to be malfunctioning. Like
in the case of the conflicts, only minimal candidates are generated. Each candidate has to
account for all the known conflicts, and therefore should have at least one component
in common with each conflict. The ultimate goal of diagnosis is to find one minimal
candidate that accounts for all conflicts. The set of candidates is pruned by selecting the
most discriminating probe based on ‘minimal entropy’, a concept known from the field of
decision and information theory.

A major problem of model-based diagnosis is its computational complexity: the
diagnostic problem as it is defined inGDE and other model-based diagnostic systems
is NP-hard [20]. In model-based reasoning, this problem is alleviated by improving
the algorithms of the diagnostic engine (e.g., [27]) or by introducing more advanced
knowledge representations, such ashierarchies(e.g., [43,46,57]). In the case of the latter,
the top level of the model provides only an abstract view on the system modelled. When
a component of the top-level model is identified as relevant to be explored in more detail,
that component is decomposed into a set of lower-level components.

2.4.4. Model-based diagnosis of learner behaviour
Following ideas presented in [62], we propose a model-based approach to diagnosis of

learner behaviour. In ITS research, model-based diagnosis has not been applied often. The
work of Huang et al. [49] that uses Reiter’sHS-Tree algorithm [60] comes very close, and
also the logic-programming, deductive approach presented in [4,48] is a form of model-
based diagnosis, but references to existing research on the subject in the field of artificial
intelligence are hardly made within these publications.

Recall that in model-based diagnosis, a diagnosis is defined in terms of defective model
components. In our approach, each component represents an instantiated reasoning step in
the problem solving process. These components are used to define the diagnostic model
as areasoning traceincorporating all individual reasoning steps that must be mastered
by the learner to derive the correct solution. In accordance with this model definition, a
diagnosis is a set of reasoning steps that the learner cannot have applied correctly given the
observations.

In this respect it is interesting to note that in the Wizard-of-Oz experiment (see
Section 2.3 and [33]) teachers never came forward with remarks concerning why the
learner made an error. Instead they were mainly concerned with what the learner had done
wrong in relation to how the problem should have been solved, i.e., the norm model.
This supports the hypothesis that automating this assessment activity for simulation-
based learning environments is an important breakthrough in realising a knowledgeable
communication between such environments and learners.

Although the advantages of using model-based diagnosis in education are considerable
in terms of generality, reusability, and transferability, a major bottleneck is the fact that the
behaviour models of the ‘correct problem solving behaviour’ are not readily available [62].
As such, the costs of building domain-specific bug catalogues, or developing a generative

186 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

theory of bugs, may seem to be replaced by the cost of building domain-specific diagnostic
models. To solve this problem we propose to generate the diagnostic domain models
automatically from the output of a qualitative simulator, in which case the advantage is
evident. This requires that the output of the simulator can be transformed to meet the rather
strong requirements for model-based diagnosis (Section 3). In addition, the computational
complexity of model-based diagnosis needs to be addressed (Section 4).

3. The base model

The first problem that should be tackled in order to apply model-based techniques to
reasoning knowledge is the mapping of this knowledge onto the model-based paradigm.
This section discusses the definition of problem solving knowledge in terms of component-
connection models. The resulting models are referred to as thebase models.

3.1. Representation of the base model

For a specific prediction of behaviour, the base model represents the set of all reasoning
steps orinferencesthat are required for this prediction. An inference can be defined by
an input, an output, and some (generic) support knowledge to derive the output from the
input (e.g., [68,79]). For instance, aninfluencefrom quantityA to B serves as support
knowledge for deriving the derivative ofB from the value ofA. In the base model, each
individual reasoning step is represented as acomponent. More precisely, eachapplication
of an inference is represented as a component in the model. A base model component has
a non-empty set of input ports, a possibly empty set of generic support knowledge ports,
and one output port.3 Each component port is connected to exactly one measure point, but
one measure point can be connected to more than one component port. If a measure point
is only connected to input (or only output) ports, the point is a model input (or output). The
data flowthrough these connections is formed by instantiatedexpressions(inequalities,
causal dependencies, or quantity spaces).

A base model fragment is shown in Fig. 5, where the behaviour of a single emptying
container is considered. The model represents the derivation of two terminations: ‘volume
is going to zero’ (V > 0→ V = 0) and ‘level is going to zero’ (L > 0→ L = 0). For
the leftmost component in Fig. 5, calledquantity correspondence, the support knowledge
expression isdir_corr(V ,L), 4 the input expression isV > 0, and the output expression
is L > 0. The behaviour of a component is defined by a procedure orbehaviour rulethat
calculates the output from the dynamic and static (support) inputs:

IF V > 0 & dir_corr(V ,L) THENL> 0.

Reasoning from the value of the volumeV , we can subsequently derive the value of
the levelL, the pressureP and the flow rateFl. The derivative of the volumeδV is

3 Note that the support knowledge is not the same as the behaviour rule of the component: given an influence
relationpos_infl(A,B) as support knowledge, a behaviour rule can be defined thatusesthis relation in calculating
δB from δA.

4 dir_corr refers to ‘directed quantity space correspondence’ (Section 2.1).

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 187

Fig. 5. The base model representation.

derived fromFl by a quantity influence component. The negative value forδV , together
with the given model inputV > 0 and the quantity space[0,+], allows for the derivation
of V = 0 in the next state by aquantity termination component. Similarly, the termination
L> 0→ L= 0 can be derived by calculating the derivative of the level (δL) from δV , and
applying an equivalentquantity termination.

Based on previous research (see Section 2.3), ten main component types have been
defined for the construction of base models. These components deal with correspondences,
proportionalities, influences, terminations, and determinations. The latter inferences are

Table 1
Basic inference component types

Component Example input(s) Example Example

support knowledge output

Quant. correspondence A> 0 dir_corr(A,B) B > 0

Quant. proportionality δA> 0 pos_prop(A,B) δB > 0

Quant. influence A> 0 pos_infl(A,B) δB > 0

Quant. termination A> 0, δA < 0 [0,+] A= 0

Ineq. correspondence A1 >A2 dir_corr(A,B) B1>B2

Ineq. proportionality δA1> δA2 pos_prop(A,B) δB1> δB2

Ineq. influence A1 >A2 pos_infl(A,B) δB1> δB2

Ineq. termination A>B,δA< δB — A= B
A>B,δA< 0, δB > 0 — A= B

Value determination A=B C =A−B C = 0

A> 0,B > 0 C =A+B C > 0

Deriv. determination A>B δC =A−B δC > 0

A> 0,B = 0 δC =A−B δC > 0

188 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

used to define a value or derivative in terms of the sum of or difference between other
values or derivatives; e.g., the position of a balance in Fig. 3 can be determined from the
difference between the weight at the left and right side. Different component versions exist
for manipulating individual quantity values and derivatives, and for (in)equalities (Table 1).

To convey the basic idea behind the component definitions, we discuss one component
type in more detail: thequantity influence. For the remaining component definitions, the
reader is referred to Appendix A.

Influencesbetween quantities induce change: given a value forA, and an influence of
A on B, derive a derivative forB. To this end, a quantity influence component has one
quantity value as input, one influence as support knowledge input, and a quantity derivative
as its output. For these ports, the behaviour rules that define the “forward” behaviour of the
inference component is shown below. The syntax of the behaviour rules is as follows: ‘In’
denotes the input(s) of the component, ‘Sup’ denotes the support knowledge, and ‘Out’
denotes the output expression of the component. Expressions are printed in square brackets.
When different possibilities for one expression are given, such as in [δA= −/0/+], the
positional equivalent expression should be chosen in other parts of the rule.

Forward behaviour rules: In & Sup→ Out

IF In= [A>/=/<0]& Sup= [pos_infl(A,B)] THEN Out= [δB =+/0/−]
IF In= [A>/=/<0]& Sup= [neg_infl(A,B)] THEN Out= [δB =−/0/+]

Backward behaviour rules:

Out & Sup→ In

In 6= 0 & Out 6= 0→ Sup

Backward behaviour rules can be defined analogously5 except for one case: when the
derivatives in the input and output expression are zero (therefore:In 6= 0 & Out 6= 0), then
the influence relation at the support knowledge input (Sup) cannot be uniquely determined.
For example, from an inputA= 0 and an outputδB = 0, we cannot determine whether the
support knowledge ispos_infl(A,B) or neg_infl(A,B).

3.2. Modelling competing inferences

In qualitative prediction, causal dependencies and state changes are not always
independent, and can interfere with each other. For instance, two quantities may have
opposite influences on the derivative of another quantity, or a change in a quantity
value may not occur (yet) because another change takes place first. We refer to such
inferences ascompeting. The representation of competing inferences in the base model
is problematic, because the model-based reasoning representation employed in the base
model requires the components to obey theno-function-in-structureprinciple [28]. This
means that the behaviour of each component should be defined independent of its context,
i.e., independent of the behaviour of other components. Below, we discuss how respectively
competing dependencies and competing terminations are represented in the base model.

5 Substitute theOut, Sup andIn as specified in the forward rule to reconstruct the backward rules.

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 189

3.2.1. Competing dependencies
Consider the container system shown in Fig. 6, where water flows in from the tap, and

at the same time water flows out from the outlet at the bottom. Given a ratio of the inflow
F lin and the outflowFlout, sayFlin < Flout, the derivativeδV < 0 can be derived for the
volumeV . When no explicit constraint is modelled between such competing influences
the situation is ambiguous. Qualitative simulators typically generated all possible states
of behaviour in such situations (here, one state for each possible value ofδV) but they
usually do not specify the different ratios between the competing influences that are
true for each of the behaviours (here:Flin < Flout→ δV < 0, Flin = Flout→ δV = 0
andFlin > Flout→ δV > 0). Hence, competitive causal effects are always governed by
constraints on the ratio of the inputs of the components modelling the causal effects,
although these constraints are not always explicitly available in the simulator’s output.

To obey the no-function-in-structure principle, the behaviour of each component must
be determined solely by its inputs, without making reference to (the behaviour of) other
components. For competitive dependencies, one solution would be to define separate
combinationcomponents. In the case of the above example, this ‘combination’ component
would haveFlin > 0 and Flout > 0 as inputs, the influencespos_infl(Flin, V) and
neg_infl(Flout, V) as well as the constraintFlin < Flout as support knowledge, and deliver
δV < 0 as an output. This approach has several drawbacks however. Firstly, the above ‘add’
definition only works fortwo competing dependencies. If three or more depedencies are
competing, the number of inputs and supports will increase. Hence, the structural definition
of the ‘combination’ component is variable with respect to the number of competing
depedencies. Secondly, the complexity of the component is also disadvantageous from
a computational point of view. The rules that govern the component’s behaviour are
very complex, and backward propagation of values is impossible for most cases. Finally,
a problem related to the previous one is that the semantics of the ‘combination’
component would become rather complex. Even for the simplest case with two competing
dependencies, the number of ports is relatively large, and advanced techniques would be
needed to explain or ask questions about the component in an educational context.

Other solutions, for instance using explicit ‘add’ components for adding dependencies
two at a time, yield similar problems: both the computational properties and the semantics
are problematic [31]. Given the educational purpose of the representation, we propose a
simpler solution. We define extra types ofquantity proportionality andquantity influence
components, calledsubmissive. As can be seen in Fig. 7, this allows for explicit

Fig. 6. Representing competitive dependencies.

190 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

Fig. 7. Submissive components.

representation of ‘competing’ influences. These submissive influence components have an
extra input, representing the constraint that was needed to resolve the conflict. The same
extra input is also input to the corresponding non-submissive influence or proportionality
component (the lower component in Fig. 7). When no explicit constraint is available in the
simulator’s output, it is generated automatically.6

By modelling submissive causal relations this way, the educational system has available
all information needed for explaining the competitive effects. Although no backward
reasoning is possible through submissive components, because of its ambiguity, a major
advantage over other solutions is the clarity of this solution.

3.2.2. Competing terminations
Similar to what happens when proportionalities and/or influences cannot be applied

unambiguously, not all state terminations that are possible will occur. As an example,
consider the balance system in Fig. 8(a). In this situation, the correct transition to the
next state contains, among others, the termination fromPos= 0 to Pos< 0: the balance
position changes from equilibrium to ‘left hand side down’ (Fig. 8(b), upper one). The
termination ofVl > 0 toVl = 0 (the left container becomes empty) isnotapplied, although
the conditions are met (Fig. 8(b), lower one). The order in which terminations happen is
governed byprecedence rules(Section 2.1), in this case theε-ordering rule[28]: the result
of the former termination is immediate, whereas the latter is not. More precisely, a change
from a point(Pos= 0) to an interval(Pos< 0) is instantaneous, whereas a change from
an interval(V > 0) to a point(V = 0) is not. Therefore the former termination will have
precedence over the latter one. Hence,Vl remainspositive in the next state: the termination
component issubmissivehere.

This idea of usingsubmissive termination components to ‘transport’ non-changing
values to the next state shows similarity with the use ofcontinuity rulesin GARP (see
Section 2.1). The main difference is that continuity rules do not distinguish between
terminations that do not occur because they are ‘overruled’, and quantities that have an
explicit reason not to change, namely a zero derivative. We use submissive terminations
only for terminations that are ‘overruled’, and definecontinuity components to account for
transporting quantities with a zero derivative to the next state. Acontinuity componentis

6 Because the base model is generated on the basis of an existing behaviour simulation, we can always generate
this constraint from the available knowledge in the simulator’s output (see Section 3.3).

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 191

(a) (b)

Fig. 8. Submissive terminations.

defined analogously to a termination component, except that derivative inputs are required
to be zero.

3.3. Base model generation

The base models are generated automatically fromGARP’s output. This simulation
model contains all correctfacts that we want the learner to know or derive, and as such
defines the base for the subject matter model. A post-processor was developed that takes
these facts, generated by the simulator, and creates a base model measure point for each
of them. The facts define the expressions at the created measure points. Subsequently, all
possible validreasoning stepsare added to the base model. This is done by matching the
behaviour rules of each component type (see Table 1) to the expressions, and adding each
component that represents a valid inference step in the model. This way, the output of
GARP is used to build an explicit model of the reasoning knowledge, while the adequate
grain size of the reasoning steps is guarded by the component definition (cf. Section 2.3).
An example base model is discussed in Section 4.4.

4. Model aggregation

The base model represents the reasoning knowledge we want to interact about with
the learner, modelled at the most detailed level still relevant for education. However,
a complete prediction for the balance system (Fig. 3), consisting of six behavioural
states, yields a base model of 665 components and 612 points. This size makes the
model hardly suitable for model-based diagnosis in a run-time learning environment.
Although in theory such a number is not prohibitive for real-time diagnosis [27], the base
model has a number of specific characteristics that are disadvantageous with respect to
model-based diagnosis. Firstly, the connectivity between components is relatively low,
as compared to digital circuits. Secondly, the number of observations, and particularly
observed outputs, is low. Finally, because the calculi underlying qualitative reasoning are
relatively weak, the definition of behaviour rules for backward propagation is not possible
for all component types. The combination of these characteristics together with the large
number of components provides a ‘worst case scenario’ for model-based diagnosis. That is,

192 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

the situation is highly underconstraint leading to large numbers of diagnosis being found.
Although none of the above-mentioned characteristics of the model violates an explicit
requirement for model-based diagnosis, no ‘typical’ models (read: electronic circuits) have
these characteristics.

To make things tractable, we apply hierarchical modelling techniques. Hierarchical
structuring requires two issues to be addressed. Firstly, the hierarchical structure must
be generated automatically from the the contents of the base models. In artifacts, the
hierarchical structure is often evident from the physical and/or functional structure of the
device. Devices are usuallydesignedhierarchically for reasons of component reuse and
maintainability, and hence the hierarchical diagnostic models can be derived from the blue
prints [43]. Such a natural decomposition is not available for the kind of norm models
used in our approach. The inference components that are part of the base model do not
necessarily map onto components in the ‘real’ system: they do not have any serviceable
physical counterpart, and no blue prints are available. Despite this problem we have to find
methods for automatic aggregation.

Secondly, hierachical modelling has not only computational advantages, but from an
educational point of view it is also a necessity. A set of 665 reasoning steps, as required
for predicting the behaviour of the balance system, is large and therefore difficult to
communicate without any further means of distinguishing the crucial reasoning steps
from the less essential ones. Given this additional purpose of the hierarchical models, the
hierarchical structure should preserve the cognitive nature of the base model as much as
possible. The measure points that will be available on each of the aggregation levels play
a major role. For adequate diagnoses, there are preferably few measure points on higher
levels, which should also be easily measurable. In an artifact, the costs of a measurement
are determined by factors like physical reachability and the cost of the measuring device
needed. Measurements in the models that we use have different characteristics, and hence
different ‘costs’: in an educational context, probes are taken by asking questions. The costs
are determined by the discourse context (a question should fit in with the current topic),
but also by the knowledge level of the learner (the learner should be able to understand and
answer the question).

The two aspects discussed above are operationalised in the following main principles
for hierarchical model generation. The first principle, referred to ashiding non-essential
details, results in some components and points of the model to be discarded at a higher
level, because they do not belong to the main derivation traces in the prediction at hand. The
second principle, referred to aschunking, amounts to replacing a sequence of components
by one abstract inference component, thus combining a chain of reasoning steps into
one.7 In addition to these principles, we exploit the existing partition in the simulator’s
output into behavioural states and transitions between these states. That is, at the most
abstract level, wegroup the different inference components according to the behavioural
state or transition to which they belong. Below, we present the aggregation principles. The
algorithms that implement the aggregation can be found in Appendix B.

7 The names of these principles suggest relations to learning and teaching theories, and although such relations
exist, there are important differences (see also Section 7).

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 193

Fig. 9. Hiding of non-essential details: fully-corresponding quantities.

4.1. Hiding non-essential details

The first notion of non-essentialness is concerned with quantities that play similar roles
in the problem solving process. Such quantities are calledfully-corresponding. Pairs of
fully-correspondingquantities are abstracted into one new quantity, and hence all inference
components that manipulate them are integrated. For example, the quantitiesmass and
weight can be considered equivalent when notions such as gravitational force are abstracted
from. An example of fully-corresponding quantities is presented in Fig. 9, where for an
emptying container the quantitiesmass andvolume of the liquid are combined. Note that
the fact that two quantities are fully corresponding depends on the modelling assumptions
made: in the above example, the full correspondence between the volume and mass of a
liquid depends on the assumption that this liquid is a homogeneous mass.

Fully-Corresponding Quantities. For two quantitiesA and B with dependencies
corr(A,B), pos_prop(A,B), andpos_prop(B,A), a combined valuevalue([A,B]) and
derivativederivative([A,B]) are defined.8

All data inputs and outputs concerning eitherA or B are replaced by[A,B], and all
duplicate derivations are removed.

The conditions for quantities to be considered fully corresponding incorporate two
proportionalities and an undirected correspondence between those quantities. We apply
hiding as a mechanism for abstracting from what one could callqualitative synonyms: those
quantities that are behavingidenticallyin the context of this specific simulation. Weakening
the notion of full correspondence, by for example only requiring one proportionality,
may yield problems with directions of causality: fully-corresponding quantities can then
no longer be guaranteed to behave identically. In simulation practice, qualitative models
usually do not contain opposite proportionality relations. We define the notion of full
correspondence for educational reasons, such that information about the relation between

8 In the figures, fully-corresponding quantities should not be confused with quantity spaces, which are also
represented in square brackets.

194 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

Fig. 10. Hiding of non-essential details: removing submissive components.

fully-corresponding quantities can be used explicitly in the interaction with a learner.
Accordingly, full correspondence between different quantities is not something that is
‘discovered’ by the aggregation algorithm in arbitrary models, but it should be modelled
explicitly as such by the constructor (i.e., in terms of the model fragments thatGARP uses
for generating a simulation model).

The second form of hiding consists of leaving out submissive causal relation compo-
nents, submissive termination components, and continuity components. Submissive com-
ponents represent inferences that are usually not reported by learners or tested by teachers
unless there is a local misunderstanding [33]. Therefore, we can hide submissive compo-
nents. An example for the emptying container is provided in Fig. 10: the quantity width,
that does not play an active role in the prediction, is abstracted from.

The third and last form of hiding consists of the removal of inactive paths in the model.
Because of earlier hiding steps, some inference paths may have become “dead ends”, and
hence their derivation is no longer essential to the prediction. Removal of inactive paths in
the aggregation is also done in the context of chunking (see below), and its definition is
context dependent.

4.2. Chunking

The next step in model abstraction is chunking: when a number of steps in the reasoning
process are directly related, and the data derived by the intermediate steps are not relevant
to other parts of the reasoning process, then these steps can be taken together. We employ
two chunking principles, differing in the types of components involved:transitive chunking
andkey component chunking.

Transitive chunking amounts to chunking components of the same type: both corre-
spondence and proportionality relations are transitive, and hence subsequent components
of such types can be chunked. The notation below uses the termsinput(C) andoutput(C) to
refer to the input and the outputpointsa componentC is connected to.

Transitive Chunking. Two componentsC1 andC2 of equal typequantity correspon-
dence, inequality correspondence, quantity proportionality, or inequality proportionality,
with output(C1) = input(C2) are combined into a new transitive componentCn with in-
put(Cn)= input(C1) andoutput(Cn)= output(C2).

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 195

output(C1) should not be connected to any other specification component thanC2 (the
non-branching condition).

In general, intermediate data can only be omitted when it is not input to some other
inference component, i.e., when the sequence of inferences is non-branching. In our
model, however, this non-branching condition is weakened to allow one specific type of
branching, namely to termination components. In fact, we want intermediate quantities to
stay intermediate when they are part of a group of quantities that all change values at a
certain state change. To explain this, consider Fig. 11, where for the emptying container
the derivative of the flow rate is derived to be negative (i.e., the flow is decreasing). In this
derivation, there are branches to termination components from each of the intermediate
points (which will deriveV = 0, L = 0, P = 0, andFl = 0 respectively). Following
the definition presented above, chunking is not possible here. When replacing, say, the
two upper-leftquantity correspondence components by introducing a component deriving
P > 0 from V > 0, one input of a termination is lost:L > 0 is no longer explicitly
derived. However, the other input of that termination component (δL < 0) can also be
removed by chunking the two lower-leftquantity proportionality components. In this case,
we can remove the termination component from the abstract model, under the additional
requirement that (in the next state) the output of the termination can also be derived
by other means. In the above example, the model contains aquantity correspondence
component that derivesL= 0 fromV = 0 in the next state. Fig. 12 shows an example of
how chunking is implemented by means of both transitive correspondences and transitive
proportionalities. The model depicted is the ‘chunked’ version of Fig. 11. The quantities
level andpressure are abstracted from in the higher-level model, enabling inferences like
“there is [a positive volume of] water in the container, so it will flow out”.

The next step in chunking iskey component chunking, which is based on the idea that
some component types are more central to the behaviour of a system than others. We
consider influences and value/derivative determinations to be thekey componentsin the
base model. The rationale behind this definition is as follows. Influences represent the
existence of aprocess, which is considered an important concept in system behaviour [38].
Value and derivative determinations represent the definition of a new quantity in terms

Fig. 11. Sample derivation before chunking.

196 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

Fig. 12. Sample derivation after transitive chunking.

of others. In general, quantities that represent a difference or sum are considered to play a
more important role in the prediction than quantities whose value and derivative are derived
by propagation through correspondences and proportionalities. Note that both types of
key components are often (but not always) related: a typical example of a quantity that is
defined by avalue determination is a flow rate (i.e.,Fl = Ts − Tg), which in turn is input to
aquantity influence (i.e.,pos_infl(Fl,Hg)).

Key components are chunked in two phases: first their input is chunked with the
preceding component(s) (predecessor chunking), next the result is combined with the
succeeding component(s) (successor chunking). The definition for chunking a quantity
influence with its predecessor is given below; for an exact definition of other possible
chunks, see Appendix B.

Combined Quantity Influence. A componentCinfl of type quantity influence can
be combined with a componentCcorr of type (transitive) quantity correspondence if
output(Ccorr) = input(Cinfl), andoutput(Ccorr) is not connected to any other specification
component thanCinfl.

A new componentCn of typecombined quantity influence 1 is defined withinput(Cn)=
input(Ccorr) andoutput(Cn)= output(Cinfl).

An example is given in Fig. 13, where the model from Fig. 12 is further abstracted by
chunking thetransitive correspondence component with thequantity influence component.
The transitive proportionality component in Fig. 12 can be removed because its only

Fig. 13. Sample derivation after predecessor chunking.

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 197

purpose is to derive an input for the termination component. This termination component
is removed by the chunking algorithm: the outputFl > 0 of the termination component in
the next state is also abstracted from by the chunking algorithm.

4.3. Grouping

As a third and last step, we generate abstracted models by grouping. Grouping is inspired
by the educationally relevant subtasks that can be distinguished in prediction of behaviour:
specificationof individual qualitative states, andtransitionsbetween these states. Grouping
should be conceived as an additional top-level structuring of the subject matter rather
than as an operational hierarchical layer: no behaviour rules are defined forspecification
and transition components. In the description below, the super typetransition refers to
all (submissive) termination and continuity component types, andspecification covers the
remaining component types.

Grouping State Specifications.All componentsCi of type specification that belong to
the same state are combined.

A new componentCn is defined with

expression_set(input(Cn))=
⋃

expression(input(Ci)) and

expression_set(output(Cn))=
⋃

expression(output(Ci)).

Grouping State Transitions. All componentsCi of type termination that belong to the
same transition are combined.

A new componentCn is defined with

expression_set(input(Cn))=
⋃

expression(input(Ci)) and

expression_set(output(Cn))=
⋃

expression(output(Ci)).

Instead of single expressions, the data flow between the components consists ofsets
of expressions; the notationexpression(P) is used to refer to the expression carried by a
pointP.

Fig. 14. Grouping of states and transitions.

198 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

Fig. 15. The piston system.

Because grouping is applied as the last aggregation step, the expressions flowing
between the different specification and transition components are likely to be small in
number; many expressions in the base model are already abstracted from in the other
aggregation steps. To exemplify this, consider the high-level model for the balance domain
depicted in Fig. 14. Because we abstracted from various intermediate quantities at lower
levels, such as pressure and flow rate, the state description that forms the output of the first
state specification is relatively small. If we apply grouping directly to the base model, then
this state specification output contains 13 instead of 5 elements.

4.4. An example model

As an example of the modelling and structuring principles discussed above, consider the
piston system in Fig. 15. The piston system consists of a movable piston in a container.

Fig. 16. Part of the base model for the piston.

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 199

Fig. 17. Same model part after hiding of non-essential knowledge.

Between the heater and the gas in the container, a heat path exists. In the initial state of
the system, the temperature of the gas and that of the outside world are given to be equal
and the heater has been turned on, expressed by the fact that its temperature is higher than
that of the gas. Furthermore, the temperature of the outside world is given not to change,
and the piston is in its starting position. The model generation algorithm as described in
Section 3.3 generates a base model for the behaviour of the piston system consisting of 824
components and 802 points. For the initial state and the transition to the second state, the
most important part of the base model is shown in Fig. 16. At the left hand side, the bold
face expressions likePos= s (the position of the piston is in thestarting position) represent
the inputs of the model, i.e., the information that is given to the learner, and hence can be
assumed to be known. The movement of the piston is modelled as influenced by a ‘move
force’ Fm, which is the difference between the outward forceFo and the inward forceFi .
Because no friction is modelled, these two forces are equal to the pressure of the gas and
the pressure of the surrounding world, respectively. What happens in the model part shown
is that the temperature difference between the heat source and the gas (Ts > Tg), causes an
increase in the pressure of the gas (δPg > 0) and in the outward force (δFo > 0). Because
the temperature of the outside world is given to be steady (δT = 0), we can derive that the
pressure of the gas becomes higher than the pressure in the outside world (Pg > Pw), and
hence also the outward force becomes bigger than the inward force (Fo > Fi).

The first aggregation principle applied to the base model is that of hiding non-essential
details (fully-corresponding quantities, submissive components, and inactive paths). The
model that is generated on top of the base model is shown in Fig. 17. For hiding, the effect
is particularly strong in the piston example because there are a number of quantities whose
values never change.9 For instance, both the temperature and the heat of the heat source
(Ts andHs), as well as those of the surrounding world (Tw andHw), have the valueplus in
every behavioural state. Recall that in the base model, this kind of ‘staying the same’ from
state to state is modelled bycontinuity components, which are abstracted from by the hiding
algorithm. The hiding algorithm is also concerned with simplifying the model by merging

9 In the base model, these values are indeed derived, but they are left out of Fig. 16 for clarity of presentation.

200 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

Fig. 18. Same model part after chunking.

quantities that are fully-corresponding. For example, the outward force and the pressure of
the gas are modelled as fully corresponding, resulting in the combined quantity[Pg,Fo],
and also the volume of the gas and of the container ([Vg,Vc]). The latter combination is
however removed because it does not matter for the reasoning in this state: the volume does
not change, hence it has no effect on the pressure (cf. thesubmissive quantity proportionality
component in Fig. 17). ComponentSIT is removed because it is a submissive termination.

Fig. 18 shows the next generated abstract model after chunking. Although in fact
chunking is done in three phases, we only show the resulting model. The chain of reasoning
steps from the model inputTs > Tg to δ[Pg,Fo]> 0 is chunked into onecombined quantity
influence component. As a result of this chunk, theinequality termination component
derivingTg > Tw loses one input (δTg > 0). This component is removed becauseTg > Tw
is not used in any successor state; although it is a valid termination, it does not have any
impact on the behaviour in the subsequent states, and hence is considered a “dead end”.

Finally, grouping selects the different states and transitions, and creates one component
for each (Fig. 19). As a result, the format of the data flow between the components changes
from single expressions to sets of expressions representing state descriptions.

5. Diagnosing learner behaviour

Although the base models are defined in terms of components and connections for the
sake of model-based diagnosis, some additional processing is needed to apply diagnostic

Fig. 19. Same model part after grouping.

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 201

techniques to these models. Firstly, some additional ‘fine tuning’ of the hierarchical models
is required to befit the diagnostic task (Section 5.1). Secondly, we need aprediction engine
that, given a set of observations, predicts the behaviour of the system to diagnose, in our
case the learner’s reasoning process (Section 5.2). Finally, thediagnostic engineof GDE
needs a dedicated selection mechanism for obtaining additional observations (Section 5.3).

5.1. The role of inputs

In device diagnosis, ‘inputs’ are defined as the values that the diagnostician puts on a set
of points in the device, in order to observe the values at another set of points, the ‘outputs’.
For models that we use, two different kinds of inputs exists. Firstly,exercise inputsare the
expressions that are presented to the learner as part of the problem statement. For instance,
when the learner is presented with the balance problem in Fig. 3, the exercise inputs are

Wl >Wr, Ll < Lr, Vl = Vr, Vl > 0, Vr > 0.

Secondly,support knowledge inputsare all other inputs of the model, consisting of domain
knowledge expressions that are used to perform inferences, such as causal dependencies
and quantity spaces. For instance, the relationdir_corr(L,P) between the level and the
pressure is a support knowledge input of the model.

The difference between the two types of inputs is problematic for diagnosis. The
assumption made in (device) diagnosis that all model inputs are correct only holds for
exercise inputs: the expressions explicitly presented to the learner can be assumed to
be applied correctly. In contrast, support knowledge inputscannot be assumed to be
correct. For instance, learners may think that in the balance system the volume instead
of the level determines the pressure. The problem is that a diagnosis that is defined in
terms of defective components cannot discriminate between a support knowledge input
that is not correctly known, and a reasoning step that cannot be executed: both will be
traced to the component modelling the reasoning step. The solution to this problem is
shown in Fig. 20. The correspondence between the level and the pressure in a contained
liquid (dir_corr(L,P)) is connected to the actual inference component by means of an
intermediateretrieval component. We can now diagnose the fact that a learner does not
know a support knowledge input as afaulty retrieval component. The retrieval inference
can be interpreted as representing the action of retrieving a piece of knowledge from
memory.

Fig. 20. Fallible domain knowledge inputs: retrieval components.

202 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

5.2. The prediction engine

The prediction engine used is similar to a constraint propagator, but instead of constraints
it uses directedrules to propagate expressions through the model (cf. Section 3). For
a component with three ports, three behaviour rules are needed to match the predictive
power of a constraint. The complete set of component types as defined in Appendix A
has 78 ports in total, and 40 behaviour rules are specified. Since the behaviour of the
components is underspecified, the conflict set calculated by the prediction engine will
not always be minimal. When the conflict set is non-minimal, this means that the set
of resulting candidate diagnoses will also be non-minimal. However, the candidate set is
still guaranteed to be complete: no valid candidates will ever be missed [30]. Because the
hierarchical diagnostic models are small (typically less than 10 components), calculating
larger candidate sets does not pose computational problems, although sometimes a larger
number of probes will be needed to arrive at a satisfactory diagnosis.

5.3. The diagnostic engine

TheGDE engine as introduced in Section 2.4.3 is used without significant modifications
to calculate possible candidate diagnoses. The one important remaining bottleneck is which
additional measurements should be taken to discriminate between candidate diagnoses.
The specific nature of reasoning models requires a dedicated technique for selecting
measure points. In this section, we discuss some properties of these models that can be
exploited in developing criteria for measurement selection. Subsequently, we propose a
method for determining measure points.

An important difference between models that we use and digital circuits lies in the
nature of the components. In a digital circuit, two components of the same type may
behave according to the same rules, but are still physically distinct instances. In reasoning
models, this is not necessarily the case: one reasoning step applied correctly in one part
of the model is very likely to behave correctly as well in another part: by their nature,
different components of the same type are likely to fail collectively. A learner that does
not know how to apply a quantity termination is likely to exhibit the same error (faulty
quantity termination inference) at several places in the model. The only exception is formed
by components of theretrieval type: here, different instantiations are indeed independent
operations, because they refer to the retrieval of different knowledge facts. The error of not
correctly ‘retrieving’ the relation between, for instance, level and pressure is usually not
related to an incorrect retrieval of the negative influence of the, for instance, flow rate on the
volume. This different nature of reasoning models is exploited by the diagnostic algorithm:
the failure probability of a set of instances of the same component type is defined to
be equal to that of a single component. Hence, a candidate consisting of four failing
inequality correspondence components has the same probability as a single component
candidate.

For retrieval components, it is possible to employ an additional heuristic in candidate
discrimination: because most errors made in the experiment appeared to be caused by
missing or confused domain knowledge [33], retrieval components can be assumed to
have a highera priori failure rate than inference components. In addition,decomposable

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 203

components have a highera priori failure rate than individual base model components,
because they incorporate a number of reasoning steps in the base model.

Important to note is that the use ofa priori failure rate only depends on the type of
component, and is independent of the specific contents of the simulation model. More in
general, the diagnostic engine exploits only the structure of the model and the types of the
components, and does not make any reference to the specific behaviour prediction that is
modelled (see also Section 2.2).

The heuristic method used to find the split point in the set of candidate diagnoses is
based on the same ideas as thehalf split criteria employed in for exampleSOPHIE-III [29]
andFAULTY [5]. The half split approach aims at finding the point that optimally splits the
set of components that contributes to a symptom: given the set of componentsCpSthat
contributes to a symptom, thesplitting factor for a possible measure pointp is defined
as |CpSbp− CpSap|, whereCpSbp is the subset ofCpScontributing to the value ofp
(“before p”) and CpSap the subsetCpSnot contributing to the value ofp (“after p”).
In our case, simply taking the difference in numbers of components does not work:
because we do not make the single fault assumption, and also use differenta priori fault
probabilities, a candidate is no longer synonym with one component. Hence, we introduce
the weighted cardinality of a candidate, facilitating the comparison of candidates. The
weighted cardinality of a candidate expresses its probability in terms of the number and
type of components it consists of.

The algorithm for candidate discrimination as shown below first checks whether the
candidate set found so far is satisfactoryfor the current hierarchical model, according to
the criterion of the educational system. If so, and further decomposition is possible, the
decomposition algorithm proposes a new diagnostic model; if no further decomposition
is possible, the diagnostic session ends (see below). Otherwise, the algorithm proceeds
to determine the possible measure points. In step 2(b), the weighted cardinality of each
candidate is calculated. The definition of a candidate’s weighted cardinality embodies the
different aspects discussed before: retrieval and decomposable components have a highera
priori failure rate and are counted individually. Components of the same type are counted
only once. By its definition, the lower the weighted cardinality of a candidate, the higher
its probability. Subsequently, we can map these weighted cardinalities on the individual
components, yielding theunnormalised probability of a component. This probability
expresses the different candidates that a component is part of: when a component belongs
to more than one candidate, knowing its status will provide more information. Hence,
the higher a component’s unnormalised probability, the more important it is to focus the
diagnostic process on this component (step 2(c)). The unnormalised probabilities of the
components are used in calculating the splitting factor for each measure point (step 2(e)).

Algorithm: Candidate Discrimination
(1) If the candidate setCaSmeets the criteria as set by the educational system, then go

to thedecompositionalgorithm (Appendix B).
(2) Else, determine a measure point.

(a) Collect the set of all possible measure pointsMPSby tracing backwards from
the set ofsymptoms(i.e., observations that do not match the predicted value)
through the model.

204 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

(b) For each candidateCai ∈CaS, calculate itsweighted cardinality WCCai .
LetR be the number of retrieval components inCai .
LetH be the number of decomposable components inCai .
Let T be the number of other componenttypesin Cai .
The weighted cardinality of a candidate is defined asWCCai = 0.7∗ R + 0.5∗
H + T .

(c) LetCpSbe the set of components that contribute to the set of symptoms. Define
the unnormalised probability of a componentCp∈ CpSto be

∑
1/WCCai for

all candidatesCai containingCp.
(d) For each pointp in MPS, let CpSbp ⊂ CpS be the set of components that

contribute to the value ofp and letCpSap=CpS\CpSbp.
(e) For each pointp in MPS, calculate its splitting factorSFp . Let UPbp be the sum

of the unnormalised probabilities of the components inCpSbp, andUPap the
sum of the unnormalised probabilities of the components inCpSap.
The splitting factorSFp of measure pointp is defined as|UPbp−UPap|.

(f) Order the probe points inMPSaccording to their splitting factorSFp: the best
probe point is the one with the smallest value forSF.

(3) Execute a probe by outputting the ordered list of probe points, and wait for the set
OBSof returned expressions.

(4) Call theGDE conflict recognition algorithm (Appendix B) with the setOBS.

The definition of the weighted cardinality of a candidate includes some numerical
interpretations of qualitative observations that may prove to be non-optimal. For example,
the fact that a retrieval component is counted as 0.7 is a somewhat arbitrary quantification
of the observation that more errors are made in the domain knowledge than in the reasoning
knowledge. Because of the small number of components that is diagnosed at once in the
hierarchical model, the impact of such choices will be relatively small.

A major advantage of the discrimination algorithm is that the computational costs are
low because no behaviour propagation is involved. However, the final diagnosis may not
always be found in the minimum number of probes possible: the algorithm does not use
estimations about the total number of probes needed to pin down the final diagnosis, as is
for instance done in [28]. Apart from the fact that in general estimations of the total number
of probes needed are not necessarily cost-effective [29], a more specific reason exists for
not using such estimations: because the hierarchical models ensure that the diagnostic
models are small, the number of possible probe points is generally low. Hence, the impact
of a suboptimal probe point selection is limited.

As defined in step (3), the candidate discrimination algorithm does not deliver one probe
point, but a list of possible probe points ordered to their discriminating power (i.e., their
splitting factor). Although the diagnostic machinery can reason about the expectedresults
of a certain probe point, it cannot determine thecostsof a specific probe within the current
educational context. As a result, the most effective probe suggested may be very expensive,
in the sense that it does not fit in with the current dialogue. In this case, the educational
system may select another probe point from the list.

The diagnostic method presented above works within a model at one level of abstraction.
Throughdecomposition, a diagnosis found on one level of abstraction can be refined

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 205

Fig. 21. Top-level diagnostic model.

by considering the related components at a lower level. Especially if multiple faults
are possible, it is difficult to ensure soundness and completeness of the diagnostic
process when hierarchical decomposition is applied [57]. In our models we cannot expect
soundness or completeness: apart from the possibility of multiple faults, there are also
different kinds of aggregations with different properties. We take a practical stance: within
a specific model, we diagnose until the external criteria for what constitutes a satisfying
diagnosis are met. If not already at the lowest hierarchical level, the component with
the maximum unnormalised probability is decomposed, and diagnosis is resumed in the
resulting lower-level model. If the diagnostic algorithm returns an empty set of candidates
(i.e., the decomposed model does not reveal a conflict), the decomposition is undone and
the next most probable component is selected for decomposition. This last step is only
needed to account for the (undesirable) situation in which the external criterion for a
satisfactory diagnosis is too weak. Hence, the candidate discrimination algorithm may call
for decomposition with a too large candidate set: the component first selected may not
belong to the correct minimal diagnosis.

5.4. An example diagnosis

This section exemplifies the use of the diagnostic algorithms in an educational setting.
We continue the piston example as used in Section 4.4. The top-level model from Fig. 19
for the first state and transition is repeated in Fig. 21.10 The learner is presented with a
description and a picture of the initial behavioural state of the piston system. The questions
asked are multiple choice. Suppose the strategy for subject matter sequencing that is used
by the educational system is to follow the top-level model and ask for each change (i.e.,
each output of atransition component).11 As a result of this strategy, the first question
asked is about the output of thetransition componentST. The only expression available
is the inequality between the combinedpressure/force quantities of the world and the gas.
For convenience, in the remainder of this section we will only refer to pressure, both in
the questions and in the figures. However, the educational system has the possibility to

10 Recall from Section 4.3 that the input of a state transition also contains the input expressions of the preceding
state specification. These are left out for reasons of presentation.
11 Additional control is needed when alternative transitions and/or cycles exist, but this is not essential to the

diagnostic approach.

206 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

talk about force instead of pressure if that would fit in better with the current educational
context.

Probe 1.
Teacher: The pressure of the gas is initially equal to the pressure of the outside

world (Pg = Pw).
What do you think about this pressure ratio in the next behavioural state?
a. Pg < Pw ;
b. Pg = Pw ;
c. Pg > Pw .

Learner: b. Pg = Pw .

The answer is wrong, so one or more components in Fig. 21 must be erroneous. Because
no observations are known about the point betweenSS and ST, the top-level focusing
algorithm asks for additional observations. At this point, two expressions can be measured:
δPg > 0 or δPw = 0. Suppose the educational system chooses to ask only the first one.

Probe 2.
Teacher: Is the pressure of the gas initially:

a. increasing;
b. steady;
c. decreasing.

Learner: a. increasing.

According to the top-level focussing heuristic, the diagnostic system assumes that an error
has been made in thetransition component: an expression in the input is measured to
be correct, and one in the output is measured to be incorrect. Therefore, thetransition
component is decomposed, resulting in the situation in Fig. 22. This decomposition does
not yield a larger number of components, but only splits the compound expression into
three new ones. Because we do not have an observation for the lowest input port of
IT-2 (δPw), no conflict is found: the prediction engine will derive the incorrect expression
δPw > 0 for this port, but there is no observation to conflict with this expression. As a

Fig. 22. Decomposition of the state transition component.

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 207

result, the diagnoser returns with an empty conflict set, and the educational system is asked
for new observations at the top level. The only resulting expression to ask for isδPw = 0.

Probe 3.
Teacher: Is the pressure of the world initially:

a. increasing;
b. steady;
c. decreasing.

Learner: b. steady.

Because the answer is correct, the same decomposition ofST is executed. This time,
the new observation results in the single-fault diagnosis[IT-2]: all inputs are either given
(Pg = Pw) or observed to be correct(δPg > 0, δPw = 0), and the output is observed to be
faulty (Pg = Pw).

As a second example, consider the case in which the learner gives another answer in
Probe 2.

Probe 2b.
Teacher: Is the pressure of the gas initially:

a. increasing;
b. steady;
c. decreasing.

Learner: b. steady.

The top-level focussing algorithm now restarts the search for the initial focus from
the point betweenSS and ST, and finds that the error must be inSS: all inputs are
known to be correct, because they are given, and the output contains an incorrect
observation. Hence, the statespecification component is decomposed as shown in Fig. 23.

Fig. 23. Decomposition of the state specification component.

208 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

Fig. 24. Decomposition of the transitive quantity proportionality component.

In this case, the decomposition yields an immediate single-fault diagnosis[CQI-2] at
level 4. BecauseCQI-2 is an aggregated component, the decomposition algorithm (see
Appendix B) is called. This results in the level 3 model shown in the lower part of
Fig. 23. The diagnostic algorithm is now called on this five component model. One
conflict is found, namely〈R1, R2, VD, QI, TQP〉, resulting in the single-fault candidates
[R1], [R2], [VD], [QI], and [TQP]. There are four possible measure points that provide
information for discriminating between these components, labeledFl = Ts − Tg , Fl > 0,
pos_infl(Fl, Hg), andδHg > 0. Because each of the five components in the submodel is
a single-fault candidate, the unnormalised probability is 1/0.7= 1.43 for the two retrieval
componentsR1 andR2, 1/0.5= 2 for the decomposable componentTQP, and 1 for the
base model componentsVD andQI. Calculation of the splitting factor of these measure
points yields the smallest value for the pointFl > 0: |(1.43+ 1)− (1.43+ 1+ 2)| = 2.
Hence, the best point to probe is to ask for the value of the flow rateFl.

Probe 3b.
Teacher: What is the direction of the heat flow between source and gas?

a. from source to gas;
b. from gas to source;
c. there is no heat flow between source and gas.

Learner: a. from source to gas.

The new candidate set consists of[R2], [QI], and[TQP]. Calculating the splitting factor for
the two remaining measure pointspos_infl(Fl, Hg) andδHg > 0 now yields|1.43− (1+
2)| = 1.57 and|(1.43+ 1)− 2| = 0.43, respectively. NowδHg > 0 is measured.

Probe 4b.
Teacher: Is the heat of the gas initially:

a. increasing;
b. steady;
c. decreasing.

Learner: a. increasing.

The single-fault diagnosis found now,[TQP], results in a new decomposition, as depicted in
Fig. 24. The diagnoser returns a candidate set consisting of[R3], [QP1], [R4], and[QP2].

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 209

The measure pointδTg > 0 exactly splits the set of candidates in two, as is reflected by its
splitting factor|(1.43+ 1)− (1.43+ 1)| = 0. Hence, the next probe concernsδTg .

Probe 5b.
Teacher: Is the temperature of the gas initially:

a. increasing;
b. steady;
c. decreasing.

Learner: a. increasing.

Because the answer is correct, two candidates[R2] and[QP2] remain, and one possible
probe pointpos_prop(Tg, Hg).

Probe 6b.
Teacher: What is the relation between the temperature and the pressure of the gas

in the current state?
a. if the temperature increases, then the pressure increases;
b. if the temperature increases, then the pressure decreases;
c. if the temperature increases, then this does not affect the pressure.

Learner: a. if the temperature increases, then the pressure increases.

The final diagnosis found is[QP2]: the learner does know the relation between temperature
and pressure, but did not apply it here.

The interaction traces reflect diagnostic sessions in which a maximally detailed
diagnosis is determined using a minimal amount of information. In a full-fledged
educational system, other functional components are available to provide a richer
interaction, such as a discourse planner [80]. In addition, a number of observations may be
already available from the learner model, which can be used both to improve the dialogue
and to reduce the number of probes. The educational system does not need to proceed until
one single fault is located in the base model, but may decide to start explaining a larger
part of the process after some probes.

6. TheSTARlight prototype system

To assess the feasibility of the diagnostic process and the usefulness of the aggregated
subject matter models, theSTARlight prototype system12 was developed and try-out
sessions with learners were conducted. The design of theSTARlight system concentrated
on the main research topics, namely subject matter model generation and diagnosis. Both
components were fully implemented according to the techniques and algorithms described
in this article. For the other components of the architecture, which was shown in Fig. 2, we
implemented ‘light’ versions.

12 The acronymSTAR stands forSystem forTeachingAboutReasoning. Because the prototype only implements
the subject matter model and the diagnostic function of theSTAR system in detail, it is christenedSTARlight.

210 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

The explanation generator in the prototype is based on explaining individual compo-
nents. For each component type, a generic explanation frame can be constructed that com-
plies with the current situation, and this frame is filled in with the terms in the model
using a set of domain-specific verbalisations. The question generator works similarly, and
generates multiple choice questions about specific points in the model.

Although in the implementation hardly any effort was made to optimise the performance
of the system, it is nevertheless adequate for real-life applications. On a 200 MHz Pentium-
Pro platform under Linux, the diagnostic component returns a candidate set mostly within
one second. The longest calculation time needed in the try-out sessions was four seconds.
The domain-specific verbalisations and graphics are as yet only implemented for the
balance domain. Hence, the try-out sessions of the system were conducted using this
system. For larger predictions, the performance is expected to be similar: as a result of the
aggregations used, the size and complexity of the diagnostic models does not increase with
larger simulations. The only increase is in the simulation and model generation process,
but these can be processed in the background.

An example of the interface screen is shown in Fig. 25. In the upper half of the screen,
the behavioural states of the balance system are shown. The pictures are generated from
the subject matter model; a set of quantitative measures is added to define the actual size of
the levels and the widths of the water columns on the screen. The lower half of the screen
displays the questions and explanations provided by the system. At the bottom, buttons
are provided for selection of an answer, as well as a ‘give me a hint’ button that provides
a help text in a separate window. This help text is also constructed by the explanation
generator.

Fig. 25. A screen dump of the interface.

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 211

6.1. Try-out sessions

We conducted a small number of try-out sessions to determine whether theSTARlight

system is useable in an educational setting. Because theSTARlight system has been
developed to demonstrate the diagnostic framework developed, we did not try to evaluate
it as a full-fledged educational system.

In the try-out sessions, the subjects were asked to do a series of four balance prediction
exercises. The think-aloud method [71] was employed to provide information about the
subject’s reasoning behaviour. There were two separate sessions. In the first session,
four subjects participated, all being third or fourth year university students who had
some background in knowledge-based educational systems and the subject matter (i.e.,
qualitative behaviour analysis). These subjects will be referred to as ‘advanced subjects’.
In the second session, there were five subjects from different backgrounds, who had no
experience with either educational systems or the subject matter. We refer to these subjects
as ‘novice subjects’. The experiment took about 30 minutes for each subject. Afterwards,
the subjects were asked a number of questions about their experiences. These questions
were aimed at the explanations of the final diagnoses and at the probe questions. The
subjects were asked whether they thought that the system correctly determined the mistake
they made, and whether the questions asked by the diagnoser were appropriate, in a logical
order, and not too large in number.

Each of the nine subjects performed the same four prediction exercises about the balance
system. In total, 31 diagnostic sessions were run and 707 questions were answered. Novices
appeared to make about twice as many errors as advanced subjects. For most cases the
number of probes that was needed, to arrive at a satisfactory diagnosis, varied from one
to three. In eight diagnostic sessions, more probes were needed. The longest sequence
of probes was eight, which occurred twice. The number of probes per diagnoses was
on average the same for novices and advanced subjects. Also, the variation in the types
of the components found as the final diagnoses (e.g.,retrieval components versus other
component types) was not significantly different in both groups.

6.2. An example diagnosis

A worked-out example is provided of a diagnosis session that occurred in the try-out
sessions. The example is taken from the first session with advanced subjects. A part of
the interaction, combined with the think-aloud remarks made by the subject, is shown
below.13 The dialogue starts when the subject is asked to predict the next behaviour state,
starting from the balance situation shown in Fig. 3. This situation is equal to the leftmost
state shown in Fig. 25.

1. What will be the difference between volume left and volume right in the next state?
2. Hey, look, the volumes are equal. I didn’t take notice of that.
3. Yes, I think they stay equal?

13 Lines with plain text are generated by theSTARlight system. Lines in italic starting witha:, b: or c: are answers
given by the learner. Think-aloud remarks are in italic with indent.

212 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

4. b: volume left will be equal to volume right
5. That’s not correct.
6. Before we go on with the prediction, I would like to know what you think about the

present situation.
7. Please answer the following question:
8. What do you know about the difference between the decrease in volume left and the

decrease in volume right?
9. Volume left decreasing slower than volume right?

10. No, at the same speed I would say.
11. b: volume left is decreasing at the same speed as volume right
12. That’s not true.
13. Please answer the following question:
14. What do you know about the difference between outflow left and outflow right?
15. Well I would say that the outflow is equal, but that is now

when the pressure [incomprehensible]
16. Ah! Is that it? The outflow left is smaller
17. c: outflow left is smaller than outflow right
18. That’s right.
19. Please answer the following question:
20. which quantity causes a change in volume?
21. The outflow, or the pressure, yes the outflow
22. c: outflow
23. That’s right.
24. I think you don’t fully understand the following:
25. the difference between outflow left and outflow right has a direct influence on the

difference between the decrease in volume left and the decrease in volume right.
26. This means that because outflow left is smaller than outflow right, volume left is

decreasing slower than volume right.
27. Let’s continue with the exercise where we left off.
28. All right, interesting. . .

To explain the diagnostic process underlying this interaction, consider Fig. 26. The
answer given in line 4 supplies the observationVl = Vr in the output of thestate transition
componentST. ST models the transition from the first to the second state at the highest
hierarchical level. In the prototype system, the subject matter sequencing is simplified
to only asking the output of each subsequenttransition component. Hence, a conflict at
the highest level results in a decomposition oftwo components: the precedingtransition
component plus the previousspecification component (for more details, see [31]). Hence,
SS andST are decomposed into the seven-component model depicted. The first call to
the diagnoser delivers one conflict:〈CII, IT〉, and hence two diagnoses[CII] and [IT].
Thecombined inequality influence CII is a decomposable component that summarises the
calculation of a derivative inequality (in this case, the ratio of the decreases in volume
δVl > δVr) from an (in)equality (the ratio of the water levelsLl < Lr). The inequality
termination IT determines the new inequality between the values in the next state. The
only probe point that yields information about the candidates[CII] and [IT] is in between

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 213

Fig. 26. First diagnostic cycle.

these components. Hence, a question is asked about the inequality between the derivatives
of the volumes(δVl > δVr , line 8). The answer given in line 11 is incorrect, yielding a
single-fault diagnosis[CII]. Because this is a higher-level component, it is decomposed into
a lower-level model as shown in Fig. 27. The next diagnostic cycle yields one conflict
〈TIC, R3, II〉 and three candidates[TIC], [R3], and [II]. For the two existing measure
points, the splitting factors are determined by the discrimination algorithm. For the point
neg_infl(Fl,V), the splitting factor is calculated on the basis of thea priori failure rates
of retrieval componentR3 (0.7), decomposable componentTIC (0.5), and ‘normal’ base
model componentII (1): |1/0.7− (1/0.5+ 1/1)| = 1.57. ForFl < Fr , the splitting factor
is |1/0.5− (1/0.7+ 1/1)| = 0.43. Fl < Fr has the lowest value, and thus the highest
discriminating power. Hence, this one is questioned (line 14) and answered correctly
(line 17). This results in the new conflict〈R3, II〉 and two candidates[R3] and [II]. The
last probe onneg_infl(Fl,V) in line 20 delivers the inequality influence componentII as a
final single-fault diagnosis. In lines 24–26, an explanation is generated for this component.

Fig. 27. Second diagnostic cycle.

214 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

6.3. Evaluation

According to the interviews held with the subjects after the experiment, especially
advanced subjects were satisfied about the prototype’s interaction. The amount of questions
was considered reasonable, the subject of the questions to the point, and the order in which
the questions were asked occurred natural to them. In general, they had the idea that the
diagnoses were correct and the explanations useful, although sometimes “outdated”: the
probe questions sometimes triggered self-repair by the subjects, and hence the ultimate
diagnosis pointed out an already fixed problem (see also Section 8).

Novices reported problems with the sometimes rather cryptic questions and the specific,
one-component based explanations. Clearly, a more advanced question and explanation
generator is required to communicate with novices. Furthermore, the balance system
may not be very suitable for novices, because it involves rather complicated inequality
reasoning. As will be discussed in the next section, starting with simpler systems (e.g., one
emptying container) may yield better results for novices.

7. Related work

As indicated in Section 2.4, we propose a novel, generic approach to diagnosis of
learner behaviour based on existing techniques from the field of model-based reasoning.
Whereas we discussed qualitative reasoning and model-based diagnosis, as well as earlier
approaches to educational diagnosis, we did not yet discuss how the aggregation techniques
relate to existing work on abstraction in both model-based reasoning and theories on
education

An alternative for the aggregation procedures presented in this article would be to derive
the abstract models by generating more abstract simulations of the intended behaviour
in the first place [37]. The base model generation algorithm can then be applied to each
of these models to generate the related hierarchical layer in the subject matter model. In
this alternative approach the actual abstraction process has moved to the scenarios and the
library of model fragments. In fact, within the field of qualitative reasoning, substantial
research has been done on how thegenerationof qualitative simulation models can be
adapted, e.g. [54,61,66,73,74]. The motivation for these adaptations varies from removing
irrelevant details, or spurious behaviours, to tailoring for a specific task. An important
advantage of abstraction before simulation is that often the number of states that is
generated by the simulator can be decreased; this is precisely the aim when trying to avoid
spurious behaviours. However, in our research we have the additional goal of exploiting
the abstractions in an educational context. We therefore need to have the relations between
the different abstraction models explicitly available. If we generate the models separately,
from different scenarios, we do not have explicit knowledge about the connections between
the components in the different models.

Some research has been done on summarising the results of qualitative simulations, i.e.
reformulating the output after it has been generated. In [42], an approach is described that
uses a set of heuristics to collapse chains in a causal order graph of quantity relations for
the purpose of simplifying explanations. The major difference with our approach lies in

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 215

the application of the technique: while they focus on explanations, we focus on teaching
a reasoning process. As such, we do not aggregate the relations in the causal order graph
itself, but a model that represents the reasoning steps that can be made with these relations.
This way, we can locate those reasoning steps that a student did not yet master, and not only
the causal relations they do not know. Most other approaches that are aimed at simplifying
simulation outputs operate again at the level of states. An example is [55], where complex
behaviour graphs are abstracted by reducing the number of states to be considered. This
approach is complementary to ours. We take the number of states and state transitions as
a given, and try to abstract from less relevant details in the reasoning that is done ‘within’
these states and transitions.

The aggregation procedures presented in this article hide details when mapping the
current level to the next higher level. The idea of exploiting models of differing complexity
in teaching has been investigated in [76].14 Model Progression Theoryproposes a set of
models to be used in educational systems. They define three dimensions on which these
models may vary:perspective, order, and degree of elaboration. The key idea is that
learning can be optimally supported when different models are presented in succession,
starting from the simplest one. The aims of model progression are clearly different from
ours, and therefore the techniques are complimentary. Model progression is primarily
concerned with subject matter sequencing and supporting the learning process at a more
global level. Hence, where model progression is about selecting the right model in a
progressive sequence, we take a specific simulation model to start with as a given. In fact,
the evaluative remarks in Section 6.3 already indicated that for novice learners a ‘model
progression-like’ approach can be very beneficial. Note however that the construction of a
set of models according to the dimensions specified by causal model progression is as yet
not an automated process (see [34] for ideas on how to automate model progression).

Whereas model progression concentrates mainly on acquiring new knowledge, there
are also a number of theories that model learning in terms of combining and improving
existing knowledge. InSOAR [52], a general architecture for modelling intelligent
behaviour, an important learning operator ischunking: if a procedure (consisting of a
set of inferences) is processed once, then often one abstract inference can be compiled
to replace future processing of the procedure [53].SOAR’s learning-by-chunking mainly
increases efficiency.Knowledge Compilation[2] is similar to chunking, in that it models
the process of constructing domain-specific shortcuts for general (inefficient) reasoning
paths during learning. In theACT* andACT-R theory, knowledge compilation is viewed as
an important learning mechanism in skill acquisition [1]. An important difference between
these techniques and the aggregation principles described in this article is that we do not
aim at modelling efficient learning over cases, but at supporting diagnosis in one specific
case. The goal of both chunking and knowledge compilation is to facilitate easier and more
efficient reasoning in future occurrences of the same problem. We do not generalise over
cases (i.e., predictions), but only compact inference sequences within one case. A second
difference is the fact that our aggregation approach coversall possiblecorrect reasoning
paths of a specific case. In compilation and also explanation based generalisation [56]
chunking is only overonespecific reasoning trace per case.

14 In [64], multiple models are employed in a related way, although with a different theoretical footing.

216 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

8. Conclusions

In this article we showed that model-based techniques can be applied successfully
to solve outstanding problems in research on the use of AI technology for educational
purposes. In particular, we employed qualitative simulation and model-based diagnosis to
represent and analyse the reasoning behaviour of a learner when predicting the behaviour
of a device. The main advantage of this approach is that it provides ageneric method
for the task of cognitive diagnosis, which as of yet has mostly been based on predefined,
domain-specific bug catalogues. Qualitative simulators provide a means for automatically
generating the behaviour of a device, and this output was shown to be convertible into a
base modelthat can be used as the backbone of an educational system: the base model
represents all the correct facts and reasoning steps that are required for a correct prediction
of behaviour. Being based on earlier experimental research about human problem solving
behaviour, the knowledge represented in the base model can be considered didactically
relevant: both the type and the grain size of the reasoning steps in the model correspond to
how teachers and learners communicate about device behaviour.

The base model adheres to the representational constraints of model-based reasoning:
each reasoning step is defined as an inference component in the model. Hence, diagnostic
techniques such asGDE can be applied. Accordingly, the diagnostic task is defined as
determining those reasoning steps that the learner cannot have applied correctly given the
observations. The important consequence of this definition is that we do not try to grasp the
learner’s mental model, nor that we force the learner into a predefined reasoning trajectory:
we do not assume that the reasoning model is a cognitive model of what goes on in the mind
of the student. We do assume however that the model is didactically plausible: it represents
knowledge that the student should acquire in the learning process. The role of diagnosis is
not to detect “mind bugs”, but to detect and locatebehaviouraldeviations. The results of
the diagnosis are used to focus the dialogue with the student on those topics that correspond
to erroneous behaviour.

The application ofGDE to the base models required two issues to be addressed.
Firstly, a new technique for measurement selection had to be developed that accounts
for the selection of educationally relevant probing points (i.e., subjects for questions).
Secondly, the base models were too large and too loosely structured to apply model-based
diagnostic techniques directly in an efficient and effective manner. We therefore developed
a structuring mechanism that automatically transforms the base model into a hierarchy
of aggregated models by removing irrelevant detail and by chunking chains of causal
inference steps. The resulting structured subject matter model does sufficiently enable the
diagnostic process to produce useful diagnostic results in a real-time environment.

An experiment was conducted with learners that showed the utility of the approach
presented in this article. We believe theSTAR framework to be particularly useful
for the development of educational environments that stimulate the learner’sself-repair
capabilities. The experiment showed that by focusing on behaviour errors in a systematic
way, the learner’s ability to self-repair is stimulated. Such a focus on learning from errors
requires a view on education that is not commonly practiced by human teachers: they
appear to rely mainly on pattern recognition on the basis of known misconceptions, rather
than on detailed diagnosis [13,51]. On the one hand, this is influenced by traditional

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 217

educational views on errors: “School teaches that errors are bad; the last thing one wants to
do is to pore over them, dwell on them, or think about them” [59]. But more importantly,
detailed structured diagnosis is often computationally infeasible for human teachers.

The prototype system presented is only a partial implementation of the complete
framework we envision. In the near future, other components of the architecture will
be researched in more detail, hopefully resulting in a complete set of truly model-based
techniques that can support education in an articulate and yet generic way.

Acknowledgement

The authors would like to thank David Rühl for his contributions to the implementation
of the STARlight prototype system. Richard Benjamins, Frank van Harmelen, Remco
Straatman and Radboud Winkels provided valuable comments on earlier drafts of this
article.

Appendix A. Model component definitions

For the 10 base model component types, the definitions are provided below. Note
that two versions exist for inequality terminations, value determinations and derivative
determinations, depending on the number and type of inputs used for the inference (see
also [31]). When different possibilities for one expression are given, such as in[δA =
−/0/+], the positional equivalent expression should be chosen in other parts of the rule.
The notationssucc(Val) andpred(Val) stand for the successor and predecessor ofVal in its
quantity space, respectively.

Quantity Correspondence

ports: In= quantity value,Sup= value correspondence,Out= quantity value
example: “The level is positive, therefore the pressure is positive as well”

(L > 0 & dir_corr(L,P)→ P > 0)
forward behaviour rules: In & Sup→Out

IF In= [A= Val]& Sup= [corr(A,B)] THEN Out= [B = Val]
IF In= [A= Val]& Sup= [corr(B,A)] THEN Out= [B = Val]
IF In= [A= Val]& Sup= [dir_corr(A,B)] THEN Out= [B = Val]
IF In= [A= ValA]& Sup= [v_corr(A,ValA,B,ValB)] THEN Out= [B = ValB]
IF In= [A= ValA]& Sup= [v_corr(B,ValB,A,ValA)] THEN Out= [B = ValB]
IF In= [A= ValA]& Sup= [dir_v_corr(A,ValA,B,ValB)]

THEN Out= [B = ValB]
backward behaviour rules: Out& Sup→ In

Quantity Proportionality

ports: In=quantity derivative,Sup= proportionality,Out= quantity derivative
example: “The level decreases, therefore the pressure is decreasing as well”

(δL < 0 & pos_prop(Ll,Pl)→ δPl < 0)

218 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

forward behaviour rules: In & Sup→Out
IF In= [δA=−/0/+]& Sup= [pos_prop(A,B)] THEN Out= [δB =−/0/+]
IF In= [δA=−/0/+]& Sup= [neg_prop(A,B)] THEN Out= [δB =+/0/−]

backward behaviour rules: Out & Sup→ In
In 6= 0 & Out 6= 0→ Sup

Quantity Influence

ports: In= quantity value,Sup= influence,Out= quantity derivative
example: “There is a [positive] flow, so the volume decreases”

(Fl > 0 & neg_infl(Fl,V)→ δV < 0)

forward behaviour rules: In & Sup→Out
IF In= [A>/=/<0]& Sup= [pos_infl(A,B)] THEN Out= [δB =+/0/−]
IF In= [A>/=/<0]& Sup= [neg_infl(A,B)] THEN Out= [δB =−/0/+]

backward behaviour rules: Out & Sup→ In
In 6= 0 & Out 6= 0→ Sup

Quantity Termination

ports: In= quantity value, derivative,Sup= quantity space,Out= quantity value

example: “The volume goes down to zero, so it will become empty”
(V > 0, δV < 0 & [0,+]→ V = 0)

forward behaviour rules: In & Sup→Out
IF In1= [A= Val]& In2= [δA=+/−]& Sup=QS(A)

THEN Out= [A= succ(Val)/pred(Val)]
backward behaviour rules: Out & Sup& In1→ In2

Out & Sup& In2→ In1

Inequality Correspondence

ports: In= value inequality,Sup= value correspondence,Out= value inequality
example: “The level is higher [at the right], [therefore] the pressure as well”

(Ll < Lr & dir_corr(L,P)→ Pl < Pr)

forward behaviour rules: In & Sup→Out
IF In= [A1</=/>A2]& Sup= [corr(A,B)] THEN Out= [B1</=/>B2]
IF In= [A1</=/>A2]& Sup= [corr(B,A)] THEN Out= [B1</=/>B2]
IF In= [A1</=/>A2]& Sup= [dir_corr(A,B)] THEN Out= [B1</=/>B2]

backward behaviour rules: Out & Sup→ In

Inequality Proportionality

parts: In= derivative inequality,Sup= proportionality,Out= derivative inequality

example: “The level decreases faster at the left, so does the pressure”
(δLl < δLr & pos_prop(L,P)→ δPl < δPr)

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 219

forward behaviour rules: In & Sup→Out
IF In= [δA1</=/>δA2]& Sup= [pos_prop(A,B)]

THEN Out= [δB1</=/>δB2]
IF In= [δA1</=/>δA2]& Sup= [neg_prop(A,B)]

THEN Out= [δB1>/=/<δB2]
backward behaviour rules: Out & Sup→ In

Inequality Influence

parts: In= value inequality,Sup= influence,Out= derivative
example: “The right flows faster, so [the volume] decreases faster”

(Fll < Flr & neg_infl(F,V)→ δVl > δVr)

forward behaviour rules: In & Sup→Out
IF In= [A1</=/>A2]& Sup= [pos_infl(A,B)]

THEN Out= [δB1</=/>δB2]
IF In= [A1</=/>A2]& Sup= [neg_infl(A,B)]

THEN Out= [δB1>/=/<δB2]
backward behaviour rules: Out& Sup→ In

Inequality Termination (type 1)

ports: In= value inequality, derivative inequalitySup= ∅, Out= value inequality
example: “The level is higher [at the right], but also goes down faster, that means they

become equal”
(Ll < Lr, δLl > δLr & —→Ll = Lr)

forward behaviour rules: In & Sup→Out
IF In1= [A1=/>A2]& In2= [δA1< δA2] THEN Out= [A1</=A2]
IF In1= [A1</=A2]& In2= [δA1> δA2] THEN Out= [A1=/>A2]

backward behaviour rules: Out& In1→ In2
Out & In2→ In1

Inequality Termination (type 2)

ports: In= value inequality, 2 value derivatives,Sup= ∅, Out= value inequality
example: “There’s more water on the right hand side,. . . it goes down there and up at the

left, so it becomes leveled”
(Vl < Vr, δVl > 0, δVr < 0 & —→ Vl = Vr)

forward behaviour rules: In & Sup→Out
IF In1= [A1=/>A2]& In2= [δA1< 0]& In3= [δA2> 0]

THEN Out= [A1</=A2]
IF In1= [A1=/>A2]& In2= [δA1= 0]& In3= [δA2> 0]

THEN Out= [A1</=A2]
IF In1= [A1=/>A2]& In2= [δA1< 0]& In3= [δA2= 0]

THEN Out= [A1</=A2]
IF In1= [A1</=A2]& In2= [δA1> 0]& In3= [δA2< 0]

THEN Out= [A1=/>A2]

220 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

IF In1= [A1</=A2]& In2= [δA1= 0]& In3= [δA2< 0]
THEN Out= [A1=/>A2]

IF In1= [A1</=A2]& In2= [δA1> 0]& In3= [δA2= 0]
THEN Out= [A1=/>A2]

backward behaviour rules: Out& In2& In3→ In1

Value Determination (type 1)

ports: In= value inequality,Sup= value definition,Out= quantity value
example: “The volumes are equal, therefore the balance will be leveled”

(Vl = Vr & Pos= Vl − Vr→ Pos= 0)

forward behaviour rules: In & Sup→Out
IF In= [A</=/>B]& Sup= [C =A−B] THEN Out= [C</=/>0]

backward behaviour rules: Out& Sup→ In
In & Out→ Sup

Value Determination (type 2)

ports: In= quantity values,Sup= value definition,Out= quantity value
example: “The mass of the container plus the mass of the liquid makes up a positive total

mass”
(Mc > 0, Ml > 0 &Mt =Mc +Ml→Mt > 0)

forward behaviour rules: In & Sup→Out
IF In1= [A< 0]& In2= [B>/=0]& Sup= [C =A−B] THEN Out= [C < 0]
IF In1= [A</=0]& In2= [B > 0]& Sup= [C =A−B] THEN Out= [C < 0]
IF In1= [A= 0]& In2= [B = 0]& Sup= [C =A−B] THEN Out= [C = 0]
IF In1= [A< 0]& In2= [B</=0]& Sup= [C =A+B] THEN Out= [C < 0]
IF In1= [A</=0]& In2= [B < 0]& Sup= [C =A+B] THEN Out= [C < 0]
IF In1= [A= 0]& In2= [B = 0]& Sup= [C =A+B] THEN Out= [C = 0]
IF In1= [A> 0]& In2= [B>/=0]& Sup= [C =A+B] THEN Out= [C > 0]
IF In1= [A>/=0]& In2= [B > 0]& Sup= [C =A+B] THEN Out= [C > 0]

backward behaviour rules: Out & In1& Sup→ In2 (partially)
Out & In2& Sup→ In1 (partially)
Out & In1& In2→ Sup (partially)

Derivative Determination (type 1)

ports: In= value inequality,Sup= derivative definition,Out= quantity derivative
example: “The flow rate is larger at the right, therefore the balance will move up there”

(Fl < Flr & δPos= Fll − Flr→ δPos< 0)

forward behaviour rules: In & Sup→Out
IF In= [A</=/>B]& Sup= [δC =A−B] THEN Out= [δC </=/>0]

backward behaviour rules: Out& Sup→ In
In & Out→ Sup

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 221

Derivative Determination (type 2)

parts: In= quantity values,Sup= derivative definition,Out= quantity derivative

example: “Only the left flows, so the balance goes up [there]”
(Fll > 0, Flr = 0 & δPos= Fll − Flr→ δPos> 0)

forward behaviour rules: In & Sup→Out
analogous to type 2 value determinations

backward behaviour rules: Out & In1& Sup→ In2 (partially)
Out & In2& Sup→ In1 (partially)
Out & In1& In2→ Sup (partially)

analogous to type 2 value determinations

Appendix B. Algorithms: Hierarchical aggregation and diagnosis

Algorithm B.1 first collects all sets of fully-corresponding quantities (step (1)). All
references to a quantity that belongs to such a set are replaced by a reference to a
new quantity representing the whole set (step (2)). Now, all sets of points with identical
expressions are merged to one point (step (3)), thereby ‘flattening’ network parts such as
the one shown in Fig. 9. In steps (4) and (5), identical components between points, as well
as components that have the same point as input and output, are removed.15 The latter
category of circular components consists of correspondences and proportionalities: after
combining two quantitiesA andB, a correspondence component fromA > 0 to B > 0
becomes one from[A,B]> 0 to [A,B]> 0.

Algorithm B.1 (Hiding fully-corresponding quantities).
(1) Find in the model all maximal sets of quantitiesS = {Q1, . . . ,Qn} for which the

following condition holds:

∀Qi ∈ S ∃Qj ∈ S: (corr(Qi,Qj)∨ corr(Qj ,Qi))

∧pos_prop(Qi,Qj)∧ pos_prop(Qj ,Qi).

(2) For each setS = {Q1, . . . ,Qn} found, do the following:
(a) find the set of all expressions that refer to a memberQi of S;
(b) in each of these expressions, replace each member ofS with a new quantity
[Q1, . . . ,Qn].

(3) Within each state, merge all points that have equal expressions associated to them by
removing all but one and reconnect all incoming and outgoing connections to this one
remaining point.

(4) For each non-unique componentC, let C1, . . . ,Cn be the set of components such
that ∀Ci,1 6 i 6 n: (type(C) = type(Ci), inputs(C) = inputs(Ci), generic(C) =

15 Removal of components refers to removal at the newly created level: all aggregation algorithms operate by
first copying the complete model from the previous level, and then transforming the copy into the new model.

222 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

generic(Ci), and output(C) = output(Ci)) ∨ (inputs(Ci) = output(Ci) = in/output
(C)). Add a decomposition16 C→ C,C1, . . . ,Cn.

(5) Remove each set of componentsC1, . . . ,Cn from the model.

Algorithm B.2 collects all submissive and continuity components from the copied base
model (step (1)), and then removes them (step (2)). The input expression of the removed
submissive component may not be used for anything else, in which case it can be removed
as well, to avoid redundancy in the model. Therefore, the second step recursively checks
for redundant components and points (recall thatinput(C) is a point). Step (3) adds the
decomposition relation for transitions.

Algorithm B.2 (Hiding submissive components).
(1) Find the setS of all submissive and continuity components.
(2) Until S is empty, do the following for a componentC ∈ S:

(a) if input(C) is not input to any other component, then for allC′,C′ 6= C:
output(C′)= input(C), addC′ to S;

(b) remove componentC from the model;
(c) removeC from S.

(3) For each setT ⊂ S of submissive termination andcontinuity components removed in a
particular transitiont , add a decompositionS′ → S′ ∪ T , whereS′ = S\T is the set of
remaining termination components int .

(4) For each set of removed componentsC1, . . . ,Ck with ∀Ci∃Cj ,1 6 i < j 6 k:
output(Ci)= input(Cj), do the following:
(a) if C1 ∈ S: add a decompositionCn, . . . ,Cm → Cn, . . . ,Cm,C1, . . . ,Ck , where

Cn, . . . ,Cm is the set of components with the same input asC1 (‘head’
decomposition);

(b) if Ck ∈ S: add a decompositionCn, . . . ,Cm → Cn, . . . ,Cm,C1, . . . ,Ck , where
Cn, . . . ,Cm is the set of components with the same output asCk (‘tail’
decomposition).

Algorithm B.3 first locates chains of connected components of the right type (step
(1)). An extra condition is that no branching is allowed in a chain, except for branches
to termination components (step 1(c)), i.e., chains should be straight sequences, and
maximally separated from the rest of the model. Steps (2) to (4) make sure that if such
a termination cannot be removed because not all of its inputs are ‘removable’, the chain
will split at that point.

Algorithm B.3 (Chunking transitive components).
(1) Find in the model all maximal lists of componentsL= [C1, . . . ,Cn], n> 2, for which

the following conditions hold:
(a) eachCi has the same typet ∈ {quantity correspondence, quantity proportionality,

inequality correspondence, inequality proportionality};
16 The term ‘decomposition’ is used instead of ‘aggregation’ because the aggregated models are used for

decomposition.

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 223

Table B.1
Possible predecessor chunking combinations

ComponentC1 Key componentC2

(transitive) quantity correspondence + quantity influence

(transitive) inequality correspondence + inequality influence

(transitive) inequality correspondence + value determination (type 1)

(transitive) inequality correspondence + derivative determination (type 1)

(transitive) inequality proportionality + value determination (type 1)

(transitive) inequality proportionality + derivative determination (type 1)

(b) L is a chain:
∀Ci, Ci+1 ∈ L: output(Ci)= input(Ci+1);

(c) L obeys the non-branching condition:@ point P : ((P = output(Ci), 16 i < n)
∧ (∃C: P = input(C), C /∈L∧ type(C) 6= termination)).

(2) Mark the input port of each transition component connected to a point in betweenC1
andCn for someL as ‘removable’.

(3) Remove all transition components of which each input port is marked as ‘removable’.
(4) For eachL= [C1, . . . ,Cn], split the list in sub-listsLs = [Ci, . . . ,Cj],16 i < j 6 n,

such that@ pointP : ((P = output(Ck), i 6 k < j)∧ (P = input(C), C /∈Ls)).
(5) For each remaining sub-listLs = [Ci, . . . ,Cj] with j > i, do the following:

(a) create a new componentC of type transitive 〈t 〉, where〈t 〉 is the type of the
members ofLs ;

(b) generate behaviour rules relatinginput(Ci) to output(Cj);
(c) defineinput(C)= input(Ci), output(C)= output(Cj);
(d) add a decompositionC→Ci, . . . ,Cj ;
(e) remove all components inLs , plus all points in between, from the model.

Algorithm B.4 combines pairs as mentioned in Table B.1 (step (1)). Important to note is
that step 1(c) forbids branching toothertypes of components, but not to the ones mentioned
in the right column of Table B.1. This way, it is possible to chunk two pairsC1,C2 and
C1,C3 into two differentcombined types.

Algorithm B.4 (Predecessor chunking).
(1) Find in the model all pairs of componentsC1,C2 for which the following conditions

hold:
(a) output(C1)= input(C2);
(b) type(C1) andtype(C2) appear as a row in Table B.1;
(c) output(C1) is not input to any component of a type other than mentioned in the

right column of Table B.1, or a termination type.
(2) For each pairC1,C2, do the following:

(a) create a new componentC of typecombined 〈t 〉 1, where〈t 〉 is the type ofC2;
(b) generate behaviour rules relatinginput(C1) to output(C2);
(c) defineinput(C)= input(C1), output(C)= output(C2);

224 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

(d) add a decompositionC→C1,C2;
(e) remove all terminationsT that haveoutput(C1) as an input, and for which

output(T) is not input to any component.
(3) Remove all component pairsC1,C2 from the model.
(4) Remove all inactive paths from the model.

Algorithm B.5 is analogous to Algorithm B.4.

Algorithm B.5 (Successor chunking).
(1) Find in the model all maximal lists of componentsL= [C1, . . . ,Cn], n> 2, for which

the following conditions hold:
(a) C1 is a key component or combined key component, i.e., it is of type(combined)

influence, (combined) value determination, or (combined) derivative determination;
(b) L is a chain:
∀Ci,Ci+1 ∈ L: output(Ci)= input(Ci+1);

(c) L obeys the non-branching condition:
@ pointP : ((P = output(Ci), 16 i < n)∧(∃C: P = input(C),C /∈ L∧ type(C) 6=
transition)).

(2) For each listL, remove all terminationsT that haveoutput(Ci), 16 i < n, as an input,
and for whichoutput(T) is not input to any component.

(3) For each listL do the following:
(a) create a new componentC of typecombined 〈t 〉 2, where〈t 〉 is the type ofC1;
(b) generate behaviour rules relatinginput(C1) to output(Cn);
(c) defineinput(C)= input(C1), output(C)= output(Cn);
(d) add a decompositionC→C1, . . . ,Cn;
(e) RemoveL from the model.

(4) Remove all inactive paths from the model.

Algorithm B.6 not only refers toinputs andoutputs of components, but also ofsets. For
a setS, input(S) andoutput(S) are defined as follows:

P ∈ input(S) iff ∃Ci ∈ S: P = input(Ci)∧ @Co ∈ S: P = output(Co),

P ∈ output(S) iff @Ci ∈ S: P = input(Ci)∧ ∃Co ∈ S: P = output(Co).

The algorithm first splits the set of all specification components according to the state they
belong to (step (1)), and creates a new component for each state specification (step (2)).
Then the termination components between a subsequent pair of states are combined into
a new state transition component (steps (4), (5)). New points and connections are added
by combining all connections that existed between the different sets (steps (7), (8)). The
points that are to be generated in steps (7) and (8) may already exist in the case that a state
has more than one successor or predecessor state.

Algorithm B.6 (Grouping).
(1) Find all setsSi of specification components that belong to the same statei.
(2) For eachSi , create a new componentCi of typestate specification.

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 225

(3) Add a decompositionCi→ Si .
(4) For each two setsSi, Sj for which state(j) = succ(state(i)), find the setTij of all

termination componentsC for which input(C) ∈ input(Si) andoutput(C) ∈ output(Sj).
(5) For each set of termination componentsTij , create a new componentCij of typestate

transition.
(6) Add a decompositionCij → Tij .
(7) For each pair of componentsCi,Cij , if no point Pi already exists for which

output(Ci)= Pi , then create it, and defineoutput(Ci)= Pi = input(Cij).
(8) For each pair of componentsCij ,Cj , if no point Pj already exists for which

output(Cj)= Pj , then create it, and defineoutput(Cij)= Pj = input(Cj).
(9) For each pointPi (Pj) created in steps (6), (7), create expressionsEi (Ej) where

Ei =
⋃

expression(Pk): Pk ∈ (output(Si) ∪ input(Tij)) and

Ej =
⋃

expression(Pk): Pk ∈ (output(Tij)∪ input(Sj)).

(10) Remove all components of type other thanstate specification or state transition from
the model.

Algorithm B.7 implements the basicGDE engine for computing candidates.

Algorithm B.7 (Computing candidates).

Conflict Recognition
Let COMPbe the set of components in the model.
Let OBSbe the set of new observations.
(1) Retrieve the labelCfS1 of the nogood node in the ATMS, constituting the current

conflict set.
(2) Add each observation inOBSas a premise to the ATMS.
(3) For each possible subset ofCOMP that is not a superset of a nogood, call the

prediction engine to derive new facts. Each new derivation is passed as a justification
to the ATMS.

(4) Retrieve the new labelCfS2 of the nogood node in the ATMS.
(5) Determine the set of new conflictsCfSn =CfS2\CfS1. If CfSn is empty, then stop.

Candidate Generation
Update the candidate set for each new conflict byincremental set covering:

(1) For each candidate that does not cover any of the new conflicts, replace it with a set
of new candidates, each of which contains the old candidate plus one element from
the new conflict;

(2) Minimalise the resulting set by removing each candidate that is subsumed or
duplicated by another candidate.

If not already at the lowest level (step (1)), Algorithm B.8 select the component with the
maximum unnormalised probability as defined in the candidate discrimination algorithm
(steps (2) and (3)), and decompose this component into its lower level representative. This

226 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

is done by finding the decomposition relation that contains the selected component in the
antecedent (step (4)).

Algorithm B.8 (Decomposition).
Let the input be a candidate setCaSat levell.

(1) If l = 0, then stop.
(2) If l > 0, calculate the unnormalised probability of each componentCp ∈ Cai for

candidatesCai ∈CaS.
(3) Select the componentCmax with the maximum unnormalised probability. If more than

one component has the maximum value, pick one randomly.
(4) Find the decomposition relationMl→Ml−1 with Cmax∈Ml .
(5) Transfer all known observations to the new modelMl−1.
(6) Call the main diagnostic Algorithm B.7 onMl−1.
(7) If the diagnostic algorithm returns an empty set of candidates, return to step (3) and

select another component.

References

[1] J.R. Anderson, Rules of the Mind, Lawrence Erlbaum Associates, Hillsdale, NJ, 1993.
[2] J.R. Anderson, C.F. Boyle, A.T. Corbett, M. Lewis, Cognitive modeling and intelligent tutoring, Artificial

Intelligence 42 (1990) 7–49.
[3] A. Barr, M. Beard, R.C. Atkinson, The computer as a tutorial laboratory: The Stanford BIP project, Internat.

J. Man-Machine Studies 8 (1976) 567–596.
[4] S. Beller, H.U. Hoppe, Deductive error reconstruction and classification in a logic programming framework,

in: P. Brna, S. Ohlsson, H. Pain (Eds.), Proc. World Conference on Artificial Intelligence in Education,
Charlottesville, VA, AACE, 1993, pp. 433–440.

[5] V.R. Benjamins, Problem solving methods for diagnosis, Ph.D. Thesis, University of Amsterdam, 1993.
[6] J.G. Bonar, E. Soloway, Preprogramming knowledge: A major source of misconceptions in novice

programmers, Human Computer Interaction 1 (2) (1985) 133–161.
[7] B. Bredeweg, Introducing meta-levels to qualitative reasoning, Appl. Artificial Intelligence 3 (2) (1989)

85–100.
[8] B. Bredeweg, Expertise in qualitative prediction of behaviour, Ph.D. Thesis, University of Amsterdam, 1992.
[9] B. Bredeweg, J.A. Breuker, ‘Device Models’ for model-based diagnosis of student behaviour, in: P. Brna,

S. Ohlsson, H. Pain (Eds.), Proc. World Conference on Artificial Intelligence in Education, Charlottesville,
VA, AACE, 1993, pp. 441–448.

[10] B. Bredeweg, K. de Koning, C. Schut, Modelling the influence of non-changing quantities, in: J. Wainer,
A. Carvalho (Eds.), Advances in Artificial Intelligence, Springer, Berlin, 1995, pp. 131–140.

[11] B. Bredeweg, C. Schut, Cognitive plausibility of a conceptual framework for modeling problem solving
expertise, in: Proc. Cognitive Science Society Conference, Lawrence Erlbaum Associates, Hillsdale, NJ,
1991, pp. 473–479.

[12] B. Bredeweg, R.G.F. Winkels, Qualitative models in interactive learning environments: An introduction,
Interactive Learning Environments 5 (1) (1998) 1–18.

[13] J.A. Breuker (Ed.), EUROHELP: Developing Intelligent Help Systems, EC, Amsterdam, 1990.
[14] J.A. Breuker, Components of problem solving, in: L. Steels, A.Th. Schreiber, W. van de Velde (Eds.),

A Future for Knowledge Acquisition: Proceedings of the European Knowledge Acquisition Workshop-94,
Springer, Berlin, 1994, pp. 118–136.

[15] J.A. Breuker, B.J. Wielinga, Model-driven knowledge acquisition, in: P. Guida, G. Tasso (Eds.), Topics in
the Design of Expert Systems, North-Holland, Amsterdam, 1989, pp. 265–296.

[16] J.S. Brown, Uses of AI and advanced computer technology in education, in: R.J. Seidel, M. Rubin (Eds.),
Computers and Communications: Implications for Education, Academic Press, New York, 1977.

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 227

[17] J.S. Brown, R.R. Burton, Diagnostic models for procedural bugs in basic mathematical skills, Cognitive
Sci. 2 (1978) 155–192.

[18] J.S. Brown, K. van Lehn, Repair theory: A generative theory of bugs in procedural skills, Cognitive Sci. 4
(1980) 379–426.

[19] R.R. Burton, Diagnosing bugs in a simple procedural skill, in: D.H. Sleeman, J.S. Brown (Eds.), Intelligent
Tutoring Systems, Academic Press, London, 1982.

[20] T. Bylander, D. Allemang, M.C. Tanner, J.R. Josephson, The computational complexity of abduction,
Artificial Intelligence 49 (1991) 25–60.

[21] J.R. Carbonell, AI in CAI: An artificial intelligence approach to computer-assisted instruction, IEEE Trans.
Man-Machine Systems 11 (4) (1970) 190–202.

[22] B. Carr, I.P. Goldstein, Overlays: A theory of modeling for computer aided instruction, AI Memo 406, AI
Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 1977.

[23] W.J. Clancey, The epistemology of a rule based system—A framework for explanation, Artificial
Intelligence 20 (1983) 215–251.

[24] W.J. Clancey, Qualitative student models, in: J.F. Traub (Ed.), Annual Review of Computer Science, Vol. 1,
Annual Review Inc., Palo Alto, CA, 1986, pp. 381–450.

[25] A. Collins, A.L. Stevens, Goals and strategies for inquiry teachers, in: R. Glaser (Ed.), Advances in
Instructional Psychology, Vol. II, Lawrence Erlbaum Associates, Hillsdale, NJ, 1982.

[26] T. de Jong, L. Sarti (Eds.), Design and Production of Multimedia and Simulation-Based Learning Material,
Kluwer, Dordrecht, the Netherlands, 1994.

[27] J. de Kleer, Focusing on probable diagnoses, in: Proc. AAAI-91, Anaheim, CA, 1991, pp. 842–848.
[28] J. de Kleer, J.S. Brown, A qualitative physics based on confluences, Artificial Intelligence 24 (1984) 7–83.
[29] J. de Kleer, J.S. Brown, Model-based diagnosis in SOPHIE III, in: W.C. Hamscher, L. Console, J. de Kleer

(Eds.), Readings in Model-Based Diagnosis, Morgan Kaufmann, San Mateo, CA, 1992, pp. 179–205.
[30] J. de Kleer, B.C. Williams, Diagnosing multiple faults, Artificial Intelligence 32 (1987) 97–130.
[31] K. de Koning, Model-Based Reasoning about Learner Behaviour, IOS Press, Amsterdam, 1997.
[32] K. de Koning, B. Bredeweg, A framework for teaching qualitative models, in: A. Cohn (Ed.), Proc. 11th

European Conference on Artificial Intelligence, Wiley, New York, 1994, pp. 197–202.
[33] K. de Koning, B. Bredeweg, Qualitative reasoning in tutoring interactions, J. Interactive Learning

Environments 5 (1998) 65–80.
[34] K. de Koning, B. Bredeweg, C. Schut, J.A. Breuker, Dynamic model progression, in: Proc. East–West

Conference on Computer Technologies in Education, Moscow, International Center for Scientific and
Technical Information, 1994, pp. 136–141.

[35] P. Dillenbourg, J.A. Self, A framework for learner modelling, Interactive Learning Environments 2 (1992)
111–137.

[36] M. Elsom-Cook (Ed.), Guided Discovery Tutoring: A Framework for ICAI Research, Paul Chapman,
London, 1990.

[37] B.C. Falkenhainer, K.D. Forbus, Compositional modeling: Finding the right model for the job, Artificial
Intelligence 51 (1991) 95–143.

[38] K.D. Forbus, Qualitative process theory, Artificial Intelligence 24 (1984) 85–168.
[39] K.D. Forbus, The qualitative process engine, in: D.S. Weld, J. de Kleer (Eds.), Readings in Qualitative

Reasoning about Physical Systems, Morgan Kaufmann, San Mateo, CA, 1990, pp. 220–235.
[40] K.D. Forbus, Towards tutor compilers: Self-explanatory simulations as an enabling technology, in:

L. Birnbaum (Ed.), Proc. 3rd Internat. Conference on the Learning Sciences, Evanston, IL, 1991.
[41] K.D. Forbus, Using qualitative physics to create articulate educational software, IEEE Expert 12 (3) (1997)

32–41.
[42] P.O. Gautier, T.R. Gruber, Generating explanations of device behavior using compositional modeling causal

ordering, in: Proc. AAAI-96, Portland, OR, MIT Press, Cambridge, MA, 1996, pp. 264–270.
[43] M.R. Genesereth, The use of design descriptions in automated diagnosis, Artificial Intelligence 24 (1984)

411–436.
[44] D.R. Gentner, Toward an intelligent computer tutor, in: H. O’Neil (Ed.), Procedures for Instructional

Systems Development, Academic Press, New York, 1979.
[45] J.E. Greer, G.I. McCalla (Eds.), Student Modelling: The Key to Individualized Knowledge-Based

Instruction, Series F: Computer and System Sciences, Vol. 125, Springer, Berlin, 1994.

228 K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229

[46] W.C. Hamscher, L. Console, J. de Kleer, Introduction to Chapter 7: Hierarchies, in: Readings in Model-
Based Diagnosis, Morgan Kaufmann, San Mateo, CA, 1992.

[47] W.C. Hamscher, L. Console, J. de Kleer (Eds.), Readings in Model-Based Diagnosis, Morgan Kaufmann,
San Mateo, CA, 1992.

[48] H.U. Hoppe, Deductive error diagnosis and inductive error generalization for intelligent tutoring systems,
J. Artificial Intelligence in Education 5 (1) (1994) 27–49.

[49] X. Huang, G.I. McCalla, E. Neufeld, Using attention in belief revision, in: Proc. AAAI-91, Anaheim, CA,
1991, pp. 275–280.

[50] W.L. Johnson, E. Soloway, PROUST: An automatic debugger for pascal programs, in: G. Kearsley (Ed.),
Artificial Intelligence and Instruction: Applications and Methods, Addison-Wesley, Reading, MA, 1987,
pp. 49–67.

[51] P. Kamsteeg, Teaching problem solving by computer, Ph.D. Thesis, University of Amsterdam, 1994.
[52] J.E. Laird, A. Newell, P.S. Rosenbloom, SOAR: An architecture for general intelligence, Artificial

Intelligence 33 (1987) 1–64.
[53] J.E. Laird, P.S. Rosenbloom, A. Newell, Chunking in SOAR: The anatomy of a general learning mechanism,

Machine Learning 1 (1986) 11–46.
[54] A.Y. Levy, Y. Iwasaki, H. Motoda, Relevance reasoning to guide compositional modelling, in: Proc. 6th

International Workshop on Qualitative Reasoning about Physical Systems, Edinburgh, Scotland, Heriot-Watt
University, 1992, pp. 7–21.

[55] R.S. Mallory, B.W. Porter, B.J. Kuipers, Comprehending complex behavior graphs through abstraction, in:
Y. Iwasaki, A. Farquhar (Eds.), Proc. 10th International Workshop on Qualitative Reasoning, AAAI Press,
Menlo Park, CA, 1996, pp. 137–146. AAAI Technical Report WS-96-01.

[56] T.M. Mitchell, Generalization as search, Artificial Intelligence 18 (1982) 203–226.
[57] I. Mozetĭc, Hierarchical model-based diagnosis, Internat. J. Man-Machine Studies 35 (3) (1991) 329–362.
[58] S. Ohlsson, Some principles of intelligent tutoring, Instructional Science 14 (1986) 293–326.
[59] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas, Basic Books, New York, 1980.
[60] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1987) 57–96.
[61] C. Schut, B. Bredeweg, Automatic enhancement of model parsimony, in: D.S. Weld (Ed.), Proc. 7th

International Workshop on Qualitative Reasoning about Physical Systems, Seattle, WA, University of
Washington, 1993, pp. 194–203.

[62] J.A. Self, Model-based cognitive diagnosis, User Modeling and User-Adapted Interaction 3 (1993) 86–106.
[63] J.A. Self, Formal approaches to student modelling, in: G.I. McCalla, J. Greer (Eds.), Student Modelling:

The Key to Individualized Knowledge-Based Instruction, Springer, Berlin, 1994, pp. 295–352.
[64] J.A. Sime, R.R. Leitch, A learning environment based on multiple qualitative models, in: G. Frasson,

G. Gauthier, G.I. McCalla (Eds.), Proc. 2nd International ITS Conference, Edinburgh, Scotland, UK, Lecture
Notes in Computer Science, Vol. 608, Springer, Berlin, 1992, pp. 116–123.

[65] D.H. Sleeman, Inferring student models for intelligent computer-aided instruction, in: R.S. Michalski, J.G.
Carbonell, T.M. Mitchell (Eds.), Machine Learning: An Artificial Intelligence Approach, Vol. 1, Morgan
Kaufmann, Palo Alto, CA, 1983, pp. 483–510.

[66] D. Subramanian, M.R. Genesereth, The relevance of irrelevance, in: Proc. IJCAI-87, Milan, Italy, 1987,
pp. 416–422.

[67] M.B. Twidale, Coping with the variety of student actions in simulations, in: Proc. EARLI Conference, Aix
en Provence, 1993.

[68] W. van de Velde, An overview of CommonKADS, in: J.A. Breuker, W. van de Velde (Eds.), The
CommonKADS Library for Expertise Modelling, Chapter 2, IOS Press, Amsterdam, 1994, pp. 9–30.

[69] A. van der Hulst, Cognitive tools, Ph.D. Thesis, University of Amsterdam, 1996.
[70] F. van Harmelen, Meta-level Inference Systems, Research Notes in AI, Pitmann/Morgan Kaufmann,

London/San Mateo, CA, 1991.
[71] M. van Someren, Y.F. Barnard, J.A.C. Sandberg, The Think Aloud Method: A Practical Guide to Modelling

Cognitive Processes, Academic Press, London, 1994.
[72] K. van Lehn, Learning one subprocedure per lesson, Artificial Intelligence 31 (1) (1987) 1–40.
[73] D.S. Weld, Approximation reformulations, in: Proc. AAAI-90, Boston, MA, AAAI Press/MIT Press, Menlo

Park, CA, 1990, pp. 407–412.

K. de Koning et al. / Artificial Intelligence 117 (2000) 173–229 229

[74] D.S. Weld, S. Addanki, Task-driven model abstraction, in: B. Faltings, P. Struss (Eds.), Recent Advances in
Qualitative Physics, MIT Press, Cambridge, MA, 1992.

[75] E. Wenger, Artificial Intelligence and Tutoring Systems, Morgan Kaufmann, Los Altos, CA, 1987.
[76] B.Y. White, J.R. Frederiksen, Causal model progressions as a foundation for intelligent learning environ-

ments, Artificial Intelligence 42 (1990) 99–157.
[77] J. Wielemaker, SWI-Prolog 2.8: Reference Manual, Social Science Informatics (SWI), University of

Amsterdam, 1997. http://www.swi.psy.uva.nl/usr/jan/SWI-Prolog/Manual/Title.html.
[78] B.J. Wielinga, J.A. Breuker, Models of expertise, in: Proc. ECAI-86, Brighton, UK, 1986, pp. 306–318.
[79] B.J. Wielinga, A.Th. Schreiber, J.A. Breuker, KADS: A modelling approach to knowledge engineering,

Knowledge Acquisition J. 4 (1) (1992) 5–53.
[80] R.G.F. Winkels, Explorations in Intelligent Tutoring and Help, IOS Press, Amsterdam, 1992.

