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Abstract

Interactive model building environments are educational software systems which support

scientific investigation by allowing students to build models and experiment with them. The basic

idea is that students use the model building environment to construct their own models of

scientific phenomena, which the computer can use to run simulations, thereby providing

predictions and causal explanations. The models are qualitative models, which explicitly

represent the domain knowledge required for causal reasoning about system structure and

behavior. If a valid model has been constructed or assembled, a simulation can be started, and its

progress is controlled by the student. To communicate the contents of the model and the

simulation results, these are represented graphically as state-transition diagrams, causal

networks, structural hierarchies, tables and graphs. Students can navigate through these

interactive visualizations to get an overview, check specific predictions, search for explanations,

investigate trends and look into details of the simulation. In this way, model building

environments can support two learning goals: learning how to model scientific phenomena, and

learning by making and checking predictions and explanations with the simulation model. Since

the approach taken is domain-independent, the same model-building environment can be used for

domains varying from ecology to physics. This article discusses two parts of such a model

building environment that have been implemented as separate prototypes. One prototype is

VISIGARP, a model inspection tool that supports learners in controlling and investigating

simulation models. The second prototype is MOBUM, a model building tool that support learners

in constructing simulation models. Integration of both types of systems will lead towards fully

interactive model building environments, allowing students to participate in the process of

scientific investigation to a larger extent than traditionally possible.
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1. Introduction

Computers are becoming increasingly important as tools for articulating and communicating

information and knowledge. At the same time theories on human learning strengthen the

hypothesis that learning is an active process during which knowledge is constructed1 as opposed

to just 'received' via some communication channel (Fiske, 1990). This article combines both these

themes as it discusses the notion of interactive model building environments. Two aspects are of

prime interest to the work presented. First, the development of model building tools that support

learners in articulating their understanding of the (physical) reality in a 'machine readable' form.

Second, for the computer, how to use this knowledge, what inferences to make, and how to

communicate the results back to its users.

Usage of computers in modern educational settings is often limited to data storage, retrieval and

presentation means. Take for instance an average science project. Typically, learners will search

the Internet, communicate and collaborate with each other (using email and chat-rooms), and

write, possibly as a group, a document that describes the phenomenon they have been studying.

Although by itself this is an interesting development, it does by no means exploit the full potential

of modern computers. The problem is that computers can only process the information units,

manipulated by the learners, from a technical point of view. That is, the computer can transport a

collection of bits over the Internet, use it to drive a visualization on the screen, provide tools for

the user to modify it, and so forth. But the computer cannot access the content (or knowledge)

captured by these units, because the computer does not have a formal, knowledge level (Newell,

1982), representation of this content. As a result, computers cannot be used as 'knowledgeable

agents' to support the learner with the knowledge construction process. This is undesirable,

because guidance is one of the most important requirements for effective learning (e.g., Elsom-

Cook, 1990; Hulst, 1996).

                                                  
1 (See footnote 1).



- 4 -

In our research we use artificial intelligence technology to develop an interactive model building

environment by means of which students can learn by constructing simulation models. We want

to use the computer as an intelligent agent (e.g. Bradshaw, 1997), knowledgeable about the

domain, and the model building process, and therefore capable of providing support. Our work

combines three strands of research: simulation-based learning, qualitative reasoning, and learning

by building models. Simulation is a powerful tool for learning, because it allows us to mimic

(model) reality in a way that is optimized for specific tutoring goals (e.g. Jong, 1991). For

instance, some scientific phenomena are difficult to witness in reality and hard to replicate in a

physical experiment, but can be simulated by a computer model. This is particularly true for

processes that have a large time scale (e.g. ecology) or a very short time scale (e.g. chemistry).

Second, the simulation models we use are qualitative (e.g. Weld & Kleer, 1990). The ontology

underlying such models provides a rich vocabulary for reasoning about system structure and

behavior. This allows not only inspecting simulation results, but also searching for causal

explanations. Third, learning by modeling is based on the idea that scientific phenomena are

better understood when one tries to make explicit one’s understanding into a format which can be

communicated to others. Choosing the right abstractions, making the right assumptions, and

capturing those aspects of structure and behavior that matter are the skills necessary to build a

good model (e.g. Bental & Brna, 1995). This model construction can be done using a computer as

an articulation device which, among other things, allows running simulations for inspecting the

status of the model. The model and its simulation results can also be communicated to other

learners, e.g. by using the Internet.

2. Learning and simulation models

This section elaborates on the idea of using interactive simulations as tools for humans to learn

about systems and their behavior. First, the basic idea behind this approach is presented. Second,

requirements are formulated with respect to the kind of insights learners should acquire. Third,

the need for knowledge-based simulation models to address these requirements is emphasized.
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Fourth, qualitative models are briefly discussed. Finally, different ways of interacting with

simulations are pointed out.

The basic idea

When interacting with the physical world people often perform tasks to manipulate systems and

their behavior. Typically this involves three classes of tasks: controlling the behavior of existing

systems, constructing new systems with new behavior, and repairing broken or malfunctioning

systems. The specific nature of these tasks can be further detailed by taking into account the kind

of domain a system belongs to (e.g. physics, ecology, and medicine) and whether a system is an

artifact or a natural system. For humans, who in general have to perform at least some of these

tasks, it is necessary to learn what kind of systems exist and how they behave. Computers provide

interesting opportunities to act as intelligent agents capable of teaching humans important parts of

that knowledge (figure 1).

[Insert figure 1 here]

In order to construct such computer-based 'knowledgeable agents' two aspects are crucial. First,

the computer should be equipped with models (possibly simulations) that capture the behavioral

aspects relevant to the system that is subject of teaching. These models should be detailed and

explicit with respect to the phenomena that must be learned by the learner. To stress the notion of

being explicit and sufficiently detailed, these models are often referred to as 'articulate' simulation

models (Bredeweg & Winkels, 1998; Falkenhainer & Forbus, 1991; Koning et al., 2000). Second,

the computer should have means to communicate the details captured by these models to learners.

However, it is usually not sufficient to 'just show' the results generated by running a simulation. It

is well known that without sufficient guidance, learners may spend lots of time without learning

much. Some coaching, such as helping to focus an exploration, providing accurate summaries,

giving assignments, or providing explanations is therefore essential (e.g. Elsom-Cook, 1990;

Hulst, 1996; Twidale, 1993).
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What do students have to learn?

Following projects such as STEAMER (Hollan et al., 1987), QUEST (White & Frederiksen,

1990), and ITSIE (e.g. Sime, 1994), we take the approach that learning proceeds in steps. When

learning, humans first acquire insights in the functioning of partial systems. Further learning

elaborates these insights or focuses on other partial systems. Learning also modifies and

integrates insights in order to accommodate for different perspectives and levels of abstraction.

However, exactly understanding how humans learn is still subject of current research2. What we

do know is 'what learners have to learn'. That is, the requirements that should be fulfilled in order

to have the insights that are needed to effectively interact with systems and their behavior. The

following issues can be pointed out in this respect:

•  Prediction and post-diction (of behavior)

•  Deriving behavior from structure

•  Perspectives and assumptions

•  Causal accounts

•  Reusability

Central to these requirements is the notion of 'behavior analysis' (figure 2), or more specifically

'prediction' and 'post-diction' of system behavior (e.g. Forbus, 1984).

[Insert figure 2 here]

As argued by Breuker and Velde (1994), behavior analysis is an important subtask within many

tasks dealing with systems and their behavior, such as designing, planning, monitoring and

diagnosis. Behavior analysis starts with 'deriving behavior from structure' (e.g. Kleer & Brown,

1984), which refers to the ability of associating behavioral features to structural constellations.

There is often not a single mapping between a particular structural unit and its behavior.

                                                  
2 (See footnote 2).



- 7 -

Repairing a broken traffic light system requires a different behavior analysis than deciding on

whether, and how, to cross the street with that broken traffic light system. Moreover, the

structural units that are identified and taken into account may be different. In general, an

appropriate behavior analysis depends on the tasks and the goals of the humans involved. In

computer programs this flexibility in reasoning about system behavior is often implemented by

using the idea of 'assumptions' (e.g. Falkenhainer & Forbus, 1991; Rickel & Porter, 1997; Sime &

Leitch, 1992). Another important aspect of behavior analysis concerns 'causal accounts'. The

insights that humans learn should identify the quantities that are most crucial for the typical

behavior of the system and specify how they are related, that is, understand how these quantities

affect each other and thus explain the overall behavior of the system. Finally, there is the issue of

reusability. The insights that humans learn should be applicable to a wide range of situations and

not only to some specific structural constellation. The insights should be domain independent, or

at least to a certain extent. The concept of 'friction', for instance, applies to all kinds of systems

that move from one place to another.

Simulations as knowledge models

Mathematical models are important building blocks for modern science. Also in educational

settings teachers often use such models to explain the behavior of systems, particularly at

university level. Given the increasing computational power of computers a logical next step was

to use mathematical models as interactive models that allow learners to learn about real-world

phenomena simulated by these models. The usefulness of this approach in educational settings

has been pointed out by many authors and powerful software tools are available to support

teachers in this respect, e.g. MATLAB (Pratap, 1999), STELLA (Grant, 1997) and SIMQUEST

(e.g. Kuyper, 1998). However, when it comes to interactive learning environments, in which

certain tutoring activities are automated, mathematical models are not always sufficient. For

instance, precise information may be missing and therefore numerical simulation not possible.

Other problems relate to explanation and subsequent knowledge communication issues relevant to

the interaction between learner and environment (Wenger, 1987). Also, mathematical models
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require considerable knowledge of mathematics and as a result are usually not suitable for

secondary school curricula. Coping with the previously mentioned problems was one of the

driving forces behind research on qualitative reasoning (Bobrow, 1984; Weld & Kleer, 1990). For

generating explanations the idea of articulate simulation models (or knowledge models) became

important (e.g. Winkels & Bredeweg, 1998)3, but also the problem of simulating without precise

information is seen as an important goal of qualitative reasoning (e.g. Kleer & Williams, 1991).

Maybe even more interesting than using qualitative knowledge to overcome the limitations of

mathematical simulations, is the use of qualitative models for their own sake. That is, qualitative

models have characteristics that make them particularly suited to address specific learning

activities. For instance, when teaching to solve physics problems, teachers emphasize the need for

learners to first understand the (problem) situation. Before trying to apply equations, learners

should build a conceptual model (e.g. Mettes & Roossink, 1981) of the initial-state, the end-state,

and the possible transition trajectories between the two. In fact, it is considered naïve (beginners

behavior) if learners jump to 'applying formulae' without making a proper analysis of the problem

situation (e.g. Elio & Sharf, 1990). Expert problem solvers excel because they spend a significant

amount of time on making a conceptual model before using equations. Analyzing (problem)

situations is close to the idea of making an envisionment, that is, a mental simulation of what

happens, or may happen (Kleer & Brown, 1984).

Qualitative models are also relevant in specific domains (often less formalized) where domain

experts try to uncover the causal dependencies that govern a system's behavior. After

understanding the causal dependencies the experts may try to apply the formulae that are

appropriate for the system. In fact, the causal model helps them to find the appropriate equations.

Experts often don't even bother about the equations. Instead, developing a conceptual model is a

goal in itself, that is: discovering the physical constituents of the system, identifying the relevant

quantities, and understanding how these interact in determining the system's behavior. Qualitative

models are well suited to help domain experts in articulating and formalizing their insights (e.g.

                                                  
3 (See footnote 3).
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Salles, 1997). If we think of how this kind of knowledge can be communicated to (new) trainees

in the field, qualitative models are again crucial.

Qualitative models

As argued above, qualitative models should be seen as knowledge models of systems and their

behavior. For technical details of such models, see Bobrow (1984) and Weld & Kleer (1990). In

our research we use GARP (Bredeweg, 1992), a simulator written in SWI-Prolog. GARP takes as

input a scenario and generates a graph of qualitative distinct behaviors for the situation described

in that scenario. GARP uses model fragments and transition rules to construct this graph. Model

fragments have conditions and consequences. If the conditions match the scenario, and are

consistent with other model fragments that match the scenario, they are added to the state of

behavior. States of behavior transform into successor states when inequalities between quantities

change or when quantities reach a different value in their quantity space. Such changes are the

result of influences introduced by model fragments (of type 'process' and 'agent'). These

influences propagate via proportionalities and affect the derivatives of quantities. In other words,

they change the quantities and this is modeled as derivatives being positive or negative. Quantity

spaces represent the values that quantities can have. Each quantity has a unique quantity space. A

quantity space captures the relevant distinctions for a quantity, such as the temperature of a

substance being below, at, or above the boiling point. When developing a simulation model in

GARP, a model fragment is often used to represent a particular concept relevant to the domain

that is modeled, for instance: a population (ecology), a heat-flow (thermodynamics), or a

pressure-area (meteorology).

How to interact with simulation models?

If students learn by using simulation models, what kind of interaction styles between learners and

such models should be established? We distinguish three major categories, and refer to them as:

assignment-based, assembling-from-library, and self-building. The difference between these
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categories relates to the status of the simulation model the learner interacts with. Assignment-

based is probably the default approach when thinking about simulation-based learning (e.g.

ITSIE, Sime, 1994, and SIMQUEST, Kuyper, 1998). There are many forms of the assignment-

based approach, but they all have in common that the simulation is not made by the learner.

Instead, the model is built by the developers of the interactive simulation and the learner can only

interact with the simulation. This interaction can then take many specific forms (see e.g. Jong,

1991), such as answering prediction questions, controlling the simulation (as in a flight

simulator), setting up experiments and discovering what happens, finding explanations for

observed behaviors, and many more. The idea is that by interacting with the simulation, possibly

taking into account a set of assignments, a learner will eventually understand the behavioral

insights captured by the simulation and thus understand the real system's behavior (or at least

partly).

A somewhat different approach could be called 'assembling-from-library'. In this case, the

simulation is not fully available, but has to be assembled by the learner. Typically the learner is

given a library of partial models or components, e.g. as a set of icons on the screen, from which

he/she has to select the ones relevant to the situation (scenario) for which a model has to be

constructed (e.g. CYCLEPAD, Forbus et al., 1999). Selecting and connecting the parts is not

always enough to get a simulation running adequately. Often learners have to provide additional

detail, such as initial values, value-range limits and possibly modes of operation in the case of

components. Also remodeling the initially selected set of partial models may be necessary when

the model does not produce the desired behavior results. Notice that the assembling-from-library

approach is a kind of design task, a design task where all the building blocks, from which designs

can be made, are predefined. Also notice that this approach can easily be augmented with ideas

from the assignment-based approach. For instance, providing a 'hypothesis scratch-pad' to help

the learner with organizing his/her ideas concerning behavioral features captured by the partial

models and their interactions (e.g., Joolingen & Jong, 1991).

The third approach is probably the most difficult one from a learning perspective. In the case of

self-building the learner has to build the simulation by himself/herself and by doing so acquire the
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insights relevant to the system's behavior. Obviously, a learner needs to master a considerable

amount of detail of the real system's behavior in order to build an adequate simulation model.

Typically the self-building approach starts with a model building tool (e.g. STELLA) which can

be used to construct a model. These building blocks differ from the ones in the assembling-from-

library approach in that they are much finer grained and usually domain-independent. They refer

to concepts used in science and science teaching (in fact, theoretical constructs) to model a wide

range of systems (e.g. System Dynamics). Often the language underlying these concepts has a

close relation to mathematics, particularly with differential equations. The self-building approach

is mostly used in higher education, such as universities. When building a model, learners have to

perform important but difficult abstraction steps in order to map the real system's behavior onto

the building blocks provided by the model building tool that is used. Building a model also

includes filling out many technical details in terms of the underlying mathematical equations.

Depending on the tool, parts of this process may be automated.

In our approach we use both the assignment-based and the self-building approach. The

VISIGARP tool, described in section 3, is primarily meant as a tool for inspecting qualitative

simulations, e.g. for solving assignments. MOBUM, on the other hand, embodies the self-building

approach. MOBUM is described in section 4. One of our plans for future research is to fully

integrate a tool like VISIGARP with MOBUM in order to actively support learners in building

simulation models. Finally, notice that in contrast to most of the simulations referred to above, we

use qualitative models. We focus on learners who have to learn knowledge models of systems and

their behavior.

3. Communicating model contents and simulation results

How to communicate the contents of qualitative simulation models to a user? The output

generated by the GARP simulation engine consists of a large amount of complex propositional

statements in Prolog code format, which is hard to read, search, and oversee, except for

experienced knowledge engineers. Therefore, we have designed a tool, VISIGARP, which
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supports investigation of the simulation model and results. VISIGARP offers a number of views,

each of which focuses on certain kinds of information, while using others to form the context, or

to provide links to more detailed information. Because the knowledge is highly structured and

cannot be captured easily in linear text, we mainly use graphical representations, such as block

diagrams, trees and graphs. These visualizations make structural aspects of knowledge explicit,

which can facilitate internalization of complex concepts. Our visualization ontology consists of

circular, rectangular and oval shapes of variable sizes for different kinds of entities, and lines,

arrows, inclusion, ordering, and indentation for different kinds of relations. Since our approach is

generic and does not use domain-specific pictures or symbols, text labels are used to denote

specific entities and relation types. For each view, we have designed a mapping from the ontology

of qualitative simulation to the ontology of visualization primitives, to facilitate specific

reasoning tasks (identifying, searching, counting, associating, and sequencing) and interaction

types (reading, selecting, dragging, resizing, etc). Multiple views can be opened simultaneously,

allowing users to navigate between global overviews and more detailed descriptions and to switch

between different types of reasoning.

Components of the model

VISIGARP offers views for all types of components of the simulation model: the entity-

relationship graph, the causal model (or dependency graph), the is-a hierarchy of entities, and

three different views on model fragments. The entity- relationship graph (see figure 3) shows the

instances of system elements as labeled rectangles; relationship between entities are shown as

labeled arcs. This view is deliberately kept simple, which makes it useful as a graphical

introduction to the system model. The is-a hierarchy (also shown in figure 3) is a separate view,

showing subtype relationships in a left-to-right tree format. Since the hierarchies are usually

wider than they are deep (in terms of nesting), and there are often multiple branches with long

strings as labels, a top-to-bottom format would very soon take too much space along the

horizontal dimension. The levels below a certain entity node can be collapsed and opened up

again by clicking on it, to allow viewing at different levels of generality.
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[Insert figure 3 here]

A more detailed view, including also aspects of system behavior, is offered in the causal model,

or dependency graph. Figure 4 shows a screenshot of the causal model for state 1 in a simulation

of the Brazilian Cerrado vegetation with three populations (grass, shrubs and trees), and fires. In

the diagram, all quantities are shown, together with the dependencies between quantities, between

quantity values, and quantity derivatives. As shown, all quantities belonging to the same entity

are grouped together within the block representing that entity. This facilitates recognition of

dependencies within subsystems, and dependencies crossing subsystem borders. Radio-buttons

are supplied alongside the diagram which can be turned on or off to show or hide specific types of

information. This way, also the value, the quantity space and the derivative of quantities can be

shown. If turned on, the quantity space is displayed within the quantity node in vertical

orientation, with the current value highlighted and an arrow beside it, indicating increase or

decrease. In addition, it is possible to show or hide the entities and relationship to clarify the

system structure.

[Insert figure 4 here]

To investigate the role of the different model fragments during a simulation, a view is supplied

which lists all model fragments which apply in a particular state (see figure 5). Such a list gives a

high-level overview of what is true, and what is happening in that state. A model fragment can be

selected, and more details can be requested in a structured text format, or a graphic format based

on the causal model view, with color used to highlight the contents of the specific model

fragment. This gives an overview of the context while drawing special attention to the specific

knowledge introduced by that model fragment.

It is also possible to view how the different model fragments are structurally related to each other

in the model library. Two views (not shown in this paper) are supplied for this purpose: the is-a

hierarchy of model fragments, which shows the hierarchical subtype-relationships between model
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fragments, and the applies-to hierarchy, that shows which model fragments are conditional for

which other model fragments. In both views, a model fragment can be selected for further

inspection.

Because this kind of knowledge is a bit more abstract than the kinds described previously, it

should not be used before students have had some experience with the more concrete aspects of

the simulation model. It is especially useful, however, for the system modeler, or students

learning to model.

[Insert figure 5 here]

Running the simulation

Running a simulation leads to processes becoming active or inactive, quantity values changing,

and qualitative states terminating and transforming. The behavior graph, or state-transition graph,

shows an overview of the progress of the simulation in terms of states and state transitions (see

figure 6). Alongside the diagram, buttons are provided to control the simulation: a state can be

selected to pursue the simulation in one direction only, or, alternatively, all branches can be

pursued until no further progress is possible (the Full Simulation button). Terminations, which

have not (yet) resulted in a state transition, are shown as tiny circles, connected to their

originating state. States, terminations and transitions can be investigated in more detail by

selecting them and clicking one of the other view buttons. When two or more states are selected

in Path-mode, a path through these states (if one exists) is automatically selected. This is

especially useful for the transition history and the quantity value history views, since they show

behavioral aspects of multiple transitions/states in a single screen.

The transition history button pops up a small screen with a short textual description of all

terminations/transitions in the selected path, or connected to the selected states (partly visible in

figure 6). This gives a brief overview of all events that triggered a state transition. A more
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detailed description of individual terminations is also available by selecting one in the popup

window. In the quantity value history view (the foremost window in figure 6), quantities can be

selected from a list – when selected, the values of this quantity will be plotted over time (the

sequence of states selected in the behavior graph).

[Insert figure 6 here]

Like a traditional x-y graph that plots a dependent variable against time, a graph format is used

with the quantity space on the y-axis, and the state sequence on the x-axis. Point values are

plotted on horizontal lines indicating specific value points, whereas interval values are plotted

between two lines, corresponding to the values bordering the interval. Note that connecting these

points to form a line-graph would suggest too much, because the exact slope of ascent/descent

within intervals is unknown in our qualitative simulation framework.

Working with visualizations of qualitative simulations

One of the educational goals that can be supported by VISIGARP is learning to make predictions

and to test their accuracy. Given a certain simulation scenario starting state (including a structural

description of the system and the causal dependencies between its quantities), a possible exercise

is to predict the possible changes of one or more quantities, and in what order they might occur.

In order to test the hypothesis, the student can run a complete simulation – the simulation engine

then produces all possible successor states, including alternative branches when the situation is

underdetermined. By looking at the state transitions, and the order in which they occur in the

behavior graph, the student can test the accuracy of his/her predictions. A common mistake is to

consider only one, or a few possibilities, when in fact under-determination leads to multiple

branches – hence unforeseen results.

In addition to making and testing predictions, the system also supports the search for explanations

for particular results of the simulation. For example, if state 12 (which may be an end state, or
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intermediate state) of the simulation shows that a certain population dies out (number-of = zero),

the student may be asked to find out how this can have happened. This forces the student to trace

back from state 7 (there may be multiple paths leading there) to earlier states to check for state-

transitions and other differences that may have occurred. To find out why a certain state transition

occurred, the student will have to look into the causal model for the originating state to find out

how all quantities involved are related to each other. Contrary to events in the real world, events

happening in the simulation can always be traced back to a starting state, providing at least a

kernel for explanation.

It is important to note that the figures generated by our system do not contain domain-specific

symbols or pictorial representations. One may argue that this is a weak point, since it may be hard

for students, especially novices, to relate the model to reality. Other work in simulation-based

learning has incorporated domain-specific symbols, icons, or pictures to help students understand

the correspondence between the model and the system modeled (e.g., Forbus et al., 1999; Kuyper,

1998). Nevertheless, due to their flexibility, more abstract representations can actually provide

advantages, as research in diagrammatic reasoning indicates (e.g. Kulpa, 1994). After a learning

phase, students can directly read off characteristics of the simulation, by looking at the diagrams.

This way, they can find out whether there is ambiguity in the simulation or a feedback loop in the

causal model, for example. Also, an overall estimation of complexity and relative importance can

be given by just glancing at the diagram layout: a diagram with lots of lines going back and forth

suggests a complex system; clutter around a certain quantity may suggest that it serves an

important role in the system.  These kinds of reasoning with diagrams can prove very useful,

because they go beyond the possibilities of text as a medium for knowledge communication.

It is also important to note that the diagrams in our system are created at the moment a student

wants to see it, in the context he/she has chosen interactively. They can be extended and modified

at the student’s will, within the scope of the current interface options: adding extra details,

extending behavior paths, highlighting fragments, modifying the layout. This may well lead the

students to see that diagrams are not necessarily static figures (as is the case in books), but

external representations with which you can interact to facilitate reasoning. Furthermore, once
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students learn to use abstract representations in one domain, knowledge of how to use them can

be transferred to other domains. When the goal is not only to learn about a specific domain, but

also to learn more general skills, like learning to model scientific phenomena, abstract

representations are even necessary.

Current status and future work

VISIGARP is implemented in SWI-Prolog/XPCE (Wielemaker & Anjewierden, 1992). Other

members of our group have implemented some of these ideas on visualization in JAVA4. All

figures in the screenshots in this section were automatically generated by VISIGARP, using a

large simulation model developed for GARP by Salles and Bredeweg  (1997). This mechanism

works for any GARP model in any domain, e.g., a piston system with a heat-flow, a balance

system with a liquid flow (Koning, 1997), and the ecology of Brazilian Cerrado populations with

different growth and migration processes (Salles, 1997). Preliminary evaluation with twenty-five

undergraduate students has shown that these subjects can use VisiGarp to help them complete

exercises asking for simple qualitative knowledge in a domain unfamiliar to them (for details can

see Bouwer & Bredeweg, 2001). However, reasonably large models (such as the Brazilian

Cerrado ecology model employed in this study) can still lead to complex diagrams, with

suboptimal layout. Possible improvements to the system are smarter layout algorithms, or

alternative browsing techniques (e.g. automatic zooming or hyperbolic browsing). However, a

more promising direction we are investigating is to automatically select and abstract the most

interesting aspects of the simulation model, before visualization. For example, it can be helpful to

show the most important values in every state in a state-transition graph, or to show the important

differences between two states in terms of model fragments. For the automatic realization of such

support we can build on research dealing with aggregation and abstraction mechanisms (e.g.,

Koning et al., 2000; Mallory et al., 1996). A third avenue for further work we are pursuing

addresses the question of how to enhance the graphics with textual explanations, and how the

visualizations can be used in a dialogue between system and student. Automating these processes

                                                  
4 (See footnote 4).
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may benefit from work in multimedia generation, e.g., by Mittal et al. (1998), who are generating

figures and their captions automatically, and Wahlster et al. (1993), who focus on planning a

complete interactive presentation. Also, research on automated explanatory dialogue may prove

useful in this respect, e.g., by Moore (1995) and Pilkington & Grierson (1996).

5. Learning by building models

As has been argued in section 2, building a model can also be a learning experience. Enabling this

type of learning requires adequate model building environments. One of the main bottlenecks in

the construction of knowledge models is the absence of easy-to-use, domain-independent tools to

support the average learner in the realization of complete and manageable models. To address this

problem we have implemented a prototype, MOBUM, which allows users to interactively build

qualitative simulation models. This section discusses the details relevant to the construction of

this tool.

Constraints for the design of workspaces

Building a simulation model is a complex activity that involves many tasks, subtasks and

interdependencies between tasks (e.g. Schut and Bredeweg, 1996). An important issue therefore

concerns the decomposition of this overall activity into smaller parts that can be performed more

or less independent from each other. These parts can thus be supported by separate, and possibly

dedicated, interface constructs (referred to as workspaces). As a starting point we used the

simulation model ontology on which GARP is based (Bredeweg, 1992) and remodeled it using an

object oriented approach. A summary of this model is shown in figure 7.

[Insert figure 7 here]

Without going into all the details, notice that the system model (that is the simulation model as a

whole) consists of a hierarchy of model fragments, a hierarchy of entities, a scenario, quantity
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spaces and rules5. Both model fragments and scenario use 'descriptions', which implies that the

latter have to exist (or have to be created) when creating a model fragment or a scenario. Entities

and quantity spaces, on the other hand, do not use other model parts (but they are used as inputs

when creating other model parts).

Description is a model construct used to group sets of model parts that are reused in other model

parts. Although not shown in figure 7, it turns out that these description parts are highly

interrelated.  For instance, a quantity always belongs to an entity, an attribute always exists

between two instances, a proportionality always exists between two quantities, etc. Moreover, the

specific descriptions that a learner may want to formulate always depend on the specific model

fragment he/she is constructing. For instance, a liquid-flow process between two containers

should only become active when those two containers exist, are filled with an amount of liquid,

have unequal pressures and are connected by a pipe that facilitates the flow (see also figure 10).

Putting these insights together and making them available under the correct conditions is

precisely what constructing a model fragment is all about. It is therefore necessary (i.e., logical)

to have the interface facilities, for creating the descriptions, available in the context of creating a

model fragment.

Constraints such as the ones discussed above have resulted in defining four builders (main

workspaces) and sets of tools that are available within each workspace. Table 1 enumerates the

builders that exist in MOBUM.

Table 1: Learner workspaces in MOBUM

Entity Builder In this workspace the learner models the (physical) objects that

represent the domain. The hierarchical relationships between these

objects will be modeled here as well.

Scenario Builder In this workspace the learner defines the situations that can be

simulated. Notice that by definition this can only be a 'selection' of

                                                  
5 (See footnote 5).
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the model parts defined elsewhere in the model. For instance,

there is no point in specifying an entity in a scenario that is not

used in any model fragment.

Model Fragment Builder In this workspace the learner constructs the knowledge about the

behavior of entities. This includes the specification of features of

instances, such as quantities, the values these have, and the

dependencies that exist between the quantities.

Quantity Space Builder In this workspace the learner creates an ordered set of quantity

values that quantities may have. These values are a sequence of

alternating points and intervals.

Tools exist for creating, modifying and organizing the model parts (mainly the descriptions in

figure 7) within each builder6. For instance, within the model-fragment builder the following tools

exist (see also figure 10, column on the right, read from top to bottom):

1. Pointer tool (move icons on the screen with the workspace),

2. Instance tool (add entities to the workspace),

3. Modify tool (e.g. change a name),

4. Delete tool (permanently remove something from the workspace),

5. Attribute tool (make structural relations between entities, e.g. container contains a liquid),

6. Quantity tool (add a quantity to an entity)

7. Influence tool (define an influence constraint between two quantities)

8. Proportionality tool (define a proportionality constraint between two quantities)

9. Correspondence tool (define a correspondence  constraint between two quantities)

10. Inequality tool (define an (in)equality constraint between two quantities)

11. Reuse model fragment tool (add an already defined model fragment as a condition)

12. Reuse instances tool (reuse parts of a conditional model fragment in order to further refine)

                                                  
6 (See footnote 6).
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Notice that most of these tools are also available in the other builders, such as the quantity tool in

the scenario builder (in fact, the tools 1, 2, 3, 4, 5 and 6 from the above list are available within

the scenario builder).

To further constrain the design of MOBUM we used the notion of task analysis (e.g. Preece et al.,

1994, see also figure 8). Mainly by detailing each of the subtasks within a workspace in terms of

inputs-outputs, and thus their relative order, an additional set of requirements and constraints

emerged.

[Insert figure 8 here]

Input-output dependencies determine whether a subtask can be performed and thus can be used to

govern the availability of tools within a workspace. For instance, the quantity tool cannot be used

unless at least one instance has been added to the workspace of the model fragment being built

(and before that the learner must have created the entity as an element in the entity builder). Table

2 enumerates the minimum requirements for using a tool within the model fragment builder.

Table 2: Minimum requirements for using a tool in the model fragment builder.

Instance tool One entity must have been created (in entity builder)

Attribute tool Two instances must exist (in workspace)

Quantity tool One instance must exist (in workspace)

Influence tool Two quantities must exist (as consequence in the workspace)

Proportionality tool Two quantities must exist (as consequence in the workspace)

Correspondence tool Two quantities must exist (as consequence in the workspace)

Inequality tool Two quantities must exist (in workspace)

Reuse model fragment tool Other model fragment must have been created (with MF builder)

Reuse instances A reused model fragment must exist (in workspace)
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When these basic requirements are fulfilled (and at least one tool can be used) the input-output

dependencies within the subtask, supported by that tool, can be used to determine whether the

learner has performed the task correctly or at least sufficiently (that is, syntactically speaking).

For instance, within the quantity tool the learner always has to select the instance to which the

new quantity must be applied. The task is not sufficiently completed without that information and

thus closing the task should be made impossible (of course, it can be cancelled). On the other

hand, some information may not be crucial yet. For instance, the quantity space of a quantity may

be added later. For each tool, the minimum required steps have been identified. They have been

used in the design of the tools within MOBUM to support the learner in always performing the

task to a sufficiently complete level.

User interface design

The overall user interface design for the MOBUM environment starts with the notion of builders

and tools. Tools are displayed on the right side of the screen and automatically change when the

learner chooses to work with a different builder (i.e., workspace). Opening a builder can be done

by clicking on the icons in the main toolbar, at the top of the overall interface. Builders can also

be opened using the menu options. Multiple builders can be opened, but only one tool can be

active. Although from a technical point of view multiple tools can be provided, the idea is that it

is better to support learners in performing focussed model building steps. Allowing only one tool

to be active forces learners to first finish this task, or cancel it, before moving on to the next.

Having multiple builders open is essential, because next to supporting a model building step,

these builders also provide the learners with overviews of what has been built so far (see also

figure 9).

[Insert figure 9 here]

Figure 9 shows a screenshot of a model building session in MOBUM. Two builders are open, the

entity builder and the quantity space builder. The learner is working within the latter and uses the
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point/interval-maker. This is a tool that allows the user to add values to a quantity space. On the

left side in figure 9, the model browser is shown (system model view). This browser provides an

overview of the model building activities by showing the model parts that have been created so

far. The browser can also be used for navigation and to open specific model parts and the

corresponding builders (by double clicking on the name label).

Next to the overall design, the internal design of the different workspaces has to be determined.

Some choices are rather straightforward, such as using combo-boxes to present the user with a list

to select from (e.g. instance selection in the quantity tool in figure 10). This is easier and prohibits

typing errors. When the learner has to provide a new name, the words entered by the user are

always checked against the already existing labels in order to prevent errors or undesired overlap.

Less obvious design choices concern the icons and the spatial layout of some knowledge items on

the screen. To start with the former, we have tried to find insightful icons to refer to knowledge

items in a builder. For instance, an entity is visualized as a cube, a quantity as a gauge, etc. These

choices are somewhat arbitrary. We do not yet know to what extent the MOBUM icon language

will be interpreted correctly by the target users. However, most icons also have a label identifying

it.

With respect to the spatial layout, most knowledge items (e.g. entities, instances, quantities,

reused model fragments, points and intervals) are represented as nodes of a connected graph.

They may be moved around freely by the learner allowing him/her to organize the model to

his/her taste (using the pointer tool). An exception to this rule is formed by the quantities, which

are organized in a tabular form, grouped together with the instance they have been assigned to.

Included in this table are the quantity space, current value, and derivative for each of the

quantities (see also figure 10).

[Insert figure 10 here]

Binary relationships between knowledge items are represented as lines connecting the two icons

that visualize the knowledge items. The type of relationship is shown by an icon placed at the
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midpoint of the line (e.g., the > sign for an inequality, or an I+ sign for an influence, both shown

in figure 10). A problem with this approach is that dependencies between quantities belonging to

the same instance are somewhat difficult to represent, because they are lines 'from' and 'to' the

same icon. Particularly in the case of 'many' lines this will become messy. Another approach

would be to represent each of the quantities by a unique icon and then connect it, using lines, to

the instance it belongs to. The problem with this approach is that it becomes more difficult to see

what icons belong together. Also, in the case of 'many' quantities all the lines connecting all the

icons make the overall picture pretty messy. More research is needed to find a good solution for

this problem.

Another discussion concerns the 'conditions' and 'consequences' part of a model fragment. How to

visualize this? In MOBUM we decided to have separate fields within the builder for this (see

figure 10). Obviously, it is immediately clear whether an icon is in the condition or in the

consequence part. But there is also a problem and that is using the same knowledge item both as

condition and as a consequence. In the MOBUM approach this leads to a full copy of the instance

(knowledge icon) into both the conditions and the consequences, and then add quantities relevant

to each part (in figure 10 pressure is added in the conditions and amount plays a role in the

consequences). From the resulting visualization in model fragment builder it is not obvious that

both icons refer to the same instance, the user really has to understand the underlying details.

Another approach would be not to have separate fields, but to visualize the condition versus

consequence role by means of a color. Again, more research is needed to resolve the issue.

Notice that section 3 already hints at possible solutions for the above mentioned problems.

However, it should be pointed out that the visualizations for VISIGARP and MOBUM are

designed to support different tasks, and may therefore need to look different.

Current status and future work
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MOBUM is a fully operational prototype that has been implemented in JAVA. In the current

implementation there is no direct communication with the simulator. Instead, the learner has to

save the model into files and then run the simulator (GARP) as a separate program. To be used in

practice with real learners this will not be sufficient. For that purpose, MOBUM and the simulator

must be fully integrated, at least from a user's perspective.

Despite the fact MOBUM has not yet been evaluated with the target users, three points for

improvements can be pointed out. First, intermediate modeling support. Often when building a

model, the persons building the model define intermediate models before they write down the

final model. MOBUM does not support this process, it only supports the latter step.

Improvements for MOBUM could focus on supporting and maintaining intermediate models for

the user. Second, horizontal views. When building a model in MOBUM it is difficult to see how

all the model fragments that have been created will interact. There are no tools/builders/views that

provide the user with a global overview of certain model parts (except for the model browser).

For instance, it may turn out to be helpful to provide the user with a 'causal model viewer', e.g.

similar to the causal model view in VISIGARP (shown in figure 4). This would allow the user to

investigate if and how the causal dependencies, that have been defined in the different model

fragments, are related (thus, without running the simulator first). Third, model building support

from a 'content' point of view. MOBUM allows for building syntactically correct models, but the

current prototype has no knowledge of the model construction process and the status of the

model. In order to coach learners in building models beyond the syntactic level, MOBUM should

be extended in this respect.

5. Towards a networked model building community

Integration of the prototypes discussed in the previous sections, takes us close to the goal of

interactive model-building environments, which incorporate intelligent support for both model-

building and inspection of simulation models. But we believe that the combination of these two

will prove to be even more powerful for educational purposes than just the sum of their individual
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functionality. If models of scientific phenomena become easier to produce and inspect, they can

also be shared more easily. And it is exactly the sharing of understanding, made explicit in the

form of (qualitative) simulation models, which creates a huge potential for learning. Imagine, for

example, that two students get the same assignment of modeling a particular system, but solve it

differently. Would there be a better way to exchange their different views, than to let them

exchange models and experiment with them? Or imagine a whole classroom working together on

a model of a large complex system, dividing tasks among subgroups to model different parts, or

different aspects of the system. Or, on an even larger scale, imagine several classrooms separated

by many kilometers in space, yet connected via the Internet. They could build models of systems

that are important, maybe omnipresent, in their part of the world, but largely unknown to others

(like the Cerrado vegetation in Brazil, or electricity generators based on water wave energy in

northern Europe). By exchanging models, people could learn about systems they don’t have

access to in their own part of the world. Learning about distant places will become more

interesting, we believe, when students will not only be able to read and hear about them, but also

be offered ways of interacting with simulations of them. In this sense, our notion of a model

building community resonates strongly with the work of Reichherzer et al. (1998) on the Quorum

project, although the form of knowledge representation they use is far simpler (i.e., concept maps)

than in our case.

Of course, just exchanging models would not be enough to establish understanding, especially

when cultural or language barriers are being crossed. Learning does not only entail model

building and inspection, but also requires coaching, involving dialogue, exercises and feedback.

Additional communication channels, like personal contacts between teachers, project WWW

pages, e-mail and chat facilities between students, etc., will be necessary to establish real model

building communities. When more people become involved in building a single model, specific

tools for collaborative work will be required as well, to support both synchronous and

asynchronous work, version management, search for differences and similarities, feedback on

potential integration problems, etc. An example of this kind of work is C-CHENE, a structured

computer mediated communication interface which supports reflective discussion between pairs

of students building models in energy physics (Baker & Lund, 1997). Indeed, the idea of model
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building communities introduces several interesting problems on our research agenda. While

working on this agenda, more and more elements are being put in place, alleviating part of the

shortcomings of today. Therefore, we believe that interactive model building environments based

on a domain-independent modeling ontology will prove very useful for the communication of

knowledge in the future.

6. Conclusions

This article has introduced the notion of interactive model building environments for educational

purposes. This notion is essentially based on two ideas. First, students can learn by interacting

with an articulate simulation model, investigating the structure and behavior of a particular

system in the real world by looking at a qualitative representation of that system and its behavior.

A prototype, VISIGARP, has been implemented for this purpose. Using VISIGARP, students can

experiment with simulations of systems, or situations that are difficult to replicate in reality. They

can check predictions of what might happen and search for causal accounts of particular events in

the simulation. Second, students can learn by building such models themselves, using tools which

contain the necessary modeling primitives as building blocks and support the model building

process. This is addressed by a second implemented prototype, called MOBUM. Using the right

modeling abstractions and assumptions, students can articulate in MOBUM their intuitive ideas

about some interesting phenomenon in the form of a qualitative model, which can be used to run

simulations. Since the prototypes are domain-independent, support is available for modeling, and

model communication, in various domains. Both prototypes are currently undergoing evaluation,

and further work is necessary on several aspects. For the communication of model contents and

simulation results, it is clear that the diagrammatic representations can not be treated as

explanations on their own – embedding them in an educational dialogue, and grounding them to

educationally meaningful tasks is necessary. Concerning the support for the model building

process, the currently implemented tools and constraints are not sufficient – additional guidance is

needed to ensure that the model building effort turns into a useful learning experience.
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When the functionality of the two current prototypes is combined, this will lead to interactive

model building environments, which empower students to articulate their thoughts, experiment

with the results generated by their own model, and reflect on the outcomes. By making explicit

their ideas, students may not only deepen their own conceptual understanding of a domain, but

also share this with others, since having a runnable simulation model means that it can be

communicated to other users too. This aspect of interactive model building environments based

on a principled modeling framework makes it possible to think about multiple users, building

models together, or exchanging models between them. By realizing that knowledge can be

articulated, and that the resulting model can be used to reason and communicate about system

behavior, students may learn to view their knowledge of the world not as something static, but as

dynamic and interactive, like the world itself.
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Footnotes

Footnote 1:

This type of work is inspired by theories on constructivism (Bruner, 1966) and situated learning

(Brown et al., 1989)

Footnote 2:

An interesting enumeration of competing theories on learning can be found in TIP (Kearsley,

1994-2000).

Footnote 3:

The work on self-explanatory simulations (Forbus & Falkenhainer, 1992) is an interesting

example of combining quantitative simulations with qualitative knowledge to automatically

generate explanations.

Footnote 4:

E.g. http://www.swi.psy.uva.nl/projects/GARP/index.html. GarpApplet is an online visualization

prototype, implemented in JAVA 1.2. It runs both in Explorer and Netscape.

Footnote 5:

In the current implementation of MOBUM a set of default rules (domain independent) is

provided. Rules are therefore not further discussed in article.

Footnote 6:

Most tools are called 'makers' in the user interface of MOBUM. E.g. the quantity tool is referred

to as the 'quantity maker' (see also figure 10).
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Figure 2: Behavior Analysis: Prediction and Post-diction.
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Figure 3: Entity-attribute graph and Entity is-a hierarchy for an ecological model of the Brazilian

Cerrado vegetation.



- 37 -

Figure 4: The causal model view for state 1 of the Cerrado simulation, showing parameters within

the entity they belong to, and relationships as labeled arrows. The I-relations denote

influences, P-relations denote proportional relationships.
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Figure 5: The list of model fragments that are active in state 1. The contents of the selected model

fragment natality process for the grass population are shown in detail, both in text and

graphics format.
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Figure 6: State-transition graph for the Cerrado simulation. For the selected path between state 1

and 12, the transition history is opened, as well as the value history for the parameter

number_of(shrub), which shows an increase from zero to high.
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Figure 7: Simulation model ontology of the GARP qualitative reasoning engine.
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Figure 8: An example task analysis for making a new quantity.
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Figure 9: a MOBUM session, showing: browser, entity builder and quantity-space builder.
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Figure 10: Model fragment builder: user starts adding a new quantity to the liquid-flow process.


