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Abstract
A Datalog program can be viewed as a syntactic specification of a mapping from database instances
over some schema to database instances over another schema. We establish a large class of Datalog
programs for which this mapping admits a (generalized) right-adjoint. We employ these results to
obtain new insights into the existence of, and methods for constructing, homomorphism dualities
within restricted classes of instances. From this, we derive new results regarding the existence of
uniquely characterizing data examples for database queries in the presence of integrity constraints.
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1 Introduction

Datalog is a rule-based language for specifying mappings from database instances over an
input schema Sin, to database instances over an output schema Sout.

▶ Example 1.1. Consider the Datalog program defined by the following rules:

Path(x, y) :− Edge(x, y).
Path(x, y) :− Edge(x, z), Path(z, y).
Ans(x, y) :− Path(x, y).

This Datalog program takes as input an instance over an input schema {Edge}, and produces
as output an instance over the schema {Ans}, where Ans is the transitive closure of Edge.

We study the existence of right-adjoints and generalized right-adjoints for Datalog
programs, where a right-adjoint for a Datalog program P is a function Ω from Sout-instances
to Sin-instances, such that for all Sin-instances I and Sout-instances J , P (I) → J iff
I → Ω(J), where “→” denotes the existence of a homomorphism. Generalized right-adjoints
are defined similarly, loosely speaking, except that we allow Ω to map each Sout-instance
to a finite set of Sin-instances, such that, P (I) → J iff I → J ′ for some J ′ ∈ Ω(J). We
identify large classes of Datalog programs for which a right-adjoint, respectively, a generalized
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10:2 Right-Adjoints for Datalog Programs

right-adjoint, exists. For instance, it will follow from our results that the Datalog program
from Example 1.1 has a right-adjoint.

Our motivation for studying (generalized) right-adjoints for Datalog programs comes
from the fact that they provide us with a means of constructing homomorphism dualities.
A homomorphism duality is a pair (F,D) where F and D are sets of instances, such that
an arbitrary instance A admits a homomorphism from an instance in F if and only if A does
not admit a homomorphism to any instance in D. In other words, homomorphism dualities
equate the existence of a homomorphism of one kind to the non-existence of a homomorphism
of another kind. Homomorphism dualities have been studied extensively in the literature on
constraint satisfaction problems, and have also found several applications in database theory
(e.g., for schema mapping design [2], ontology-mediated data access [6], and query inference
from data examples [9, 10]). In particular, in [2, 9], homomorphism dualities were used as a
tool for studying the unique characterizability, and exact learnability, of schema mappings and
of conjunctive queries. Using the same approach, we can use our results on right-adjoints to
derive new results on unique characterizations for (unions of) conjunctive queries in the pres-
ence of integrity constraints. In the process, we also obtain a new technique for constructing
homomorphism dualities within restricted classes of structures, e.g., transitive digraphs.

▶ Contribution 1 (Section 3). We introduce a new fragment of Datalog called TAM Datalog
(Tree-Shaped Almost-Monadic Datalog). We characterize TAM Datalog as a fragment of
Monadic Second-Order Logic, and we prove that TAM Datalog is closed under composition.

▶ Contribution 2 (Section 4). We show that every connected TAM Datalog program has
a right-adjoint, and that every TAM Datalog program has a generalized right-adjoint. We
show by means of counterexamples that each of the syntactic conditions imposed by TAM
Datalog is necessary for the existence of generalized right-adjoints.

▶ Contribution 3 (Section 5). We investigate the relationship between generalized right-
adjoints and homomorphism dualities. Generalized right-adjoints can be used for constructing
homomorphism dualities. We show that all tree dualities can be accounted for in this way.

▶ Contribution 4 (Section 6). Following the approach in [2, 9], we derive new results on
unique characterizations for (unions of) conjunctive queries in the presence of integrity
constraints. In the process, we obtain a new technique for constructing homomorphism
dualities within restricted classes of structures, e.g., transitive digraphs.

Some proofs are omitted and can be found in an appendix of the full version of this paper.

Related Work Foniok and Tardif [17] studied the existence of right adjoints to Pultr functors
which are themselves right adjoints [22] in the special case of digraphs. Translating into
our terms a Pultr functor is an interpretation (of digraphs in digraphs) (ϕV , ϕE) where ϕV

and ϕE are conjunctive queries (with k and 2k free variables, respectively, for some k ≥ 1)
defining the output node-set and edge-set respectively. For the special case where ϕV just
returns the input node-set, it was shown in [17] that the functor defined by (ϕV , ϕE) has a
right adjoint if ϕE is connected and acyclic. The setup and characterization were generalized
in [13] to arbitrary relational structures. We extensively build on the framework and concepts
in [13], but we permit the interpretation to be specified by an arbitrary Datalog program, so
that our setup is able to encompass common types of database dependencies.

To our knowledge, this is the first time that adjoints for functors defined by Datalog pro-
grams have been studied. Also, it is the first application of functors with right adjoints in the
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context of unique characterization of database queries. In a different setting, namely approxim-
ate graph coloring, the “arc graph” functor was used in [21] where it is additionally argued that
functors with a right adjoint, more generally, can play a role in the design and analysis of re-
ductions between (promise) constraint satisfaction problems. The use of Datalog programs for
reductions between such problems, although without reference to adjoints, is discussed in [14].

2 Preliminaries

Schemas, Instances, Homomorphisms A schema S is a finite collection of relation symbols
R with specified arity arity(R) ≥ 0. An S-instance I is a finite set of facts, where a fact
is an expression of the form R(a1, . . . , an) with R ∈ S and n = arity(R). Unless specified
otherwise, instances are always assumed to be finite. The active domain adom(I) of I is the
set of all values ai occurring in the facts of I. A homomorphism h : I → J , where I and J

are instances over the same schema S, is a function from adom(I) to adom(J) such that the
h-image of every fact of I is a fact of J . We will denote by Inst[S] the set of all S-instances.

A k-ary pointed S-instance (for k ≥ 0) is a pair (I,a) where I is an S-instance and a a
k-tuple of elements of adom(I), called distinguished elements. A homomorphism h : (I, a) →
(J,b) is a homomorphism h : I → J such that h(a) = b.

Incidence Graph, Connectedness, C-Acyclicity The incidence graph of an instance I is the
bipartite multi-graph whose nodes are the elements and the facts of I, and where there is a
distinct (undirected) edge (a, f) for every occurrence of the element a in the fact f . We say
that an instance is connected if its incidence graph is connected, and an instance is acyclic
if its incidence graph is acyclic. A pointed instance (I,a) is c-acyclic if every cycle in the
incidence graph of I contains at least one element from the tuple a.

Conjunctive Queries and Unions of Conjunctive Queries For S a schema and k ≥ 0, a
k-ary conjunctive query (CQ) over S is an expression of the form

q(y1, . . . , yk) :− ∃x(ϕ1 ∧ · · · ∧ ϕn) (Eq. 1)

where each ϕi is a relational atomic formula, and such that each variable yi occurs in at least
one conjunct ϕj . A k-ary union of conjunctive queries (UCQ) over S is a finite disjunction
of k-ary CQs over S. We denote by q(I) the set of tuples a for which it holds that I |= q(a).

The canonical instance of a CQ of the form (Eq. 1) is the pointed instance (I,y) where
I is the instance with active domain {y1, . . . , yk,x} whose facts are the conjuncts of ϕ, and
y = y1 . . . yk. Conversely, the canonical CQ of a pointed instance (I, a) with a = a1 . . . ak, is
obtained by associating a unique variable ya to each a ∈ adom(I), letting x be an enumeration
of all variables ya for a ∈ adom(I) \ {a1, . . . , ak}, and taking the query q(ya1 , . . . , yak

) :−
∃x

∧
R(b1,...,bn)∈I R(yb1 , . . . , ybn

). By the well-known Chandra-Merlin theorem, a tuple a
belongs to q(I) if and only if the canonical instance of q homomorphically maps to (I,a).

We call a UCQ q c-acyclic if the (pointed) canonical instance of each CQ in q is c-acyclic.

Datalog A Datalog program is specified by a collection of rules, and it defines a mapping
from instances over a schema Sin (traditionally known as the EDB schema) to instances over
a schema Sout (traditionally known as the IDB schema). The presentation we will give here
also allows for auxiliary IDB relations that are not exposed in the output schema.

ICDT 2024



10:4 Right-Adjoints for Datalog Programs

▶ Definition 2.1 (Datalog Program). A Datalog program is a tuple P = (Sin,Sout,Saux,Σ)
where Sin,Sout,Saux are mutually disjoint schemas, and Σ is a set of rules of the form

S(x) :− R1(y1), . . . , Rn(yn)

where S ∈ Sout ∪ Saux, each Ri ∈ Sin ∪ Saux, and each variable in x occurs in yi for some i.

If P is a Datalog program, then we will use often use the notation SP
in, SP

out, SP
aux, and

ΣP to refer to the constituents of the tuple P .
The head of a rule is the part to the left of the :− sign, and the body is the part to the

right. The canonical instance of a Datalog rule R0(x0) :− R1(x1), . . . , Rn(xn) is the pointed
instance whose active domain is {x1, . . . ,xn}, whose facts are the conjuncts Ri(xi) of the
rule body, and whose sequence of distinguished elements is the tuple x0. We say that a
Datalog program P is connected if the canonical instance of each rule is connected. We say
that a Datalog program P is non-recursive if SP

aux = ∅.
If P is a Datalog program and I an SP

in-instance, then a solution for I with respect
to P is an instance J over the schema Sin ∪ Sout ∪ Saux such that I ⊆ J , and such that
all the rules of P are satisfied in J (i.e., whenever the body of a rule is satisfied under
a variable assignment, then so is the head). The well-known chase procedure provides a
method for constructing a solution: given a Datalog program P and an SP

in-instance I, we
denote by chaseP (I) the SP

in ∪SP
out ∪SP

aux-instance obtained from I by applying all rules until
convergence. More precisely, chaseP (I) can be defined as the infinite union

⋃
i≥0 chasei

P (I),
where chase0

P (I) = I, and where chasei+1
P (I) extends chasei

P (I) with all facts that can be
derived from facts in chasei

P (I) using a rule in ΣP . We refer to [1] for more details.

▶ Lemma 2.2. For all Datalog programs P and SP
in-instances I, chaseP (I) is a solution for

I with respect to P . Moreover, it is the intersection of all solutions for I with respect to P .

We denote the SP
out-reduct of chaseP (I) by P (I). We say that two Datalog programs

P, P ′ with SP
in = SP ′

in and SP
out = SP ′

out are equivalent if, for all SP
in-instances I, P (I) = P ′(I).

By a Boolean Datalog program, we mean a Datalog program P where SP
out consists of a

single zero-ary relation symbol, which is customarily denoted as Ans. In such cases, write
P (I) = true if P (I) = {Ans()} and P (I) = false otherwise (i.e., if P (I) = ∅).

It is well-known that Datalog programs are monotone with respect to homomorphisms:

▶ Lemma 2.3. Let P be any Datalog program, and let I, I ′ be SP
in-instances. Every homo-

morphism h : I → I ′ yields, when restricted to adom(P (I)), a homomorphism from P (I) to
P (I ′).

We can think of the above definition of P (I), in terms of the chase, as a bottom-up
account of the semantics of a Datalog program. Unfoldings (a.k.a. expansions) provide a
complementary, top-down account. Given a Datalog program P , the set of derivable rules
of P is the smallest set of rules that (i) contains all rules of P , and (ii) is closed under
the operation of substituting occurrences of rule heads by the corresponding rule bodies
(renaming variables as necessary). Given a Datalog program P and a relation R ∈ SP

out,
Unfoldings(P,R) is the set of canonical instances of derivable rules that have R in the rule
head and that only have Sin-relations in the body. Note that this set is in general infinite.

▶ Example 2.4. Let P be the Datalog program consisting of the three rules

R(x, y) :− S(x, y) R(x, x) :− T (x, y) T (x, y) :− U(x, y), U(y, z)
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where Sin = {U, S}, Sout = {R}, and Saux = {T}. Then the derivable rules of P are the
rules of P together with the rule R(x, x) :− U(x, y), U(y, x), and Unfoldings(P,R) consists
(up to isomorphism) of the pointed instances ({U(a, b), U(b, c)}, ⟨a, a⟩) and ({S(a, b)}, ⟨a, b⟩).

▶ Lemma 2.5 (Cf. [12]). For all Datalog programs P , instances I ∈ Inst[SP
in], and SP

out-facts
R(a) over adom(I), R(a) ∈ P (I) iff, for some (J,b) ∈ Unfoldings(P,R), (J,b) → (I,a).

3 TAM Datalog

TAM Datalog is a fragment of Datalog defined by two requirements: “tree-shaped” and
“almost-monadic”. We introduce each in isolation first.

Almost-Monadic Datalog Recall that a Datalog program is monadic if all relations in Saux

are unary. It is well known that monadic Datalog programs can be expressed in Monadic
Second-Order logic (MSO). Formally, by a k-ary MSO query over a schema S, we will mean an
MSO formula ϕ(x1, . . . , xk) over S. We say that a Datalog program P = (Sin,Sout,Saux,Σ)
together with a designated k-ary relation R ∈ Sout, defines an MSO query ϕR(x) over Sin, if
for all Sin-instances I and a ∈ adom(I), R(a) ∈ P (I) iff I |= ϕR(a). The following is folklore
in the database literature (cf. [19] for an explicit proof):

▶ Theorem 3.1. Let P be a monadic Datalog program and R ∈ SP
out. Then (P,R) defines

an MSO query.

We will now define a weaker restriction, namely that of almost-monadic Datalog programs,
for which the same holds. These are programs in which every k-ary auxiliary relation has,
among its k argument positions, (at most) one specified “articulation position”, and the
syntax of the rules is constrained in such a way that variables occurring in non-articulation
positions can only be used to carry information forward, and not to “perform joins”. Formally:

▶ Definition 3.2 (Almost-Monadic Datalog). An articulation function, for a Datalog program
P , is a partial function f mapping relations R ∈ SP

aux to a number f(R) ∈ {1, . . . , arity(R)},
which we will call the articulation position of R. Each i ∈ {1, . . . , arity(R)} other than
f(R) is called a non-articulation position of R. A Datalog program is almost-monadic if
there exists an articulation function such that, in every rule, each variable occurring in a
non-articulation position of an auxiliary relation in a rule body occurs only once in that rule
body, and does not occur in the articulation position of an auxiliary relation in the head.

Note: the articulation conditions pertain to auxiliary relations and not to output relations.

▶ Example 3.3. The Datalog program from Example 1.1 (which outputs all pairs (a, b) for
which there is a directed path from a to b) is not monadic but is almost-monadic. The
witnessing articulation function assigns to the auxiliary relation Path its first position as
articulation position. Even if we extend the program with an additional rule Ans(x, y) :−
Path(y, x) (so that it computes all pairs (a, b) for which there is a directed path from a

to b or from b to a), the resulting program is still almost-monadic. This is because the
requirements on the articulation function only pertain to auxiliary relations, not to output
relations. On the other hand, if we were to change the rule Path(x, y) :− Edge(x, z), Path(z, y)
to Path(x, y) :− Path(x, z), Path(z, y), the program would no longer be almost-monadic
(cf. also Example 6.2).

For an example of a Datalog program that is not almost-monadic, see Example 3.11 below.

ICDT 2024



10:6 Right-Adjoints for Datalog Programs

▶ Proposition 3.4. The almost-monadic Datalog program from Example 1.1 is not equivalent
to a monadic Datalog program.

The following result justifies the terminology almost-monadic. It shows that almost-
monadic Datalog programs can be simulated, in a precise sense, by monadic Datalog programs.

▶ Theorem 3.5. For each almost-monadic Datalog program P and k-ary relation symbol
R ∈ SP

out, there is a Boolean monadic Datalog program P ′ where SP ′

in = SP
in ∪ {Q1, . . . , Qk},

such that the following are equivalent, for all SP
in-instances I and a1, . . . , ak ∈ adom(I):

1. R(a1, . . . , ak) ∈ P (I),
2. P ′(I ∪ {Q1(a1), . . . , Qk(ak)}) = true.

▶ Example 3.6. Let P be the Datalog program from Example 1.1. To satisfy the statement
of Theorem 3.5, it suffices to define P ′ as:

Path’(x) :− Edge(x, y), Q2(y).
Path’(x) :− Edge(x, y), Path’(y).

Ans() :− Path’(x), Q1(x).

Informally, Path’(x) holds if there is a path starting at x that ends at a node satisfying Q2.

It follows that almost-monadic Datalog is contained in MSO. That is, we have the
following analogue of Thm. 3.1 for almost-monadic Datalog programs:

▶ Corollary 3.7. Let P be an almost-monadic Datalog program and R ∈ SP
out. Then (P,R)

defines an MSO query.

In summary, we have that almost-monadic Datalog forms a strict extension of monadic
Datalog that is still contained in MSO. One may be tempted to conjecture that almost-
monadic Datalog is expressively complete for the intersection of Datalog and MSO. However,
this is not the case. The easiest way to show this, is using the following Lemma, which is
interesting in its own right, as it shows that, when the output schema contains only unary
relations, almost-monadic Datalog is no more expressive than monadic Datalog:

▶ Lemma 3.8. Let P be any almost-monadic Datalog such that every R ∈ SP
out is unary.

Then P is equivalent to a monadic Datalog program.

Using this lemma, we can show:

▶ Proposition 3.9. The unary MSO query “x lies on a directed R-cycle” is not definable by
an almost-monadic Datalog program.

▶ Remark 3.10. Prop. 3.9 also shows that almost-monadic Datalog is not closed under com-
position, because the same query can be expressed as the composition of two almost-monadic
Datalog programs, where the first computes the transitive closure R∗ of the relation R, and
the second program consists of the single non-recursive rule Ans(x) :− R∗(x, x). It also shows
that almost-monadic Datalog is strictly included in MODEQ (also known as Flag-and-Check),
which is another language contained in the intersection of Datalog and MSO [23]. See also
[7] for a characterization of the intersection of MSO and Datalog in terms of infinite domain
constraint satisfaction problems. As we will soon see, the intersection of tree-shaped Datalog
and MSO is (up to logical equivalence) precisely tree-shaped almost-monadic Datalog.
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Tree-shapedness We say that a Datalog program P is tree-shaped if the incidence graph of
the canonical instance of each rule is acyclic. In particular, since we defined incidence graphs
as multigraphs, this implies that no variable occurs twice in the same conjunct in the rule
body (but the rule head may contain repeated occurrences of variables). Note that we do not
require the incidence graph of the rules to be connected, nor do we make any requirements
(say, in the case of binary relations) on the direction of edges. Thus, in tree-shaped Datalog
programs, rules such as T (x) :− R(x, y), S(x, y) or T (x) :− R(x, x) are forbidden.

▶ Example 3.11. Consider the tree-shaped Datalog program P given by the following two
rules (where SP

in consists of two binary relations, E,F ):

R(x, y) :− E(x, u), F (u, y) R(x, y) :− E(x, u), R(u, v), F (v, y) Ans(x, y) :− R(x, y)

Then AnsP (I) contains all pairs (a, b), such that there is a directed path from a to b in I

consisting of a number of E-edges followed by an equal number of F -edges.
Observe that P is not TAM Datalog because neither the first position of the relation R

qualifies as an articulation position (since v occurs twice in the second rule body) nor the
second position (since u occurs twice in the same rule body).

It follows from known facts about MSO (viz. the fact that MSO on words captures the
regular languages) that (P, Ans) does not define an MSO query. In particular, P is not
equivalent to a monadic Datalog program, or even an almost-monadic Datalog program.

▶ Lemma 3.12. Let P be any tree-shaped Datalog program. Then, for each R ∈ SP
out,

Unfoldings(P,R) consists of acyclic pointed instances.

TAM Datalog A TAM Datalog program is a tree-shaped, almost-monadic Datalog program.
We will give a precise model-theoretic characterization of TAM Datalog in terms of MSO.

We say that an MSO query ϕ(x) is tree-determined if for each pointed instance (I, a), we
have that I |= ϕ(a) if and only if there is an acyclic pointed instance (J,b) such that J |= ϕ(b)
and (J,b) → (I,a). Note that J must be finite and that J is not required to be connected.

▶ Theorem 3.13. Let ϕ(x1, . . . , xn) be an MSO formula. The following are equivalent:
1. ϕ is definable by a TAM Datalog program,
2. ϕ is definable by a tree-shaped Datalog program,
3. ϕ is tree-determined.
▶ Remark 3.14. It is worth comparing this to the result in [19] that states that monadic
Datalog and MSO have the same expressive power on finite trees. Besides the fact that
Thm. 3.13 is a characterization on arbitrary (finite) instances while the result in [19] is
restricted to trees, there are a few other important differences: in [19], it is assumed that trees
are represented as structures in which the children of each node are ordered; that the signature
includes predicates marking the root, leafs, the first child of each node, and the last child
of each node; and that each node of the tree is labeled by precisely one of the (other) unary
predicates in the signature. These assumptions together imply that every homomorphism
between such trees is necessarily an isomorphism, which makes the two results incomparable.

▶ Corollary 3.15 (TAM Datalog is closed under composition). For all TAM Datalog programs
P1 and P2 with SP2

in = SP1
out, there is a TAM Datalog program P3 = (SP1

in ,S
P2
out,S′

aux,Σ′) such
that, for all SP1

in -instances I, P3(I) = P2(P1(I)).

We also provide a syntactic normal form for TAM Datalog programs. A TAM Datalog
program is simple if every rule body contains precisely one occurrence of a relation from Sin.
For instance the program given in Example 1.1 is a simple TAM Datalog program.

ICDT 2024
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▶ Theorem 3.16. Every (connected) TAM Datalog program can be transformed in polynomial-
time into an equivalent (connected) simple TAM Datalog program.

We make use of this normal form in some of our proofs.

4 Right-Adjoints for TAM Datalog

The notion of adjunction comes from category theory. Although for the most part, we do
not assume that the reader has a background in category theory, in order to motivate our
definition of generalized right-adjoints for Datalog programs, it is helpful to briefly discuss
Datalog programs from a categorical perspective.

Recall that each Datalog program P defines a mapping from Inst[SP
in] to Inst[SP

out], where
Inst[S] denotes the set of all S-instances. Recall also that this mapping is monotone with
respect to homomorphisms (cf. Lemma 2.3). We view Inst[SP

in] and Inst[SP
out] as partial

(pre)orders, which can consequently be viewed as thin categories where the objects are the
S-instances and there is an arrow from I to J if there exists a homomorphism h : I → J .
The categorical notion of a functor is then simply a monotone mapping. In particular, each
Datalog program P defines a functor. For functors F : X → Y and G : Y → X, where X
and Y are arbitrary thin categories, it is said that G is a right-adjoint for F , and that F is a
left-adjoint of G, if it holds that F (I) → J iff I → G(J).1

In this section, we study the existence of right-adjoints for Datalog programs.

▶ Example 4.1. Consider the Datalog program P = (Sin,Sout, ∅,Σ), where Sin = {R},
Sout = {S}, and Σ consists of the rules S(x, y) :− R(x, y) and S(x, y) :− R(y, x). If we
think of an input instance I as a directed graph, P (I) is its symmetric closure. For every
SP

out-instance J , let Ω(J) be the SP
in-instance that is the maximal symmetric sub-instance of

J , that is, Ω(J) consists of all facts R(x, y) for which it holds that J contains both S(x, y) and
S(y, x). It is not hard to see that P (I) → J iff I → Ω(J). Hence, Ω is a right-adjoint of P .

▶ Example 4.2. Consider the TAM Datalog program P = (Sin,Sout, ∅,Σ), where Sin =
{Q1, Q2}, Sout = {Q3}, and Σ consists of the rule Q3() :− Q1(x), Q2(y). This Datalog
program does not have a right-adjoint in the above sense. Indeed, let J be the empty
instance. Then P (I) → J holds if and only if either I has no Q1-facts or I has no Q2-facts,
a condition that cannot be equivalently characterized by the existence of a homomorphism
from I to any fixed single instance J ′. However, it can be shown that P (I) → J if and only
if either I → J ′

1 or I → J ′
2, where J ′

1 = {Q1(a)} and J ′
2 = {Q2(a)}. If we generalize the

notion of right-adjoint by allowing Ω(J) to be a finite set of instances, then, as we will see
later (Thm. 4.5), P does admit such a right-adjoint, and the fact that Ω(J) needs to consist
of multiple instances is related to the fact that the program is not connected.

Motivated by the above examples and other considerations that will become clear soon,
the precise notion of right-adjoints that we will adopt here is a little more refined:

▶ Definition 4.3 (Generalized Right-Adjoints). A generalized right-adjoint for a Datalog
program P is a function ΩP that maps each J ∈ Inst[SP

out] to a finite set of pairs (J ′, ι)
where J ′ ∈ Inst[SP

in] and ι : J ′ ⇀ J is a partial function, such that the following holds:

1 Note that this coincides with the usual definition of adjoint functors as long as both categories are thin.
It is also precisely the notion of right-adjoints for Galois connections over preordered sets. See also
Remark 4.11 for why we adopt this “thin” definition of adjoints.
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for all I ∈ Inst[SP
in], there is a homomorphism h : P (I) → J iff there is a homomorphism

h′ : I → J ′ for some (J ′, ι) ∈ ΩP (J), and, furthermore, the homomorphism h′, respectively
h, can be chosen such that the following diagram commutes.2

adom(P (I)) adom(J)

adom(I) adom(J ′)

h

h′

id ι

Here, the “→” arrow refers to homomorphisms, and “⇀” is used to refer to a partial
function. The partial functions ι are needed later on to reason about pointed instances
(cf. for instance the proof of Theorem 5.4).

This notion of generalized right-adjoint behaves as one would expect. In particular, if
two Datalog programs have generalized right-adjoints, then so does their composition.

▶ Example 4.4. Let P be the Datalog program with input schema {R1, R2} and output
schema {Q1, Q2} and consisting of the rules

Q1(x) :− R1(x) Q1(x) :− R2(x) Q2(x) :− R1(x), R2(x)

This Datalog program indeed has a generalized right-adjoint ΩP . In fact it has a regular
right-adjoint, in the sense that ΩP (J) is a singleton for all J ∈ Inst[SP

out], as will follow from
Theorem 4.5 below. We will illustrate this with an example. Let J be the SP

out-instance con-
sisting of the single fact Q1(a). Then a suitable choice for ΩP (J) is the singleton set consisting
of the pair (J ′, ι), where J ′ consists of the facts R1(a1), R2(a2) and ι(a1) = ι(a2) = a. Indeed,
for each SP

in-instance I, P (I) → J iff I → J ′ via homomorphisms that make the diagram in
Definition 4.3 commute. Note that, to make the diagram commute, J ′ must indeed contain
facts of the form R1(a1) and R2(a2) for distinct values a1, a2 that are both mapped to a by ι.

Our main result in this section is:

▶ Theorem 4.5. Every TAM Datalog program P has a generalized right-adjoint ΩP . If P is
connected, then ΩP (J) is a singleton for all J ∈ Inst[SP

out]. Moreover, ΩP (J) is computable
from J and P in 2Exptime, and in ExpTime whenever the arity of P is bounded.

Proof. We first consider the special case of connected programs. We may assume without
loss of generality that P is simple. This means that every rule is of the following form:

R0(x0) :− E(y), R1(x1), . . . , Rm(xm) (Eq. 2)
R(x) :− E(y), R1(x1), . . . , Rm(xm) (Eq. 3)

where E is an input relation, each Ri is an auxiliary relation, and R is an output relation.
To simplify the exposition below, we introduce some further notation. For each atom

Ri(xi) as in the above rule types, we will denote by pi ∈ {1, . . . , n} (with n = arity(E)) the
unique number such that ypi is equal to the articulated variable in Ri(xi). It indeed follows
from the definition of TAM Datalog and the assumed connectedness and simplicity of P that
such an index exists and is unique.

We construct an Sin-instance J ′ consisting of all facts E((b1, X1), . . . , (bn, Xn)) where

2 By this we, we mean that, for all a ∈ adom(I), either h(a) = ι(h′(a)) or both are undefined.
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10:10 Right-Adjoints for Datalog Programs

1. Each bi is an element of adom(J) ∪ {⊥} and Xi is a set of Saux-facts over adom(J) ∪ {⊥}
(not necessarily facts of J) in which bi occurs in articulation position;

2. For each rule of the form (1) above and for each map g : {y,x1, . . . ,xm} → adom(J)∪{⊥},
if for each 1 ≤ i ≤ m, Ri(g(xi)) ∈ Xpi

then R0(g(x0)) ∈ Xp0 ; and
3. For each rule of the form (2) above and for each map g : {y,x1, . . . ,xm} → adom(J)∪{⊥},

if for each 1 ≤ i ≤ m, Ri(g(xi)) ∈ Xpi
then R(g(x)) is a fact of J .

Note that the total number of possible facts E((b1, X1), . . . , (bn, Xn)) in J ′ is double ex-
ponential in the combined size of P and J , and is exponential in J if the arity of P is
bounded.

Let ι be the natural projection from J ′ to J , mapping all elements of the form (a,X) to
a (and undefined on elements of the form (⊥, X)).

▷ Claim. For all Sin-instances I, P (I) → J iff I → J ′. Moreover, the witnessing homo-
morphisms can be constructed so that the following diagram commutes:

P (I) J

I J ′

id ι

Proof. [⇒] Let h : P (I) → J . Recall that we denote by chaseP (I) the Sin ∪ Sout ∪ Saux-
instance that is the chase of I (and of which I and P (I) are the Sin-reduct and Sout-reduct,
respectively). We extend h to the entire active domain of chaseP (I) by sending every element
a that is not in adom(P (I)) to a fresh value ⊥. With a slight abuse of notation, in what
follows, we denote by h the extended map from adom(chaseP (I)) to adom(J) ∪ {⊥}. For
each a ∈ adom(chaseP (I)), let Fa be the set of all Saux-facts of chaseP (I) in which a occurs
in articulation position. We define h′(a) = (h(a), h(Fa)).

We claim that h′ is a homomorphism from I to J ′. Let E(a1, . . . , an) be any fact of I.
We must show that the fact E((h(a1), h(Fa1)), . . . , (h(an), h(Fan

))) belongs to J ′. That is,
we must show that conditions 1–3 hold.

Clearly, the first requirement is satisfied, namely, h(Xai
) consists of facts in which h(ai)

occurs in articulation position.
To see that the second requirement holds, consider a rule of form (1) and any map g :

{y,x1, . . . ,xm} → adom(J), such that, for each 1 ≤ i ≤ m, Ri(g(xi)) ∈ Xpi
. By construction,

this means that each fact Ri(g(xi)) is the h-image of a fact Ri(bi) in chaseP (I). Now consider
the map g̃ : {y,x1, . . . ,xm} → adom(I) defined by g̃(y) = (a1 . . . , an) and g̃(xi) = bi for
i ≤ i ≤ m. Note that g̃ is a well-defined function. Indeed, for every i ≤ i ≤ m and every
z ∈ R(xi), if z occurs more than once in the rule, then z must necessarily be the variable
that appears in the articulation position pi of R(xi). It follows that z occurs in y at position
pi, and, hence, necessarily, Ri(g(xi)) belongs to the h-image of Xapi

, and, hence, g̃(z) = api .
Since chaseP (I) is closed under the rules of P , we may conclude that R0(g̃(x0)) belongs to

chaseP (I). Let z be the variable occurring in articulation position in R0(x0). Recall that z oc-
curs in y at position p0, and g̃(z) = ap0 . Then R0(g̃(x0)) ∈ Fap0

, and hence, h(Fap0
) contains

R0(h ◦ g̃(x0)). Note that by definition, h ◦ g̃ = g. In particular, R0(h ◦ g̃(x0)) = R0(g(x0)).
Therefore we have that R0(g(x0)) ∈ h(Fap0

), and we are done.
To see that the third requirement holds, consider a rule of form (2) and any map

g : {y,x1, . . . ,xm} → adom(J), such that, for each 1 ≤ i ≤ m, Ri(g(xi)) ∈ Xpi
. By exactly

the same reasoning as before, an h-preimage of the rule head R(g(x)) belongs to chaseP (I).
Hence, it belongs to P (I), therefore, R(g(x)) is a fact of J .
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It is also clear from the construction that h ◦ id = ι ◦ h′, where id is the identity function
on adom(I) ∩ adom(P (I)). That is, the diagram commutes.

[⇐] Conversely, let h : I → J ′. Note that adom(chaseP (I)) = adom(I), and hence we
h(a) is well-defined for all a ∈ adom(chaseP (I)). Let h′ : adom(I) → adom(J) be the map
such that h′(a) = b whenever h(a) = (b,X).

▷ Subclaim 1. For all a ∈ adom(chaseP (I)), if h(a) = (b,X), then the h′-image of every
Saux-fact of chaseP (I) in which a occurs in articulation position belongs to X.

▷ Subclaim 2. h′ is a homomorphism from P (I) to J .

Subclaim 1 can be proved by induction on the derivation length of the fact in question.
To prove subclaim 2, let R(a) be an Sout-fact belonging to P (I). Its derivation must

use a rule of the form (2) above, using an assignment g (where g(x) = a). By Subclaim 1,
we have that that Ri(h′(g(xi))) belongs to h(g(ypi

))2, for ypi
the articulated variable in xi.

Furthermore, E(g(y)) holds in I, and hence E(h(g(y))) holds in J ′. By construction of J ′,
this means that the R(h′(g(x))), that is, R(h′(a)), belongs to J . This concludes the proof
for the case of connected TAM Datalog programs.

It is also clear from the construction that ι ◦ h = h′ ◦ id, where id is the identity function
on adom(I) ∩ adom(P (I)). That is, the diagram commutes. ◁

Finally, we show how to handle non-connected TAM Datalog programs. Let P be
a non-connected TAM Datalog program. Let P ′ be obtained from P by adding a fresh
binary input-relation S, and using this relation to make every every rule connected in some
arbitrary way (more precisely, whenever the incidence graph of a rule body has multiple
connected component, we add S-atoms to the body connecting these components while
preserving tree-shapedness and almost-monadicity. For every input instance I, we denote
by Î the Sin ∪ {S}-instance extending I with all facts of the form S(a, b) for a, b ∈ adom(I).
Furthermore, given an instance J ′ over the schema Sin ∪ {S}, by an “S-component” of J ′

we will mean the Sin-retract of a fully S-connected sub-instance of J ′. Clearly, if J is an
Sin-instance and J ′ is a Sin ∪ {S}-instance, then Ĵ → J ′ iff J → J ′′ for some S-component
J ′′ of J ′. Now we simply define ΩP (J) to be the set of all S-components of instance in ΩP ′(J).
Then we have: P (I) → J iff P ′(Î) → J iff Î → ΩP ′(J) iff I → J ′ for some J ′ ∈ ΩP (J).

As a side remark, we mention that there is another way present the final argument where
we lift the connected case to the general case: we can view the function that sends I to Î as a
functor that itself has a generalized right-adjoint (sending I to its S-connected components).
Thus, we can argue by composition of adjoints. ◀

We note that the proof of thm:tam-adjoint makes crucial use of both the tree-shapedness
and the almost-monadicity of the Datalog program. Indeed, both properties are important
for the existence of generalized right-adjoints as the following two propositions show:

▶ Proposition 4.6. The tree-shaped Datalog program P in Example 3.11 (which is not
almost-monadic) does not admit a generalized right-adjoint.

Proof. Assume towards a contradiction that P has a generalized right-adjoint ΩP . Let J be
the two-element {R}-instance consisting of the facts R(0, 1) and R(1, 0).

For n ≥ 1, let Cn be the {E,F}-instance consisting of the facts E(v0, v1), . . . , E(vn−1, vn),
E(vn, v0), that is, the directed E-cycle of length n. Trivially, P (Cn) → J for all n ≥ 1.
Therefore, for each n ≥ 1, we have Cn → J ′ for some J ′ ∈ ΩP (J). For every J ′ ∈ ΩP (J)
and for each element b of J ′, let us define nJ′,b to be an arbitrarily chosen value such that
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10:12 Right-Adjoints for Datalog Programs

(Cn, v0) → (J ′, b), or undefined, if no such value exists. It follows from our earlier observation
that nJ′,b is defined for at least one pair (J ′, b) with J ′ ∈ ΩP (J). Let m be a common
multiple of all defined nJ′,b’s.

For each pair of positive integers e ≤ f , let Ie,f be the {E,F}-instance depicted as follows:

u0
E−→ v0

F−→ u1
E−→ v1

F−→ u2

sequence of
e E-edges−−−−−−−→ z

sequence of
f F -edges−−−−−−−→ u0

▷ Claim 1. For all 1 ≤ e ≤ f , the following are equivalent:
1. Ie,f → J ′ for some J ′ ∈ ΩP (J)
2. e ̸= f .

Proof. If e = f then P (Ie,f ) contains an R-cycle of odd length, viz. u0
R−→ u1

R−→ u2
R−→ u0,

and therefore P (Ie,f ) ̸→ J . Hence, Ie,f ̸→ J ′ for all J ′ ∈ ΩP (J). On the other hand, if e < f ,
then P (Ie,f ) is a disjoint union of R-paths, and, clearly, P (Ie,f ) → J . Therefore, Ie,f → J ′

for some J ′ ∈ ΩP (J). ◁

Now, let e be larger than the universe of all instances in ΩP (J) and let f = e+m. By
Claim 1, there is a homomorphism h : Ie,f → J ′ for some J ′ ∈ ΩP (J). We will show that h
can be extended to a homomorphism h′ : If,f → J ′, which contradicts Claim 1. Let

u2 = x0
E−→ x1 · · · E−→ xe = z

be the sub-instance of Ie,f consisting of the E-edges joining u2 and z. Similarly, let

u2 = x0
E−→ x1 · · · E−→ xe

E−→ xe+1 . . .
E−→ xf = z

be the sub-instance of If,f consisting of the E-edges joining u2 and z. Recall that f = e+m.
Since e is larger than the domain size of J ′, it must be the case that h(xi) = h(xj) = b

for some i < j ≤ e, and for some element b of J ′. This means that b lies on a directed
E-cycle in J ′, and hence, in particular, it lies on a directed E-cycle of length m, say,
b = b0

E−→ b1 · · · E−→ bm = b. The mapping h′ : If,f → J ′ can be constructed simply by
extending h and mapping xe+i to bi for 1 ≤ i ≤ m. ◀

▶ Proposition 4.7. The monadic Datalog program given by the single rule Ans(x) :− E(x, x)
does not admit a generalized right-adjoint.

Proof. Let P be the Boolean Datalog program in question. Note that Unfoldings(P, Ans)
consists of a pointed structure that is c-acyclic but not acyclic. It does not admit a generalized
right-adjoint: let J be the empty SP

out-instance, and suppose for the sake of contradiction
that there is a finite set {J1, . . . , Jn} such that, for all SP

in-instances I, P (I) → J iff I → Ji

for some i ≤ n. Let Ic be the instance consisting of a single reflexive Ans-edge of the form
Ans(a, a). Clearly, P (Ic) ̸→ J , and therefore, Ic ̸→ Ji. That is, J1, . . . , Jn do not contain a
reflexive Ans-edge. Next, let In be the instance that is an (irreflexive) Ans-clique of size n,
where n is any number greater than the size of each Ji. Then, In ̸→ Ji (because if there was
a homomorphism, Ji would contain a reflexive Ans-edge), but, trivially, P (In) → J . ◀

In the special case of Boolean non-recursive programs, there is a converse to Thm. 4.5:

▶ Theorem 4.8. A Boolean non-recursive Datalog programs has a generalized right-adjoint
iff it is equivalent to a TAM Datalog program.
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This follows from results that we will prove in Section 5 (specifically, Thm. 5.4 together
with Thm. 5.3). It also follows from a known result about Pultr functors, namely [17,
Theorem 2.5], since Boolean non-recursive Datalog programs define Pultr functors.
▶ Remark 4.9. Thm. 4.8 does not hold for recursive Boolean Datalog programs. Indeed,
consider the Boolean Datalog program with input schema {R} consisting of the rules

Ans() :− OddLengthPath(x, x)
OddLengthPath(x, y) :− R(x, y)
OddLengthPath(x, y) :− R(x, z), R(z, u), OddLengthPath(u, y)

It follows from well-known results in the CSP literature, (combined with Thm. 5.7 below),
that P admits a generalized right-adjoint and that P is not equivalent to a monadic Datalog
program. It follows by Lem. 3.8 that P is not equivalent to a TAM Datalog program.
▶ Remark 4.10. We note that the right adjoint ΩP (·) of a TAM Datalog program P is in
general not definable by a Datalog program. This follows trivially from the fact that ΩP (J)
might consist of more than one structure if P is non connected and, in addition, It is not
definable by a Datalog program even when P is connected as, in general, the domains of J
and ΩP (J) do not need to be related. For instance, Example 4.4 contains an example where
the domain of ΩP (J) is necessarily larger than that of J .
▶ Remark 4.11. Our definition of right-adjoints treats Datalog programs as functors in a flat
category, while Lemma 2.3 naturally allows us to view Datalog programs as functors even
in the non-flat category of instances and homomorphisms. This natually raises a question of
which functors between the ‘non-flat’ categories allow right adjoints. This question has been
answered by Pultr [22] up to some technical details, who described pairs of adjoint functors
between categories of relational structures. Using either Pultr’s description, or by simple cat-
egorical methods, it can be seen that a Datalog program will rarely allow a proper right adjoint.
▶ Remark 4.12. While we are specifically interested in right-adjoints in this paper, one may
also wonder what it means for a Datalog program to admit a (generalized) left-adjoint.
Generalized left-adjoints for Datalog programs are closely related to query rewritings, as
studied in the literature on data integration and data exchange. A Datalog program P has a
generalized left-adjoint iff P is equivalent to a non-recursive Datalog program. Indeed, if P has
a generalized left-adjoint Θ, then, for each R ∈ SP

out, the SP
in-instances in Θ({R(a1, . . . , an)})

correspond to the members of Unfoldings(P,R) (cf. [17, 13]).

5 Right Adjoints and Homomorphism Dualities

For any set of instances X, let X↑ = {A | B → A for some B ∈ X}, and let X↓ = {A | A → B

for some B ∈ X}. A homomorphism duality is a pair of sets of instances (F,D), such that
F ↑ is the complement of D↓. The same definition extends naturally to pointed instances.
By a finite homomorphism duality, we mean a homomorphism duality (F,D) where F and
D are finite sets. By a tree duality, we mean a homomorphism duality (F,D) where F is a
(possibly infinite) set of (not-necessarily-connected) acyclic instances, and D is finite.

The study of such dualities originated in combinatorics (see [20]) motivated by its links to
the structure of the homomorphism partial order, and the complexity of deciding the existence
of homomorphism between graphs and, more generally, relational structures (a.k.a. constraint
satisfaction problems or CSPs). Indeed, dualities have played an important role in the study of
CSPs. In particular, it was shown [3] that the CSPs definable in FO are precisely those whose
template is the right-hand side of a finite duality. In a similar vein, the CSPs solvable by the
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10:14 Right-Adjoints for Datalog Programs

well-known arc-consistency algorithm are precisely those whose template is the right-hand side
of a tree duality. More generally, the CSPs solvable by local consistency methods are those
whose template is the right-hand side of a homomorphism duality whose left-hand side consists
of instances of bounded treewidth. See [8] for a survey on the connections between duality and
consistency algorithms. In database theory, homomorphism dualities are used in the study of
the unique characterizability and exact learnability of schema mappings and database quer-
ies [2, 9], closed-world rewritings of open-world queries [6], and extremal fitting algorithms [10].

▶ Example 5.1. Let S = {R}, where R is a binary relation symbol, and let n ≥ 1. Let Ln

be the finite linear order of length n, and let Pn+1 be the directed path of length n+ 1. Then
({Pn+1}, {Ln}) is a finite homomorphism duality.

▶ Example 5.2. Let S = {P0, P1, E}, where P0 and P1 are unary and E is binary, and con-
sider the two-element S-instance I = {P0(0), P1(1), E(0, 0), E(1, 1)} (without distinguished
elements). For all S-instances J , J → I holds if and only if no connected component of J
contains both a P0-fact and a P1-fact. This can be expressed in the form of a tree duality:
let F be the set of all (acyclic) instances consisting of an oriented path that connects a
P0-node to a P1-node (where, by an oriented path we mean a path a1, a2, . . . , an where, for
each 1 ≤ i < n, either E(ai, ai+1) or E(ai+1, ai)). Then (F, {I}) is a homomorphism duality.

▶ Theorem 5.3 ([16, 9]). Fix a schema S and k ≥ 0. Let F be any finite set of pairwise
homomorphically incomparable k-ary pointed instances over S. The following are equivalent:
1. There is a finite set of k-ary pointed instances D over S such that (F,D) is a homo-

morphism duality.
2. Each pointed instance in F is homomorphically equivalent to a c-acyclic pointed instance.
Moreover (for fixed S and k), given a set F of c-acyclic pointed instances, such a set D can
be computed in ExpTime.3

The following theorem establishes a close relationship between generalized right-adjoints
and homomorphism dualities:4

▶ Theorem 5.4. Let P be any Datalog program that has a generalized right-adjoint. Then, for
each R ∈ SP

out, there is a finite set of pointed Sin-instances D such that (Unfoldings(P,R), D)
is a homomorphism duality.

Proof. We may assume without loss of generality that SP
out = {R}. Let J be the SP

out-instance
with adom(J) = {b1, . . . , bk, c} (for k = arity(R)) containing all R-facts over adom(J) except
R(b1, . . . , bk). Let D = {(J ′,b′) | (J ′, ι) ∈ ΩP (J),b′ ∈ adom(J ′)k, ι(b′) = b}, where
b = b1, . . . , bk. We claim that (Unfoldings(P,R), D) is a homomorphism duality. Let (C, c)
be any Sin-instance with k distinguished elements. Then an instance in Unfoldings(P,R)
homomorphically maps to (C, c) iff R(c) ∈ P (C) iff (P (C), c) ̸→ (J,b) iff (by the adjoint
property) (C, c) ̸→ (J ′,b′) for all (J ′, ι) ∈ ΩP (J) and b′ with ι(b′) = b. ◀

Thm. 5.4 shows that generalized right-adjoints can be used to construct duals. This
approach was first used in [17] and [13], where right-adjoints of Pultr functors are applied
to derive the dual of a tree. Thm. 5.4 can be viewed as extending results in [13] to a more
general class of functors defined by recursive Datalog programs.

3 The ExpTime bound is not explicitly stated in [9] but follows from results in that paper.
4 Recall that Unfoldings(P, R) can be viewed as an infinite union of (canonical instances of) conjunctive

queries that defines the output relation R (cf. Lemma 2.5).
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For TAM Datalog programs P , the proof of Thm. 5.4 yields a ExpTime algorithm to com-
pute D from (P,R) provided the arity of the relations in P is bounded. Since Unfoldings(P,R)
consists of acyclic instances whenever P is a TAM Datalog program, this gives us a systematic
way of constructing tree-dualities. In fact, every tree-duality can be obtained in this way:

▶ Corollary 5.5. Let F be any set of acyclic pointed instances. The following are equivalent:
1. There is a finite set of pointed instances D such that (F,D) is a homomorphism duality
2. F ↑ = Unfoldings(P,R)↑ for some TAM Datalog program P and R ∈ SP

out.

Proof. From 1 to 2: It is well known that, for any finite set of pointed instances D, there is
an MSO formula ϕ that defines D↓. Hence, by duality, ¬ϕ defines F ↑. Furthermore, the fact
that F consists of acyclic pointed instances implies that ¬ϕ is tree-determined. Therefore, the
direction 1 to 2 follows from Thm. 3.13. The direction from 2 to 1 follows from Thm. 5.4. ◀

It is possible to strengthen Corollary 5.5 by showing that the above conditions (1) and
(2) are, in turn, equivalent to the fact that F ↑ = G↑ for some regular set G of acyclic queries
(where “regular” needs to be defined in a suitable way, as in [15]). This follows from the fact
that Thm. 3.13 uses tree-automata as an intermediate step in the proof. We note that the
special case of this equivalence for Boolean CQs over digraphs was proven in [15].

Thm. 5.4 also implies that every finite set of acyclic pointed instances F is the left-hand
side of a finite homomorphism duality: it suffices to let P be the TAM Datalog program
containing a single non-recursive rule for each (I, a) ∈ F , whose canonical instance is (I, a).
Then, the unfoldings of P are, up to isomorphism, precisely the pointed instances in F . It
follows from Thm. 5.4 that there is a finite set D such that (F,D) is a homomorphism duality.
This provides an alternative proof of the characterization of left-hand sides of finite dualities
given in [16] (i.e., the special case of Thm. 5.3 for structures without distinguished elements).
▶ Remark 5.6. In light of Thm. 5.3, it is natural to ask whether the above “dualities through
adjoints” technique can be used to construct a finite homomorphism duality for any c-acyclic
pointed instance. Prop. 4.7 shows that this is not possible. Note that the canonical instance
of the rule of the program in Prop. 4.7 is ({E(a, a)}, a), which is c-acyclic (but not acyclic).

For Boolean Datalog programs, the relationship between adjoints and dualities is tighter:

▶ Theorem 5.7. For Boolean Datalog programs P , the following are equivalent:
1. P admits a generalized right-adjoint,
2. There is a finite set of pointed SP

in-instances D such that (Unfoldings(P, Ans), D) is a
homomorphism duality.

Proof. For every SP
in-instance I, P (I) is either the empty instance, which we may denote

as J0 or the instance consisting of the zero-ary fact Ans(), which we may denote as J1. Let
ΩP (J0) be the set of all pairs (J ′, ι) with J ′ ∈ D and ι the empty partial function; and let
ΩP (J1) = {(J ′, ι)} where J ′ is a single-element fully-connected SP

in-instance and ι is the
empty partial function. It is easy to see that ΩP is then a generalized right-adjoint for P . ◀

6 An Application: Generating Data Examples for Database Queries

We will now show-case one application of our results, which is concerned with the problem
of generating data examples for database queries. A data example for a database query,
informally, consists of a database instance I together with information about the output of
the query when evaluated on I. Data examples can be a helpful tool in query debugging,
query refinement, interactive query specification, and query learning. In each of these settings,
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the question naturally comes up as to whether, for a given database query q, there exists a
finite collection of data examples, such that, modulo logical equivalence, q is the only query
(within some given class of queries) that fits the data examples. When this happens, we say
that the collection of data examples in question uniquely characterizes the query q.

It was shown in [16, 9] that every “c-acyclic” union of conjunctive queries (UCQ) is indeed
uniquely characterized by a finite collection of data examples. In fact, a UCQ is uniquely
characterizable by a finite collection of data examples, if and only if it is equivalent to a
c-acyclic UCQ. While this gives a precise answer to the question of unique characterizability,
it can be cumbersome to use in practice. One of the reasons for this is that the data examples
in question tend to look unnatural to a user. In particular, the existing algorithms for
constructing data examples do not take integrity constraints into consideration. We will
show here that the aforementioned results from [16, 9] can be adapted to the setting with
integrity constraints, in such a way that all generated data examples satisfy the integrity
constraints, provided that the integrity constraints are from a suitable, well-behaved class.

We will do this in three steps. First, we propose a suitable class of integrity constraints.
Second, we study the existence of homomorphism dualities relative to a set of integrity con-
straints. Finally, we use this to construct uniquely characterizing examples for c-acyclic UCQs.

6.1 Tame sets of full TGDs
One of the most important classes of integrity constraints in databases is the class of tuple-
generating dependencies (TGDs). The results we will present will be concerned with a
subclass of TGDs called full TGDs. A full TGD is a TGD without existential quantifiers.
More precisely, a full TGD is a first-order sentence of the form ∀x(ϕ(x) → ψ(x)), where ϕ(x)
and ψ(x) are conjunctions of relational atomic formulas, and each variable in x occurs in ϕ.

Every finite set of full TGDs naturally gives rise to a Datalog program. More precisely,
for any set Σ of full TGDs over a schema S, we will denote by PΣ the Datalog program with
SP

in = {Rin | R ∈ S}, SP
out = {Rout | R ∈ S}, and SP

aux = S, consisting of the full TGDs in Σ
as Datalog rules (where ∀x(ϕ(x) → ψ(x)) becomes ψ(x) :− ϕ(x)), plus the “copy constraints”
R(x) :− Rin(x) and Rout(x) :− R(x) for each R ∈ S.

Although the input and output schemas of PΣ are renamings of S, we will write PΣ(I)
even when I is an S-instance instead of an Sin, with the understanding that relation symbols
are renamed in the obvious way; and similarly, we will freely treat the Sout-instance PΣ(I)
as an S-instance. The Datalog program PΣ then “captures” Σ in the following sense:

▶ Lemma 6.1. Let Σ be any finite set of full TGDs. For all instances I, PΣ(I) is the unique
minimal instance J with I ⊆ J such that J |= Σ. In particular, PΣ(I) = I when I |= Σ.

We say that a finite set Σ of full TGDs is tame (or, TAM-equivalent) if PΣ is equivalent
to a TAM Datalog program. A full TGD is monadic (tree-shaped) if the associated Datalog
program PΣ (where Σ consists of the full TGD in question) is monadic (resp. tree shaped).

▶ Example 6.2. The following sets of full TGDs are tame:

Σ1 = {∀xyz(R(x, y)∧R(y, z) → R(x, z))}. To see that PΣ1 has a generalized right-adjoint,
observe that it consists of the rules depicted on the left:

R(x, y) :− Rin(x, y)
R(x, z) :− R(x, y), R(y, z)
Rout(x, y) :− R(x, y)

R(x, y) :− Rin(x, y)
R(x, z) :− R(x, y), Rin(y, z)
Rout(x, y) :− R(x, y)
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PΣ1 is not a TAM Datalog program. However, it is equivalent to the program P ′ consisting
of the rules depicted on the right. Note how we have replaced one occurrence of R by
Rin. The equivalence of PΣ1 and P ′ is easy to show. Furthermore, P ′ is a TAM Datalog
program (where the articulation position of R is the second position).
Σ2 = {∀xyzu(R(x, y) ∧R(y, z) ∧R(z, u) → R(x, u)),∀xy(R(x, y) → R(y, x))}. Although
PΣ4 is not a TAM Datalog program, it can be rewritten as one, using the same strategy
as for Σ1. We will return to this example later, in Remark 6.6.
Every finite set Σ of monadic tree-shaped TGDs. Indeed, PΣ is a TAM Datalog program.

▶ Remark 6.3. The above example involves adhoc arguments. We leave it as an open problem
to define a large syntactic class of (sets of) TGDs that have a generalized right-adjoint, which
includes Σ1. Thm. 4.5 with Thm. 3.13 does imply that, for finite sets of tree-shaped TGDs
Σ, if PΣ is MSO-definable then Σ has a generalized right-adjoint.

Our main result in this section, namely Thm. 6.4, will apply to tame sets of full TGDs.
The general strategy we develop here, however, can be extended to a larger class of integrity
constraints that includes inclusion dependencies, as we will discuss in the conclusion section.
This is beyond the scope of the present paper as it requires considering ∃Datalog programs
(i.e., Datalog programs where existential quantifiers are allowed in rule heads).

6.2 Homomorphism dualities within restricted categories
Let C be a class of instances over some schema (e.g., the class of transitive digraphs). We
say that a pair (F,D), with F,D ⊆ C, is a homomorphism duality within C if F ↑ ∩ C is the
complement of D↓ ∩ C relative to C. In what follows we will also speak of homomorpism
dualities with respect to a theory Σ. By this, we mean homomorphism dualities w.r.t. the
class of instances defined by Σ. The next result shows how to obtain finite homomorphism
dualities within C, for classes C that are definable by a tame set of full TGDs.

▶ Theorem 6.4. Let Σ be a tame set of full TGDs. Let F be any finite set of pointed
instances. If each member of F is of the form (PΣ(A), a) for some c-acyclic pointed instance
(A,a), then F is the left-hand side of a finite duality w.r.t. Σ.

Proof. Let F ′ be the finite set of c-acyclic pointed instances such that F = {(PΣ(I),a) |
(I,a) ∈ F ′}. Let D be the finite set such that (F ′, D) is a homomorphism duality, given by
Thm. 5.3. Let D′ = {(PΣ(B′),b′) | (B,b) ∈ D, (B′, ι) ∈ ΩPΣ(B), ι(b′) = b}. Note that D′

consists of pointed instances satisfying Σ. We will show that (F,D′) is a homomorphism
duality w.r.t. Σ. Let (C, c) be a pointed instance with C |= Σ. Then:

(C, c) ∈ F ↑ ⇔ (C, c) ∈ F ′↑ ⇔ (C, c) ̸∈ D↓ ⇔ (C, c) ̸∈ D′↓

The first equivalence holds by Lem. 2.3 and the fact that PΣ(C) = C. The second equivalence
holds by the duality assumption. It remains to prove the third equivalence.

From left to right: By contraposition. Suppose that (C, c) → (PΣ(B′),b′) for some
(B,b) ∈ D, (B′, ι) ∈ ΩPΣ(B), and ι(b′) = b. Trivially, we have id : (B′,b′) → (B′,b′). It
follows by the generalized adjoint property that (PΣ(B′),b′) → (B, ι(b′)). Therefore, by
transitivity, and since ι(b′) = b, we have (C, c) → (B,b) and therefore (C, c) ∈ D↓.

From right to left: Again, by contraposition. Assume (C, c) ∈ D↑. Since PΣ(C) = C, it
follows that (PΣ(C), c) → (B,b) for some (B,b) ∈ D. It follows by the adjoint property
that (C, c) → (B′,b′) for some (B,b) ∈ D, (B′, ι) ∈ ΩPΣ(B), and b′ ∈ ι−1(b). Then also
(C, c) → (PΣ(B′),b′). This means that (C, c) ∈ D′↓. ◀
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Regarding complexity, consider the case where Σ is a fixed tame set of full TGDs (not
treated as part of the input). Then the proof of Thm. 6.4 yields a 2ExpTime algorithm
for computing the dual set D from F , assuming F is specified by the underlying set of
c-acyclic instances (A,a). Thus, for instance, for the class of transitive digraphs (which, as
we saw earlier, is captured by a TAM Datalog program), we have a 2ExpTime-algorithm for
constructing duals for digraphs that are specified as the transitive closure of an acyclic digraph.

The only prior results regarding homomorphism dualities for restricted classes of structures
that we are aware of, are for undirected graphs and for finite algebras. An undirected graph
can be viewed as an instance over a schema S consisting of a single binary relation symbol
E, satisfying the integrity constraints ∀xy(E(x, y) → E(y, x)) and ∀x¬E(x, x). It is known
that the category of undirected graphs and homomorphisms has no finite dualities, up to
homomorphic equivalence, other than the trivial duality ({K2}, {K1}), where K1 and K2 are
the 2-element clique and the empty graph, respectively (cf. [20]). Similarly, a finite algebra
of a similarity type σ can be viewed as an S-instance, with S = {Rf | f ∈ σ} satisfying
Σ = {∀x∃yRf (x, y),∀xyz(Rf (x, y) ∧ Rf (x, z) → y = z) | f ∈ σ}, and, again, it is known
that, in the category of finite algebras, no non-trivial finite dualities exist [4]. Note that both
in the case of undirected graphs (viewed as symmetric and irreflexive relational structures)
and in the case of finite algebras, all non-trivial structures in question are cyclic.

For the special case of monadic tree-shaped TGDs, we can prove a converse to Thm. 6.4:

▶ Theorem 6.5. Let Σ be any set of monadic tree-shaped TGDs. Let F be any finite set
of pairwise homomorphically-incomparable pointed instances (A,a) with A |= Σ. Then, the
following are equivalent:
1. F is the left hand side of a finite duality w.r.t. Σ,
2. Each (A, a) ∈ F is homomorphically equivalent to (PΣ(A′), a) for some c-acyclic (A′, a).

▶ Remark 6.6. Thm. 6.5 cannot be lifted to arbitrary tame sets of full TGDs. Consider again
the tame set of full TGDs Σ = {∀xyzu(R(x, y) ∧R(y, z) ∧R(z, u) → R(x, u)),∀xy(R(x, y) →
R(y, x))} from Example 6.2. Let A be the instance (without distinguished elements) {R(a, a)},
and let B be the instance {R(a, b), R(b, a)}. Then ({A}, {B}) is a homomorphism duality
w.r.t. Σ. Indeed, let C be an instance satisfying Σ and assume that A ̸→ C (i,e, C has no
loop). Since C satisfies Σ it follows that C has no odd cycle and, hence, is homomorphic to
B. However, it is easy to see that every instance A′ satisfying PΣ(A′) = A must have a cycle.

6.3 Uniquely Characterizing Examples for Database Queries
By a collection of labeled examples for a k-ary query, we mean a pair (E+, E−) of finite sets of
pointed instances with k distinguished elements.5 A UCQ q fits such (E+, E−) if a ∈ q(A) for
all (A, a) ∈ E+, and a ̸∈ q(A) for all (A, a) ∈ E−. We say that two UCQs q, q′ (over the same
schema S) are equivalent w.r.t. Σ, where Σ is a first-order theory, if for all I ∈ Inst[S] with
I |= Σ, q(I) = q′(I). A collection of labeled examples (E+, E−) uniquely characterizes a UCQ
q w.r.t. Σ, if q fits (E+, E−), and every UCQ that fits (E+, E−) is equivalent to q w.r.t. Σ.

▶ Lemma 6.7. Let S be any schema and Σ a FO theory over S. Let q be a UCQ over S, and
let E+, E− be finite sets of pointed instances (I, a) with I |= Σ. The following are equivalent:
1. The collection of labeled examples (E+, E−) uniquely characterizes q w.r.t. Σ

5 Data examples can also be defined as pairs (I, q(I)) of an input instance and the complete query output.
This would not change our results. Note that such a data example (I, q(I)) can be equivalently represented
by all positive examples (I, a) for a ∈ q(I) and negative examples (I, a) for a ∈ adom(I)k \ q(I).
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2. q fits (E+, E−) and (E+, E−) is a finite homomorphism duality w.r.t. Σ.

▶ Theorem 6.8. Let Σ a tame set of full TGDs over a schema S. Every c-acyclic UCQ q

over S is uniquely characterized w.r.t. Σ by a collection of labeled examples satisfying Σ.

Proof. Let E+ be the set of pointed instances (PΣ(I),a), for (I,a) a (c-acyclic) canon-
ical instance of a CQ in q. By Thm. 6.4, there is a finite set E− such that (E+, E−) is a
homomorphism duality w.r.t. Σ. By Lem. 6.7, (E+, E−) uniquely characterizes q w.r.t. Σ. ◀

The proof of Thm. 6.8 yields a 2ExpTime upper bound for computing uniquely char-
acterizing examples for a given c-acyclic UCQ, relative to a fixed tame set of full TGDs.
It is not known whether this is optimal. In the absence of integrity constraints, uniquely
characterizing examples for a c-acyclic UCQ can be constructed in ExpTime and this is
known to be optimal since they are in general exponential in size. In the case of c-acyclic
CQs, uniquely characterizing examples can be constructed in polynomial time [9].

7 Conclusion

We introduced a new fragment of Datalog, TAM Datalog, that is semantically well-behaved
(closed under composition and having a natural semantic characterization) and admits
generalized right-adjoints. We used this result to obtain a method for constructing uniquely
characterizing data examples for c-acyclic UCQs in the presence of integrity constraints
(where the data examples are required to satisfy the integrity constraints). Generalized right-
adjoints for Datalog programs seem potentially useful in other contexts as well, such as in
tasks involving reasoning about a hidden database instance based on an exposed view (cf. [5]).

In a companion paper (cf. [11]), we further extend our study to ∃Datalog (the extension
of Datalog where existential quantifiers are allowed in rule heads), and we show that linear
∃Datalog programs have right-adjoints. This is then used to extend our results on uniquely
characterizing data examples to the case with (a weakly acyclic set of) inclusion dependencies.

We leave as open problems for future research: (i) obtaining tight complexity bounds for
the task of constructing uniquely characterizing data examples for CQs and UCQs in the
presence of a tame set of full TGDs; (ii) identifying better syntactic criteria that guarantees
that a given finite set of full TGDs is tame; (iii) extending our results to the case with
functional dependencies6; and (iv) studying which logic (or, more generally, formalism) is
necessary to define the right adjoint ΣP (·) (see also Remark 4.10).
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A Proofs for Section 3

▶ Proposition 3.4. The almost-monadic Datalog program from Example 1.1 is not equivalent
to a monadic Datalog program.

Proof. Suppose, for the sake of a contradiction, that there was an equivalent monadic
Datalog program P . Let n be the maximum number of variables in any Ans rule of P .
Consider the Sin-instance I consisting of the facts R(a0, a1), R(a1, a2), . . . , R(an, an+1) as
well as the facts R(b0, b1), R(b1, b2), . . . , R(bn, bn+1). Then Ans(a0, an+1) is a fact of P (I)
while Ans(a0, bn+1) is not. A simple isomorphism argument shows that, for all i ≤ n+ 1 and
for all S ∈ Saux, S(ai) belongs to chaseP (I) if and only if S(bi) belongs to chaseP (I). It
is then easy to see that any derivation of Ans(a0, an+1) using a rule of P implies also the
existence of a derivation of Ans(a0, bn+1) using the same rule, a contradiction. ◀

▶ Theorem 3.5. For each almost-monadic Datalog program P and k-ary relation symbol
R ∈ SP

out, there is a Boolean monadic Datalog program P ′ where SP ′

in = SP
in ∪ {Q1, . . . , Qk},

such that the following are equivalent, for all SP
in-instances I and a1, . . . , ak ∈ adom(I):

1. R(a1, . . . , ak) ∈ P (I),
2. P ′(I ∪ {Q1(a1), . . . , Qk(ak)}) = true.

Proof. To simplify the exposition, we may assume that the articulation position of each
relation (if it has one) is the first position. Let Q = {Q1, . . . , Qk}. For each relation
S ∈ SP

out ∪ SP
aux with arity(S) > 0, and for each partial function f : {1, . . . , arity(S)} ⇀ Q,

we create a unary relation Sf . The intuitive meaning of Sf (x) is:

∃y1 . . . yk(S(y1, . . . , yk) ∧ x = y1 ∧
∧

f(i)=Qj

Qj(yi)) .

Let S′
aux be the set of all these new unary relations. Finally, we define the set ΣP ′ of

rules of our new program P ′. Take any rule in ρ ∈ ΣP . Without loss of generality, we can
we can assume that ρ is of the form

R0(x0) :− R1(x1), . . . , Rn(xn), En+1(xn+1), . . . , En+m(xn+m)

where each Ri ∈ SP
aux∪SP

out and each Ei ∈ Sin. For 0 ≤ i ≤ n, let fi : {1, . . . , arity(Ri)} ⇀ Q
be a partial function, such that the following consistency requirement is satisfied: whenever
a variable occurs in multiple Saux ∪ Sout-atoms in the above rule, say, in the j-th argument
position of the atom Ri(xi) and in the j′-th argument position of the atom Ri′(xi′), then
fi(j) = fi′(j′) (we allow here that fi(j) and fi′(j′) are both undefined).

For each rule ρ ∈ ΣP and for each choice of partial functions f0, . . . , fn, satisfying the
above consistency requirement, we add to ΣP ′ the rule

Rf0
0 (x0,1) :− Rf1

1 (x1,1), . . . , Rfn
n (xn,1), En+1(xn+1), . . . , En+m(xn+m),

∧
f0(i)=Qj

Qj(x0,i)

where xi,j stands for the j-th variable in the tuple of variables xi.
Finally we add the rule

Ans() :− Rf (x)

whereR is the relation mentioned in the statement of the proposition, and f : {1, . . . , arity(R)} →
Q is the total function given by f(i) = Qi. This concludes the definition of the monadic
Datalog program P ′.

Let I be any SP
in-instance, and let I ′ = I ∪ {Q1(a1), . . . , Qk(ak)}.
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▷ Claim. The following are equivalent, for all Rf ∈ S′
aux and c ∈ adom(I):

1. Rf (c) ∈ chaseP ′(I)
2. R(b1, . . . , bn) ∈ chaseP (I) for some b1, . . . , bn such that b1 = c and, for all i ≤ n, if

f(i) = Qj , then bi = aj .
Both directions of this claim can be proved by an induction on the length of derivations. We
note that the fact that P is almost-monadic is required in the direction (1) ⇒ (2).

It follows from this claim that Ans() ∈ P ′(I ′) iff R(a1, . . . , ak) ∈ P (I). ◀

▶ Corollary 3.7. Let P be an almost-monadic Datalog program and R ∈ SP
out. Then (P,R)

defines an MSO query.

Proof. Let P ′ be as in Thm. 3.5. By Thm. 3.1, there is an MSO sentence ϕ such that, for
all S ∪ {Q1, . . . , Qk}-instances I, Ans() ∈ P ′(I) iff I |= ϕ. Let

ψ(x1, . . . , xk) = ∃Q1 . . . Qk(ϕ ∧
∧

i

∀z(Qi(z) ↔ z = xi))

Then, for all SP
in-instances I, I |= ψ(a1, . . . , ak) iff R(a1, . . . , ak) ∈ P (I). ◀

▶ Lemma 3.8. Let P be any almost-monadic Datalog such that every R ∈ SP
out is unary.

Then P is equivalent to a monadic Datalog program.

Proof. To simplify the presentation, we may assume without loss of generality that SP
out =

{Ans}. Let f be the articulation function.
We introduce a unary auxiliary relation QR,j for every R ∈ SP

aux and j ≤ arity(R) with
j ̸= f(R). Intuitively, a fact of the form QR,j(a) will be used to indicate that, for every fact
R(a1, . . . , an) ∈ P (I) with af(R) = a, Ans(aj) should be derived.

We now construct a monadic Datalog program P ′ with SP ′

in = SP
in, SP ′

out = SP
out, and SP ′

aux

is the set of auxiliary relations of the form QR,j as defined above, as well as unary auxiliary
relations of the form R̂ for R ∈ SP

aux. For any atom R(x) with x = x1, . . . , xn, we will use
the denote by R̂(x) its projection to the articulation variable, that is, R̂(xf(R)).

Without loss of generality, we can we can assume that each rule in P is of one of the
following two forms:

(i) Ans(x) :− R1(x1), . . . , Rn(xn), En+1(xn+1), . . . , En+m(xn+m)

(ii) R0(x0) :− R1(x1), . . . , Rn(xn), En+1(xn+1), . . . , En+m(xn+m)

where each Ri ∈ SP
aux, and each Ei ∈ SP

in. In what follows, we will write xi,j to denote the
j-th element of the tuple xi.

For each rule of type (i) and every occurrence xi,j of x in its body we add to P ′ the rule
with body

R̂1(x1), . . . , R̂n(xn), En+1(xn+1), . . . , En+m(xn+m)

and head QRi,j(xi,f(Si)) whenever i ≤ n and Ans(x) otherwise.
For each rule of type (ii), we add in P ′ the rule

R̂0(x0) :− R̂1(x1), . . . , R̂n(xn), En+1(xn+1), . . . , En+m(xn+m)

Also, for each rule of type (ii), each k ≤ arity(R0) and every occurrence xi,j of x0,k in its
body we add to P ′ the rule with body

R̂1(x1), . . . , R̂n(xn), En+1(xn+1), . . . , En+m(xn+m), QR0,k(x)

and head QRi,j(xi,f(Si)) whenever i ≤ n and Ans(x0,k) otherwise.
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▷ Claim. For every Sin-instance I, P (I) = P ′(I).

Proof. (P (I) ⊇ P ′(I)). It follows immediately from the following fact. For every a ∈ adom(I):
1. If R̂(a) ∈ chaseP ′(I) then R(a1, . . . , an) ∈ chaseP (I) for some tuple a1, . . . , an with

af(R) = a, and
2. If QR,j(a) ∈ chaseP ′(I) then for all R(a1, . . . , an) ∈ chaseP (I) with af(R) = a, Ans(aj) ∈

P (I)
This fact can be proved by induction on the derivation order of P ′(I).

(P (I) ⊆ P ′(I)) It follows from the following fact. Let

Ans(x) :− R1(x1), . . . , Rn(xn), En+1(xn+1), . . . , En+m(xn+m)

be any derivable rule of P and let X be the canonical instance of

R̂1(x1), . . . , R̂n(xn), En+1(xn+1), . . . , En+m(xn+m)

Then for every occurrence xi,j of x in the body, chaseP ′(X) contains QRi,j(xf(Ri)) if i ≤ n

and Ans(x) otherwise (here we are abusing slightly notation since X is not necessarily a
SP

in-instance but the meaning is clear). This is proved by structural induction on the derivable
rules of P . ◁

◀

▶ Proposition 3.9. The unary MSO query “x lies on a directed R-cycle” is not definable by
an almost-monadic Datalog program.

Proof. By Lem. 3.8, it suffices to show that the query in question is not definable by a
monadic Datalog program. Suppose, for the sake of a contradiction, that the query is defined
by a monadic Datalog program P , with answer relation Ans, and let n be greater than the
maximum number of atoms in a rule body of P . Consider the following instance I, where
the two cycles have length n.

·

··

·

··

·

Clearly, P (I) should contain Ans(a) for all elements that lie on one of the two cycles, and
not for the intermediate element. However, a straightforward induction argument shows
that after each iteration of applying the rules of P , (i) all elements satisfy the same facts,
i.e., whenever a fact of the form S(a) is derived, with S ∈ SP

aux ∪ SP
out, then S(a′) is also

derived, for all other elements a′; and (ii) for every two elements a, a′, their neighborhoods
of diameter n are homomorphically equivalent. In particular, if Ans(a) is derived from some
element a, then Ans(a′) is derived for all elements a′. ◀

▶ Lemma 3.12. Let P be any tree-shaped Datalog program. Then, for each R ∈ SP
out,

Unfoldings(P,R) consists of acyclic pointed instances.

Proof. Recall that Unfoldings(P,R) consists of canonical instances of derivable rules, where
a derivable rule is a rule can be obtained from the rules of P through the operation of
substituting occurrences of a rule head by the corresponding rule body. It is easy to see
that this substitution operation preserves tree-shapedness, and therefore every derived rule is
tree-shaped. It follows that every Unfoldings(P,R) consists of acyclic pointed instances. ◀
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▶ Theorem 3.13. Let ϕ(x1, . . . , xn) be an MSO formula. The following are equivalent:
1. ϕ is definable by a TAM Datalog program,
2. ϕ is definable by a tree-shaped Datalog program,
3. ϕ is tree-determined.

The proof is deferred to Appendix C.

▶ Corollary 3.15 (TAM Datalog is closed under composition). For all TAM Datalog programs
P1 and P2 with SP2

in = SP1
out, there is a TAM Datalog program P3 = (SP1

in ,S
P2
out,S′

aux,Σ′) such
that, for all SP1

in -instances I, P3(I) = P2(P1(I)).

Proof. The composition of P1 and P2 is clearly expressible as a tree-shaped Datalog program:
we may assume that SP1

aux and SP2
aux are disjoint. Let P3 = (SP1

in ,S
P2
out,SP1

aux ∪SP1
out ∪SP2

aux,ΣP1 ∪
ΣP2). Then P3 defines the composition of P1 and P2. Note that P3 is tree-shaped but no
longer necessarily almost-monadic. As we will show, however, P3 is nevertheless equivalent
to a TAM Datalog program.

For each k-ary relation R ∈ SP1
out, let ϕR(x1, . . . , xk) be the MSO query over schema SP1

in

defined by (P1, R). Similarly, for each k-ary relation S ∈ SP2
out, let ϕS(x1, . . . , xk) be the

MSO query over schema SP2
in defined by (P2, S). We can substitute, in ϕS , all occurrences

of relation symbols R ∈ SP1
out by their defining formula ϕR. In this way, we obtain, for each

S ∈ SP2
out, an MSO query ϕ′

S over the schema SP1
in . Note that ϕ′

S is precisely the MSO query
defined by (P3, S).

It follows by Thm. 3.13 that, for each S ∈ SP2
out, the MSO query ϕ′

S is definable by a
TAM Datalog program. As a last step, we merge the TAM Datalog programs in question to
obtain a single TAM Datalog program that is equivalent to P3. ◀

▶ Theorem 3.16. Every (connected) TAM Datalog program can be transformed in polynomial-
time into an equivalent (connected) simple TAM Datalog program.

Proof. First, we will show how to ensure that each rule contains at most one occurrence
of a relation from Sin. Consider any rule whose body has two or more conjuncts involving
relations from Sin. Since the program is tree-shaped, the incidence graph of the rule body is
acyclic. It follows that the rule in question can be written (by re-ordering the atoms in the
body as needed) as follows:

R0(x0) :− R1(x1), . . . , Ri(xi), Ri+1(xi+1), . . . , Rn(xn)

where one of the relations R1, . . . , Ri is in Sin, one of the relations Ri+1, . . . , Rn is in Sin,
and the intersection {x1, . . . ,xi} ∩ {xi+1, . . . ,xn} contains at most one variable z. Indeed, if
the program is connected, such a variable z must exist.

Let u be an enumeration of the variables in {xi+1, . . . ,xn} without duplicates, and
starting with z, or otherwise starting with any variable occurring in an input-relation atom
in Ri+1(xi+1), . . . , Rn(xn).

We can replace the above rule by the following two rules:

R0(x0) :− R1(x1), . . . , Ri(xi), R′(u)
R′(u) :− Ri+1(xi+1), . . . , Rn(xn)

where R′ is a fresh auxiliary relation of suitable arity, whose articulation position is the first
position. Observe that both new rules have strictly fewer occurrences of relations from Sin

than the original rule, and that this construction preserves connectedness. If we repeat this



Balder ten Cate, Víctor Dalmau, and Jakub Opršal 10:25

process, we will end up with at most a linear number of rules, each of size no greater than
the size of the original rule. Furthermore, this can clearly be performed in polynomial time.

Next, we explain how to ensure that each rule body contains at least one (hence, exactly
one) relation from Sin. Here we use the fact that every tuple that is derived into a defined
relation must consist of values originating from facts of the input instance. Specifically, given
a rule

R0(x0) :− R1(x1), . . . , Rn(xn)

not containing any relation from Sin. Let x be any variable occurring in the articulation
position of one of the atoms in the rule body, and replace the rule by all possible rules that
extend its body with an additional atom R′(u, x,v) with R′ ∈ Sin and u,v distinct, fresh
variables. Again, connectedness is preserved. ◀

B Proofs for Section 6

By the c-girth of a pointed instance (A,a) we will mean the length of the smallest cycle in
the incidence graph of A that does not pass through any element in a (or ∞ if no such cycle
exists). Observe that a pointed instance is c-acyclic if and only if its c-girth is ∞.

▶ Lemma B.1 (Sparse Incomparability Lemma with Designated Elements). For every pointed
instance (I, a) and m > 0, there is a pointed instance (I ′,a) of c-girth at least m, such that
(I ′, a) → (I, a) and such that, for all pointed instances (J,b) of size at most m, (I, a) → (J,b)
iff (I ′,a) → (J,b).

Proof. Let (I,a) be given, with a = a1 . . . ak, and where I is an instance over schema S.
Let Î be the instance over schema Ŝ = S ∪ {Q1, . . . , Qk} that extends I with the unary facts
Qi(ai). By the standard version of the sparse incomparability lemma, there is an Ŝ-instance
I ′′ of girth at least m such that I ′′ → Î and such that, for all Ŝ-instances J of size at most
m, I ′′ → J iff Î → J . Now, let I ′ be the S-instance obtained from I ′′ by (i) replacing every
element satisfying a unary predicate Qi by ai, and (ii) dropping the unary predicates Qi.
This operation may introduce new cycles but it is not hard to see that any such newly
introduced short cycle must pass through one of the designated elements. Therefore, (I ′,a)
has c-girth at least m. Furthermore, for all S-instances (J,b) of size at most m, we have
that (I,a) → (J,b) iff Î → Ĵ iff I ′′ → Ĵ iff (I ′,a) → (J,b). ◀

▶ Theorem 6.5. Let Σ be any set of monadic tree-shaped TGDs. Let F be any finite set
of pairwise homomorphically-incomparable pointed instances (A,a) with A |= Σ. Then, the
following are equivalent:
1. F is the left hand side of a finite duality w.r.t. Σ,
2. Each (A, a) ∈ F is homomorphically equivalent to (PΣ(A′), a) for some c-acyclic (A′, a).

Proof. The 2 to 1 direction follows immediately from Theorem 6.4. From 1 to 2: suppose
F has a finite duality w.r.t. Σ, consisting of (D1,d1), . . . , (Dn,dn) where Di |= Σ, and
let (A,a) ∈ F . Then (A,a) ̸→ (Di,di) for all i ≤ n. Let m = s · t, where s is the
number of facts in A, and t is the maximum number of conjuncts in the body of a TGD
in Σ. By Lem. B.1, there is a pointed instance (A′,a) of c-girth at least m, such that
(A′,a) → (A,a) and (A′,a) ̸→ (Di,di) for all i ≤ n. Since (A′,a) → (A,a) and A |= Σ, we
have (P (A′),a) → (P (A),a) → (A,a) (by Lem. 2.3 and Lem. 6.1(2)).

We may assume without loss of generality that A′ contains all unary facts belonging to
P (A′). This is because (i) adding these unary facts does not change the c-girth of the instance,
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and (ii) when extending A′ with facts from P (A′), the condition that (A′,a) → (A,a) is
preserved, because P (A′,a) → (A,a), (iii) the condition that (A′,a) ̸→ (Di,di) is clearly
also preserved when extending A′ with additional facts.

We already observed that (PΣ(A′),a) → (A,a). Furthermore, (PΣ(A′),a) ̸→ (Di,di)
(because, otherwise, since (A′,a) ⊆ (PΣ(A′),a), we would have (A′,a) → (Di,di)). Since
PΣ(A′) |= Σ (by Lem. 6.1(1)) and (PΣ(A′),a) ̸→ (Di,di), by the duality assumption, some
pointed instance in F maps homomorphically to (PΣ(A′), a). In fact, the pointed instance in
question must be (A,a) (otherwise we would obtain a contradiction with the fact that the
members of F are pairwise homomorphically incomparable). Let h : (A,a) → (PΣ(A′),a).

Let (B,a) be the sub-instance of (PΣ(A′),a) that is the image of (A,a) under h. Since
all unary facts in PΣ(A′) already belong to A′, and Σ is monadic, every fact in PΣ(A′)
either belongs to A′ or else can be derived from facts in A′ by a single rule application. It
follows that there is a sub-instance B′ of A of size at most |B| · t, such that B ⊆ PΣ(B′).
Since |B| ≤ s, it follows that B′ is c-acyclic. Furthermore, (A,a) → (PΣ(B′),a), and
(PΣ(B′),a) ⊆ (PΣ(A′),a) → (A,a), hence also (PΣ(B′),a) → (A,a). Therefore, (A,a) is
homomorphically equivalent to (PΣ(B′),a). ◀

▶ Lemma 6.7. Let S be any schema and Σ a FO theory over S. Let q be a UCQ over S, and
let E+, E− be finite sets of pointed instances (I, a) with I |= Σ. The following are equivalent:
1. The collection of labeled examples (E+, E−) uniquely characterizes q w.r.t. Σ
2. q fits (E+, E−) and (E+, E−) is a finite homomorphism duality w.r.t. Σ.

Proof. The following proof does not in fact depend on Σ being a first-order theory. The
requirement that Σ is a FO theory, in the statement of the lemma, merely stems from the
way we set up the definitions of the notions involved.

From 1 to 2, if (E+, E−) uniquely characterizes q w.r.t. Σ, then, by definition, q fits
(E+, E−). Furthermore, it follows that no pointed instance in E+ admits a homomorphism
to a pointed instance in E− (otherwise, it would follow by monotonicity of UCQs that q does
not fit the negative examples). Next, assume for the sake of a contradiction that (E+, E−)
is not a homomorphism duality with respect to Σ. Then there is a pointed instance (I,a)
with I |= Σ that neither belongs to E+↑, not to E−↓. Let q1 be the union of the canonical
CQs of E+ and let q2 be the union of the canonical CQs of E+ ∪ {(I,a)}. Then q1 and q2
are not equivalent under Σ, and both fit (E+, E−), a contradiction.

From 2 to 1, let q′ be any UCQ that fits (E+, E−). We must show that q′ is equivalent to
q w.r.t. Σ. Consider any pointed instance (I,a) with I |= Σ. If a ∈ q(I) then (I,a) ∈ E+↑,
therefore a ∈ q′(I). If, on the other hand, a ̸∈ q(I), then (I,a) ̸∈ E+↑, hence (I,a) ∈ E−↓,
hence a ̸∈ q′(I). ◀

C Expressive completeness of TAM Datalog (Proof of Thm. 3.13)

Fix a schema S and let X = {X1, . . . , Xn} (which we can consider to be schema consisting
of unary predicates). Following [13] we consider the set of formal “tree-terms” defined
inductively from the following operators.

for every S ⊆ X, •S is a tree-term.
for every R ∈ S, for all tree-terms t1, . . . , tk with k = arity(R), and for each i ∈ [k],
▼R

i (t1, . . . , tk) is a tree-term.

We define for each tree-term t an associated pointed tree (T (t), r(t)) inductively as follows.
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If t = •S then T (t) is the tree containing only one node v (hence r(t) = v) and facts
Xi(v) for every Xi ∈ S.
If t = ▼R

i (t1, . . . , tk) then T (t) is the tree obtained by taking the disjoint union of
T (t1), . . . , T (tk) and adding fact f = R(r(t1), . . . , r(tk)). Furthermore, r(t) = r(ti).

▶ Lemma C.1. For every finite connected acyclic pointed (S ∪ X)-instance (I, a), there is a
tree-term t such that (T (t), r(t)) is isomorphic to (I, a).

Proof. The proof is by induction on the size of instance I, as counted by the number of
S-facts. The base case of the induction is where I does not contain any S-facts. In this case,
it follows from connectedness that I must be a single-element structure containing only some
X-facts. In this case, the statement clearly holds: it suffices to take t to be the term •S

where S is the set of all Xi ∈ X appearing in I.
If I contains n S-facts, with n > 0, then, by connectedness, a must appear in at least

one S-fact, that is, I contains a fact of the form R(a1, . . . , an) where, say, ai = a. Let I ′

be the sub-instance of I where the fact R(a1, . . . , an) is removed. For each j ≤ n, let Ij be
the connected component of I ′ containing aj . By induction, there is a term tj such that
(T (ti), r(ti)) is isomorphic to (Ij , aj). Let t = ▼R

i (t1, . . . , tn). Then it is easy to see that
(T (t), r(t)) is isomorphic to (I, a). ◀

An automaton, for present purposes, is a tuple (S,X, Q, F, δ) consisting of:
schemas S, X.
A finite set Q of states, with a distinguished subset F ⊆ Q

For every operator o of the form •S or ▼R
i , of arity, say, r (where we view •S as a zero-ary

operator), a transition relation δo ⊆ Qr ×Q

Acceptation is as one would expect. A tree-term t is accepted if we can associate a state
qt′ to each one of its subterms t′ such that qt ∈ F and the mapping t′ 7→ qt′ respects the
transition relation (meaning, that if t′ = o(t′1, . . . , t′r) then (qt′

1
, . . . , qt′

r
, qt′) ∈ δo.

Given a MSO formula ϕ(x1, . . . , xn) with schema S we shall consider the following
associated formula ϕ′ defined to be the MSO-sentence with schema S ∪ X defined as

∃x1, . . . , xn(ϕ(x1, . . . , xn) ∧
∧

i=1...n

Xi(xi)) (Eq. 4)

▶ Lemma C.2. If ϕ is monotone then ϕ′ is monotone as well.

Proof. Assume that h : A → B, where A and B are S ∪ X-instances and assume that A
satisfies ϕ′. Let xi 7→ ai be the instantiation witnessing it. Since the predicates of X do not
appear in ϕ it follows that the S-reduct of A satisfies ϕ(a1, . . . , an). Since ϕ is monotone
it follows that the S-reduct of B satisfies ϕ(h(a1), . . . , h(an)). Since h(ai) ∈ BXi for each
1 ≤ i ≤ n, it follows that B satisfies ϕ′. ◀

▶ Theorem C.3. Let ϕ′ be a MSO-sentence with schema S ∪ X. Then there is a finite
automaton that accepts the set of all tree-terms t such that T (t) satisfies ϕ′.

Proof. The proof is entirely standard. For the sake of completeness, we spell out the
construction, but we will omit the correctness argument. As is customary in the literature
on automata theory and MSO, we will simplify things by assuming a syntactic normal form
for MSO-formulas, in which all quantification is second-order. More precisely, we consider
formulas built up from atomic formulas of the form

R(X1, . . . , Xn), treated as a shorthand for ∃x1, . . . , xn(R(x1, . . . , xn) ∧ X1(x1) ∧ · · · ∧
Xn(xn)),
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X1 ⊆ X2, treated as shorthand for ∀y(X1(y) → X2(y)), and
Singleton(X), treated as shorthand for ∃x(X(x) ∧ ∀y(X(y) → y = x))

using disjunction, negation, and existential second-order quantification. It is easy to con-
struction an automaton for each of the above atomic formulas. The connectives are handled
by the following standard closure operations on automata:

The union of two automata (S,X, Qi, F i, δi) i = 1, 2 (assume that Q1 and Q2 are disjoint)
is the automaton (S,X, Q1 ∪Q2, F 1 ∪ F 2, δ) where δo = δ1

o ∪ δ2
o .

The complement of an automaton (S,X, Q, F, δ) is the (deterministic) automaton (S,X, 2Q, F ′, δ′),
where F ′ = {Q′ ⊆ Q | F ∩ Q′ = ∅} and where (Q1, . . . , Qr, Qr+1) ∈ δ′

o iff Qr+1 = {q ∈
Q | (q1, . . . , qr, q) ∈ δo for some q1 ∈ Q1, . . . , qr ∈ Qr}.
The projection of (S,X, Q, F, δ) to X′ ⊆ X is defined to be (S,X′, Q, F, δ′), where δ′ is
obtained by modifying δ in the following way. For every S′ ⊆ X′, δ′

•S′ =
⋃

S∩X′=S′ δ•S
.
◀

▶ Theorem C.4. Let A = (S,X, Q, F, δ) be an automaton. There is a Boolean monadic
tree-shaped Datalog program P with SP

in = S ∪ X such that for all (S ∪ X)-instances I, the
following are equivalent:
1. Ans() ∈ P (I).
2. There is some tree-term t accepted by A such that T (t) → I.

Proof. For every state q, SP
aux has a unary symbol Eq. Let us describe the rules in P :

For every o = •S and every q ∈ δo, ΣP contains the rule with head Eq(x) and whose
body contains Xi(x) for every Xi ∈ S.
For every o = ▼R

i and every (q1, . . . , qk, q) ∈ δo, ΣP contains the rule

Eq(xi) :− R(x1, . . . , xk), Eq1(x1), . . . , Eqk
(xk)

For every q ∈ F , we introduce the rule

Ans() :− Eq(x)

Let I be any (S ∪ X)-instance. The correctness of the construction follows from the
following claim:

▷ Claim. The following are equivalent for each a ∈ adom(I) and q ∈ Q:
1. Eq(a) ∈ chaseP (I)
2. There exists some tree-term t such that (i) (T (t), r(t)) → (I, a) and (ii) there is a run of

A on input t that finishes at state q
We omit the proof as it is fairly standard. The (1) → (2) direction is proved by induction on
the derivation length and the (2) → (1) direction is by structural induction on t. ◀

▶ Theorem C.5. Let P be a Boolean monadic tree-shaped Datalog program where X ⊆ SP
in.

There exists a TAM Datalog program P ′ with SP ′

in = SP
in \ X and SP ′

out = {R} where R has
arity n such that for every SP ′

in -instance I and every a1, . . . , an ∈ adom(I) the following are
equivalent:
1. R(a1, . . . , an) ∈ P ′(I)
2. P (I ∪ {X1(a1), . . . , Xn(an)}) = true
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Proof. Let U be the set of all tuples (of possibly arity 0) u whose entries are non repeated
integers from [n]. Let us assume that the output predicate of P is Ans.

We shall define a TAM Datalog program P ′ satisfying the requirements of the lemma.
The set SP ′

aux contains for every S ∈ Sout ∪ SP
aux ∪ X and every u ∈ U a predicate QS,u or

arity r is S = Ans and 1 + r otherwise where r is the arity of u. The intended meaning of
QS,u is the following:

QS,u(a,b) ∈ chaseP ′(I) ⇔ S(a) ∈ chaseP (I ∪ {Xu1(b1), . . . , Xur
(br)})

We note that here and elsewhere in the proof a is a 0-ary array whenever S = Ans and an
1-ary array elsewhere.

We include in P ′ the following rules. First, for every i ∈ [n] we include the rule

QXi,i(x, x) :− (empty body)

We note that although this rule is unsafe (that is, the variable in the head does not occur
in the body) this can be easily fixed extending the rule body with an SP ′

in -atom containing x
in one position and fresh variables in all other positions of the atom (there are multiple ways
to do this, and we add all safe rules that can be obtained in this way).

Secondly, for every rule ρ in P we add to P ′ a collection of rules constructed in the
following way. First, ρ can be written (by re-ordering the atoms in the body as needed) as
follows:

R0(x0) :− R1(x1), . . . , Rk(xk), Ek+1(xk+1), . . . , Em(xm)

whereR0 ∈ SP
out∪SP

aux, eachRi ∈ SP
aux∪X and each Ei ∈ SP

in. Then, for every u1, . . . ,uk ∈ U

having no common elements we add to P ′ the rule

QR0,u0(x0,y0) :− QR1,u1(x1,y1), . . . , QRk,uk
(xk,yk), Ek+1(xk+1), . . . , Em(xm)

where yi(i ∈ [k]) are tuples of different fresh variables, u0 = (u1. . . . ,uk), and y0 =
(y1. . . . ,yk).

Further, for every QS,v ∈ SP ′

aux and every u ⊆ v we add the rule

QS,v(x, z) :− QS,u(x,y)

where x and z do not have repeated elements or elements in common and for every i, j

ui = vj ⇒ yi = zj .

Note that y is completely determined from z and that although this rule is again unsafe but
it might be turned into a safe one as mentioned above.

Finally, we add the rule

R(y1, . . . , yn) :− QAns,(1,...,n)(y1, . . . , yn).

It only remains to show that P ′ satisfies the requirements of the Lemma. It is immediate
from the construction of P ′ that it is TAM Datalog program. The rest of the proof follows
immediately from the following claim which can be proved by induction on the derivation
order.

▷ Claim. Let I be a SP ′

in -instance, let QS,u ∈ SP ′

aux, let r = arity(u), and let a,b tuples of
variables in adom(I). The following are equivalent:
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1. QS,u(a,b) ∈ chaseP ′(I)
2. S(a) ∈ chaseP (I ∪ {Xu1(b1), . . . , Xur

(br)})

Proof. As mentioned both implications are easily proved by induction on the derivation order.
However, it is convenient to note that, since P is tree-shaped, direction (2) ⇒ (1) only needs
to be proven in the case I (and hence instance I ∪ {Xu1(b1), . . . , Xur

(br)}) is acyclic. ◁
◀

▶ Theorem 3.13. Let ϕ(x1, . . . , xn) be an MSO formula. The following are equivalent:
1. ϕ is definable by a TAM Datalog program,
2. ϕ is definable by a tree-shaped Datalog program,
3. ϕ is tree-determined.

Proof. From 1 to 2 is immediate. From 2 to 3 follows immediately from Lem. 3.12 and
Lem. 2.5. In the remainder, we prove (3) → (1).

Assume that ϕ(x1, . . . , xn) is an MSO formula over Sin that satisfies (3).
Let S be a fresh binary relation symbol not in Sin. In particular, S does not occur in

ϕ. Let S = Sin ∪ {S}. For the purpose of the next steps of the proof, we will view ϕ as
a formula over S. This also means that we will be constructing a corresponding Datalog
program over the input schema S. Afterwards, we will deal with eliminating the relation S

from the schema. The reason for extending the schema is that it will help us bridge the gap
between connected instances and arbitrary (possibly disconnected) instances. Specifically, we
will make use the fact that every Sin-instance is the Sin-reduct of a connected S-instance.

Let ϕ′ be the MSO sentence over S ∪ X as defined as in Eq. 4 (where X = {X1, . . . , Xn}).
Let A be the automaton corresponding to ϕ′ as in Theorem C.3, let P as the Boolean
connected tree-shaped monadic Datalog program as in Theorem C.4 and let P ′ by the TAM
Datalog program corresponding to P as in Thm. C.5. Recall that SP ′

out consists of a single
n-ary relation symbol R.

▷ Claim 2. (P ′, R) is equivalent to ϕ over connected S-instances. That is, for all connected
S-instances I and for all tuples a ∈ adom(I)n, R(a) ∈ P ′(I) iff I |= ϕ(a).

Proof. Assume that P ′ on a connected S-instance I produces R(a1, . . . , an). Let Î be the
connected (S ∪ X)-instance extending I with X1(a1), . . . , Xn(an). Then, it follows that
P (Î) = true. Then, there is some tree-term t accepted by A such that T (t) → Î. It follows
that T (t) satisfies ϕ′. Consequently, we have that Î satisfies ϕ′. It follows that I satisfies
ϕ(a1, . . . , an). Note that for this direction we do not use the full condition of tree-determinacy,
only monotonicity.

Conversely, assume that I satisfies ϕ(a1, . . . , an). Then by (3)

(J, b1, . . . , bn) → (I, a1, . . . , an)

for some J and b1, . . . , bn such that J satisfies ϕ(b1, . . . , bn). Let Ĵ be the (S ∪ X)-instance
extending J with X1(b1), . . . , Xn(bn). Let t be a tree-term such that T (t) is isomorphic to Ĵ ,
as given by Lem. C.1. It follows that A accepts t. Consequently P (Î) = true. It follows that
R(a1, . . . , an) belongs to P ′(I). ◁

Finally, let P ′′ be the TAM Datalog program obtained from P ′ by dropping all occurrences
of the relation S from the body of every rule of P ′. The operation of dropping all occurrences
of S might make some rules unsafe. That is, one or more variable x occurring in the head of
a rule might not occur in the body anymore. This can, however, be easily fixed by extending
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the rule body with an Sin-atom containing x and with fresh variables in all other positions of
the atom (there are multiple ways to do this, and we add all safe rules that can be obtained
in this way). Then it follows from Claim 2 that P ′′ is equivalent to ϕ: take any Sin-instance I
and let I ′ be S-instance extending I with all possible R-facts over adom(I). Since S does not
occur in ϕ, we have that I |= ϕ(a1, . . . , an) iff I ′ |= ϕ(a1, . . . , an) iff R(a1, . . . , an) ∈ P ′(I ′)
iff R(a1, . . . , an) ∈ P ′′(I). ◀
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