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VOORWOORD

Dit is een syllabus bij het college Mathematische Statistiek. Het behan-
delt een aantal onderwerpen uit de theorie van de asymptotische statistiek.
Wiskundig gezien bewijzen we limietstellingen voor het geval dat het aan-
tal waarnemingen naar oneindig convergeert. Enerzijds verkrijgen we accu-
rate, maar eenvoudige, benaderingen voor statistische procedures; ander-
zijds vergelijken we de relatieve efficientie van verschillende procedures. De
benaderingen zijn praktisch relevant in die gevallen waar het aantal waarne-
mingen niet te klein is.

De inhoud van de tentamenstof is ongeveer gelijk aan de inhoud van
deze syllabus, maar wordt tijdens het college definitief bekend gemaakt. In
het kader van de internationalisering gaan we in het volgende hoofdstuk
over op het Engels. Achterin het dictaat is een lijst van vertalingen van
technische woorden opgenomen.

Anders dan het college Algemene Statistiek, waarvan we het begrip-
penkader bekend veronderstellen, is het college Mathematische Statistiek
wiskundig exact. Dit maakt op enkele plaatsen het gebruik van begrip-
pen uit de maattheorie noodzakelijk. Deze worden in een appendix kort
verklaard (zie ook de syllabus Inleiding Waarschijnlijkheidsrekening), en
worden uitvoerig behandeld in het College Maattheorie (vijfde semester).

We gebruiken de volgende notatie, mogelijk in afwijking van andere
colleges.

Voor kwantielen van verdelingen nemen we altijd het bovenkwantiel.
Bijvoorbeeld ξα is gedefineerd als het getal zodanig dat P(G ≥ ξα) = α
voor een N(0, 1)-verdeelde grootheid G; evenzo χ2

k,α en tk,α. De standaard-
afwijking en variantie van een stochastische grootheid worden aangeduid
met sd X en varX .

Soms gebruiken we
∫

g(x) dPX (x) voor Eg(X). Dus
∫

g(x) dPX(x) is
gelijk aan

∫
g(x) f(x) dx als X continu verdeeld is met dichtheid f , en∑

x g(x)P(X = x) als X discreet verdeeld is.
Het woord “meetbaar” (“measurable”) wordt in de appendix verklaard.

Desgewenst kun je er ook gewoon overheen lezen: we komen geen objecten
tegen die niet meetbaar zijn. De afkorting “i.i.d.” betekent “independent
and identically distributed”.

Parijs, December 1995,
Amsterdam, Januari 1997, November 1997, December 1998 (herzienin-

gen),

A.W. van der Vaart
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1
Stochastic Convergence

1.1 Basic Theory

A sequence of random vectors Xn is said to converge in distribution to a
random vector X if

P(Xn ≤ x) → P(X ≤ x),

for every x at which the distribution function x → P(X ≤ x) is continuous.
Alternative names are weak convergence and convergence in law. As the
last name suggests, the convergence only depends on the induced laws of
the vectors and not on the probability spaces on which they are defined.
Weak convergence is denoted by Xn ! X ; if X has distribution L, or a
distribution with a standard code, such as N(0, 1), then also by Xn ! L
or Xn ! N(0, 1). The restriction to “continuity points” of x → P(X ≤ x)
in the definition is a bit odd, but will be seen to be reasonable in exam-
ples. A distribution function on R can have at most countably many jump
points, which is a very small subset of R, so that the definition does require
convergence at “almost all” points x.

Let d(x, y) be a distance function on Rk that generates the usual topol-
ogy. For instance, the Euclidean distance

d(x, y) = ∥x − y∥ =
( k∑

i=1

(xi − yi)2
)1/2

.

A sequence of random variables Xn is said to converge in probability to X
if for all ε > 0

P
(
d(Xn, X) > ε

)
→ 0.
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This is denoted by Xn
P→ X . In this notation convergence in probability is

the same as d(Xn, X) P→ 0.
As we shall see, convergence in probability is stronger than conver-

gence in distribution. An even stronger mode of convergence is almost-sure
convergence. The sequence Xn is said to converge almost surely to X if
d(Xn, X) → 0 with probability one:

P
(
lim d(Xn, X) = 0

)
= 1.

This is denoted by Xn
as→ X . We shall use this mode of convergence only

occasionally.
Note that convergence in probability and convergence almost surely

only make sense if each of Xn and X are defined on the same probability
space. For convergence in distribution this is not necessary.

The two main limit theorems of probability theory can be expressed in
terms of these convergence concepts. We shall use these theorems frequently,
but do not prove them in this course.

1.1 Example (Law of large numbers). Let Ȳn be the average of the first
n of a sequence of independent, identically distributed random variables
Y1, Y2, . . . whose expectation EY1 exists. Then Ȳn

P→ EY1 by the weak law
of large numbers. Actually, under the same condition it is also true that
Ȳn

as→ EY1, which is called the strong law of large numbers. As the name
indicates this is a stronger result, as is proved in Theorem 1.11(i).

1.2 Example (Central limit theorem). Let Ȳn be the average of the first
n of a sequence of independent, identically distributed random variables
Y1, Y2, . . .. If EY 2

1 < ∞, then
√

n(Ȳn − EY1) ! N(0, varY1) by the central
limit theorem.

1.3 Example. Suppose that Xn is uniformly distributed on the points
1/n, 2/n, . . . , n/n, i.e. P(Xn = i/n) = 1/n for i = 1, 2, . . . , n. Then Xn !
uniform[0, 1]. This can be proved directly from the definition.

Note that P(Xn ∈ Q) = 1 for every n, but P(X ∈ Q) = 0 for the
uniform limit variable X . Thus in general Xn ! X does not imply that
P(Xn ∈ B) → P(X ∈ B) for every set B.

1.4 Example. Let Y1, . . . , Yn be a random sample from the uniform dis-
tribution on [0, 1]. Then Xn = max(Y1, . . . , Yn) satisfies, for x > 0 and
n → ∞,

P
(
−n(Xn − 1) > x

)
=

(
1 − x

n

)n
→ e−x.

This implies that the sequence −n(Xn − 1) converges in distribution to an
exponential distribution with parameter 1.
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In a statistical context a different name for convergence in probabil-
ity is “asymptotically consistent”. Given a statistical model indexed by a
parameter θ, a sequence of estimators Tn is defined to be asymptotically
consistent for estimating g(θ) if Tn

Pθ→ g(θ) for every θ in the parameter
set. Here the extra θ in Pθ→ should be understood as indicating that the
probabilities must be calculated assuming that the value θ is the “true”
value.

1.5 Example. If the observations Y1, . . . , Yn are a random sample from a
distribution with finite mean µ, then the sample mean Ȳn is an asymptoti-
cally consistent estimator for the parameter µ, by the law of large numbers.

1.6 Example. If Y1, . . . , Yn are a random sample from the uniform distri-
bution on [0, θ], then both 2Ȳn and the maximum Yn(n) are asymptotically
consistent estimators of θ.

The continuous-mapping theorem asserts that stochastic convergence
is retained under application of continuous maps: if the sequence of random
vectors Xn converges to X and g is continuous, then g(Xn) converges to
g(X). This is true for each of the three modes of stochastic convergence. It is
not necessary that g be continuous everywhere, but it should be continuous
“at all points where the limit X takes its values”.

1.7 Theorem (Continuous mapping). Let g: Rk → Rm be measurable
and continuous at every point of a set C such that P(X ∈ C) = 1.
(i) If Xn ! X , then g(Xn)! g(X);
(ii) If Xn

P→ X , then g(Xn) P→ g(X);
(iii) If Xn

as→ X , then g(Xn) as→ g(X).

Proof. (i). This is difficult to prove without measure theory, as it is hard
to relate the distribution functions of Xn and g(Xn). Therefore, we omit
the proof.

(ii). Fix an arbitrary ε > 0. For each δ > 0 let Bδ be the set of x for
which there exists y with d(x, y) < δ, but d

(
g(x), g(y)

)
> ε. If X /∈ Bδ and

d
(
g(Xn), g(X)

)
> ε, then d(Xn, X) ≥ δ. Consequently, if d

(
g(Xn), g(X)

)
>

ε, then either X ∈ Bδ or d(Xn, X) ≥ δ, whence

P
(
d
(
g(Xn), g(X)

)
> ε

)
≤ P(X ∈ Bδ) + P

(
d(Xn, X) ≥ δ

)
.

The second term on the right converges to zero as n → ∞ for every fixed δ >
0. Since Bδ∩C is decreasing when δ decreases to 0 and ∩δBδ∩C = ∅ by the
continuity of g, the first term converges to zero as δ ↓ 0, by Lemma 6.1(i).

Assertion (iii) follows immediately from the definitions of almost sure
convergence and continuity.
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Any random vector X is tight: for every ε > 0 there exists a constant
M such that P

(
∥X∥ > M

)
< ε. This follows since the limit as M → ∞ of

these probabilities is zero by Lemma 6.1(i). The minimal value of M will
depend both on ε and on X . A set of random vectors {Xα:α ∈ A} is called
uniformly tight if M can be chosen the same for every Xα: for every ε > 0
there exists a constant M such that

sup
α

P
(
∥Xα∥ > M

)
< ε.

Thus, there exists a compact set to which all Xα give probability “almost
one”. Another name for “uniformly tight” is bounded in probability. It is
not hard to see, that every weakly converging sequence Xn is uniformly
tight. More surprisingly, the converse of this statement is almost true: ev-
ery uniformly tight sequence contains a weakly converging subsequence. For
deterministic sequences, this is (a consequence of) the Heine-Borel theorem,
which says that a closed, bounded subset of Rk is compact. (Furthermore,
every sequence contained in a compact set possesses a converging subse-
quence.) For random vectors the result is known as Prohorov’s theorem.

1.8 Theorem (Prohorov’s theorem). Let Xn be random vectors in Rk.
(i) If Xn ! X for some X , then {Xn: n ∈ N} is uniformly tight;
(ii) If Xn is uniformly tight, then there is a subsequence with Xnj ! X

as j → ∞, for some X .

Proof. (i). This is left as an exercise.
(ii). By Helly’s lemma (below) there exists a subsequence Fnj of the

sequence of cumulative distribution functions Fn(x) = P(Xn ≤ x) that con-
verges weakly to a possibly “defective distribution function” F . It suffices
to show that F is a proper distribution function: F (x) → 0, 1 if xi → −∞
for some i, or x → ∞. By the uniform tightness there exists M such that
Fn(M) > 1 − ε for all n. By making M larger, if necessary, it can be en-
sured that M is a continuity point of F . Then F (M) = lim Fnj (M) ≥ 1−ε.
Conclude that F (x) → 1 as x → ∞. That the limits at −∞ are zero can
be seen in a similar manner.

The crux of the proof of Prohorov’s theorem is Helly’s lemma. This
asserts, that any given sequence of distribution functions contains a sub-
sequence that converges weakly to a possibly “defective distribution func-
tion”. A defective distribution function is a function that has all the prop-
erties of a cumulative distribution function with the exception that it has
limit < 1 at ∞ and/or > 0 at −∞. Thus, a defective distribution function
on R is a function F : R → [0, 1] that is nondecreasing and continuous from
the right.
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1.9 Lemma (Helly’s lemma). Each given sequence Fn of cumulative dis-
tribution functions on Rk possesses a subsequence Fnj with the property
that Fnj (x) → F (x) at each continuity point x of a possibly defective dis-
tribution function F .

Proof. For simplicity we give the proof for k = 1. Let Q = {q1, q2, . . .}
be the rational numbers (or another countable dense set), ordered in an
arbitrary manner. Since the sequence Fn(q1) is contained in the interval
[0, 1], it has a converging subsequence by the Heine-Borel theorem. Call
the indexing subsequence {n1

j}∞j=1 and the limit G(q1). Next, extract a
further subsequence {n2

j} ⊂ {n1
j} along which Fn(q2) converges to a limit

G(q2), a further subsequence {n3
j} ⊂ {n2

j} along which · · ·, etc.. The ‘tail’
of the diagonal sequence nj = nj

j belongs to every sequence ni
j . Hence

Fnj (qi) → G(qi) for every i = 1, 2, . . .. Since each Fn is nondecreasing,
G(q) ≤ G(q′) if q ≤ q′. Define

F (x) = inf
q>x

G(q).

Then F is nondecreasing. It is also right continuous at every point x, be-
cause for every ε > 0 there exists q > x with G(q)−F (x) < ε, which implies
F (y) − F (x) < ε for every x ≤ y ≤ q.

Continuity of F at x means that, for every ε > 0 there exists δ > 0
such that

∣∣F (x)−F (y)
∣∣ < ε for every |x−y| < δ. This implies the existence

of q < x < q′ such that G(q′) − G(q) < 2ε. By monotonicity, we have
G(q) ≤ F (x) ≤ G(q′), and

G(q) = lim Fnj (q) ≤ lim inf Fnj (x) ≤ lim sup Fnj (x) ≤ lim Fnj (q
′) = G(q′).

Conclude that | lim inf Fnj (x)−F (x)| < 2ε and the same for lim sup. Since
this is true for every ε > 0, it follows that Fnj (x) → F (x) at every continuity
point of F .

1.10 Example. A sequence Xn of random variables with E|Xn|r = O(1)
for some r > 0 is uniformly tight. This follows since by Markov’s inequality

P
(
|Xn| > M

)
≤ E|Xn|r

M r
.

The right side can be made arbitrarily small uniformly in n, by choosing
sufficiently large M.

Since the second moment is the sum of the variance and the square
of the mean, an alternative sufficient condition for uniform tightness is:
EXn = O(1) and var Xn = O(1).

Consider some of the relationships between the three modes of conver-
gence. Convergence in distribution is weaker than convergence in probabil-
ity, which is in turn weaker than almost sure convergence.
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1.11 Theorem. Let Xn, X and Yn be random vectors. Then
(i) Xn

as→ X implies Xn
P→ X ;

(ii) Xn
P→ X implies Xn ! X ;

(iii) Xn
P→ c for a constant c if and only if Xn ! c;

(iv) if Xn ! X and d(Xn, Yn) P→ 0, then Yn ! X ;
(v) if Xn ! X and Yn

P→ c for a constant c, then (Xn, Yn)! (X, c);
(vi) if Xn

P→ X and Yn
P→ Y , then (Xn, Yn) P→ (X, Y ).

Proof. (i). For every fixed ε > 0 the sequence of sets

An = ∪m≥n

{
d(Xm, X) > ε

}

is decreasing: A1 ⊃ A2 ⊃ · · ·. If Xn(ω) → X(ω) for some ω, then there
exists n such that d

(
Xm(ω), X(ω)

)
≤ ε for m ≥ n and hence ω /∈ An.

Therefore ∩nAn can contain only ω such that Xn(ω) does not converge to
X(ω) and hence is a set with probability zero by assumption. Conclude
that P(An) → 0 and hence that P

(
d(Xn, X) > ε

)
≤ P(An) → 0.

(iv). We give the result for random variables only. The proof for the
vector case is similar. For every ε > 0,

P(Yn ≤ x) ≤ P
(
Yn ≤ x, d(Xn, Yn) ≤ ε

)
+ P

(
d(Xn, Yn) > ε

)

≤ P(Xn ≤ x + ε) + o(1).

If x+ε is a continuity point of the distribution function of X , then the right
side converges to P(X ≤ x + ε) and we conclude that lim sup P(Yn ≤ x) ≤
P(X ≤ x+ ε). This is true for all ε > 0 except at most the countably many
values such that x + ε is a jump point of x → P(X ≤ x). In particular, it
is true for a sequence εm ↓ 0 and we conclude that

lim sup P(Yn ≤ x) ≤ lim
m→∞

P(X ≤ x + εm) = P(X ≤ x).

This gives one half of the proof. By arguing in an analogous manner, we
can prove that lim sup P(Yn > x) ≤ P(X > x − ε) for every x and ε > 0
and hence that lim sup P(Yn > x) ≤ P(X ≥ x). For x a continuity point of
the distribution function of X , the right side is equal to P(X > x). Taking
complements we obtain that lim inf P(Yn ≤ x) ≥ P(X ≤ x).

The two inequalities combined yield that P(Yn ≤ x) → P(X ≤ x) for
every continuity point of the distribution function of X .

(ii). Since d(Xn, X) P→ 0, and trivially X ! X , it follows that Xn ! X
by (iv).

(iii). The “only if” part is a special case of (ii). For the converse, we
consider only the one-dimensional case and suppose that Xn ! c. The
distribution function of the limit variable is 0 to the left of c and 1 to
the right of c and everywhere continuous except at the point c. Therefore
P(Xn ≤ x) converges to 0 for x < c and converges to 1 for x > c. Then
P

(
d(Xn, c) ≥ ε

)
= P(Xn ≤ c − ε) + P(Xn ≥ c + ε) → 0 for every ε > 0.
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(v). First note that d
(
(Xn, Yn), (Xn, c)

)
= d(Yn, c) P→ 0. Thus, ac-

cording to (iv), it suffices to show that (Xn, c) ! (X, c). The distribution
function P(Xn ≤ x, c ≤ y) is equal to 0 for y < c and equal to P(Xn ≤ x)
if y ≥ c; the same is true for Xn replaced by X . Thus, we have that
P(Xn ≤ x, c ≤ y) → P(X ≤ x, c ≤ y) for every (x, y) such that either
y < c, or both y ≥ c and x → P(Xn ≤ x) is continuous at x. This includes
the continuity points of (x, y) → P(X ≤ x, c ≤ y).

(vi). This follows from d
(
(x1, y1), (x2, y2)

)
≤ d(x1, x2) + (y1, y2).

According to the last assertion of the lemma, convergence in proba-
bility of a sequence of vectors Xn = (Xn,1, . . . , Xn,k) is equivalent to con-
vergence of every one of the sequences of components Xn,i separately. The
analogous statement for convergence in distribution is false: convergence in
distribution of the sequence Xn is stronger than convergence of every one
of the sequences of components Xn,i. The point is that the distribution of
the components Xn,i separately does not determine their joint distribution:
they might be independent or dependent in many ways. We speak of joint
convergence in distribution versus marginal convergence.

Assertion (v) of the lemma has some useful consequences. If Xn ! X
and Yn ! c, then (Xn, Yn) ! (X, c). Consequently, by the continuous-
mapping theorem, g(Xn, Yn)! g(X, c), for every map g that is continuous
at the set Rk × {c} where the vector (X, c) takes its values. Thus, for every
g such that

lim
x→x0,y→c

g(x, y) = g(x0, c), every x0.

Some particular applications of this principle are known as Slutsky’s lemma.

1.12 Lemma (Slutsky). Let Xn, X and Yn be random vectors or variables.
If Xn ! X and Yn ! c for a constant c, then
(i) Xn + Yn ! X + c;
(ii) YnXn ! cX ;
(iii) Y −1

n Xn ! c−1X provided c ̸= 0.

In (i) the “constant” c must be a vector of the same dimension as X ,
and in (ii) c is probably initially understood to be a scalar. However, (ii)
is also true if every Yn and c are matrices (which can be identified with
vectors, for instance by aligning rows, to give a meaning to the convergence
Yn ! c), simply because matrix multiplication (x, y) → yx is a continuous
operation. Even (iii) is valid for matrices Yn and c and vectors Xn provided
c ̸= 0 is understood as c being invertible, because taking an inverse is also
continuous.

1.13 Example (t-statistic). Let Y1, Y2, . . . be independent, identically dis-
tributed random variables with EY1 = 0 and EY 2

1 < ∞. Then the t-statistic√
nȲn/Sn, where S2

n = (n − 1)−1
∑n

i=1(Yi − Ȳn)2 is the sample variance, is
asymptotically standard normal.
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To see this, first note that by two applications of the weak law of large
numbers and the continuous-mapping theorem for convergence in probabil-
ity

S2
n =

n

n − 1

( 1
n

n∑

i=1

Y 2
i − Ȳ 2

n

)
P→ 1

(
EY 2

1 − (EY1)2
)

= varY1.

Again by the continuous-mapping theorem, Sn converges in probability to
sd Y1. By the central limit theorem

√
nȲn converges in law to a normal

distribution. Finally, Slutsky’s lemma gives that the sequence of t-statistics
converges in distribution to N

(
0, varY1

)
/ sdY1 = N(0, 1).

1.14 Example (Confidence intervals). Let Tn and Sn be sequences of
statistical estimators satisfying

√
n(Tn − θ)! N(0,σ2), S2

n
P→ σ2,

for certain parameters θ and σ2 depending on the underlying distribution,
for every distribution in the model. Then θ = Tn±Sn/

√
n ξα is a confidence

interval for θ of asymptotic level 1 − 2α. More precisely, we have

P
(
Tn − Sn√

n
ξα ≤ θ ≤ Tn +

Sn√
n
ξα

)
→ 1 − 2α.

This is a consequence of the fact that the sequence
√

n(Tn − θ)/Sn is
asymptotically standard normally distributed.

1.2 Stochastic o and O Symbols

It is convenient to have short expressions for terms that converge in prob-
ability to zero or are uniformly tight. The notation oP (1) (‘small “oh-P-
one”’) is short for a sequence of random vectors that converges to zero in
probability. The expression OP (1) (‘big “oh-P-one”’) denotes a sequence
that is bounded in probability. More generally, for a given sequence of ran-
dom variables Rn,

Xn = oP (Rn) means Xn = YnRn and Yn
P→ 0;

Xn = OP (Rn) means Xn = YnRn and Yn = OP (1).

This expresses that the sequence Xn converges in probability to zero, or is
bounded in probability, at ‘rate’ Rn. For deterministic sequences Xn and
Rn, the stochastic oh-symbols reduce to the usual o and O from calculus.
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There are many rules of calculus with o and O symbols, which we apply
without comment. For instance,

oP (1) + oP (1) = oP (1)
oP (1) + OP (1) = OP (1)

OP (1)oP (1) = oP (1)
(
1 + oP (1)

)−1 = OP (1)
oP (Rn) = RnoP (1)
OP (Rn) = RnOP (1).

To see the validity of these ‘rules’ it suffices to restate them in terms of
explicitly named vectors, where each oP (1) and OP (1) should be replaced
by a different sequence of vectors, that converges to zero or is bounded
in probability. In this way the first rule says: if Xn

P→ 0 and Yn
P→ 0,

then Zn = Xn + Yn
P→ 0. This is an example of the continuous-mapping

theorem. The third rule is short for: if Xn is bounded in probability and
Yn

P→ 0, then XnYn
P→ 0. If Xn would also converge in distribution, then this

would be statement (ii) of Slutsky’s lemma (with c = 0). But by Prohorov’s
theorem, Xn converges in distribution ‘along subsequences’ if it is bounded
in probability, so that the third rule can still be deduced from Slutsky’s
lemma by ‘arguing along subsequences’.

Note that both rules are in fact implications, and should be read from
left to right, even though they are stated with the help of the equality “=”
sign. Similarly, while it is true that oP (1) + oP (1) = 2oP (1), writing down
this rule does not reflect understanding of the oP -symbol.

Two more complicated rules are given by the following lemma.

1.15 Lemma. Let R be a function defined on a neighbourhood of 0 ∈ Rk

such that R(0) = 0. Let Xn be a sequence of random vectors that converges
in probability to zero.
(i) if R(h) = o(∥h∥) as h → 0 , then R(Xn) = oP (∥Xn∥);
(ii) if R(h) = O(∥h∥) as h → 0, then R(Xn) = OP (∥Xn∥).

Proof. Define g(h) as g(h) = R(h)/∥h∥ for h ̸= 0 and g(0) = 0. Then
R(Xn) = g(Xn)∥Xn∥.

(i). Since the function g is continuous at zero by assumption,
g(Xn) P→ g(0) = 0 by the continuous mapping theorem.

(ii). By assumption there exist M and δ > 0 such that
∣∣g(h)

∣∣ ≤ M
whenever ∥h∥ ≤ δ. Thus P

(∣∣g(Xn)
∣∣ > M

)
≤ P

(
∥Xn∥ > δ

)
→ 0, and the

sequence g(Xn) is tight.

It should be noted, that the rule expressed by the lemma is not a simple
plug-in rule. For instance, it is not true that R(h) = o(∥h∥) implies that
R(Xn) = oP (∥Xn∥) for every sequence of random vectors Xn.
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Problems

1. Let P(Xn = i/n) = 1/n for every i = 1, 2, . . . , n. Show that Xn ! X for a
uniform variable X.

2. Suppose that P(Xn ≤ x) = (nx ∨ 0) ∧ 1.
(i) Draw the graph of x → P(Xn ≤ x). Does P(Xn ≤ x) converge for every

x?
(ii) Show that Xn converges in distribution.

3. If P(Xn = xn) = 1 for every n and numbers such that xn → x, then Xn ! X
for X a random variable such that P(X = x) = 1. Prove this in two ways: (i)
by considering distribution functions; (ii) by using Theorem 1.11.

4. If every Xn and X possess a discrete distribution supported on a finite set of
integers, show that Xn ! X if and only if P(Xn = x) → P(X = x) for every
x.

5. Show that “finite” in the preceding problem is unnecessary.

6. Let Xn be binomially distributed with parameters n and pn. If n → ∞ and
npn → λ > 0, then Xn ! Poisson(λ).

7. Find an example of a sequence of random variables such that Xn ! 0, but
EXn → ∞.

8. In what sense is a χ2-distribution with n degrees of freedom approximately a
normal distribution?

9. Let Xn be the maximum of a random sample Y1, . . . , Yn from the density
2(1 − x) on [0, 1]. Find constants an and bn such that bn(Xn − an) converges
in distribution to a nondegenerate limit.

10. Let Yn(1) and Yn(n) be the minimum and maximum of a random sample
Y1, . . . , Yn from the uniform distribution on [0, 1]. Show that the sequence
n
(
Yn(1), 1 − Yn(n)

)
converges in distribution to (U, V ) for two independent

exponential variables.

11. Find an example of sequences Xn ! X and Yn ! Y , but the joint sequence
(Xn, Yn) does not converge in law.

12. If Xn and Yn are independent random vectors for every n, then Xn ! X and
Yn ! Y implies that (Xn, Yn)! (X, Y ), where X and Y are independent.

13. Suppose that P(Xn ≤ ξn) = p for every n and P(X ≤ ξ − ε) < p = P(X ≤
ξ) < P(X ≤ ξ + ε) for every ε > 0. Show that ξn → ξ if Xn ! X.

14. Suppose that X1, . . . , Xn is a random sample from the Poisson distribution
with mean θ. Find an asymptotically consistent sequence of estimators for
estimating Pθ(X1 = 0).

15. Suppose that X1, . . . , Xn are a random sample from the uniform distribution
on [−θ, θ]. Show that the maximum, Xn(n), minus the minimum, −Xn(1), and
1
2 (Xn(n) − Xn(1)) are asymptotically consistent estimators of θ.
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16. Define a median of a distribution function F as a point m such that F (m) = 1
2 .

Suppose that F possesses a positive density.
(i) Show that the median of F is unique;
(ii) Show that the sample median, based on a random sample of size n from

F , is an asymptotically consistent estimator of the median of F .

17. Suppose that Xn ! N(µ,σ2). Find the limit distribution of the sequence
bXn + a.

18. Suppose that the sequence of random vectors Xn = (Xn,1, . . . , Xn,k) converges
in distribution to a vector X = (X1, . . . , Xk) whose coordinates are indepen-
dent standard normal variables. Prove that ∥Xn∥2 ! χ2

k. (Here ∥ · ∥ denotes
the Euclidean norm.)

19. If EXn → µ and varXn → 0, then Xn
P→ µ. Prove this.

20. Suppose that Xn is N(µn,σ2
n)-distributed.

(i) Suppose that σn = 1 for every n. Show that the sequence Xn is uniformly
tight if and only if µn = O(1);

(ii) Suppose that µn = 0 for every n. For which sequences σn is the sequence
Xn uniformly tight?

21. Prove that for any sequence of random vectors Xn the following statements
are equivalent:
(i) the sequence Xn is uniformly tight;
(ii) for every ε > 0 there exist M and N such that P

(
∥Xn∥ > M

)
< ε for

every n ≥ N ;
(iii) P

(
∥Xn∥ > Mn

)
→ 0 as n → ∞ for every sequence Mn → ∞.

22. Prove the “simple” part of Prohorov’s theorem: if Xn ! X, then the sequence
Xn is uniformly tight.

23. If Xn ! N(0, 1) and Yn
P→ σ, then XnYn ! N(0, σ2). Show this.

24. A random variable Xn is said to possess the t-distribution with n degrees of
freedom if it is distributed as

√
nZ/(Z2

1 +· · ·+Z2
n)1/2 for independent standard

normal variables Z, Z1, . . . , Zn. Show that Xn ! N(0, 1) as n → ∞.

25. If
√

n(Tn − θ) converges in distribution, then Tn converges in probability to θ.
Prove this.

26. Let X1, . . . , Xn be i.i.d. with density fλ,a(x) = λe−λ(x−a)1{x ≥ a}, where the
parameters λ > 0 and a ∈ R are unknown. Calculate the maximum likelihood
estimator (λ̂n, ân) of (λ, a) and show that (λ̂n, ân) P→ (λ, a).

27. Let X1, . . . , Xn be a random sample from a distribution with finite second
moment and mean µ. Show that the interval µ = X̄n ± Sn/

√
n tn−1,α, for S2

n

the sample variance, is a confidence interval for µ of asymptotic confidence
level 1 − 2α. What can you say in addition if the observations are N(µ, σ2)-
distributed?

28. Let Xn be binomially distributed with parameters (n, p). Prove that p =
Xn/n ± ξα/

√
Xn(1 − Xn)/n) is an asymptotic confidence interval of level

1 − 2α.
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29. Let X1, . . . , Xm and Y1 . . . , Yn be two independent random samples from distri-
butions with means and variances equal to (µ1,σ

2
1) and (µ2, σ

2
2), respectively.

Let

Tm,n =
X̄m − Ȳn

Sm,n
, S2

m,n =
S2

X

m
+

S2
Y

n
,

for S2
X and S2

Y the sample variances of the two samples. Show that the test
that rejects H0: µ1 = µ2 if |Tm,n| > ξα is of asymptotic level 2α
(i) if m = n → ∞;
(ii) if m,n → ∞.

30. State the rule OP (1)oP (1) = oP (1) in terms of random variables Xn, Yn and
Zn, and deduce it from Slutsky’s lemma by “arguing along subsequences”.

31. In what sense is it true that oP (1) = OP (1). Is it true that OP (1) = oP (1)?

32. State the rule OP (1) + OP (1) = OP (1) in terms of random variables and Xn,
Yn and Zn and prove it. Does it follow from this that oP (1)+OP (1) = OP (1)?

33. The rule given by Lemma 1.15 is not a simple plug-in rule. Give an example of
a function R with R(h) = o(∥h∥) as h → 0 and a sequence of random variables
Xn such that R(Xn) is not equal to oP (Xn).

34. Find an example of a sequence of random variables such that Xn
P→ 0, but Xn

does not converge almost surely.

35. If
∑∞

n=1
P(|Xn| > ε) < ∞ for every ε > 0, then Xn converges almost surely

to zero. Prove this.

36. Let Xn be the maximum of a random sample from the uniform distribution
on [0, 1]. Show that Xn

as→ 1.



2
Multivariate-Normal
Distribution

2.1 Covariance Matrices

The covariance of two random variables X and Y is defined as cov(X, Y ) =
E(X−EX)(Y −EY ), if these expectations exist. The variance of X is equal
to varX = cov(X, X). Recall that the expectation is linear: E(αX +βY ) =
αE+βEY ; and the covariance is symmetric and bilinear: cov(αX+βY, Z) =
α cov(X, Z) + β cov(Y, Z).

The expectation and covariance matrix of a random vector (X1, . . . , Xk)
are the vector and matrix

EX =

⎛

⎜⎜⎝

EX1

EX2
...

EXk

⎞

⎟⎟⎠ , Cov(X) =

⎛

⎜⎜⎝

cov(X1, X1) · · · cov(X1, Xk)
cov(X2, X1) · · · cov(X2, Xk)

...
...

cov(Xk, X1) · · · cov(Xk, Xk)

⎞

⎟⎟⎠ .

For k = 1 these are simply the expectation and variance of X1. The follow-
ing lemma gives some basic properties.

2.1 Lemma. For every matrix A, vector b and random vector X :
(i) E(AX + b) = AEX + b;
(ii) Cov(AX) = A(Cov X)AT ;
(iii) Cov X is symmetric and nonnegative definite;
(iv) P

(
X ∈ EX + range(Cov X)

)
= 1.

Proof. Properties (i) and (ii) follow easily from the linearity and bilinearity
of the expectation and covariance of real random variables. For (iii) and (iv),
we note that by (ii), var aT X = aT Cov(X)a for any vector a. A variance
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is nonnegative. Furthermore, for any a that is contained in the kernel of
Cov X , we have var aT X = 0, which implies that aT (X − EX) = 0 with
probability one. The exceptional set of probability zero may depend on a,
but we still have that X−EX ⊥ a for every a in a given countable subset of
the kernel of Cov X with probability one, since a countable union of null sets
is a null set. Since we can choose this countable subset dense, it follows that
X − EX is orthogonal to the kernel of Cov X . Since range(AT ) = N(A)⊥
for any matrix A, this means that X is in the range of (Cov X)T = Cov X
with probability one.

2.2 Definition and Basic Properties

For given numbers µ ∈ R and σ > 0, a random variable is normally
N(µ,σ2)-distributed if it has probability density

x → 1
σ
√

2π
e−

1
2 (x−µ)2/σ2

.

In addition to this we define a random variable X to be N(µ, 0)-distributed
if P(X = µ) = 1. This is the natural extension to the case that σ = 0,
because in every case we now have EX = µ and varX = σ2.

We wish to generalize the definition to higher dimensions. Let µ and
Σ be an arbitrary vector and a nonnegative, symmetric (k × k)-matrix,
respectively. Every such Σ can be written as

Σ = LLT ,

for a (k × k)-matrix L. In fact, there are several possible choices for L.
Every choice can be used in the following. One possible choice derives from
the transformation to an orthonormal basis of eigenvectors of Σ. Relative
to this basis, the linear transformation Σ is given by the diagonal matrix
D of the eigenvalues of Σ, and Σ = ODOT for the orthogonal matrix O
that represents the change of basis. (Hence OT = O−1.) We could define
L = OD1/2OT for D1/2 the diagonal matrix of square roots of eigenvalues
of Σ, since

OD1/2OT OD1/2OT = OD1/2D1/2OT = Σ.

Thus, this choice of L has the desired property. It is a nonnegative sym-
metric matrix, just as Σ, and is known as the “positive square root of Σ”.
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2.2 Definition. A random vector X is said to be multivariate-normally
distributed with parameters µ and Σ, notation Nk(µ, Σ), if it has the same
distribution as the vector µ + LZ, for a matrix L with Σ = LLT and
Z = (Z1, . . . , Zk)T a vector whose coordinates are independent N(0, 1)-
distributed variables.

The notation Nk(µ, Σ) suggests that the distribution of X depends
only on µ and Σ. This, indeed, is the case, although this is not clear from
its definition as the distribution of µ + LZ, which appears to depend on µ
and L. It can be seen from Lemmas 2.3 and 2.4 below, that the distribution
of µ + LZ depends on L only through LLT as claimed.

The parameters µ and Σ are precisely the mean and covariance matrix
of the vector X since, by Lemma 2.1,

EX = µ + LEZ = µ, Cov X = L Cov ZLT = Σ.

The multivariate normal distribution with µ = 0 and Σ = I, the identity
matrix, is called standard normal. The coordinates of a standard normal
vector X are independent N(0, 1)-distributed variables.

If Σ is singular, then the multivariate-normal distribution Nk(µ, Σ)
does not have a density. (This corresponds to the case σ2 = 0 in dimension
one.) We can see this from Lemma 2.1, which implies that X−EX takes its
values in the range of Σ, a lower dimensional subspace of Rk. It also follows
directly from the definition: if Σ is singular, then so is L, and clearly X −µ
takes its values in the range of L. On the other hand if Σ is nonsingular,
then the multivariate normal distribution Nk(µ, Σ) has a density.

2.3 Lemma. A vector X is multivariate-normally distributed for a non-
singular matrix Σ if and only if it has density

x → 1
(2π)k/2

√
det Σ

e−
1
2 (x−µ)T Σ−1(x−µ).

Proof. The density of Z = (Z1, . . . , Zk) is the product of standard normal
densities. Thus, for every vector b,

P
(
µ + LZ ≤ b

)
=

∫

z:µ+Lz≤b

k∏

i=1

1√
2π

e−
1
2 z2

i dz

Apply the change of variables µ + Lz = x. The Jacobian ∂z/∂x of this
linear transformation is L−1 and has determinant detL−1 = (det Σ)−1/2.
Furthermore,

∑
z2

i = zT z = (x−µ)T Σ−1(x−µ). It follows that the integral
can be rewritten as

∫

x:x≤b

1
(2π)k/2

e−
1
2 (x−µ)T Σ−1(x−µ) (det Σ)−1/2 dx.

This being true for every b implies the result.
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It is frequently useful to “reduce” vectors to dimension 1 by taking
linear combinations of its coordinates. By Lemma 6.3 in the appendix the
distribution of a vector X is completely determined by the distributions
of all linear combinations aT X . For the normal distribution this takes the
following particularly attractive form.

2.4 Lemma. The vector X = (X1, . . . , Xk) is Nk(µ, Σ)-distributed if and
only if aT X is N1(aT µ, aT Σa)-distributed for every a ∈ Rk.

Proof. ⇒ . The parameters aT µ and aT Σa are correct, because they are
the mean and variance of aT X . It suffices to show that aT X is normally dis-
tributed. Since X is distributed as µ + LZ, the variable aT X is distributed
as aT µ + (LT a)T Z. The latter variable is a constant plus a linear combina-
tion bT Z of independent N(0, 1)-distributed variables (for b = LT a). It is
well known, that such a linear combination is normally distributed.

For completeness we give a proof of this fact. Assume without loss
of generality that ∥b∥ = 1. There exist vectors b2, . . . , bk such that
{b, b2, . . . , bk} forms an orthonormal base of Rk. If B is the matrix with
first row b and ith row bi, then bT Z is the first coordinate of BZ. The
distribution function of BZ is

P
(
BZ ≤ b

)
=

∫

z:Bz≤b

k∏

i=1

1√
2π

e−
1
2 z2

i dz.

Apply the change of variables Bz = x. Since B is orthonormal, the Jaco-
bian has determinant 1, and

∑
z2

i = ∥z∥2 = ∥x∥2. Conclude that BZ has
the standard normal density, whence (BZ)1, . . . , (BZ)k are i.i.d. N(0, 1)-
variables.

⇐ . If aT X is normally N1(aT µ, aT Σa)-distributed, then by the argu-
ment that we just gave, it is distributed as aT Y for a Nk(µ, Σ)-distributed
vector Y . If this is true for every a, then X and Y are equal in distribution
by Lemma 6.3. Thus X is Nk(µ, Σ)-distributed.

2.5 Corollary. If the vector X = (X1, . . . , Xk) is Nk(µ, Σ)-distributed
and A: Rk → Rm is an arbitrary matrix, then AX is Nm(Aµ, AΣAT )-
distributed.

Proof. The parameters Aµ and AΣAT are correct, because they are the
mean and covariance of AX . It suffices to prove the normality. For every
vector a, we have aT (AX) = (AT a)T X . This variable is one-dimensional
normally distributed by the preceding lemma. Thus AX is multivariate-
normally distributed by the preceding lemma in the other direction.

The preceding theorem and lemma show that the marginal distribu-
tions of a multivariate-normal distribution are normal. The converse is false:
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if each of X1, . . . , Xk is normally distributed, then the vector (X1, . . . , Xk)
is not necessarily multivariate-normally distributed. (See the problems for
examples.)

We close with a surprising property of multivariate normal vectors.
Independent random variables are always uncorrelated, but the converse
can fail easily. If the vector X = (X1, . . . , Xk) is multivariate-normally
distributed, then the converse is true!

2.6 Lemma. The vector X = (X1, . . . , Xk) is multivariate-normally dis-
tributed with Σ a diagonal matrix if and only if X1, . . . , Xk are independent
and marginally normally distributed.

Proof. A diagonal, symmetric nonnegative definite matrix Σ can be writ-
ten as Σ = LLT for L the diagonal matrix with the square roots of the
diagonal elements of Σ. Then, by definition, if X is Nk(µ, Σ)-distributed, it
is distributed as µ + LZ = (µ1 + L11Z1, . . . , µk + LkkZk) for independent
standard normal variables Z1, . . . , Zk. Hence its coordinates are indepen-
dent and normally distributed.

Conversely, if X1, . . . , Xk are independent and N(µi,σ2
i )-distributed,

then X is distributed as (µ1+σ1Z1, . . . , µk+σkZk) = µ+LZ, for L the diag-
onal matrix with diagonal (σ1, . . . ,σk). Thus X is N(µ, LLT )-distributed,
where LLT is a diagonal matrix.

2.3 Multivariate Central Limit Theorem

The ‘ordinary’ central limit theorem asserts that, given a sequence Y1, Y2, . . .
of i.i.d. random variables with finite mean µ and finite variance σ2, the
sequence

√
n(Ȳn − µ) converges in distribution to a N1(0,σ2)-distribution.

The central limit theorem is true in every dimension.
We define Ȳn as 1/n times the sum of the n vectors Y1, . . . , Yn. This is

identical to the vector with as coordinates the “averages taken separately
over the k coordinates”.

2.7 Theorem. Let Y1, Y2, . . . be i.i.d. random vectors in Rk with finite
mean µ and finite covariance matrix Σ. Then the sequence

√
n(Ȳn − µ)

converges in distribution to the Nk(0, Σ)-distribution.

Proof. For every a we have that aT√n(Ȳn −µ) =
√

n(aT Yn − aT µ), where
aT Yn is the average of the variables aT Y1, . . . , aT Yn. These have mean aT µ
and variance aT Σa. Thus by the ordinary central limit theorem, we have
that the sequence aT√n(Ȳn −µ) converges to the N(0, aT Σa)-distribution,
for every a.
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Next we note that, for every n,

E
∥∥√n(Ȳn − µ)

∥∥2 =
k∑

i=1

E
(√

n(Ȳn,i − µi)
)2 =

k∑

i=1

n var Ȳn,i =
k∑

i=1

Σi,i < ∞.

By Markov’s inequality, the sequence Xn =
√

n(Ȳn − µ) is bounded in
probability. By Prohorov’s theorem, every subsequence ni has a further
subsequence ni(j) along which Xni(j) ! X , as j → ∞, for some X . By the
continuous-mapping theorem, aT Xni(j) ! aT X for every a. In view of the
preceding paragraph aT X possesses the N(0, aT Σa)-distribution for every
a and hence, by Lemma 2.4, the vector X is Nk(0, Σ)-distributed.

Thus every subsequence of the sequence
√

n(Ȳn−µ) has a further sub-
sequence that converges in distribution to the Nk(0, Σ)-distribution. Then
the whole sequence converges.

2.4 Quadratic Forms

The chisquare distribution with k degrees of freedom is (by definition)
the distribution of

∑k
i=1Z

2
i for independent N(0, 1)-distributed variables

Z1, . . . , Zk. Note that the sum of squares is the squared norm ∥Z∥2 of
the standard normal vector Z = (Z1, . . . , Zk). The following lemma gives
a characterization of the distribution of the norm of a general zero-mean
normal vector.

2.8 Lemma. If the vector X is Nk(0, Σ)-distributed, then ∥X∥2 is

distributed as
∑k

i=1λiZ2
i for independent N(0, 1)-distributed variables

Z1, . . . , Zk and λ1, . . . ,λk the eigenvalues of Σ.

Proof. There exists an orthogonal matrix O such that OΣOT = diag (λi).
By Corollary 2.5, the vector OX is Nk

(
0, diag (λi)

)
-distributed. This is also

the distribution of the vector (
√
λ1Z1, . . . ,

√
λkZk). Consequently, ∥X∥2 =

∥OX∥2 has the same distribution as
∑

(
√
λiZi)2.

The distribution of a quadratic form of the type
∑k

i=1λiZ2
i is com-

plicated in general. However, in the case that every λi is either 0 or 1, it
reduces to a chisquare distribution. If this is not naturally the case in an
application, then a statistic is often transformed to achieve this desirable
situation. In the following section we give some examples.
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2.5 Chisquare Tests

Suppose that we observe a vector Xn = (Xn,1, . . . , Xn,k) with the multi-
nomial distribution corresponding to n trials, and with k classes having
probabilities p = (p1, . . . , pk). The Pearson statistic for testing the null
hypothesis H0: p = a is given by

C2
n =

k∑

i=1

(Xn,i − nai)2

nai
.

We shall show that the sequence C2
n converges in distribution to a chisquare

distribution if the null hypothesis is true. The practical relevance is, that
we can use the chisquare table to find critical values for the test. The proof
shows why Pearson divided the squares by nai, and did not propose the
simpler statistic ∥Xn,i − nai∥2.

2.9 Theorem. If the vectors Xn are multinomially distributed with pa-
rameters n and a = (a1, . . . , ak) > 0, then the sequence C2

n converges in
distribution to the χ2

k−1-distribution.

Proof. The vector Xn can be thought of as the sum Xn =
∑n

i=1Yi of
n independent multinomial vectors Y1, . . . , Yn with parameters 1 and a =
(a1, . . . , ak). We know (or calculate) that

EYi = a; Cov Yi =

⎛

⎜⎜⎝

a1(1 − a1) −a1a2 · · · −a1ak

−a2a1 a2(1 − a2) · · · −a2ak
...

...
...

−aka1 −aka2 · · · ak(1 − ak)

⎞

⎟⎟⎠ .

By Theorem 2.7, the sequence n−1/2(Xn − na) converges in distribution
to the Nk(0, Cov Y1)-distribution. If D is the diagonal matrix with diago-
nal elements 1/

√
ai, then Dn−1/2(Xn − na) ! Nk(0, D Cov Y1DT ) by the

continuous-mapping theorem. With
√

a the vector with coordinates √
ai,

we can rewrite this assertion as
(Xn,1 − na1√

na1
, . . . ,

Xn,k − nak√
nak

)
! N(0, I −

√
a
√

a
T ).

Since
∑

ai = 1, the matrix I −
√

a
√

a
T has eigenvalue 0, of multiplicity 1

(with eigenspace spanned by
√

a), and eigenvalue 1, of multiplicity (k − 1)
(with eigenspace equal to the orthocomplement of

√
a). An application of

the continuous-mapping theorem and next Lemma 2.8 conclude the proof.

Chisquare tests are used quite often, but usually to test more compli-
cated hypotheses. A case of particular interest is the testing for indepen-
dence of two categories. Suppose that each element of a population can be
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N11 N12 · · · N1r N1.

N21 N22 · · · N1r N2.
...

...
...

...
Nk1 Nk2 · · · N1r Nk.

N.1 N.2 · · · N.r N

Table 2.1. Classification of a population of N elements according to two categories, Nij

elements having value i on the first category and value j on the second. The borders give the
sums over each row and column, respectively.

classified according to two characteristics, having k and r levels, respec-
tively. The full information concerning the classification can be given by a
(k × r)-table of the form given in Table 2.1.

Often the full information is not available, but we do know the classifi-
cation Xn,ij for a random sample of size n from the population. The matrix
Xn,ij , which can also be written in the form of a (k × r)-table, is multino-
mially distributed with parameters n and probabilities pij = Nij/N . The
null hypothesis of independence asserts that the two categories are inde-
pendent, i.e. H0: pij = aibj for (unknown) probability vectors ai and bj.
Since the null hypothesis does not specify the values of the probabilities
pij , the Pearson statistic as defined previously cannot be used. A natural
modification is to replace the unknown probabilities by the estimates âib̂j

for âi = Xn,i./n and b̂j = Xn,.j/n. These estimates are reasonable if the
the null hypothesis is true. We reject the null hypothesis for large values of

D2
n =

k∑

i=1

r∑

j=1

(Xn,ij − nâib̂j)2

nâib̂j

.

This sequence of statistics is still asymptotically chisquare distributed, but
we have to “pay” for using the estimated probabilities by a “loss” of degrees
of freedom.

2.10 Theorem. If the vectors Xn are multinomially distributed with pa-
rameters n and pij = aibj > 0, then the sequence D2

n converges in distri-
bution to the χ2

(k−1)(r−1)-distribution.

* Proof. By the multivariate central limit theorem, the sequence of matrices
n−1/2(Xn,ij − naibj) converges to a normally distributed matrix (Xij), as
before. (Write the matrix as a vector in any way you like to give a meaning
to a “multivariate-normal matrix”.) This motivates the decomposition

Xn,ij − nâib̂j = Xn,ij − naibj −
(
Xn,i. − nai

)
bj − ai

(
Xn,.j − nbj

)

− 1
n

(
Xn,i. − nai

)(
Xn,.j − nbj

)
.
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The last term on the right is of lower order than the other terms, and is
asymptotically negligible. By the continuous-mapping theorem and Slut-
sky’s lemma,

Xn,ij − nâib̂j√
nâib̂j

! Xij√
aibj

− Xi.

√
bj

ai
− X.j

√
ai

bj
.

The convergence is jointly in all coordinates (i, j) of the matrices. By the
continuous-mapping theorem the squared norm of the left side converges
in distribution to the squared norm of the right side. It suffices to show
that the latter has a chisquare distribution with (k − 1)(r − 1) degrees of
freedom.

For simplicity we give the proof for the case that k = r = 2. Then the
matrix whose coordinates are on the right can be written as the vector of
dimension 4

⎛

⎜⎜⎜⎜⎜⎜⎝

X11

√
1

a1b1

X12

√
1

a1b2

X21

√
1

a2b1

X22

√
1

a2b2

⎞

⎟⎟⎟⎟⎟⎟⎠
−

⎛

⎜⎜⎜⎜⎜⎜⎝

X1.

√
b1
a1

X1.

√
b2
a1

X2.

√
b1
a2

X2.

√
b2
a2

⎞

⎟⎟⎟⎟⎟⎟⎠
−

⎛

⎜⎜⎜⎜⎜⎜⎝

X.1

√
a1
b1

X.2

√
a1
b2

X.1

√
a2
b1

X.2

√
a2
b2

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The relations
∑

i,j Xn,ij ≡ n have their limiting counterpart
∑

i,j Xij ≡ 0.
Thus X2. = −X1. and X.2 = −X.1, and the preceding display can be
rewritten in the form

⎛

⎜⎜⎜⎜⎜⎜⎝

X11

√
1

a1b1

X12

√
1

a1b2

X21

√
1

a2b1

X22

√
1

a2b2

⎞

⎟⎟⎟⎟⎟⎟⎠
− X1.

⎛

⎜⎜⎜⎜⎜⎜⎝

√
b1
a1√
b2
a1

−
√

b1
a2

−
√

b2
a2

⎞

⎟⎟⎟⎟⎟⎟⎠
− X.1

⎛

⎜⎜⎜⎜⎜⎜⎝

√
a1
b1

−
√

a1
b2√

a2
b1

−
√

a2
b2

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The first vector we have studied before, and we have seen that it is dis-
tributed as Y = (I − P )Z for a standard normal vector Z and P the
orthogonal projection on the one-dimensional space spanned by the vec-
tor with coordinates

√
aibj . The last two vectors in this display are or-

thogonal to the vector
√

aibj and are also orthogonal to each other. Now
check that they are the orthogonal projections of the first vector in these
directions. (See the notes on projections following the proof.) In other
words, the display has the form Y − P1Y − P2Y for P1 and P2 the or-
thogonal projections on the one-dimensional spaces spanned by the sec-
ond and third vector of the display. Thus, the display is distributed as
(I − P1 − P2)(I − P )Z, which is normally distributed with mean zero and
covariance matrix (I−P1−P2)(I−P )(I−P1−P2)T = I−P−P1−P2, by the
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orthogonality of the three projection subspaces. The latter is a matrix with
eigenvalue zero of multiplicity 3 and one of multiplicity 1. By Lemma 2.8
the square norm of the display is chisquare distributed with 1 degree of
freedom.

In the preceding proof we use the following projection ideas. The or-
thogonal projection of a vector y on the 1-dimensional subspace spanned by
a vector w is λw for the scalar λ determined such that y−λw is orthogonal
to w. (Draw a picture.) Simple algebra shows that λ = wT y/wT w. Thus,
the projection map y → Pwy = (wT y/wT w)w is linear, and is given by the
matrix

Pw =
1

wT w
wwT .

If the vectors v and w are orthogonal, then the product of their projections
vanishes: PvPw = 0. This follows from the algebraic formula, but is also
clear from the geometric picture. Under the same orthogonality condition,
the sum Pv + Pw is the orthogonal projection on the 2-dimensional space
spanned by v and w. The matrix of an orthogonal projection P is symmetric,
and idempotent: P 2 = P .

Problems

1. Suppose that the random variables X and Y are uncorrelated and have vari-
ance 1. Find the covariance matrix of the vector (X − Y, X + Y )T .

2. If the random vectors X and Y are independent, then Cov(X +Y ) = Cov X +
Cov Y . Prove this.

3. Determine the covariance matrix of a random vector X with the multinomial
distribution with parameters n and p = (p1, . . . , pk). Is it singular?

4. The Laplace transform of a random vector X is the map z → Eexp zT X (which
could take the value ∞). Show that the Laplace transform of a Nk(µ, Σ)-
distributed vector is given by z → exp(zT µ + 1

2zT Σz).

5. Give an explicit formula for the multivariate-normal density of a vector (X, Y ),
whose coordinates have mean zero, variances σ2

1 and σ2
2 , and correlation ρ.

6. Let X and Y be independent standard normal variables. Show that X + Y
and X −Y are independent. Does this surprise you at least a little? If not can
you think of two other independent variables whose sum and difference are
independent?

7. Suppose that X is symmetrically distributed around 0 and has finite second
moment. Show that X and Y = X2 are uncorrelated. Are they every indepen-
dent?
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8. Let (X1, . . . , Xk, Y1, . . . , Yl) be multivariate-normally distributed. Show that
(X1, . . . , Xk) and (Y1, . . . , Yl) are independent if and only if cov(Xi, Yj) = 0
for every i and j.

9. Let X1, . . . , Xn be independent standard normal variables. Show that X̄n and
(X1 − X̄n, . . . , Xn − X̄n) are independent.

10. Let X1, . . . , Xn be independent standard normal variables Show that X̄n and
n−1

∑
|Xi − X̄n| are independent.

11. Suppose that the vector (X, Y ) has probability density

(x, y) → 1
π

e−
1
2 (x2+y2)1{xy > 0}.

(Note the domain!) Does (X, Y ) possess a multivariate-normal distribution?
Find the marginal distributions.

12. If the random variables X and Y are (marginally) normally distributed and
cov(X, Y ) = 0, then (X, Y ) is 2-dimensional normally distributed. If you think
that this statement is true, prove it. Otherwise, give a counterexample.

13. Let X1, . . . , Xn be i.i.d. with finite fourth moment. Find constants a, b and cn

such that the sequence cn(X̄n − a, X2
n − b) converges in distribution. Deter-

mine the limit law. Here X̄n and X2
n are the averages of the Xi and the X2

i ,
respectively.

14. Let Z1, . . . , Zn be independent standard normal variables. Show that the vector
U = (Z1, . . . , Zn)/N , where N2 =

∑n

i=1
Z2

i , is uniformly distributed over the
unit sphere Sn−1 in Rn in the sense that U and OU are identically distributed
for every orthogonal transformation O of Rn.

15. For each n let Un be uniformly distributed over the unit sphere Sn−1 in Rn.
Show that the vectors

√
n(Un,1, Un,2) converge in distribution to a pair of

independent standard normal variables as n → ∞. [Use the previous problem.]

16. Suppose that Tn and Sn are sequences of estimators such that
√

n(Tn − θ)! Nk(0, Σ), Sn
P→ Σ,

for a certain vector θ and a nonsingular matrix Σ. Show that Sn is nonsingular
with probability tending to one and that

{
θ: n(Tn − θ)T S−1

n (Tn − θ) ≤ χ2
k,α

}

is a confidence ellipsoid of asymptotic confidence level 1 − α.

17. (Cochran’s theorem.) Let X be Nk(0, I)-distributed and let H0 ⊂ H ⊂ Rk

be linear subspaces. Let H⊥ the set of all x ∈ Rk such that ⟨x, h⟩ = 0 for every
h ∈ H .
(i) Show that the orthogonal projections P0X of X onto H0 and (I − P )X

of X onto H⊥ are independent;
(ii) Find the joint distribution of

(
∥P0X∥2, ∥(I − P )X∥2

)
.

18. Suppose that Y is Nn(µ, σ2I) distributed, where µ and σ2 are parameters that
are known to belong a linear subspace H and (0,∞), respectively.
(i) Show that the maximum likelihood estimator of µ is given by the orthog-

onal projection P0Y of Y onto H0.
(ii) Find the maximum likelihood estimator of σ2.
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19. Suppose that Y is Nn(µ, σ2I) distributed, where µ and σ2 are parameters that
are known to belong a linear subspace H and (0,∞), respectively. We wish
to test H0: µ ∈ H0 for a linear subspace H0 ⊂ H . As a test statistic we use
T = ∥P0Y − PY ∥2/∥(I − P )Y ∥2. Show how an appropriate critical value can
be obtained from a table of an F -distribution.

20. Let Y = (Y1, . . . , Yn) be Nn(µ, σ2I) distribution for µi = α+βxi for unknown
parameters α and β and known constants x1, . . . , xn (the linear regression
model with normal measurement errors). Take H the linear space spanned by
the vectors (1, 1, . . . , 1) and x = (x1, . . . , xn) and H0 the subspace spanned
by (1, 1, . . . , 1). Construct a test for testing H0:β = 0, using the preceding
problem.

21. Show that the estimators âi and b̂j in Section 2.5 are the maximum likelihood
estimators of ai and bj under the model given by the null hypothesis.

22. Suppose that Xn is binomial(n, p)-distributed. To test H0: p = a for a given
value a the test statistic |Xn − na|/

√
na(1 − a) is reasonable.

(i) Find the critical value such that the test is asymptotically of level α;
(ii) Show that this test is equivalent to Pearson’s test based on the multino-

mial vector (Xn, n − Xn).

23. Suppose that Xm and Yn are independent with the binomial(m, p1) and
binomial(n, p2) distributions. To test H0: p1 = p2 = a for some fixed a we
could use the test statistic

C2
m,n =

|Xm − ma|2

ma(1 − a)
+

|Yn − na|2

na(1 − a)
.

(i) Find the limit distribution of C2
m,n as m, n → ∞;

(ii) How would you modify the test if a were unknown? Can you guess the
limit distribution of the modification?



3
Delta-Method

3.1 Main Result and Examples

Suppose an estimator Tn for a parameter θ is available, but the quantity of
interest is φ(θ) for some known function φ. A natural estimator is φ(Tn).
How do the asymptotic properties of φ(Tn) follow from those of Tn?

A first result is an immediate consequence of the continuous-mapping
theorem. If the sequence Tn converges in probability to θ and φ is continuous
at θ, then φ(Tn) converges in probability to φ(θ). Of greater interest is a
similar question concerning limit distributions. In particular, if

√
n(Tn − θ)

converges weakly to a limit distribution, is the same true for
√

n
(
φ(Tn) −

φ(θ)
)
? If φ is differentiable, then the answer is affirmative. Informally, we

have √
n
(
φ(Tn) − φ(θ)

)
≈ φ′(θ)

√
n(Tn − θ),

where φ′(θ) is the derivative of φ at θ. If
√

n(Tn − θ) ! T for some
variable T , then we expect that

√
n
(
φ(Tn) − φ(θ)

)
! φ′(θ)T . In particu-

lar, if
√

n(Tn − θ) is asymptotically normal N(0,σ2), then we expect that√
n
(
φ(Tn) − φ(θ)

)
is asymptotically normal N(0,φ′(θ)2σ2). This is proved

in greater generality in the following theorem.
In the preceding paragraph it was silently understood that Tn is real-

valued, but we are more interested in considering statistics φ(Tn) that are
formed out of several more basic statistics. Thus, consider the situation
that Tn = (Tn,1, . . . , Tn,k) is vector-valued, and that φ: Rk → Rm is a
given function defined at least on a neighbourhood of θ. Recall that φ is
differentiable at θ if there exists a linear map (matrix) φ′

θ: Rk → Rm such
that

φ(θ + h) − φ(θ) = φ′θ(h) + o(∥h∥), h → 0.
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All the expressions in this equation are vectors of length m, and ∥h∥ is the
Euclidean norm. The linear map h → φ′

θ(h) is sometimes called a “total
derivative”, as opposed to partial derivatives. A sufficient condition for φ
to be (totally) differentiable is that all partial derivatives ∂φj(x)/∂xi exist
for x in a neighbourhood of θ and are continuous at θ. (Just existence of
the partial derivatives is not enough.) In any case, the total derivative is
found from the partial derivatives. If φ is differentiable, then it is partially
differentiable, and the derivative map h → φ′

θ(h) is matrix multiplication
by the matrix

φ′θ =

⎛

⎜⎝

∂φ1
∂x1

(θ) · · · ∂φ1
∂xk

(θ)
...

...
∂φm

∂x1
(θ) · · · ∂φm

∂xk
(θ)

⎞

⎟⎠ .

If the dependence of the derivative φ′
θ on θ is continuous, then φ is called

continuously differentiable.
It is better to think of a derivative as a linear approximation h → φ′

θ(h)
to the function h → φ(θ + h) − φ(θ), than as a set of partial derivatives.
Thus the derivative at a point θ is a linear map. If the range space of φ is the
real line (so that the derivative is a horizontal vector), then the derivative
is also called the gradient of the function.

Note. What is usually called the derivative of a function φ: R → R,
does not completely correspond to the present derivative. The derivative at
a point, usually written φ′(θ), is written here as φ′θ. While φ′(θ) is a number,
the second object φ′θ is identified with the map defined by h → φ′θ(h) =
φ′(θ)h. Thus in the present terminology the usual derivative function θ →
φ′(θ) is a map from R into the set of linear maps from R → R, not a map
from R → R. Graphically the “affine” approximation h → φ(θ) + φ′

θ(h) is
the tangent to the function φ at θ.

Here is the Delta-method in higher dimensions.

3.1 Theorem. Let φ: Rk → Rm be a measurable map defined on a subset
of Rk and differentiable at θ. Let Tn be random vectors taking their values in
the domain of φ. If rn(Tn − θ)! T for numbers rn → ∞, then rn

(
φ(Tn)−

φ(θ)
)
! φ′θ(T ). Moreover, the difference between rn

(
φ(Tn) − φ(θ)

)
and

φ′θ
(
rn(Tn − θ)

)
converges to zero in probability.

Proof. Because rn → ∞, we have by Slutsky’s lemma Tn − θ =
(1/rn)rn(Tn − θ) ! 0T = 0 and hence Tn − θ converges to zero in proba-
bility. Define a function g by

g(h) =
{

φ(θ+h)−φ(θ)−φ′
θ(h)

∥h∥ if h ̸= 0,
0 if h = 0.

Then g is continuous at 0 by the differentiability of φ. Therefore, by the
continuous mapping theorem, g(Tn − θ) P→ 0 and hence, again by Slutsky’s
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lemma and the continuous mapping theorem rn∥Tn−θ∥g(Tn−θ) P→ ∥T ∥0 =
0. Consequently,

rn

(
φ(Tn) − φ(θ) − φ′θ(Tn − θ)

)
= rn∥Tn − θ∥g(Tn − θ) P→ 0.

This yields the last statement of the theorem. Since matrix multiplication is
continuous, φ′θ

(
rn(Tn − θ)

)
! φ′θ(T ) by the continuous-mapping theorem.

Finally, apply Slutsky’s lemma to conclude that the sequence rn

(
φ(Tn) −

φ(θ)
)

has the same weak limit.

A common situation is that
√

n(Tn − θ) converges to a multivariate
normal distribution Nk(µ, Σ). Then the conclusion of the theorem is that
the sequence

√
n
(
φ(Tn)−φ(θ)

)
converges in law to the Nm

(
φ′θµ,φ′θΣ(φ′θ)

T
)

distribution.

3.2 Example (Sample variance). The sample variance of n observations
X1, . . . , Xn is defined as S2 = n−1

∑n
i=1(Xi − X̄)2, and can be written as

φ(X̄, X2) for the function φ(x, y) = y − x2. (For simplicity of notation,
we divide by n rather than n − 1.) Suppose that S2 is based on a sample
from a distribution with finite first to fourth moment α1,α2,α3,α4. By the
multivariate central limit theorem

√
n

((
X̄
X2

)
−

(
α1

α2

))
! N2

((
0
0

)
,

(
α2 − α2

1 α3 − α1α2

α3 − α1α2 α4 − α2
2

))
.

The map φ is differentiable at the point θ = (α1,α2)T , with derivative
φ′(α1,α2) = (−2α1, 1). Thus if the vector (T1, T2)′ possesses the normal dis-
tribution in the last display, then

√
n
(
φ(X̄, X2) − φ(α1,α2)

)
! −2α1T1 + T2.

The latter variable is normally distributed with zero mean and a variance
that can be expressed in α1, . . . ,α4. In case α1 = 0, this variance is simply
α4 − α2

2. The general case can be reduced to this case, because S2 does
not change if the observations Xi are replaced by the centred variables
Yi = Xi − α1. Write µk = EY k

i for the central moments of the Xi. Noting
that S2 = φ(Ȳ , Y 2) and that φ(µ1, µ2) = µ2 is the variance of the original
observations, we obtain

√
n
(
S2 − µ2

)
! N(0, µ4 − µ2

2).

In view of Slutsky’s lemma, the same result is valid for the unbiased version
n/(n − 1)S2 of the sample variance, because

√
n
(
n/(n − 1) − 1

)
→ 0.

3.3 Example (Level of the χ2-test). As an application of the preceding
example, consider the χ2-test for testing variance. Normal theory prescribes
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to reject the null hypothesis H0: µ2 = 1 for values of nS2 exceeding the up-
per α-point cn,α of the χ2

n−1-distribution. If the observations are sampled
from a normal distribution, then the test has exactly level α. Is this still
approximately the case if the underlying distribution is not normal? Unfor-
tunately, the answer is negative.

For large values of n, this can be seen with the help of the preceding
result. The central limit theorem and the preceding example yield the two
statements

χ2
n−1 − (n − 1)
√

2n − 2
! N(0, 1);

√
n
(S2

µ2
− 1

)
! N(0,κ− 1),

where κ = µ4/µ2
2 is the kurtosis of the underlying distribution. The first

statement implies that
(
cn,α − (n − 1)

)
/
√

2n − 2) converges to the upper
α-point ξα of the standard normal distribution. Thus the level of the χ2-test
satisfies

Pµ2=1

(
nS2 > cn,α

)
= P

(√
n
(S2

µ2
− 1

)
>

cn,α − n√
n

)
→ 1 − Φ

( ξα
√

2√
κ− 1

)
.

The asymptotic level reduces to 1−Φ(ξα) = α if and only if the kurtosis of
the underlying distribution is 3. This is the case for normal distributions.
On the other hand, heavy-tailed distributions have a much larger kurtosis.
If the kurtosis of the underlying distribution is “close to” infinity, then the
asymptotic level is close to 1−Φ(0) = 1/2. We conclude that the level of the
χ2-test is nonrobust against departures of normality that affect the value of
the kurtosis. At least this is true if the critical values of the test are taken
from the chisquare distribution with (n−1) degrees of freedom. If, instead,
we would use a normal approximation to the distribution of

√
n(S2/µ2−1)

the problem would not arise, provided the asymptotic variance κ − 1 is
estimated accurately.

Laplace 0.12
0.95 N(0, 1) + 0.05 N(0, 9) 0.12

Table 3.1. Level of the test that rejects if nS2/µ2 exceeds the 0.95-quantile of the χ2
19-

distribution. (Approximations based on simulation of 10000 samples.)

In the preceding example the asymptotic distribution of
√

n(S2 − σ2)
was obtained by the Delta-method. Actually, it can also and more easily be
derived by a direct expansion. Write

√
n
(
S2 − σ2

)
=

√
n
( 1

n

n∑

i=1

(Xi − µ)2 − σ2
)
−
√

n(X̄ − µ)2.
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The second term converges to zero in probability, while the first term is
asymptotically normal by the central limit theorem. The whole expression
is asymptotically normal by Slutsky’s lemma.

Thus it is not always a good idea to apply general theorems. However,
in many examples the Delta-method is a good way to package the mechanics
of Taylor expansions in a transparent way.

3.4 Example. Consider the joint limit distribution of the sample variance
S2 and the t-statistic X̄/S. Again for the limit distribution it does not
make a difference whether we use a factor n or n−1 to standardize S2. For
simplicity we use n. Then (S2, X̄/S) can be written as φ(X̄, X2) for the
map φ: R2 → R2 given by

φ(x, y) =
(
y − x2,

x

(y − x2)1/2

)
.

The joint limit distribution of
√

n(X̄ − α1, X2 − α2) is derived in the
preceding example. The map φ is differentiable at θ = (α1,α2) provided
σ2 = α2 − α2

1 is positive, with derivative

φ′(α1,α2)
=

( −2α1 1
α2

1
(α2−α2

1)3/2 + 1
(α2−α2

1)
1/2

−α1
2(α2−α2

1)
3/2

)
.

It follows that the sequence
√

n
(
S2 − σ2, X̄/S − α1/σ

)
is asymptotically

bivariate-normally distributed, with zero mean and covariance matrix,

φ′(α1,α2)

(
α2 − α2

1 α3 − α1α2

α3 − α1α2 α4 − α2
2

) (
φ′(α1,α2)

)T
.

It is easy, but uninteresting to compute this explicitly.

3.5 Example (Skewness). The sample skewness of a sample X1, . . . , Xn

is defined as

ln =
n−1

∑n
i=1(Xi − X̄)3

(
n−1

∑n
i=1(Xi − X̄)2

)3/2
.

Not surprisingly it converges in probability to the skewness of the under-
lying distribution, defined as the quotient λ = µ3/σ3 of the third central
moment and the third power of the standard deviation of one observation.
The skewness of a symmetric distribution, such as the normal distribution,
equals zero and the sample skewness may be used to test this aspect of nor-
mality of the underlying distribution. For large samples a critical value may
be determined from the normal approximation for the sample skewness.

The sample skewness can be written as φ(X̄, X2, X3) for the function
φ given by

φ(a, b, c) =
c − 3ab + 2a3

(b − a2)3/2
.
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The sequence
√

n
(
X̄ − α1, X2 − α2, X3 − α3

)
is asymptotically mean zero

normal by the central limit theorem, provided EX6
1 is finite. The value

φ(α1,α2,α3) is exactly the population skewness. The function φ is differ-
entiable at the point (α1,α2,α3) and application of the Delta-method is
straightforward. We can save work by noting that the sample skewness is
location and scale invariant. With Yi = (Xi −α1)/σ, the skewness can also
be written as φ(Ȳ , Y 2, Y 3). With λ = µ3/σ3 denoting the skewness of the
the underlying distribution, the Y ’s satisfy

√
n

⎛

⎝
Ȳ

Y 2 − 1
Y 3 − λ

⎞

⎠! N

⎛

⎝0,

⎛

⎝
1 λ κ
λ κ− 1 µ5/σ5 − λ
κ µ5/σ5 − λ µ6/σ6 − λ2

⎞

⎠

⎞

⎠ .

The derivative of φ at the point (0, 1,λ) equals (−3,−3λ/2, 1). Hence if
T possesses the normal distribution in the display, then

√
n(ln − λ) is

asymptotically normal distributed with mean zero and variance equal to
var(−3T1 − 3λT2/2 + T3). If the underlying distribution is normal, then
λ = µ5 = 0, κ = 3 and µ6/σ6 = 15. In that case the sample skewness is
asymptotically N(0, 6)-distributed.

An approximate level α test for normality based on the sample skew-
ness could read: reject normality if

√
n|ln| >

√
6 ξα/2. Table 3.2 gives the

level of this test for different values of n.

n 10 20 30 50
level 0.02 0.03 0.03 0.05

Table 3.2. Level of the test that rejects if
√

n|ln|/
√

6 exceeds the 0.975-quantile of the nor-
mal distribution, in the case that the observations are normally distributed. (Approximations
based on simulation of 10000 samples.)

3.2 Variance Stabilizing Transformations

Given a sequence of statistics Tn with
√

n(Tn − θ) θ! N
(
0,σ2(θ)

)
for a

range of values of θ, asymptotic confidence intervals for θ are given by
(
Tn − ξα

σ(θ)√
n

, Tn + ξα
σ(θ)√

n

)
.

These are asymptotically of level 1 − 2α in that the probability that θ
is covered by the interval converges to 1 − 2α for every θ. Unfortunately,
as stated these intervals are useless, because of their dependence on the
unknown θ. One solution is to replace the unknown standard deviations
σ(θ) by estimators. If the sequence of estimators is chosen consistent, then
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the resulting confidence interval will still have asymptotic level 1 − 2α.
Another approach is to use a variance stabilizing transformation, which
will often lead to a better approximation.

The idea is that no problem arises if the asymptotic variances σ2(θ)
are independent of θ. While this fortunate situation is rare, it is often
possible to transform the parameter into a different parameter η = φ(θ),
for which this idea can be applied. The natural estimator for η is φ(Tn). If
φ is differentiable, then

√
n
(
φ(Tn) − φ(θ)

) θ! N
(
0,φ′(θ)2σ2(θ)

)
.

For φ chosen such that φ′(θ)σ(θ) ≡ 1, the asymptotic variance is constant
and finding an asymptotic confidence interval for η = φ(θ) is easy. The
solution

φ(θ) =
∫

1
σ(θ)

dθ

is a variance stabilizing transformation. If it is well-defined, then it is auto-
matically monotone, so that a confidence interval for η can be transformed
back into a confidence interval for θ.

3.6 Example (Correlation). Let (X1, Y1), . . . , (Xn, Yn) be a sample from
a bivariate normal distribution with correlation coefficient ρ. The sample
correlation coefficient is defined as

rn =
∑n

i=1(Xi − X̄)(Yi − Ȳ )
{∑n

i=1(Xi − X̄)2
∑

(Yi − Ȳ )2
}1/2

.

With the help of the Delta-method, it is possible to derive that
√

n(r−ρ) is
asymptotically zero-mean normal, with variance depending on the (mixed)
third and fourth moments of (X, Y ). This is true for general underlying
distributions, provided the fourth moments exist. Under the normality as-
sumption the asymptotic variance can be expressed in the correlation of X
and Y . Tedious algebra gives

√
n(rn − ρ)! N

(
0, (1 − ρ2)2

)
.

It does not work very well to base an asymptotic confidence interval directly
on this result. The transformation

φ(ρ) =
∫

1
1 − ρ2

dρ = 1
2 log

1 + ρ

1 − ρ
= arctanhρ

is variance stabilizing. Thus, the sequence
√

n
(
arctanh r − arctanhρ

)
con-

verges to a standard normal distribution for every ρ. This leads to the
asymptotic confidence interval for the correlation coefficient ρ given by

(
tanh

(
arctanh r − ξα/

√
n
)
, tanh

(
arctanh r + ξα/

√
n
))

.
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n\ρ 0 0.2 0.4 0.6 0.8
15 0.92 0.92 0.92 0.93 0.92
25 0.93 0.94 0.94 0.94 0.94

Table 3.3. Coverage probability of the asymptotic 95 % confidence interval for the corre-
lation coefficient, for two values of n and and five different values of the true correlation ρ.
(Approximations based on simulation of 10000 samples.)
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Figure 3.1. Histogram of 1000 sample correlation coefficients, based on 1000 independent
samples of the the bivariate normal distribution with correlation 0.6, and histogram of the
arctanh of these values.

Table 3.3 gives an indication of the accuracy of this interval. Besides stabiliz-
ing the variance the arctanh transformation has the benefit of symmetrizing
the distribution of the sample correlation coefficient.

3.3 Moment Estimators

Let X1, . . . , Xn be a sample from a distribution that depends on a pa-
rameter θ, ranging over some set Θ. The method of moments proposes to
estimate θ by the solution of a system of equations

1
n

n∑

i=1

fj(Xi) = Eθfj(X), j = 1, . . . , k,

for given functions f1, . . . , fk. Thus the parameter is chosen such that the
sample moments (on the left side) match the theoretical moments. If the
parameter is k-dimensional one would usually try and match k moments in



3.3: Moment Estimators 33

this manner. The choice fj(x) = xj leads to the method of moments in its
simplest form.

Moment estimators are not necessarily the best estimators, but under
reasonable conditions they have convergence rate

√
n and are asymptoti-

cally normal. This is a consequence of the Delta-method. Write the given
functions in vector notation f = (f1, . . . , fk), and let e: Θ → Rk be the
vector-valued expectation e(θ) = Eθf(X). Then the moment estimator θ̂n

solves the system of equations

f̄n ≡ 1
n

n∑

i=1

f(Xi) = e(θ) ≡ Eθf(X).

For existence of the moment estimator, it is necessary that the vector f̄n be
in the range of the function e. If e is one-to-one, then the moment estimator
is uniquely determined as θ̂n = e−1(f̄n) and

√
n(θ̂n − θ0) =

√
n
(
e−1(f̄n) − e−1(Eθ0 f̄n)

)
.

If f̄n is asymptotically normal and e−1 is differentiable, then the right side
is asymptotically normal by the Delta-method.

The derivative of e−1 at e(θ0) is the inverse e′−1
θ0

of the derivative e′θ0

of e at θ0. Since the function e−1 is often not explicit, it is convenient to
ascertain its differentiability from the differentiability of e. This is possible
by the inverse function theorem. According to this theorem a map that
is (continuously) differentiable throughout an open set with nonsingular
derivatives, is locally one-to-one, is of full rank and has a differentiable
inverse. Thus we obtain the following theorem.

3.7 Theorem. Suppose that e(θ) = Eθf(X) is one-to-one on an open set
Θ ⊂ Rk, and continuously differentiable at θ0 with nonsingular derivative
e′θ0

. Moreover, assume that Eθ0∥f(X)∥2 < ∞. Then moment estimators θ̂n

exist with probability tending to one and satisfy

√
n(θ̂n − θ0)

θ0! N
(
0, e′−1

θ0
Σθ0

(
e′−1

θ0

)T
)
,

where Σθ0 is the covariance matrix of the vector f(X) under θ0.

Proof. By the inverse function theorem, there exists an open neighbour-
hood V of θ0 on which e: V → e(V ) is a bijection with a differentiable
inverse e−1: e(V ) → V . The range e(V ) is an open neighbourhood of e(θ0).
By the law of large numbers f̄n

P→ e(θ0), whence f̄n is contained in e(V )
with probability tending to one. As soon as this is the case, the moment
estimator e−1(f̄n) exists.

The central limit theorem guarantees the asymptotic normality of the
sequence

√
n
(
f̄n −Eθ0 f̄n

)
. Finally, we use Theorem 3.1 on the display pre-

ceding the statement of the theorem.
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3.8 Example. Let X1, . . . , Xn be a random sample from the Beta-
distribution: the common density is equal to (with α,β > 0),

x → Γ(α+ β)
Γ(α)Γ(β)

xα−1(1 − x)β−110<x<1.

The moment estimator for (α,β) is the solution of the system of equations

X̄n = Eα,βX1 =
α

α+ β
,

X2
n = Eα,βX2

1 =
(α+ 1)α

(α+ β + 1)(α+ β)
.

The right hand side is a smooth and regular function of (α,β), and the
equations can be solved explicitly. Hence the moment estimators exist and
are asymptotically normal.

Problems

1. Let λ̂n be the maximum likelihood likelihood estimator of λ based on a random
sample X1, . . . , Xn from the exponential distribution with parameter λ.
(i) Find the limit distribution of the sequence

√
n(λ̂n − λ);

(ii) Construct an asymptotic confidence interval based on this.

2. Find the limit distribution of
√

n(θ̂n − θ) for θ̂n the maximum likelihood es-
timator of θ = P(Xi ≤ 10) based on a random sample X1, . . . , Xn from the
N(µ, σ2)-distribution,
(i) when σ2 is known;
(ii) when both µ and σ2 are unknown.

3. Find the joint limit distribution of
(√

n(X̄ − µ),
√

n(S2 − σ2)
)

if X̄ and S2

are based on a sample of size n from a distribution with finite fourth mo-
ment. Under what condition on the underlying distribution are

√
n(X̄ − µ)

and
√

n(S2 − σ2) asymptotically independent?

4. The Pareto distribution possesses the density function, with α, µ > 0,

pα,µ(x) =
αµα

xα+1
1x≥µ.

Determine the limit distribution of
√

n(α̂n−α) for α̂n the maximum likelihood
estimator of α based on a sample of size n, when
(i) µ is known;
(ii) µ is unknown.

5. In (ii) of the preceding problem find the joint limit distribution of
√

n(α̂n −α)
and n(µ̂n − µ). [This is hard.]
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6. Find the asymptotic distribution of
√

n(rn−ρ) if rn is the correlation coefficient
of a sample of n bivariate vectors with finite fourth moments. [This is quite
a bit of work. It helps to assume that means and variances equal 0 and 1,
respectively.]

7. Investigate the asymptotic robustness of the level of the t-test for testing the
mean that rejects H0: µ ≤ 0 if

√
nX̄/S is larger than the upper α-quantile of

the tn−1-distribution.

8. Find the limit distribution of the sample kurtosis kn = n−1
∑n

i=1
(Xi−X̄)4/S4,

and design an asymptotic level α test for normality based on kn. [Warning: at
least 500 observations are needed to make the normal approximation work in
this case.]

9. Design an asymptotic level α test for normality based on the sample skewness
and kurtosis jointly.

10. Let Xn = (Xn1, Xn2, Xn3) be multinomially distributed with parameters n
and (p1, p2, p3) ∈ (0, 1)3.
(i) Show that the correlation coefficient ρ of X1 + X2 and X2 + X3 is given

by ρ = −
√

p1/(1 − p1)
√

p3/(1 − p3);
(ii) Find the limit distribution of

√
n(ρ̂n − ρ) for ρ̂n the maximum likelihood

estimator of ρ.

11. Let X1, . . . , Xn be a random sample with expectation µ and variance 1. Find
constants such that an(X̄2

n − bn) converges in distribution if µ = 0 or µ ̸= 0.

12. Let X1, . . . , Xn be a random sample from the Poisson distribution with mean θ.
Find a variance stabilizing transformation for the sample mean and construct
a confidence interval for θ based on this.

13. Let X1, . . . , Xn be i.i.d. with expectation 1 and finite variance.
(i) Find the limit distribution of

√
n(X̄−1

n − 1).
(ii) If the random variables are sampled from a density f which is bounded

and strictly positive in a neighbourhood of zero, show that E|X̄−1
n | = ∞

for every n. [The density of X̄n will be bounded away from zero in a
neighbourhood of zero for every n.]

14. Let X1, . . . , Xn be a sample from the uniform [−θ, θ] distribution. Find the
moment estimator of θ based on X2. Is it asymptotically normal? Can you
think of an estimator for θ that converges faster to the parameter?

15. Let X1, . . . , Xn be a random sample from the distribution function x → pΦ(x−
µ) + (1 − p)Φ

(
(x − ν)/σ

)
. The parameters p ∈ [0, 1], µ, ν ∈ R and σ ∈ (0,∞)

are unknown. Construct a moment estimator for (p, µ, ν,σ) and show that it
is asymptotically normal.

16. Let X1, . . . , Xn be a sample from the 1-dimensional exponential family with
density

pθ(x) = c(θ) h(x) eθt(x).

Here h and t are known functions. The natural parameter set is the set

Θ =
{
θ ∈ R:

∫
h(x)eθt(x) dx < ∞

}
.
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(If X is discrete, replace the integral by a sum.)
(i) Show that Θ is an interval;
(ii) Show that the solution θ̂n to the likelihood equation is a moment es-

timator; [Remember that a score function ℓ̇θ = ∂/∂θ log pθ satisfies
Eθ ℓ̇θ(Xi) = 0.]

(iii) Show that ∂/∂θEθt(X) = varθ t(X) and hence is strictly positive unless
t(X) is degenerate;

(iv) Show that
√

n(θ̂n − θ) is asymptotically normal.

17. Extend the preceding problem to k-dimensional exponential families of the
form

pθ(x) = c(θ) h(x) eQ(θ)T t(x),

where we assume that θ → Q(θ) is one-to-one from Rk to Rk and has a
differentiable inverse.

18. Work out the details for Example 3.8.

19. Suppose that φ: R → R is twice continuously differentiable at θ with φ′(θ) = 0
and φ′′(θ) ̸= 0. Suppose that

√
n(Tn − θ)! N(0, 1).

(i) Show that
√

n
(
φ(Tn) − φ(θ)

)
P→ 0;

(ii) Show that n
(
φ(Tn) − φ(θ)

)
! χ2

1.

20. Let X1, . . . , Xn be i.i.d. with density fλ,a(x) = λe−λ(x−a)1{x ≥ a} where the
parameters λ > 0 and a ∈ R are unknown. Calculate the maximum likelihood
estimator of (λ̂n, ân) of (λ, a) and derive the asymptotic properties.



4
Z- and M-Estimators

Suppose that we are interested in a parameter (or “functional”) θ attached
to the distribution of observations X1, . . . , Xn. A popular method for find-
ing an estimator θ̂n = θ̂n(X1, . . . , Xn) is to maximize a criterion function
of the type

(4.1) θ → Mn(θ) =
1
n

n∑

i=1

mθ(Xi).

Here mθ:X → R̄ are known functions. An estimator maximizing Mn(θ) over
Θ is called an M -estimator. In this chapter we investigate the asymptotic
behaviour of a sequence of M -estimators.

Often the maximizing value will be sought by setting a derivative (or
the set of partial derivatives in the multidimensional case) equal to zero.
Therefore, the name M -estimator is also used for estimators satisfying sys-
tems of equations of the type

(4.2) Ψn(θ) =
1
n

n∑

i=1

ψθ(Xi) = 0.

Here ψθ are known vector-valued maps. For instance, if θ is k-dimensional,
then ψθ would typically have k coordinate functions ψθ = (ψθ,1, . . . ,ψθ,k),
and (4.2) is shorthand for the system of equations

n∑

i=1

ψθ,j(Xi) = 0, j = 1, 2, . . . , k.

Even though in many examples ψθ,j is the jth partial derivative of some
function mθ, this is irrelevant for the following. Equations, such as (4.2),
defining an estimator are called estimating equations, and the estimators
they define are Z-estimators from zero, although they are often also referred
to as M -estimators.
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Sometimes the maximum of the criterion function Mn is not taken or
the estimating equation does not have an exact solution. Then it is natural
to use as estimator a value that almost maximizes the criterion function
or is a near zero. This yields an approximate M -estimator. Estimators that
are sufficiently close to being a point of maximum or a zero often have the
same asymptotic behaviour.

An operator notation for taking expectations simplifies the formu-
las in this chapter. We write P for the marginal law of the observations
X1, . . . , Xn, which we assume to be identically distributed. Furthermore,
we denote by Pn the empirical distribution, which is defined as the (ran-
dom) discrete distribution that puts mass 1/n at every of the observations
X1, . . . , Xn. Next we write Pf for the expectation Ef(X) =

∫
f dP and

abbreviate the average n−1
∑n

i=1f(Xi) to Pnf . Thus the criterion functions
take the forms

Mn(θ) = Pnmθ =
1
n

n∑

i=1

mθ(Xi), Ψn(θ) = Pnψθ =
1
n

n∑

i=1

ψθ(Xi).

4.1 Example (Maximum likelihood estimators). Suppose X1, . . . , Xn

have a common density pθ. Then the maximum likelihood estimator maxi-
mizes the likelihood

∏n
i=1pθ(Xi), or equivalently the log likelihood

θ →
n∑

i=1

log pθ(Xi).

Thus, a maximum likelihood estimator is an M -estimator as in (4.1) with
mθ = log pθ. If the density is partially differentiable with respect to θ
for each fixed x, then the maximum likelihood estimator also solves an
equation of type (4.2) with ψθ equal to the vector of partial derivatives
ℓ̇θ,j = ∂/∂θj log pθ. The vector-valued function ℓ̇θ is known as the score
function of the model.

The definition (4.1) of an M -estimator may apply in cases where (4.2)
does not. For instance, if X1, . . . , Xn are i.i.d. according to the uniform
distribution on [0, θ], then it makes sense to maximize the log likelihood

θ →
n∑

i=1

(
log 1[0,θ](Xi) − log θ

)
.

(Define log 0 = −∞.) However, this function is not smooth in θ and there
exists no natural version of (4.2). Thus, the definition as the location of a
maximum can be more fundamental than the definition as a zero.

4.2 Example (Location estimators). Let X1, . . . , Xn be a random sam-
ple of real-valued observations. Suppose we want to estimate the location of
their distribution. “Location” is a vague term; it could be made precise by
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defining it as the mean or median, or the centre of symmetry of the distribu-
tion if this happens to be symmetric. Two examples of location estimators
are the sample mean and the sample median. Both are M -estimators, be-
cause they solve the equations

n∑

i=1

(Xi − θ) = 0; and
n∑

i=1

sign(Xi − θ) = 0,

respectively.† Both estimating equations involve functions of the form
ψ(x − θ) for a function ψ that is monotone and odd around zero. It seems
reasonable to study estimators that solve a general equation of the type

n∑

i=1

ψ(Xi − θ) = 0.

We could call an M -estimator defined by this equation a “location” esti-
mator, because it has the desirable property of location equivariance: if the
observations Xi are shifted by a fixed amount α, then so is the estimate (in
the sense that θ̂ + α solves

∑n
i=1ψ(Xi + α− θ) = 0 if θ̂ solves the original

equation).
Popular examples are the Huber estimators corresponding to the func-

tions

ψ(x) =

{−k if x ≤ −k,
x |x| ≤ k,
k x ≥ k.

The Huber estimators were motivated by studies in robust statistics con-
cerning the influence of extreme data points on the estimate. The exact
values of the largest and smallest observations have very little influence
on the value of the median, but a proportional influence on the mean.
Therefore, the sample mean is considered non-robust against outliers. If
the extreme observations are thought to be rather unreliable, it is certainly
of advantage to limit their influence on the estimate, although the median
may be too successful in this respect. Depending on the value of k, the Hu-
ber estimators behave more like the mean (large k) or more like the median
(small k), and thus bridge the gap between the non-robust mean and very
robust median.

Another example are the quantiles. A pth sample quantile is roughly a
point θ such that pn observations are less than θ and (1− p)n observations
are greater than θ. The precise definition has to take into account, that
the value pn may not be an integer. One possibility is to call a pth sample
quantile any θ̂ that solves the inequalities

(4.3) −1 <
n∑

i=1

(
(1 − p)1{Xi < θ} − p1{Xi > θ}

)
< 1.

† The sign-function is defined as sign(x) = −1, 0, 1 if x < 0, x = 0 or x > 0, respectively.
In the case of the median the equation is valid provided the middle observation is not tied to
other observations, in particular when all observations are different.
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This is an approximate M -estimator for ψ(x) = 1 − p, 0,−p when x < 0,
x = 0 or x > 0, respectively. The “approximate” refers to the inequalities:
it is required that the value of the estimating equation be inside the interval
(−1, 1), rather than exactly zero. This may seem a rather wide tolerance
interval for a zero. However, all solutions turn out to have the same asymp-
totic behaviour. In any case, except for special combinations of p and n,
there is no hope of finding an exact zero, because the criterion function is
discontinuous with jumps at the observations. If no observations are tied,
then all jumps are of size one and at least one solution θ̂ to the inequal-
ities exists.‡ When tied observations are present, it may be necessary to
increase the interval (−1, 1) to ensure the existence of solutions. Note that
the present ψ function is monotone, as in the previous examples, but not
symmetric about zero (for p ̸= 1/2).
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Figure 4.1. The functions θ → Ψn(θ) for the 80%-quantile and the Huber estimator for
samples of size 15 from the gamma(8,1) and standard normal distribution, respectively.

4.3 Example (Regression). Consider a random sample of observations
(X1, Y1), . . . , (Xn, Yn) following the regression model

Yi = fθ(Xi) + ei,

for i.i.d. errors e1, . . . , en that are independent of X1, . . . , Xn, and a function
fθ that is known up to a parameter θ. The special case fθ(x) = θT x corre-
sponds to linear regression. A popular estimator for θ is the least squares
estimator, which minimizes

∑n
i=1

(
Yi −fθ(Xi)

)2. An alternative is the least
absolute deviation estimator, which minimizes

∑n
i=1

∣∣Yi − fθ(Xi)
∣∣.

4.4 Example (Weighted linear regression). Consider a random sample
of observations (X1, Y1), . . . , (Xn, Yn) following the linear regression model

Yi = θT Xi + ei,

‡ We could use the value of θ where the function θ → Ψn(θ) jumps across zero. This is
often unique. It is certainly one of the values allowed in (4.3).
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for i.i.d. errors e1, . . . , en that are independent of X1, . . . , Xn. The usual es-
timator for the regression parameter θ is the least squares estimator, which
minimizes

∑n
i=1(Yi − θT Xi)2. Outlying values of Xi (“leverage points”)

or extreme values of (Xi, Yi) jointly (“influence points”) can have an ar-
bitrarily large influence on the value of the least squares estimator, which
therefore is “nonrobust”. As in the case of location estimators, a more ro-
bust estimator for θ can be obtained by replacing the square by a function
m(x) that grows less rapidly as x → ∞, for instance m(x) = |x| or m(x) the
primitive function of Huber’s ψ. Usually, minimizing an expression of the
type

∑n
i=1m(Yi − θXi) will be equivalent to solving a system of equations

n∑

i=1

ψ(Yi − θT Xi)Xi = 0.

The estimators obtained in this way are protected against influence points,
but may still suffer from leverage points, and hence are only partly robust.
To obtain fully robust estimators, we can change the estimating equations
to, for given weight functions w(x),

n∑

i=1

ψ(Yi − θT Xi)w(Xi) = 0.

Here we protect against leverage points by choosing w bounded. The choices
ψ(x) = x and w(x) = x correspond to the (nonrobust) least squares esti-
mator.

4.1 Consistency

If the estimator θ̂n is used to estimate the parameter θ, then it is certainly
desirable that the sequence θ̂n converges in probability to θ. If this is the
case for every possible value of the parameter, then the sequence of esti-
mators is called asymptotically consistent. For instance, the sample mean
X̄ is asymptotically consistent for the population mean EX , provided the
population mean exists. This follows from the law of large numbers. Not
surprisingly this extends to many other sample characteristics. For instance,
the sample median is consistent for the population median, whenever this
is well-defined. What can be said about M -estimators in general?

We are now implicitly assuming that the set of possible parameters is
a metric space. Write d for the metric. Suppose the estimator θ̂n maximizes
a random criterion function

θ → Mn(θ).
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Clearly, the “asymptotic value” of θ̂n depends on the asymptotic behaviour
of the functions Mn. Under suitable normalization it is typically the case
that

(4.4) Mn(θ) P→ M(θ), every θ

for some nonrandom function θ → M(θ). For instance, if Mn(θ) is an
average of the form Pnmθ as in (4.1), then the law of large numbers gives
this result with M(θ) = Pmθ, provided this expectation exists.

It seems reasonable to expect that the maximizer θ̂n of Mn converges
to the maximizing value of M . This is what we wish to prove in this section.
However, the convergence (4.4) is too weak to ensure the convergence of θ̂n.
Since the value θ̂n depends on the whole function θ → Mn(θ) an appropri-
ate form of “functional convergence” of Mn to M is needed, strengthening
the pointwise convergence (4.4). There are several possibilities. In this sec-
tion we discuss an approach based on uniform convergence of the criterion
functions. The assumption of uniform convergence is too strong for some
applications and it is not easy to verify by elementary methods, but the
approach illustrates the general idea.

Given an arbitrary random function θ → Mn(θ) consider estimators
θ̂n that nearly maximize Mn, i.e.

Mn(θ̂n) ≥ sup
θ

Mn(θ) − oP (1).

(Whether Mn achieves its maximum is of no importance for the consistency
result.) It is assumed that the sequence Mn converges to a non-random
map M : Θ → R̄. Condition (4.5) of the following theorem requires that this
attains its maximum at a unique point θ0, and only parameters close to θ0
may yield a value of M(θ) close to the maximum values M(θ0).

4.5 Theorem. Let Mn be random functions and let M be a fixed function
of θ such that for every ε > 0

sup
θ∈Θ

|Mn(θ) − M(θ)| P→ 0,

sup
θ:d(θ,θ0)≥ε

M(θ) < M(θ0).(4.5)

Then any sequence of estimators θ̂n that nearly maximize Mn converges in
probability to θ0.

Proof. By the property of θ̂n, we have Mn(θ̂n) ≥ Mn(θ0) − oP (1).
Since the uniform convergence of Mn to M implies the convergence of
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Mn(θ0) P→ M(θ0), the right side equals M(θ0) − oP (1). It follows that
Mn(θ̂n) ≥ M(θ0) − oP (1), whence

M(θ0) − M(θ̂n) ≤ Mn(θ̂n) − M(θ̂n) + oP (1)

≤ sup
θ

|Mn − M |(θ) + oP (1) P→ 0.

by the first part of assumption(4.5). By the second part of assumption (4.5),
there exists for every ε > 0 a number η > 0 such that M(θ) < M(θ0)−η for
every θ with d(θ, θ0) ≥ ε. Thus d(θ, θ0) ≥ ε implies that M(θ0)−M(θ) > η
and hence

P
(
d(θ̂n, θ0) ≥ ε

)
≤ P

(
M(θ0) − M(θ̂n) > η

)
→ 0,

in view of the preceding display.

Instead of through maximization, an M -estimator may be defined as
a zero of a criterion function θ → Ψn(θ). It is again reasonable to assume
that the sequence of criterion functions converges to a fixed limit:

Ψn(θ) P→ Ψ(θ).

Then it may be expected that a sequence of (approximate) zeros of Ψn

converges in probability to a zero of Ψ. This is true under similar restrictions
as in the case of maximizing M -estimators. In fact, this can be deduced from
the preceding theorem by noting that a zero of Ψn maximizes the function
θ → −∥Ψn(θ)∥.

4.6 Theorem. Let Ψn be random functions and let Ψ be a fixed function
of θ such that for every ε > 0

sup
θ∈Θ

∥∥Ψn(θ) − Ψ(θ)
∥∥ P→ 0,

inf
θ:d(θ,θ0)≥ε

∥∥Ψ(θ)
∥∥ > 0 =

∥∥Ψ(θ0)
∥∥.

Then any sequence of estimators θ̂n such that Ψn(θ̂n) = oP (1) converges in
probability to θ0.

Proof. This follows from the preceding theorem, on applying it to the
functions Mn(θ) = −∥Ψn(θ)∥ and M(θ) = −

∥∥Ψ(θ)
∥∥. (Remember that∣∣∥x∥ − ∥y∥

∣∣ ≤ ∥x − y∥ for any vectors x and y.)

The main difficulty with applying the preceding theorems in concrete
examples is to verify the assumptions of uniform convergence of the criterion
functions. There are many methods to do this. For the situation that Mn(θ)
or Ψn(θ) takes the form of an average Pnmθ or Pnψθ there is even a name
for the uniform convergence: a set of functions x → fθ(x) indexed by a
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parameter θ running through a parameter set Θ is called a Glivenko-Cantelli
class if

sup
θ∈Θ

∣∣Pnfθ − Pfθ

∣∣ P→ 0.

This type of result is also called a uniform law of large numbers, because
it asserts that Pnfθ

P→ Pfθ uniformly in θ. We include, without proof, one
sufficient condition for a set of functions to be Glivenko-Cantelli.

4.7 Lemma. For every θ in a compact metric space Θ let x → fθ(x) be a
given measurable function. Suppose that θ → fθ(x) is continuous for every
x and suppose that there exists a function F such that |fθ| ≤ F for every
θ and PF < ∞. Then supθ∈Θ |Pnfθ − Pfθ| P→ 0.

4.8 Example (Cauchy likelihood). Suppose that we define an esti-
mator θ̂n as the point of maximum of the function θ → Mn(θ) =
−1/n

∑n
i=1 log

(
1 + (Xi − θ)2

)
. (This is the log likelihood of a sample from

the Cauchy distribution.) Then we can apply the preceding lemma to the
functions

mθ(x) = − log
(
1 + (x − θ)2

)
.

These are continuous with respect to θ, for every x. For θ ranging over a
compact interval, say θ ∈ [−K, K], we have that (x−θ)2 = x2−2θx+θ2 ≤
x2 + 2K|x| + K2 and hence

∣∣mθ(x)
∣∣ ≤ log(1 + x2 + 2K|x| + K2).

We can take the function F as in the preceding lemma equal to the right
side of this display. If the distribution P of the observations possesses a
density p, then we shall have PF =

∫
F (x) p(x) dx < ∞ if, for instance,

p(x) decreases fast enough as |x| → ∞. This includes for instance the
Cauchy density p(x) = (1 + x2)−1π−1.

The restriction to parameters θ in a compact interval is mathematically
somewhat unnatural, but not unpractical, because in practice we can never
maximize over infinite sets.♭

Even though uniform convergence of the criterion functions as in the
preceding theorems can often be verified, it is stronger than needed for
consistency. The following lemma is one of the many possibilities to replace
the uniformity by other assumptions.

♭ By more complicated arguments the restriction can also be shown to be mathematically
unnecessary.
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4.9 Lemma. Let Θ be a subset of the real line and let Ψn be random
functions and Ψ a fixed function of θ such that Ψn(θ) → Ψ(θ) in probability
for every θ. Assume that each map θ → Ψn(θ) is nondecreasing and that
Ψn(θ̂n) = oP (1). Let θ0 be a point such that Ψ(θ0 − ε) < 0 < Ψ(θ0 + ε) for
every ε > 0. Then θ̂n

P→ θ0.

Proof. If the map θ → Ψn(θ) is nondecreasing and has a unique zero at θ̂n,
then this zero must be strictly between every pair of points θ1 < θ2 with
Ψn(θ1) < 0 < Ψn(θ2). Therefore, for any ε > 0,

{
Ψn(θ0 − ε) < 0, Ψn(θ0 + ε) > 0

}
⊂

{
θ0 − ε < θ̂n < θ0 + ε

}
.

Because Ψn(θ0 − ε) P→ Ψ(θ0− ε) < 0, we have that P
(
Ψn(θ0 − ε) < 0

)
→ 1.

(If Yn
P→ µ, then P(Yn < µ′) → 1 for every µ′ > µ.) Combined with a

similar argument for Ψn(θ0 + ε), this shows that the probability of the
event on the left side converges to one. Thus the probability of the event
on the right side converges to one as well, and hence θ̂n is consistent.

If θ̂n is only a near zero, then this argument is not quite right. However,
we still have that, for every ε, η > 0,

{
Ψn(θ0 − ε) < −η, Ψn(θ0 + ε) > η

}
⊂

{
θ0 − ε < θ̂n < θ0 + ε

}

∪
{
Ψn(θ̂n) /∈ [−η, η]

}
.

For sufficiently small η > 0 (for instance 2η equal to the smallest of −Ψ(θ0−
ε) and Ψ(θ0 + ε)), the probability of the left side still converges to one.
The probability of the second event on the right side converges to zero if
Ψn(θ̂n) = oP (1). Then the probability of the first event on the right side
converges to one, as desired.

4.10 Example (Median). The sample median θ̂n is a (near) zero of the
map θ → Ψn(θ) = n−1

∑n
i=1 sign(Xi − θ). By the law of large numbers,

Ψn(θ) P→ Ψ(θ) = E sign(X − θ) = P(X > θ) − P(X < θ),

for every fixed θ. Thus, we expect that the sample median converges in
probability to a point θ0 such that P(X > θ0) = P(X < θ0): a population
median.

This can be proved rigorously by applying Theorem 4.5. However, even
though the conditions of the theorem are satisfied, they are not entirely
trivial to verify. (The uniform convergence of Ψn to Ψ is proved essen-
tially in Theorem 5.1 in the next chapter.) In this case it is easier to
apply Lemma 4.9. Since the functions θ → Ψn(θ) are nonincreasing, it
follows that θ̂n

P→ θ0 provided that Ψ(θ0 − ε) > 0 > Ψ(θ0 + ε) for every
ε > 0. This is the case, for instance, if the observations possess a den-
sity that is positive in a neighbourhood of its median. (Draw a pricture to
see this.) More generally, it suffices that the population median is unique:
P(X < θ0 − ε) < 1

2 < P(X < θ0 + ε) for all ε > 0.
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4.2 Asymptotic Normality

Suppose a sequence of estimators θ̂n is consistent for a parameter θ, which
ranges over an open subset of a Euclidean space. The next question of
interest concerns the order at which the discrepancy θ̂n−θ converges to zero.
The answer depends on the specific situation, but for estimators based on n
replications of an experiment the order is often n−1/2. Then multiplication
with the inverse of this rate creates a proper balance, and the sequence√

n(θ̂n−θ) converges in distribution, most often a normal distribution. This
is interesting from a theoretical point of view. It also makes it possible to
obtain approximate confidence sets. In this section we derive the asymptotic
normality of M - and Z-estimators.

We can use a characterization of M -estimators either by maximization
or by solving estimating equations. Consider the second possibility. Let
X1, . . . , Xn be a sample from some distribution P , and let a random and a
“true” criterion function be of the form:

Ψn(θ) ≡ 1
n

n∑

i=1

ψθ(Xi) = Pnψθ; Ψ(θ) = Pψθ.

Assume that the estimator θ̂n is a zero of Ψn and converges in probability
to a zero θ0 of Ψ. For simplicity, first assume that θ is one-dimensional.

4.11 Theorem. Assume that the map θ → ψθ(x) is twice continuously
differentiable in a neighbourhood B of θ0, for every fixed x, with derivatives
ψ̇θ(x) and ψ̈θ(x) such that

∣∣ψ̈θ(x)
∣∣ ≤ ψ̈(x) for a function ψ̈ with P ψ̈ < ∞

and every θ ∈ B. Furthermore, suppose that Pψ2
θ0

< ∞, P |ψ̇θ0 | < ∞ and

P ψ̇θ0 ̸= 0. If θ̂n are zeros of θ → Ψn(θ) that are consistent for a zero θ0
of θ → Ψ(θ), then the sequence

√
n(θ̂n − θ0) converges in distribution to a

normal distribution with mean zero and variance Pψ2
θ0

/(P ψ̇θ0)2.

Proof. Since θ̂n → θ0, it makes sense to expand Ψn(θ̂n) in a Taylor series
around θ0. This takes the form

0 = Ψn(θ̂n) = Ψn(θ0) + (θ̂n − θ0)Ψ̇n(θ0) + 1
2 (θ̂n − θ0)2Ψ̈n(θ̃n),

where θ̃n is a point between θ̂n and θ0. This can be rewritten as

√
n(θ̂n − θ0) =

−
√

nΨn(θ0)
Ψ̇n(θ0) + 1

2 (θ̂n − θ0)Ψ̈n(θ̃n)
.

If we can show that Ψ̈n(θ̃n) = OP (1), then, since θ̂n
P→ θ0 by assumption,

the term 1
2 (θ̂n − θ0)Ψ̈n(θ̃n) is equal to oP (1)OP (1) = oP (1), and does not

play a role in the asymptotics. Therefore, the desired result follows from
several applications of Slutsky’s lemma, once it has been proved that

√
nΨn(θ0)! N(0, Pψ2

θ0
), Ψ̇n(θ0) P→ P ψ̇θ0 , Ψ̈n(θ̃n) = OP (1).
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Since
√

nΨn(θ0) = n−1/2
∑
ψθ0(Xi) and Eψθ0(Xi) = Pψθ0 = 0, the first

follows by the central limit theorem. Since Ψ̇n(θ0) = n−1
∑n

i=1ψ̇θ0(Xi) is
an average, the second follows by the law of large numbers.

It remains to prove the third statement: Ψ̈n(θ̃n) = OP (1). This also
concerns an average and therefore should follow by the law of large numbers.
However, since the terms ψ̈θ̃n

(Xi) in the average Ψ̈n(θ̃n) are stochastically
dependent through θ̃n = θ̃n(X1, . . . , Xn), we must be more careful. On the
event An = {θ̃n ∈ B}, which happens with probability tending to one by
assumption, we have, by the triangle inequality,

∣∣Ψ̈n(θ̃n)
∣∣ ≤ 1

n

n∑

i=1

∣∣ψ̈θ̃n
(Xi)

∣∣ ≤ 1
n

n∑

i=1

ψ̈(Xi).

The right side converges in probability to P ψ̈, by the law of large numbers,
and hence is bounded in probability. Now, for any constant M ,

P
(∣∣Ψ̈n(θ̃n)

∣∣ > M
)
≤ P

( 1
n

n∑

i=1

ψ̈(Xi) > M
)

+ P(Ac
n).

The first term of the right can be made arbitrarily small by choice of M ,
uniformly in n, while the second term converges to zero as n → ∞. This
gives the desired result.

The preceding theorem can be extended to higher dimensional param-
eters. For a k-dimensional parameter, we use k estimating equations. Then
the criterion functions are maps Ψn: Rk → Rk and the derivatives Ψ̇n(θ0)
are (k × k)-matrices that converge to the (k × k)-matrix P ψ̇θ0 with entries
P∂/∂θjψθ0,i. The final statement becomes

(4.6)
√

n(θ̂n − θ0)! Nk

(
0,

(
P ψ̇θ0

)−1
Pψθ0ψ

T
θ0

(
P ψ̇T

θ0

)−1
)

.

This can be proved in the same way, taking care that ordinary multipli-
cations become matrix multiplications and divisions multiplication by an
inverse.

The most complicated assumption in the preceding theorem is the
domination condition that requires that ψ̈θ(x) can be bounded above by
an integrable function ψ̈, uniformly for θ in a neighbourhood of θ0. The
“smallest” candidate for ψ̈ is supθ∈B |ψ̈θ|. (The function ψ̈ may be arbitrary,
but we are using the double-dot notation to indicate that it is related to
the second order partial derivatives.) We note that

sup
θ∈B

E
∣∣ψ̈θ(X)

∣∣ ≤ E sup
θ∈B

∣∣ψ̈θ(X)
∣∣,

and the inequality is almost always strict. It is rarely possible to calculate
the right side explicitly and hence we need to upper bound it by a simpler
expression, such as Eψ̈(X) for some ψ̈, to see that it is finite, as required.
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4.12 Example (Cauchy likelihood). The log likelihood function corre-
sponding to a random sample from the Cauchy-distribution with location θ
takes the form θ → Mn(θ) = −1/n

∑n
i=1 log

(
1 + (Xi − θ)2

)
. The maximum

likelihood estimator is a zero of Ψn(θ) = Pnψθ for

ψθ(x) =
(x − θ)

1 + (x − θ)2
.

The partial derivatives with respect to θ are given by ψ̇θ(x) = −ψ′(x − θ)
and ψ̈θ(x) = ψ′′(x − θ) for ψ(x) = x/(1 + x2). The functions ψ, ψ′ and
ψ′′ are continuous and have limit zero at ±∞ and hence are uniformly
bounded. Therefore, the conditions of the preceding theorem are satisfied
for every P such that P ψ̇θ0 ̸= 0. In Section 4.3 we shall see that the latter
is true in particular for P equal to the Cauchy distribution with location
θ0. We can also directly verify that in this case P ψ̇θ0 = −1/4.

It follows that every sequence θ̂n of zeros of Ψn that is consistent for
a zero θ0 of Ψ is asymptotically normal. In general, the function Ψn may
have many zeros, corresponding to local maxima and minima of Mn. By
the results of the preceding section the zero corresponding to the absolute
maximum can be shown to be consistent for the point of absolute maximum
of the limit criterion function M , but we omit a proof.

The preceding theorem requires that the function θ → ψθ(x) possesses
two continuous derivatives with respect to the parameter, for every x. This
is true in many examples, but fails, for instance, for the Huber function,
and the function ψθ(x) = sign(x − θ), which yields the median. Neverthe-
less, both the Huber estimator and the median are asymptotically normal.
That such simple, but statistically important, examples cannot be treated
by the preceding approach has motivated much effort to derive the asymp-
totic normality of M -estimators by more refined methods. One result is the
following theorem, which assumes less than one derivative instead of two
derivatives.

4.13 Theorem. For each θ in an open subset of Euclidean space let x →
ψθ(x) be a vector-valued measurable function such that for every θ1 and θ2
in a neighbourhood of θ0

∥∥ψθ1(x) − ψθ2(x)
∥∥ ≤ ψ̇(x) ∥θ1 − θ2∥,

for some measurable function ψ̇ with P ψ̇2 < ∞. Assume that P∥ψθ0∥2 < ∞
and that the map θ → Pψθ is differentiable at a zero θ0, with nonsingular
derivative matrix Vθ0 . If Ψn(θ̂n) = Ψn(θ0) − oP (n−1), and θ̂n

P→ θ0, then
the sequence

√
n(θ̂n − θ0) is asymptotically normal with mean zero and

covariance matrix V −1
θ0

Pψθ0ψ
T
θ0

(V −1
θ0

)T .

The first condition of the theorem, involving a function ψ̇(x) requires
that the map θ → ψθ(x) be Lipschitz in θ with Lipschitz constant ψ̇(x),
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for every fixed x. The function ψ̇ may be arbitrary, but will be related to
the partial derivatives of ψθ with respect to θ. If θ → ψθ(x) is continuously
differentiable in a neighbourhood of θ with derivative ψ̇θ(x), then

∥∥ψθ1(x) − ψθ2(x)
∥∥ =

∥∥∥
∫ 1

0
ψ̇θ1+t(θ2−θ1)(x) dt(θ1 − θ2)

∥∥∥

≤ sup
0≤t≤1

∥∥ψ̇θ1+t(θ2−θ1)(x)
∥∥ ∥θ1 − θ2∥.

Then the natural candidate for ψ̇ is the supremum over ψ̇θ for θ ranging
over a neighbourhood B of θ0, and the condition reduces to

P sup
θ∈B

∥ψ̇θ∥2 < ∞.

This is similar to the “domination condition” of Theorem 4.11. However,
this time we are concerned with a first derivative rather than a second
derivative, and this may be relaxed to a Lipschitz condition.

The final assertion of Theorem 4.13 is in agreement with (4.6), provided
that we can identify

Vθ =
∂

∂θ
Pψθ, and P ψ̇θ = P

∂

∂θ
ψθ.

Under the conditions of the Theorem 4.11 this “changing of the order of ex-
pectation and differentiation” is permitted. However, in general the deriva-
tive Vθ after integration may well exist, even if the pointwise derivative
ψ̇θ(x) and hence P ψ̇θ do not.

The proof of the preceding theorem is too complicated to be given here.
It is not the best theorem of its type, but it is a reasonable compromise
between simplicity and general applicability.

4.14 Example (Huber estimator). For a given x, the function θ →
ψθ(x) = ψ(x − θ) with ψ the Huber function is differentiable except at
the two points θ = x ± k, where it has different left and right derivatives.
The derivative takes the values 0 and 1. From this, or from a picture, we
can see that

∣∣ψ(x − θ1) − ψ(x − θ2)
∣∣ ≤ |θ1 − θ2| for every pair θ1, θ2. Thus

the function is Lipschitz with Lipschitz constant ψ̇(x) = 1.
If the probability measure P has a density p, then

Pψθ =
∫
ψ(x − θ)p(x) dx =

∫
ψ(x)p(x + θ) dx.

For a sufficiently regular density p this function is differentiable with re-
spect to θ with derivative Vθ =

∫
ψ(x)p′(x + θ) dx. Then the conditions of

Theorem 4.13 are satisfied provided that Vθ0 ̸= 0.
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4.15 Example (Median). The sample median θ̂n is a (near) zero of the
map θ → Pψθ for ψθ(x) = sign(x − θ). It is consistent for the population
median θ0. If the observations possess a differentiable distribution function
F , then Pψθ = 1−2F (θ) is differentiable at θ0 with derivative Vθ0 = 2f(θ0).
Since Pψ2

θ0
= P1 = 1, we find the asymptotic variance for

√
n(θ̂n − θ0) to

be equal to 1/
(
4f2(θ0)

)
.

Unfortunately, the function ψθ does not satisfy the Lipschitz condition
of the preceding theorem, as it is not even continuous. To prove the asymp-
totic normality of the sample median we must either refine this theorem or
apply another argument. The conclusion that the sequence

√
n(θ̂n − θ0) is

asymptotically normal with mean zero and variance 1/
(
4f2(θ0)

)
is correct.

4.16 Example (Misspecified model). Suppose that we postulate a model
{pθ: θ ∈ Θ} for a sample of observations X1, . . . , Xn, but the model is
misspecified in that the true underlying distribution does not belong to
the model. If we decide to use the postulated model anyway, and obtain
an estimate θ̂n from maximizing the likelihood

∑
log pθ(Xi), what is the

asymptotic behaviour of θ̂n?
At first sight, it might appear that θ̂n would behave erratically due to

the use of the wrong model. However, this is not the case. First, we ex-
pect that θ̂n is asymptotically consistent for a value θ0 that maximizes the
function θ → P log pθ, where the expectation is taken under the true under-
lying distribution P . The density pθ0 could be viewed as the “projection” of
the true underlying distribution P on the model using the Kullback-Leibler
divergence, which is defined as P log(pθ/p), as a “distance” measure: pθ0

minimizes this quantity over all densities in the model. Second, we expect
that

√
n(θ̂n − θ0) is asymptotically normal with mean zero and covariance

matrix

V −1
θ0

P ℓ̇θ0 ℓ̇
T
θ0

V −1
θ0

T .

Here ℓθ = log pθ and Vθ is the derivative matrix of the map θ → P ℓ̇θ. The
preceding theorem with ψθ = ℓ̇θ gives sufficient conditions for this to be
true.

The asymptotics give insight in the question whether estimate θ̂n has
practical value. The answer depends on the specific situation. However, if
the model is not too far off from the truth, then the estimated density pθ̂n

may be a reasonable approximation for the true density.

4.2.1 Asymptotic Relative Efficiency

The asymptotic distribution of Z- and M -estimators can be used in two
ways. First, they allow the construction of asymptotic confidence regions.



4.2: Asymptotic Normality 51

-0.5 0.0 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.2. The distribution function of the sample median (dotted curve) and its normal
approximation for a sample of size 25 from the Laplace distribution.

For instance, in the setting of Theorem 4.11 a natural estimator for the
asymptotic variance is given by

σ̂2
n: =

Pnψ2
θ̂n

(Pnψ̇θ̂n
)2

.

Under some regularity conditions this should be consistent for the true
asymptotic variance and then the confidence interval θ = θ̂n ± σ̂n/

√
n ξα is

of asymptotic confidence level 1 − 2α.
Second, the limit results can be used to compare the quality of different

M -estimators. Suppose that we aim at estimating a parameter θ and can
choose between two estimator sequences Tn,1 and Tn,2 such that, for i = 1, 2
and every value of θ,

√
n(Tn,i − θ) θ! N

(
0,σ2

i (θ)
)
.

Then, on asymptotic grounds, we would prefer the sequence with the small-
est asymptotic variance. This sequence would give better precision, at least
for large n, as can be seen, for instance, from the fact that the asymptotic
confidence interval obtained in the preceding paragraph would be shorter.
A good quantitative measure of comparison is the quotient

σ2
2(θ)
σ2

1(θ)

of the two asymptotic variances. This number, called the “asymptotic rel-
ative efficiency” of the two estimator sequences, has an attractive interpre-
tation in terms of the numbers of observations needed to attain the same
goal with each of two sequences of estimators.
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Let ν → ∞ be a “time” index, and suppose that it is required that,
as ν → ∞, our estimator sequence attains mean zero and variance 1/ν.
More precisely, if we use the estimator sequence Tn,i, then the requirement
is to use at time ν an appropriate number nν,i of observations such that,
as ν → ∞, √

ν(Tnν,i,i − θ) θ! N(0, 1).

Thus nν,1 and nν,2 are the numbers of observations needed to meet the
requirement with each of the two estimator sequences. Then, if it exists,
the limit

lim
ν→∞

nν,2

nν,1

is called the relative efficiency of the estimators. (In general, it depends on
the parameter θ.)

Since
√
ν(Tnν − θ) can be written as

√
ν/nν

√
nν(Tnν − θ), it follows

that necessarily nν,i → ∞, and also that nν,i/ν → σ2
i (θ). Thus, the relative

efficiency is just

lim
ν→∞

nν,2/ν

nν,1/ν
=
σ2

2(θ)
σ2

1(θ)
.

If the value of this quotient is bigger than 1, than the second estimator
sequence needs proportionally that many observations more than the first
to achieve the same (asymptotic) precision.

4.17 Example. Suppose that we wish to estimate the symmetry point of
a distribution F that is symmetric about some point θ, based on a random
sample from this distribution. Since the symmetry point is both the median
and the mean of F , two possible estimators are the sample median and the
sample mean. Their relative efficiency is equal to

1/(4f2(θ))∫
x2 f(x) dx − θ2

.

The comparison depends on the shape of the underlying distribution. If
the underlying distribution is standard normal, then the relative efficiency
is equal to

(
4/(2π)

)−1
/1 = π/2. That this is bigger than 1 should not be

surprising, since the sample mean is the “best” estimator for every finite n.
If the underlying distribution is Laplace (density f(x) = 1

2e−|x|), then the
relative efficiency is equal to (1/1)/2 = 1/2. In this case the median is a
better estimator, at least in an asymptotic sense. Using the mean instead of
the median would be the same as “throwing half of the observations away”.
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4.3 Maximum Likelihood Estimators

Maximum likelihood estimators are examples of M -estimators. In this sec-
tion we specialize the consistency and the asymptotic normality results of
the preceding sections to this important special case. (This reverses the
historical order. Maximum likelihood estimators were shown to be asymp-
totically normal first, by Fisher in the 1920s and rigorously by Cramér in
the 1940s. General M -estimators were not introduced and studied until the
1960s.)

If X1, . . . , Xn are a random sample from a density♯ pθ, then the maxi-
mum likelihood estimator θ̂n maximizes the function θ →

∑
log pθ(Xi), or

equivalently, the function

Mn(θ) =
1
n

n∑

i=1

log
pθ

pθ0

(Xi) = Pn log
pθ

pθ0

.

(Subtraction of the “constant”
∑

log pθ0(Xi) does not change the loca-
tion of the maximum and is mathematically convenient.) If we agree to let
log 0 = −∞, then this expression is with probability one well-defined if pθ0

is the true density. The asymptotic function corresponding to Mn is

M(θ) = Eθ0 log
pθ

pθ0

(X) = Pθ0 log
pθ

pθ0

.

The number M(θ) is called the Kullback-Leibler divergence of pθ and pθ0 ;
it is often considered a measure of “distance” between pθ and pθ0 , although
it does not have the properties of a mathematical distance. Based on the
results of the previous sections we may expect the maximum likelihood
estimator to converge to a point of maximum of M(θ). Is the true value θ0
always a point of maximum? The answer is affirmative and, moreover, the
true value is a unique point of maximum if the true density is identifiable:

(4.7) Pθ ̸= Pθ0 , every θ ̸= θ0.

This requires that the model for the observations is not the same under
the parameters θ and θ0. Identifiability is a natural and even a necessary
condition: if the parameter is not identifiable, then consistent estimators
cannot exist.

4.18 Lemma. Let pθ be a collection of probability densities such that (4.7)
holds. Then M(θ) = Pθ0 log pθ/pθ0 attains its maximum uniquely at θ0.

Proof. First note that M(θ0) = Pθ0 log 1 = 0. Hence we wish to show that
M(θ) is strictly negative for θ ̸= θ0.

♯ The results of this section are also valid for discrete distributions. In that case use
Pθ(X = x) as the “density” pθ(x), and replace integrals by sums.
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Since log x ≤ 2
(√

x − 1
)

for every positive x,

Pθ0 log
pθ

pθ0

≤ 2Pθ0

(√
pθ

pθ0

− 1
)

= 2
(∫

√
pθpθ0 dx − 1

)

= −
∫ (√

pθ −
√

pθ0

)2
dx,

since
∫ √

pθ
2 dx = 1 for every θ. This is always nonpositive, and zero only if

pθ and pθ0 define the same probability measure. By assumption the latter
happens only if θ = θ0.

Thus, under regularity conditions and identifiability the sequence of
maximum likelihood estimators is consistent for the true parameter. Next,
consider asymptotic normality. The maximum likelihood estimator solves
the likelihood equations

∂

∂θ

n∑

i=1

log pθ(Xi) = 0.

Hence it is an M -estimator for ψθ equal to the score function ℓ̇θ =
∂/∂θ log pθ of the model. In view of the preceding section, we expect that
the sequence

√
n(θ̂n − θ) is under θ asymptotically normal with mean zero

and covariance matrix
(
Pθ ℓ̈θ

)−1
Pθ ℓ̇θ ℓ̇

T
θ

(
Pθ ℓ̈

T
θ

)−1
.

Under regularity conditions, this reduces to the inverse of the Fisher infor-
mation matrix†

Iθ = Pθ ℓ̇θ ℓ̇
T
θ .

To see this in the case of a one-dimensional parameter, differentiate the
identity

∫
pθ dx ≡ 1 twice with respect to θ. Assuming that the order of dif-

ferentiation and integration can be reversed, we obtain
∫

ṗθ dx ≡
∫

p̈θ dx ≡
0. Together with the identities

ℓ̇θ =
ṗθ

pθ
; ℓ̈θ =

p̈θ

pθ
−

(
ṗθ

pθ

)2

,

this implies that
Pθ ℓ̇θ = 0; Pθ ℓ̈θ = −Iθ.

Thus,
(
Pθ ℓ̈θ

)−2
Pθ ℓ̇

2
θ = I−1

θ . The higher dimensional case follows in the same
manner.

† Note that presently we take the expectation Pθ under the parameter θ, whereas the
derivation in preceding section is valid for a generic underlying probability structure, and does
not conceptually require that the set of parameters θ indexes a set of underlying distributions.
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We conclude that maximum likelihood estimators satisfy
√

n(θ̂n − θ) θ! N(0, I−1
θ ).

This is a very important result, as it implies that maximum likelihood
estimators are asymptotically optimal. The convergence in distribution
means roughly that the maximum likelihood estimator θ̂n is N

(
θ, (nIθ)−1

)
-

distributed for every θ, for large n. Hence, it is “asymptotically unbiased”
and “asymptotically of variance” (nIθ)−1. According to the Cramér-Rao
theorem, the variance of an unbiased estimator is at least (nIθ)−1. Thus,
we could infer that the maximum likelihood estimator is asymptotically
uniformly minimum variance unbiased and in this sense optimal. We wrote
“could”, because the preceding reasoning is informal and unsatisfying. Note,
for instance, that the asymptotic normality does not warrant any conclusion
about convergence of the moments Eθθ̂n and varθ θ̂n; nor did we introduce
an asymptotic version of the Cramér-Rao theorem.

However, the message that maximum likelihood estimators are asymp-
totically efficient is correct. The justification through asymptotics appears
to be the only general justification of the method of maximum likelihood.
In some form this result was found by Fisher in the 1920s, though a better
insight was only obtained in the 1950s, 1960s and early 1970s.

4.19 Example (Logistic regression). Let (X1, Y1), . . . , (Xn, Yn) be inde-
pendent, identically distributed random vectors with Yi taking values in
{0, 1} with conditional probabilities determined by

Pα,β(Yi = 1|Xi = x) =
1

1 + e−α−βx
.

The distribution of Xi is unknown, but assumed not to depend on the
unknown parameters (α,β). We can estimate the parameters α and β by the
maximum likelihood estimators. Even though the point of maximum of the
likelihood cannot be calculated explicitly, this can be calculated numerically
by an iterative scheme to solve the likelihood equations

∑n
i=1ℓ̇α,β(Xi) = 0.

Here the score function of the model is given by, with Ψ(u) = (1 + e−u)−1,

ℓ̇α,β(x, y) =
y − Ψ(α+ βx)

Ψ(α+ βx)
(
1 − Ψ(α+ βx)

)Ψ′(α + βx)
(

1
x

)
.

Thus the Fisher information matrix is given by, with X distributed as
X1, . . . , Xn,

Iα,β = E
Ψ′(α+ βX)2

Ψ(α+ βX)
(
1 − Ψ(α+ βX)

)
(

1 X
X X2

)
.

This matrix is nonsingular under the (very reasonable) condition that the
distribution of X is non-degenerate.
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In the preceding informal derivations and discussion, it is implicitly un-
derstood that the density pθ possesses at least two derivatives with respect
to the parameter. While this can be relaxed considerably, a certain amount
of smoothness of the dependence θ → pθ is essential for the asymptotic
normality. Compare the behaviour of the maximum likelihood estimator in
the case of uniformly distributed observations: it is neither asymptotically
normal, nor asymptotically efficient.

4.20 Example. Let X1, . . . , Xn be a sample from the uniform distribution
on [0, θ]. Then the maximum likelihood estimator is the maximum X(n) of
the observations. Since the variance of X(n) is of the order O(n−2) we expect
that a suitable norming rate in this case is not

√
n, but n. Indeed, for each

x < 0

Pθ

(
n(X(n) − θ) ≤ x

)
= Pθ

(
X1 ≤ θ + x/n

)n =
(
θ + x/n

θ

)n

→ ex/θ.

Thus, the sequence −n(X(n) − θ) converges in distribution to an exponen-
tial distribution with mean θ. Consequently, the sequence

√
n(X(n) − θ)

converges to zero in probability.
Note that most of the informal operations in the preceding introduc-

tion are illegal or not even defined for the uniform distribution, starting
with the definition of the likelihood equations. It can be shown that the in-
formal conclusion that the maximum likelihood estimator is asymptotically
efficient is also wrong in this case.

We conclude this section with a theorem that establishes the asymp-
totic normality of maximum likelihood estimators rigorously. Clearly, the
asymptotic normality follows from Theorem 4.13 applied to ψθ equal to
the score function ℓ̇θ of the model. The following theorem applies directly
to maximum likelihood estimators. It is a very clever theorem in that its
conditions somehow ensure the relationship Pθ ℓ̈θ = −Iθ, even though exis-
tence of a second derivative ℓ̈θ is not required. The proof of the theorem is
omitted.

4.21 Theorem. For each θ in an open subset of Euclidean space, let
x → pθ(x) be a probability density such that θ → log pθ(x) is continu-
ously differentiable for every x and such that, for every θ1 and θ2 in a
neighbourhood of θ0,

∣∣log pθ1(x) − log pθ2(x)
∣∣ ≤ ℓ̇(x) ∥θ1 − θ2∥,

for a measurable function ℓ̇ such that Pθ0 ℓ̇
2 < ∞. Assume that the Fisher

information matrix Iθ = Pθ ℓ̇θ ℓ̇Tθ is continuous in θ and nonsingular. Then

the maximum likelihood estimator θ̂n based on a sample of size n from pθ0

satisfies that
√

n(θ̂n − θ0) is asymptotically normal with mean zero and
covariance matrix I−1

θ0
provided that θ̂n is consistent.
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Problems

1. Let pµ,σ2(x) be the density of the N(µ,σ2)-distribution and let P an arbitrary
probability distribution (not necessarily normal).
(i) Calculate M(µ, σ2) = P log pµ,σ2 ;
(ii) For which (µ,σ2) does M(µ,σ2) attain its maximal value?
(iii) What does this suggest about the behaviour of the estimators (µ̂n, σ̂2

n)
that maximize (µ,σ2) → Pn log pµ,σ2? Is this true?

2. Let X1, . . . , Xn be a sample from a strictly positive density that is symmetric
about some point. Show that the Huber M -estimator for location is consistent
for the symmetry point.

3. Define ψ(x) = 1 − p, 0,−p when x < 0, 0, > 0.
(i) Show that Eψ(X − θ) = 0 implies that P(X < θ) ≤ p ≤ P(X ≤ θ).
(ii) Derive a condition for the consistency of the corresponding Z-estimator.

4. Let X1, . . . , Xn be a random sample from a strictly positive density. Let ψ(x) =
2(1+e−x)−1−1 and let θ̂n be the solution of the equation

∑n
i=1

ψ(Xi−θ) = 0.
(i) Show that θ̂n

P→ θ0 for some parameter θ0. Express θ0 in the density of
the observations;

(ii) Prove that
√

n(θ̂n − θ0) converges in distribution and find an expression
for the variance of the limit distribution.

5. Suppose that Θ is compact and suppose that M :Θ → R is continuous and
attains a unique absolute maximum at θ0. Show that (4.5) holds.

6. Suppose that Θ is a set with finitely many elements and the map θ → Pmθ

possesses a unique maximum at θ0 ∈ Θ. Show that every sequence θ̂n such
that Pnmθ̂n

≥ maxθ Pnmθ satisfies θ̂n
P→ θ0. (Assume that P |mθ| < ∞ for

every θ.)
(i) using a direct proof;
(ii) using Theorem 4.5.

7. Suppose that Mn: R → R and M : R → R are (deterministic) functions such
that Mn has a unique absolute maximum in θn and M has a unique absolute
maximum in θ0. Suppose that supθ∈R

∣∣Mn(θ)−M(θ)
∣∣ → 0 and for every ε > 0

there exists δ > 0 such that M(θ) < M(θ0)− δ for every |θ− θ0| ≥ ε. Show by
a direct argument that θn → θ0.

8. Find a sequence of fixed (nonrandom) functions Mn: R → R that converges
pointwise to a limit M and such that each Mn has a unique maximum at a
point θn and M at θ0, but the sequence θn does not converge to θ0. Can you
also find a sequence Mn that converges uniformly?

9. Find an expression for the asymptotic variance of the Huber estimator for
location if the observations are normally distributed.

10. Define ψ(x) = 1 − p, 0,−p when x < 0, 0, > 0. Show by an informal argument
that, under appropriate conditions, the corresponding Z-estimator is asymp-
totically normal with zero mean and asymptotic variance p(1−p)/f

(
F−1(p)

)2
.
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11. Let X1, . . . , Xn be independent N(µ, 1)-distributed random variables. Define
θ̂n as the point of minimum of the function θ →

∑n

i=1
(Xi − θ)4.

(i) Show that θ̂n
P→ θ0 for some θ0. Which θ0?

(ii) Show that
√

n(θ̂n − θ0) converges to a normal distribution.
(iii) Determine the asymptotic relative efficiency of θ̂n and the sample mean

as an estimator of µ.

12. Suppose that (X1, Y1), . . . , (Xn, Yn) are a random sample from the distribution
of a vector (X, Y ) satisfying

Y = fθ0(X) + e,

for e a random variable that is independent of X and a function fθ that is
known up to a parameter θ ∈ Rk. (For instance, fθ(x) = θ1 + θ2x or fθ(x) =
θ1 log x+ θ2eθ3x.) Let θ̂n be the point of minimum of Mn(θ) = n−1

∑n
i=1

(
Yi −

fθ(Xi)
)2

.
(i) Find the limit in probability M of the function Mn.
(ii) Which condition on Ee ensures that M has a point of minimum at θ0?

Which implication does this have for the consistency of θ̂n?
(iii) Find, informally, an expression for the asymptotic covariance matrix of√

n(θ̂n − θ0).

13. In the setting of the preceding problem, but with k = 1, let θ̂n be a zero of
the function Ψn(θ) = n−1

∑n

i=1
w(Xi)

(
Yi − fθ(Xi)

)
.

(i) Find the limit in probability Ψ of the function Ψn.
(ii) Which condition on Ee ensures that Ψ has a zero at θ0? Which implication

does this have for the consistency of θ̂n?
(iii) Find, informally, an expression for the asymptotic variance of

√
n(θ̂n−θ0).

14. In the setting of the preceding problem, assume that the errors possess a nor-
mal distribution with mean zero and that fθ(x) = θx. Which of the two weight
functions w(x) = x and w(x) = 1 yields the smallest asymptotic variance? (As-
sume that EXi ̸= 0.)

15. Suppose that (X1, Y1), . . . , (Xn, Yn) are a random sample from the distribution
of a vector (X, Y ) satisfying

Y = α0 + β0X + e,

for e a random variable that is independent of X. Let (α̂n, β̂n) be the point of
minimum of Mn(α,β) = n−1

∑n

i=1

∣∣Yi − α− βXi

∣∣.
(i) Find the limit in probability M of the function Mn.
(ii) Which condition on the distribution of e ensures that M has a point of

minimum at (α0,β0)? Which implication does this have for the consis-
tency of (α̂n, β̂n)?

(iii) Find, informally, an expression for the asymptotic covariance matrix of√
n(α̂n − α0, β̂n − β0).

16. Determine the relative efficiency of the sample median and the sample mean
based on a random sample from the uniform distribution on [0, 1].

17. Give an expression for the relative efficiency of the Huber estimator and the
sample mean based on a random sample from the normal distribution with
variance 1.
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18. Calculate the Kullback-Leibler divergence between two exponential distribu-
tions with different scale parameters. When is it maximal?

19. Calculate the Kullback-Leibler divergence between two normal distributions
with different location and scale parameters. When is it maximal?

20. Calculate the Kullback-Leibler divergence between two Laplace distributions
with different locations. When is it maximal?

21. Let X1, . . . , Xn be i.i.d. Poisson(1/θ)-distributed.
(i) Calculate the Fisher information Iθ in one observation;
(ii) Derive the maximum likelihood estimator for θ and show by a direct

argument that it is asymptotically normal with variance I−1
θ .

22. Let X1, . . . , Xn be i.i.d. N(θ, θ)-distributed.
(i) Calculate the Fisher information Iθ in one observation;
(ii) Derive the maximum likelihood estimator for θ and show by a direct

argument that it is asymptotically normal with variance I−1
θ .

23. Let X1, . . . , Xn be i.i.d. N(µ, σ2)-distributed.
(i) Calculate the Fisher information Iµ,σ2 in one observation for the param-

eter (µ,σ2) and its inverse;
(ii) Verify by direct calculations that the maximum likelihood estimator for

(µ,σ2) is asymptotically normal with mean zero and covariance matrix
I−1

µ,σ2 .

24. Let X be Poisson distributed with density pθ(x) = θx e−θ/x!. Show by direct

calculation that Eθ ℓ̇θ(X) = 0 and Eθ ℓ̈θ(X) = −Eθ ℓ̇
2
θ(X). In Section 4.3 these

identities are obtained informally by differentiation under the integral (sum).
Is it obvious from results from analysis that this is permitted in this case?

25. Let X1, . . . , Xn be a sample from the N(θ, 1)-distribution, where it is known
that θ ≥ 0. Show that the maximum likelihood estimator is not asymptotically
normal under θ = 0. Why does this not contradict the theorems of this chapter?



5
Nonparametric Estimation

Statistical models are called parametric models if they are described by a
Euclidean parameter (in a nice way). For instance, the binomial model is
described by a single parameter p, and the normal model is given through
two unknowns: the mean and the variance of the observations. In many
situations there is insufficient motivation for using a particular parametric
model, such as a normal model. An alternative at the other end of the scale
is a nonparametric model, which leaves the underlying distribution of the
observations essentially free. In this chapter we discuss two problems of
nonparametric estimation: estimating a distribution function or a density
of the observations if nothing is known a-priori.

5.1 Estimating Distributions

Let X1, . . . , Xn be a random sample from a distribution function F on the
real line. The empirical distribution function is defined as

Fn(t) =
1
n

n∑

i=1

1{Xi ≤ t}.

It is the natural estimator for the underlying distribution F if this is com-
pletely unknown. Since nFn(t) is binomially distributed with mean nF (t),
the estimator Fn(t) is unbiased for estimating F (t) for every fixed t. By the
law of large numbers it is also consistent,

Fn(t) as→ F (t), every t.

Furthermore, by the central limit theorem it is asymptotically normal,
√

n
(
Fn(t) − F (t)

)
! N

(
0, F (t)

(
1 − F (t)

))
.
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These properties indicate that the “functional estimator” t → Fn(t) is a rea-
sonable estimator for the function t → F (t). This can also be underscored
by studying the properties of Fn as a function, rather than the properties
of Fn(t) for each t separately.

The Glivenko-Cantelli theorem extends the law of large numbers, and
gives uniform convergence of the random function t → Fn(t). The uniform
distance

∥Fn − F∥∞ = sup
t

∣∣Fn(t) − F (t)
∣∣

is known as the Kolmogorov-Smirnov statistic.

5.1 Theorem (Glivenko-Cantelli). If X1, X2, . . . are i.i.d. random vari-
ables with distribution function F , then ∥Fn − F∥∞ as→ 0.

Proof. By the strong law of large numbers, both Fn(t) as→ F (t) and
Fn(t−) as→ F (t−) for every t. Given a fixed ε > 0, there exists a partition
−∞ = t0 < t1 < · · · < tk = ∞ such that F (ti−) − F (ti−1) ≤ ε for every i.
This is easiest seen by drawing a picture of F . (More formally, we can define
t0 = −∞ and next, recursively, ti+1 = inf

{
t > ti: F (t) ≥ F (ti) + ε

}
. Then

F (ti+1)−F (ti) ≥ ε by the right continuity of F and F (ti+1−)−F (ti) ≤ ε.)
Now, for ti−1 ≤ t < ti,

Fn(t) − F (t) ≤ Fn(ti−) − F (ti−1) ≤ Fn(ti−) − F (ti−) + ε,

Fn(t) − F (t) ≥ Fn(ti−1) − F (ti−) ≥ Fn(ti−1) − F (ti−1) − ε.

Together these bounds yield the inequality

∥Fn − F∥∞ ≤ sup
i

∣∣Fn(ti) − F (ti)
∣∣ ∨ sup

i

∣∣Fn(ti−) − F (ti−)
∣∣ + ε.

The convergence of Fn(t) and Fn(t−) for every fixed t is certainly uniform
for t in the finite set {t1, . . . , tk−1}. Conclude that lim sup ∥Fn − F∥∞ ≤ ε,
almost surely. This is true for every ε > 0, whence the lim sup is zero.

The central limit theorem can also be extended from a central limit
theorem for every fixed t to a “uniform” or “functional” central limit the-
orem, but this is more involved. A first step is to prove the joint weak
convergence of finitely many coordinates. By the multivariate central limit
theorem, for every t1, . . . , tk,

√
n
(
Fn(ti) − F (ti), . . . , Fn(tk) − F (tk)

)
!

(
GF (t1), . . . , GF (tk)

)
,

where the vector on the right has a multivariate-normal distribution, with
mean zero and covariances

(5.1) EGF (ti)GF (tj) = F (ti ∧ tj) − F (ti)F (tj).
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Figure 5.1. Three realizations of the uniform empirical process, of 50, 500 and 5000
observations, respectively.

This suggests that the sequence of empirical processes
√

n(Fn −F ), viewed
as random functions, converges in distribution to a “Gaussian stochastic
process” GF . This can be made precise in a mathematical theorem, which
is known as Donsker’s theorem. The Gaussian process GF is known as a
Brownian bridge process.

Figure 5.1 shows some realizations of the empirical process for a sample
from the uniform distribution on [0, 1]. The roughness of the sample path
for n = 5000 is remarkable, and typical. It is carried over onto the limit
process GF , for it can be shown that, with probability one, the function
t → GF (t) is continuous, but nowhere differentiable. This is how the process
GF received its name: its sample path resemble the displacement connected
to the physical “Brownian” movement of particles in a gas.

Some popular global measures of discrepancy for real-valued observa-
tions are

√
n∥Fn − F∥∞, (Kolmogorov-Smirnov),

n

∫
(Fn − F )2 dF, (Cramér–von-Mises).
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These are used to test whether the true distribution of the observations is
F . Large values of these statistics indicate that the null hypothesis that
the true distribution is F is false. To carry out a formal test of this null
hypothesis an appropriate quantile is chosen from the null distribution of
these statistics. For large n these null distributions do not depend much on
n any more, because the statistics can be shown to converge in distribution.
The critical value of the test is usually chosen equal to the upper α-quantile
of the limit distribution.

It is probably practically more relevant to test the goodness-of-fit of
composite null hypotheses, for instance the hypothesis that the underlying
distribution F of a random sample is normal, i.e. belongs to the normal
location-scale family. To test the null hypothesis that F belongs to a certain
family {Fθ: θ ∈ Θ}, it is natural to use a measure of the discrepancy between
Fn and Fθ̂, for a reasonable estimator θ̂ of θ. For instance, a modified
Kolmogorov-Smirnov statistic for testing normality is

sup
t

√
n
∣∣∣Fn(t) − Φ

( t − X̄

S

)∣∣∣.

Many goodness-of-fit statistics of this type also converge to limit distribu-
tions, but these are different due to the “extra randomness” introduced by
the estimator θ̂.

5.2 Estimating Densities

Let X1, . . . , Xn be a random sample from a density f on the real line.
If we would know that f belongs to the normal family of densities, then
the natural estimate of f would be the normal density with mean X̄n and
variance S2

n, i.e. the function

x → 1
Sn

√
2π

e−
1
2 (x−X̄n)2/S2

n .

In this section we suppose that we have no prior knowledge of the form of
f , and want to “let the data speak as much as possible for itself”.

There are several possibilities for contructing estimators f̂ for f . In
this section we discuss the kernel method.

Let K be a probability density with mean 0 and variance 1, for instance
the standard normal density. A kernel estimator with kernel or window K
is defined as

f̂(x) =
1
n

n∑

i=1

1
h

K
(x − Xi

h

)
.

Here h is a positive number, still to be chosen, called the bandwidth of the
estimator. It turns out that the choice of the kernel K is not crucial, but
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the quality of f̂ as an estimator of f depends strongly on the choice of the
bandwidth.

A kernel estimator is an example of a smoothing method. The con-
struction of a density estimator could be viewed as smoothing out the total
mass 1 over the real line. Given a random sample of n observations it is
reasonable to start with allocating the total mass in packages of size 1/n
to the observations. Next a kernel estimator distributes the mass that was
allocated to Xi smoothly around Xi, not homogenously, but according to
the kernel and bandwidth.

More formally, we can view a kernel estimator as the sum of n small
“mountains” given by the functions

x → 1
nh

K
(x − Xi

h

)
.

Every small mountain is centred around an observation Xi and has surface
area 1/n, for any bandwidth h. For small bandwidth the mountain is very
concentrated (a peak), while for large bandwidth the mountain is low and
flat. Figure 5.2 shows how the mountains can add up to a single estimator.
If the bandwidth is small, then the mountains remain separated and their
sum is peaky. On the other hand, if the bandwidth is large, then the sum of
the individual mountains is too flat. Intermediate values of the bandwidth
should give the best results.

* * * * * *

Figure 5.2. The kernel estimator with normal kernel and two observations for three
bandwidths: small (left), intermediate (middle) and large (right). The figures shows both the
contributions of the two observations separately (dotted lines) and the kernel estimator (solid
lines), which is the sum of the two dotted lines.

Figure 5.3 shows the kernel method in action on a sample from the
normal distribution. The solid and dotted lines are the estimator and the
true density respectively. The three pictures give the kernel estimates using
three different bandwidths, small, intermediate and large, each time with
the standard normal kernel.



5.2: Estimating Densities 65

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

h=0.68

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

h=1.82

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

h=4.5

Figure 5.3. Kernel estimates for the density of a sample of size 15 from the standard
normal density for three different bandwidths, using a normal kernel. The dotted line gives
the true density.

A popular criterion to judge the quality of density estimators is the
mean integrated square error, which is defined as

MISEf (f̂) =
∫

Ef

(
f̂(x) − f(x)

)2
dx

=
∫

varf f̂(x) dx +
∫ (

Ef f̂(x) − f(x)
)2

dx.

This is the mean square error Ef

(
f̂(x) − f(x)

)2 of f̂(x) as an estimator of
f(x) integrated over the argument x. If the mean integrated square error
is small, then the function f̂ is close to the function f .

As can be seen from the second representation, the mean integrated
square error is the sum of an integrated “variance term” and a“bias term”.
The mean integrated square error can be small only if both terms are small.
We shall show that the two terms are of the orders

1
nh

, and h4,

respectively. Then it follows that the variance and the bias terms are bal-
anced for (nh)−1 ∼ h4, which means an optimal choice of bandwidth equal
to h ∼ n−1/5.

Informally, these orders follow from simple Taylor expansions. For in-
stance, the bias of f̂(x) can be written

Ef f̂(x) − f(x) =
∫

1
h

K
(x − t

h

)
f(t) dt − f(x)

=
∫

K(y)
(
f(x − hy) − f(x)

)
dy,

by the substitution (x − t)/h = y. Developing f in a Taylor series around
x and remembering that

∫
yK(y) dy = 0, we see, informally, that this is
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equal to ∫
K(y)

(
−hyf ′(x) + 1

2 (−hy)2f ′′(x) + · · ·
)
dy

=
∫

y2K(y) dy 1
2h2f ′′(x) + · · · .

Thus, the square bias is of the order h4. The variance term can be handled
similarly. A precise theorem is as follows.

5.2 Theorem. Suppose that f is twice continuously differentiable with∫ ∣∣f ′′(x)
∣∣2 dx < ∞. Furthermore, suppose that

∫
|y|K2(y) dy is finite. Then

there exists a number Cf such that for small h > 0

MISEf (f̂) ≤ Cf (
1

nh
+ h4

)
.

Consequently, for hn ∼ n−1/5, we have MISEf (f̂) = O(n−4/5).

Proof. Since a kernel estimator is an average of n independent random
variables, the variance of f̂(x) is (1/n) times the variance of one term.
Hence

varf f̂(x) =
1
n

varf
1
h

K
(x − X1

h

)
≤ 1

nh2
EfK2

(x − X1

h

)

=
1

nh

∫
K2(y)f(x − hy) dy.

Take the integral with repect to x on both left and right sides. Since
∫

f(x−
hy) dx = 1 is the same for every value of hy, the right side reduces to
(nh)−1

∫
K2(y) dy, by Fubini’s theorem. (This asserts, among others, that

repeated integrals of a nonnegative, measurable function of several variables
does not depend on the order in which the integrals are computed.) This
concludes the proof for the variance term.

To upper bound the bias term we first write the bias Ef f̂(x)− f(x) in
the form as given preceding the statement of the theorem. Next we insert
the formula

f(x + h) − f(x) = hf ′(x) + h2

∫ 1

0
f ′′(x + sh)(1 − s) ds.

This is a Taylor expansion with the Laplacian representation of the remain-
der. We obtain

Ef f̂(x) − f(x) =
∫ ∫ 1

0
K(y)

[
−hyf ′(x) − (hy)2f ′′(x − shy)(1 − s)

]
ds dy.

Since the kernel K has mean zero by asumption, the first term inside
the square brackets can be deleted. Using the Cauchy-Schwarz inequal-
ity (EUV )2 ≤ EU2EV 2 on the variables U = Y and V = Y f ′′(x − ShY )
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for Y distributed with density K and S uniformly distributed on [0, 1] in-
dependent of Y , we see that the square of the bias is bounded above by

h4

∫
K(y)y2 dy

∫ ∫ 1

0
K(y)y2f ′′(x − shy)2 (1 − s)2 ds dy.

The integral of this with respect to x is bounded above by

h4
(∫

K(y)y2 dy
)2

∫
f ′′(x)2 dx

1
3
.

This concludes the derivation for the bias term.
The last assertion of the theorem is trivial.

The rate O(n−4/5) for the mean integrated square error is not impres-
sive if we compare it to the rate that could be achieved if we knew a-priori
that f belonged to some parametric family of densities fθ. Then, likely, we
would be able to estimate θ by an estimator such that θ̂ = θ + OP (n−1/2),
and we would expect

MISEfθ (fθ̂) =
∫

Eθ

(
fθ̂(x) − fθ(x)

)2
dx ∼ Eθ(θ̂ − θ)2 = O(n−1).

This is a factor n−1/5 smaller than the mean square error of a kernel esti-
mator.

At second thought this loss in efficiency is only a modest price. After
all the kernel estimator works for every density that is twice continuously
differentiable, while the parametric estimator will presumably fail miserably
when the true density does not belong to the postulated parametric model.

Moreover, the lost factor n−1/5 can be (almost) regained if we assume
that f has sufficiently many derivatives. Suppose that f is m times contin-
uously differentiable. Drop the condition that the kernel K is a probability
density, but use a kernel K such that

∫
K(y) dy = 1,

∫
yK(y) dy = 0, . . . . . ,

∫
ym−1K(y) dy = 0,

∫
|y|mK(y) dy < ∞,

∫
|y|K2(y) dy < ∞.

Then, by the same arguments as before, the bias term can be expanded in
the form

Ef f̂(x) − f(x) =
∫

K(y)
(
f(x − hy) − f(x)

)
dy

=
∫

K(y)
1
m!

hmymf (m)(x) dy + · · ·

Thus the square bias is of the order h2m and the bias-variance trade-off
(nh)−1 ∼ h2m is solved for h ∼ n1/(2m+1). This leads to a mean square
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error of the order n−2m/(2m+1), which approaches the “parametric rate”
n−1 as m → ∞. This argument is made precise in the following theorem,
whose proof proceeds as before.

5.3 Theorem. Suppose that f is m times continuously differentiable with∫ ∣∣f (m)(x)
∣∣2 dx < ∞. Then there exists a number Cf such that for small

h > 0

MISEf (f̂) ≤ Cf (
1

nh
+ h2m

)
.

Consequently, for hn ∼ n−1/(2m+1), we have MISEf (f̂) = O(n−2m/(2m+1)).

In principle it might be possible that the slower rate of convergence of
a kernel estimator could be improved by using another type of estimator.
This is not the case. The rate n−4/5 or n−2m/(2m+1) is best possible as soon
as we require that the estimator should work for a nonparametric model.
We shall make this precise in the following theorem, which we state without
proof.

First we note that the constants Cf in the preceding theorems are
uniformly bounded in f such that

∫ ∣∣f (m)(x)
∣∣2 dx is uniformly bounded.

We can see this from inspecting the proof more closely. Thus, letting Fm,M

be the class of all probability densities such that this quantity is bounded
by M , there exists a constant Cm,M , depending on m and M only, such
that the kernel estimator with bandwidth hn = n−1/(2m+1) satisfies

sup
f∈Fm,M

Ef

∫ (
f̂n(x) − f(x)

)2
dx ≤ Cm,M

( 1
n

)2m/(2m+1)
.

The following theorem shows that this upper bound is sharp, and the kernel
estimator optimal, in that the maximum risk on the left side is bounded
below by a similar expression for every density estimator f̂n, for every fixed
m and M . The proof is omitted.

5.4 Theorem. There exists a constant Dm,M such that for any density

estimator f̂n

sup
f∈Fm,M

Ef

∫ (
f̂n(x) − f(x)

)2
dx ≥ Dm,M

( 1
n

)2m/(2m+1)
.
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Problems

1. Show that the distribution of the Kolmogorov-Smirnov statistic is the same
for every continuous distribution function F .

2. Let X1, . . . , Xn be a random sample from some arbitrary distribution P . What
is the natural nonparametric estimate for P (B) for some fixed set B?

3. Suppose that X1, . . . , Xn is a random sample from the normal distribution
with variance 1. Compare the asymptotic variance of the estimators Fn(t) and
Φ(t − X̄n) of P(X1 ≤ t).

4. Suppose that Xn ! X for a limit X with a continuous distribution function.
Show that supx

∣∣P(Xn ≤ x) − P(X ≤ x)
∣∣ → 0.

5. Show, informally, that under sufficient regularity conditions, the mean inte-
grated square error of a kernel estimator f̂n with bandwidth h satisfies

MISEf (f̂) ∼ 1
nh

∫
K2(y) dy + 1

4h4

∫
f ′′(x)2 dx

(∫
y2 K(y) dy

)2

.

What does this imply for an optimal choice of the bandwidth?

6. Let X1, . . . , Xn be a random sample from the normal distribution with variance
1. Calculate the mean square error of the estimator φ(x− X̄n) of the common
density.



6
Appendix:
Some Probability Theory

A probability space (Ω,U , P) consists of an arbitrary set Ω, a σ-field U and
a probability measure P. A σ-field is a collection of subsets (called ‘events’)
that is closed under taking countable unions and taking complements, and
contains the empty set. A probability measure is a map P:U → [0, 1] with
the properties:
(i) P(∅) = 0 and P(Ω) = 1;
(ii) if A1, A2, . . . is a sequence of pairwise disjoint sets, then P(∪iAi) =∑

i P(Ai).
Two important consequences of the preceding axiomas for probabilities are
the monotone convergence theorems for probabilities.

6.1 Lemma.
(i) if A1 ⊂ A2 ⊂ · · ·, then P(Ai) ↑ P(∪iAi);
(ii) if A1 ⊃ A2 ⊃ · · ·, then P(Ai) ↓ P(∩iAi).

In statistics we rarely explicitly mention or construct an underlying
probability space, but we formulate results in terms of random variables and
random vectors. A random variable X is a map X : Ω → R such that the set
{X ≤ x} (which is shorthand for

{
ω: X(ω) ≤ x

}
) is contained in U for every

x ∈ R. A random vector with values in Rk is a vector X = (X1, . . . , Xk) of
random variables. The condition that the sets {X ≤ x} are contained in U
is referred as the (Borel-) measurability of X . It allows us to talk about the
probabilities P(X ≤ x).

The distribution function of X is the map x → P(X ≤ x). We use
this definition for vectors and variables alike, where in the case of a vector
the inequality X ≤ x is understood coordinate-wise: X ≤ x if and only if
Xi ≤ xi for every i.

6.2 Lemma. A function F : R → [0, 1] is a distribution function of some
random variable iff both
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(i) F is nondecreasing and right continuous;
(ii) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

The necessity of (i)–(ii) can easily be derived from the axiomas for
probabilities. That every function F that satisfies (i)–(ii) is the distribution
function of some random variable is harder to see, but is proved in measure
theory.

The properties of a distribution function in higher dimensions are some-
what more complicated.

We call two random vectors X and Y equal in distribution if they
have the same distribution function. In other words, X and Y are equal
in distribution if and only if the probabilities of the events {X ∈ B} and
{Y ∈ B} are equal for every set of the form B = (−∞, b]. The special
role given here to the “lower corners” (−∞, b] is odd and not necessary: we
automatically have equality for almost all sets B. This is recorded in the
following lemma (i)–(ii), together with two other characterizations.

The collection of Borel sets in Rk is defined as the smallest σ-field that
contains all sets of the form (−∞, b]. This is a very large collection of sets
and {X ∈ B} can be shown to be an event for every random vector X and
every Borel set B. It is difficult to construct sets that are not Borel sets.

6.3 Lemma. The following statements are equivalent for every pair of ran-
dom vectors X and Y :
(i) P(X ≤ b) = P(Y ≤ b) for every b ∈ Rk;
(ii) P(X ∈ B) = P(Y ∈ B) for every Borel set B;
(iii) P(aT X ≤ b) = P(aT Y ≤ b) for every a ∈ Rk and b ∈ R.

In measure theory the expectation is defined for every nonnegative ran-
dom variable, and for every random variable whose absolute value has finite
expectation. Usually it is sufficient to know the definition for discrete and
continuous variables. If X is discrete, or continuous with density f , then

EX =
∑

x

xP(X = x), or EX =
∫

xf(x) dx.

Some important properties of expectations are given in the following lemma.

6.4 Lemma. For any random variables X and Y whose expectations exist,
(i) E(aX + bY ) = aEX + bEY ;
(ii) if X ≤ Y , then EX ≤ EY ;
(iii) |EX | ≤ E|X |.

Proof. Part (i) is a known result. For (ii) we first infer directly from the
definition of expectation that Y − X ≥ 0 implies that E(Y − X) ≥ 0. This
implies EY ≥ EX by (i). For (iii) first note that X ≤ |X | and −X ≤ |X |.
Next apply (ii).
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If X : Ω → Rk is a random vector and g: Rk → Rm a given function,
then g(X): Ω → Rm is, by the definition given previously, a random vector
if

{
g(X) ≤ y

}
∈ U for every y. This is true for most maps g, but not

necessarily true for every map g. A map such that g(X) is a random vector
whenever X is a random vector, is called measurable.
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Woordenlijst

σ-field sigma-algebra
almost surely bijna zeker
asymptotically consistent asymptotisch consistent
asymptotically efficient asymptotisch efficiënt
bandwidth bandbreedte
Borel sets Borel verzameling
bounded in probability begrensd in kans
Brownian bridge Brownse brug
Cauchy likelihood Cauchy aannemelijkheidsfunctie
central limit theorem centrale limietstelling
central moments centrale momenten
chisquare distribution chikwadraat verdeling
confidence interval betrouwbaarheidsinterval
continuous mapping continue afbeelding
converge almost surely convergeert bijna zeker
converge in distribution convergeert in verdeling
converge in probability convergeert in kans
convergence in law convergeert in verdeling
correlation correlatie
covariance matrix covaraintie matrix
defective distribution function defectieve verdelingsfunctie
differentiable differentieerbaar
distribution function verdelingsfunctie
domination condition dominerings voorwaarde
empirical distribution empirische verdeling
empirical distribution function empirische verdelingsfunctie
empirical process empirisch proces
estimator schatter
equal in distribution gelijk verdeeld
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estimating equations schattingsvergelijking
expectation verwachting
exponential family exponentiële familie
independence onafhankelijkheid
identifiable identificeerbaar
joint convergence simultane convergentie
joint distribution simultane verdeling
kernel kern
Kullback-Leibler divergence Kullback-Leibler divergentie
kurtosis kurtosis
Laplace transform Laplace getransformeerde
law of large numbers wet van de grote aantallen
level onbetrouwbaarheidsdrempel
location estimators locatie schatter
logistic regression logistische regressie
marginal convergence marginale convergentie
maximum likelihood estimator meest aannemelijke schatter
mean integrated square error verwachte geintegreerde kwadratische fout
measurability meetbaarheid
median mediaan
nonparametric model niet-parametrisch model
parametric model parametrisch model
probability measure kansverdeling
probability space kansruimte
quantile kwantiel
random variable stochastische grootheid
random vector stochastische vector
regression regressie
relative efficiency relatieve efficiëntie
robust statistics robuuste statistiek
sample correlation coefficient steekproefcorrelatie coefficiënt
sample variance steekproef variantie
score function score functie
sign-function tekenfunctie
skewness scheefheid
smoothing method gladstrijk methode
statistic statistiek
strong law of large numbers sterke wet van de grote aantallen
tight beperkt
uniformly tight uniform beperkt
weak convergence zwakke convergentie, convergentie in verdeling
weak law of large numbers zwakke wet van de grote aantallen
weighted linear regression gewogen lineaire regressie
window window


