

Asymptotic Statistics Mastermath stochastics

Re-sit exam

Date: Wednesday 17 January 2024

Time: 9.45-12.45h

Number of pages: 4 (including front page)

Number of questions: 3

Maximum number of points: 75

For each question is indicated how many points it is worth.

BEFORE YOU START

- Check if your version of the exam is complete.
- Write down your name, student ID number, and if applicable the version number on each sheet that you hand in. Also number the pages.
- Your mobile phone has to be switched off and be put in your coat or bag.
 Your coat and bag should be on the ground.
- Upper-right of first page Write: Name + University + page-nr. on EVERY page

PRACTICAL MATTERS

- The first 30 minutes you are not allowed to leave the room, not even to visit the toilet.
- 15 minutes before the end, you will be warned that the time to hand in is approaching.
- If applicable, fill out the evaluation form at the end of the exam.
- You are obliged to identify yourself at the request of the examiner (or his representative) with a proof of your registration and a valid ID.
- During the examination it is not permitted to visit the toilet, unless the invigilator gives permission to do so.

Good luck!

Problem 1 (Two estimators for the Poisson parameter)

Let X_1, X_2, \ldots be an *i.i.d.* sample from a Poisson distribution with parameter $\lambda > 0$. That means that,

$$P(X_i = k) = \frac{e^{-\lambda} \lambda^k}{k!},$$

for all $i \geq 1, k \geq 0$. Define two sequences of statistics (T_n) and (S_n) as follows:

$$S_n = \frac{1}{n} \sum_{i=1}^n 1\{X_i = 0\}, \quad T_n = \frac{1}{n} \sum_{i=1}^n 1\{X_i = 1\},$$

- a. (5 points) Show that $\log(1/S_n)$ and T_n/S_n are consistent estimators for the parameter λ .
- b. (5 points) Show that $\hat{\lambda}_1 = \log(1/S_n)$ is asymptotically normal and give the limit distribution.
- c. (5 points) Show that $\hat{\lambda}_2=T_n/S_n$ is asymptotically normal and give the limit distribution.
- d. (5 points)

 Describe what the relative efficiency of two estimator sequences signifies (e.g. through sample sizes). Based on your answers at parts b. and c., calculate the relative efficiency of $\hat{\lambda}_1$ and $\hat{\lambda}_2$.

Problem 2 (A transformed exponential distribution)

Let X_1,X_2,\ldots be *i.i.d.* non-negative real-valued random variables with single-observation distribution P_{μ_0} and Lebesgue density $p_{\mu_0}:\mathbb{R}\to[0,\infty)$ for some $\mu_0>0$, with $p_{\mu}(x)=0$ for x<0, and

$$p_{\mu}(x) = 2\mu x e^{-\mu x^2},$$

for $x \ge 0$ and $\mu > 0$. A change of variables $Z = X^2$ leads to $Z \sim \mathsf{Exp}(\mu)$.

Hint: you may use the following integrals,

$$\int_0^\infty x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}, \int x^3 e^{-x^2} dx = -\frac{e^{-x^2}(x^2+1)}{2} + C, \int x^5 e^{-x^2} dx = -\frac{e^{-x^2}(x^4+2x^2+2)}{2} + C,$$

a. (5 points)

Find the maximum-likelihood estimator $\hat{\mu}_n$ for μ_0 based on the first n sample points X_1, \ldots, X_n .

b. (5 points)

Calculate the expectation $E_{\mu}X_1^2$ of the second moment for a single observation and show that $\hat{\mu}_n$ is a consistent estimator sequence for μ_0 .

c. (5 points)

Calculate the Fisher information I_μ for a single observation X_1 , show that $\mu\mapsto I_\mu$ is continuous and that $I_\mu>0$ for all $\mu>0$.

d. (5 points)

Show that, for any x>0, the map $\mu\mapsto \log p_\mu(x)$ is Lipschitz in a neighbourhood of μ_0 . In other words, prove that for some $\epsilon>0$ and any $\mu_1,\mu_2>0$ such that $|\mu_1-\mu_0|<\epsilon$ and $|\mu_2-\mu_0|<\epsilon$,

$$\left|\log p_{\mu_1}(x) - \log p_{\mu_2}(x)\right| \le \dot{\ell}(x)|\mu_1 - \mu_2|,$$

for some measurable function $\dot{\ell}:\mathbb{R}\to\mathbb{R}$ such that $E_{\mu_0}\dot{\ell}^2<\infty.$

Hint: for any $\mu_1, \mu_2 \ge \mu > 0$, we have $|\log \mu_1 - \log \mu_2| \le |\mu_1 - \mu_2|/\mu$.

e. (5 points)

State a theorem from the lecture notes and use parts a.-d. to prove that $\sqrt{n}(\mu_n-\mu_0)$ is asymptotically normal under P_{μ_0} . Give the variance of the limit distribution.

The moment estimator for μ_0 is,

$$\tilde{\mu}_n = \frac{\pi}{4} \left(\frac{1}{\overline{X}_n} \right)^2,$$

where \overline{X}_n denotes the sample average.

f. (5 points)

Use the delta rule to find the limit distribution for $\sqrt{n}(\tilde{\mu}_n - \mu_0)$.

Problem 3 (Domain boundary estimation)

Let Y_1,Y_2,\ldots be an *i.i.d.* sample from the uniform distribution P_θ on $[0,\theta]$, for some $\theta>0$. The distribution function for $X\sim U[0,1]$ is given by $P(X\leq 0)=0$, $P(X\leq x)=x$, $(0< x\leq 1)$, $P(X\leq 1)=1$. Denote the maximum of the first n observations by $Y_{(n)}=\max\{Y_1,\ldots,Y_n\}$. (Hint: in the problem, you may use that $(1+a/n)^n\to e^a$ as $n\to\infty$, for any $a\in\mathbb{R}$.)

- a. (5 points) Given $n \geq 1$, find the maximum-likelihood estimator $\hat{\theta}_n$ for θ , based on the first n observations.
- b. (5 points) Show that, for given $n \ge 1$ and θ , the distribution function of satisfies,

$$P(Y_{(n)} \le x) = \left(\frac{x}{\theta}\right)^n,$$

for all $0 < x \le \theta$.

- c. (5 points) Show that $\hat{\theta}_n$ is consistent for estimation of θ .
- d. (5 points) Show that $n(\theta \hat{\theta}_n)$ converges weakly and give the limit distribution.

Given any estimators $\tilde{\theta}_n$ for the parameter θ , define the bias Δ_n of $\tilde{\theta}_n$ by the $(\theta$ -dependent) expectation $\Delta_n = P_{\theta}^n(\tilde{\theta}_n - \theta)$.

e. (5 points) For every $n \geq 1$, give the bias Δ_n of $\hat{\theta}_n$. Find a real-valued sequence (a_n) such that the bias of the estimators $a_n\hat{\theta}_n$ is exactly zero.