

Asymptotic Statistics Mastermath stochastics

Mid-term exam Date: Wednesday 25 October 2023 Time: 10.00–12.00

Number of pages: 3 (including front page) Number of questions: 2 Maximum number of points: 60 For each question is indicated how many points it is worth.

BEFORE YOU START

- Check if your version of the exam is complete.
- Write down your name, student ID number, and if applicable the version number on each sheet that you hand in. Also number the pages.
- Your **mobile phone** has to be switched off and be put in your coat or bag. Your **coat and bag** should be on the ground.
- Upper-right of first page Write: Name + University + page-nr. on EVERY page

PRACTICAL MATTERS

- The first 30 minutes you are not allowed to leave the room, not even to visit the toilet.
- 15 minutes before the end, you will be warned that the time to hand in is approaching.
- If applicable, fill out the evaluation form at the end of the exam.
- You are obliged to identify yourself at the request of the examiner (or his representative) with a proof of your registration and a valid ID.
- During the examination it is not permitted to visit the toilet, unless the invigilator gives permission to do so.

36 3	30	20	36	ж.	ж.	ж.	ж.	ж.	ж.	-	-	-	-	-	-		*	ж.	ж							
: :	11	×	ж	ж	×	ж	×	ж	×	ж	ж	ж	ж	ж	ж	ж	ж	ж	×	ж	ж	×	×	ж	ж	ж
: :	к	×	ж	ж	ж	ж	×	ж	×	ж	×	×	×	×	×	ж	×	×	×	ж	ж	×	×	ж	ж	ж
	к	×	ж	ж	ж	ж	×	ж	×	ж	ж	×	×	×	×	×	×	×	×	ж	ж	×	×	ж	ж	×
	11	×	ж	ж	ж	ж	×	ж	×	ж	×	×	×	×	×	×	×	×	×	ж	×	ж	×	ж	ж	ж
	10	ж	ж	ж	ж	×	×	ж	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	ж	×	ж
	30	20	ж	ж	ж	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	ж	ж	×
	20	20	×	ж	×	×	×	ж	×	×	×	×	×	×	×	×	×	×	×	×	ж	×	×	ж	×	ж

Problem 1 (Binomials weakly converging to Poisson)

Let N denote the set of all non-negative integers $\{0, 1, 2, 3, ...\}$ and let $X, X_1, X_2, ...$ denote random variables taking values in N.

a. (15 points)

Show that $X_n \rightsquigarrow X$, if and only if, $P(X_n = x) \rightarrow P(X = x)$ for each $x \in N$, as $n \rightarrow \infty$.

Recall that for $Y \sim Bin(m, p)$ and $Z \sim Poisson(\lambda)$,

$$P(Y=x) = \binom{m}{x} p^x (1-p)^{m-x}, \qquad P(Z=x) = \frac{e^{-\lambda} \lambda^x}{x!},$$

give the densities with respect to the counting measure on N.

b. (15 points)

Assume that $X_n \sim Bin(n, p_n)$ with $p_n \in [0, 1]$ for all $n \ge 1$. Show that if, for some constant $\lambda > 0$, $n p_n \to \lambda$ as $n \to \infty$, then the sequence (X_n) converges weakly to $Poisson(\lambda)$.

Hint: In your calculation of $P(X_n = x)$, use Stirling's approximation for the factorials n! and (n - x)!:

$$\frac{k!}{\sqrt{2\pi k}} \left(\frac{k}{e}\right)^{-k} \to 1,$$

as $k \to \infty$.

32	31	ж	30	ж	ж	ж	ж	×	×	ж	×	ж	ж	×	ж	ж	ж	×	×	ж	ж	×	×	ж	ж	ж
11	31	ж.	30	ж	×	ж	ж	ж	×	ж	×	ж	ж	×	×	×	×	×	×	ж	×	ж	×	ж	ж	ж
31	×	30	ж	ж	ж	ж	×	ж	×	ж	×	×	×	×	×	×	×	×	×	×	×	×	×	ж	×	ж
11	×	30	ж	ж	ж	ж	×	ж	×	×	×	×	×	×	×	×	×	×	×	×	×	ж	×	ж	×	ж
11	×	30	ж	ж	ж	ж	×	ж	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	ж	×	ж
22	ж	ж	ж	ж	ж	ж	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	ж
2	22	30	ж	ж	ж	ж	×	ж	×	×	×	×	×	×	×	×	×	×	×	ж	×	×	×	ж	ж	ж
22	22	ж	ж	ж	×	ж	×	ж	×	×	×	×	×	×	×	×	×	×	×	×	×	ж	×	×	ж	30

Problem 2 (Uniform integrability)

Let (X_n) be a sequence of random variables and let X be a random variable. Recall that X_n converges to X in probability (notation: $X_n \xrightarrow{P} X$), if for every $\epsilon > 0$, $P(|X_n - X| > \epsilon) \to 0$ as $n \to \infty$. For random variables (X_n) and X that are integrable, we define another form of stochastic convergence as follows: X_n converges to X in expectation (or in $L_1(P)$, notation: $X_n \xrightarrow{L_1} X$), if $E|X_n - X| \to 0$ as $n \to \infty$.

- a. (10 punten) Show that if $X_n \xrightarrow{L_1} X$, then also $X_n \xrightarrow{P} X$.
- b. (5 punten)

Construct an example of a sequence (X_n) and a limiting random variable X such that $X_n \xrightarrow{P} X$, but not $X_n \xrightarrow{L_1} X$.

c. (5 punten)

Suppose that $X_n \xrightarrow{P} X$ and prove that if there exist constants M > 0 and $N \ge 1$ such that for all $n \ge N$, $P(|X_n| \le M) = 1$, then $X_n \xrightarrow{L_1} X$.

From the above, it is clear that convergence in expectation implies convergence in probability but the converse is not true in general. The converse *does* hold under the sufficient condition of part *c*.. The question arises whether a sharp extra condition exists, *i.e.* a condition that is not just sufficient but also necessary for convergence in expectation (when combined with convergence in probability). We say that the sequence (X_n) is *uniformly integrable*, if

$$\lim_{M \to \infty} \sup_{n \ge 1} E|X_n| \mathbb{1}\{|X_n| > M\} = 0.$$

d. (5 punten)

Show that if (X_n) is uniformly integrable and $X_n \xrightarrow{P} X$, then $X_n \xrightarrow{L_1} X$.

e. (5 punten) Show that if $X_n \xrightarrow{L_1} X$, then (X_n) is uniformly integrable.

Remark: the above constitutes a proof that $X_n \xrightarrow{L_1} X$, if and only if $X_n \xrightarrow{P} X$ and (X_n) is uniformly integrable.

35	22	20	36	ж	ж	ж	ж	ж	ж	ж	ж	ж	×	×	: *		: *	*	ж	ж	ж	ж	ж	ж	ж	ж
22	ж	30	ж	ж	ж	ж	ж	ж	ж	ж	×	ж	ж			: 34	: 33	*	ж	ж	ж	ж	×	ж	×	ж
22	ж	30	ж	ж	ж	ж	ж	×	ж	ж	×	ж	×					*	×	ж	×	ж	×	ж	×	ж
11	ж	30	ж	ж	ж	ж	ж	ж	ж	ж	×	ж	×					*	×	ж	×	ж	×	ж	×	ж
11	ж	30	ж	ж	ж	ж	ж	ж	ж	ж	×	ж	×					: *	×	ж	×	ж	×	ж	×	×
22	22	×	ж	ж	ж	×	×	×	ж	×	×	×	×					*	×	×	×	ж	×	×	ж	ж
22	ж	30	ж	ж	ж	ж	×	×	ж	×	×	×	×					: *	×	ж	×	×	×	×	×	×
22	32		ж	ж	ж	×	×	×	×	×	×	×	×					: *	×	×	×	×	×	×	×	ж