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Part I
The Bourbaki-Prokhorov-Schwartz theorem



Daniell-Kolmogorov existence theorem (I)

Setting

Let X be a Polish space. To define a random function f : X →
R, consider all finite subsets S = {s1, . . . , sn} of X , and probability

distributions ΠS such that,

fS =
(
f(s1), f(s2), . . . , f(sn)

)
∼ ΠS.

Consistency

for any S′ ⊂ S, ΠS′ is marginal to ΠS;

for any permutation π of S, Ππ(S) = ΠS ◦ π−1.

Theorem 3.1 (Daniell, 1922; Kolmogorov, 1933)

For any consistent collection (ΠS : S ⊂ X ), there exists a probability

space (Ω,F ,Π) that permits (f(x) : x ∈X ) as a stochastic process.
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Daniell-Kolmogorov existence theorem (II)

Advantages

THE tool to prove existence of stochastic processes

ΠS are easy to work with

Properties of ΠS induce properties of Π

Example (Kolmogorov’s continuity theorem)

If there exist α, β > 0 such that, for any S and any s, t ∈ S,

EΠS

∣∣∣f(s)− f(t)
∣∣∣α ≤ K|s− t|1+β,

then f is γ-Hölder continuous for any 0 < γ < β/α.

Disadvantage

Ω = RX and F is Borel σ-algebra for pointwise convergence
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Random histograms
Specify

Let X be a Hausdorff space with Borel σ-algebra B. To define

a random measure µ : B → R, consider finite partitions α =

{A1, . . . , An} of X , (A ∈ B, A 6= ∅), and probability distributions

Πα such that,

µα =
(
µ(A1), µ(A2), . . . , µ(An)

)
∼ Πα.

Coherence
For any β ≥ α, with µβ ∼ Πβ,( ∑

B⊂A1

µβ(B), . . . ,
∑

B⊂An
µβ(B)

)
∼ Πα.

Goal
Under which conditions does a coherent system of random his-

tograms define a probability distribution Π on the space M(X )

where the µ live?
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The Bourbaki-Prokhorov-Schwartz theorem (I)

Theorem 6.1 (Bourbaki (1969), Integration II, Ch. 9)

Let (Yα, ψαβ) be an inverse system of Hausdorff spaces, T a

Hausdorff space and ψα : T → Yα a coherent and separating

family of continuous mappings.

Let (µα, ψαβ) be a coherent inverse system of positive mea-

sures on (Yα, ψαβ). There exists a bounded positive Radon

measure µ on T projecting to µα for all α, if and only if,

for every ε > 0, there is a compact H ⊂ T s.t. for all α,

µα
(
Yα \ ψα(H)

)
≤ ε.
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The Bourbaki-Prokhorov-Schwartz theorem (II)

Setting

Let X be Hausdorff with Borel σ-algebra B. Choose T = M1(X ),

with a Hausdorff topology that we focus on later.

Projections

For all α = {A1, . . . , An}, define histogram projections,

ϕ∗α : M1(X )→M1(Xα) : P 7→ Pα =
(
P (A1), P (A2), . . . , P (An)

)
,

and maps to coarsen histograms, for β ≥ α,

ϕ∗αβ : M1(Xβ)→M1(Xα) : Pβ 7→
( ∑
B⊂A1

Pβ(B), . . . ,
∑

B⊂An
Pβ(B)

)
.

(ϕ∗α = ϕ∗αβ ◦ϕ∗β, (α ≤ β), and ϕ∗αγ = ϕ∗αβ ◦ϕ∗βγ, (α ≤ β ≤ γ).)
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The Bourbaki-Prokhorov-Schwartz theorem (III)

Coherence and random histograms

For any α, choose a probability distribution Πα ∈M1(Xα) s.t., for

all β ≥ α,

Πβ ◦ ϕ−1
∗αβ = Πα.

Bourbaki-Prokhorov-Schwartz

Assume that the histogram projections ϕ∗,α are separating and

continuous. Choose Πα that form a coherent system of probability

measures. There exists a Radon probability measure Π on M1(X ),

projecting to Πα for all α, if and only if:

for any ε > 0, there is a compact H ⊂M1(X ) s.t. for all α,

Πα

(
M1(Xα) \ ϕ∗α(H)

)
< ε. (P)
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Part II
Phases of random histogram limits



Histogram limits with the weak topology (I)

Weak topology

Consider M1(X ) with the coarsest topology TW s.t.,

M1(X )→ R : P 7→
∫
f dP ,

is continuous for every bounded, measurable f : X → R.

Dunford-Pettis-Grothendieck

H ⊂ M1(X ) is weakly compact, if and only if, there exists a

Q ∈M1(X ) s.t.,

lim
L→∞

sup
P∈H

∥∥∥P − P ∧ LQ∥∥∥ = 0.
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Histogram limits with the weak topology (II)

Support of a TW -Radon probability measure Π

With G =
∫
P dΠ ∈M1(X ), (the mean measure of Π),

suppW (Π) ⊂
{
P ∈M1(X ) : P � G

}
.

Such Π describe random Radon-Nikodym densities dP/dG ∈ L1(G).

Theorem 11.1 (Existence of weak histogram limits)

Let Πα be coherent probability measures. There is a TW -Radon prob-

ability measure Π on M1(X ) projecting to Πα for all α, if and only

if:

there is a Q ∈M1(X ) s.t., for every ε, δ > 0 there is a L > 0 s.t.,

Πα

(
{Pα ∈M1(Xα) : ‖Pα − Pα ∧ LQα‖1,Xα

> δ}
)
< ε, (PW)

for all α ∈ A .
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Random histogram limits with the TV topology

Total variational topology

Consider M1(X ) with the total-variational metric,

dTV (P,Q) = sup
B∈B

|P (B)−Q(B)|,

and call the metric topology TTV .

Borel σ-algebras are the same!

If X is separable and P is dominated, BW = BTV .

Theorem 12.1 (Existence of total-variational histogram limits)

Let Πα be coherent probability measures. There is a TTV -Radon

probability measure Π on M1(X ) projecting to Πα for all α, if and

only if, condition (PW) holds.
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Random histogram limits with the tight topology (I)

Tight topology

Consider M1(X ) with the coarsest topology TT s.t.,

M1(X )→ R : P 7→
∫
f dP ,

is continuous for every bounded, continuous f : X → R.

Prokhorov

Let X be Polish. H ⊂ M1(X ) is tightly compact, if and only if,

for all ε > 0, there is a compact K ⊂X s.t.,

sup
P∈H

P (X \K) < ε,

On H inner regularity holds uniformly.

Continuity of projections

The mappings P 7→ P (A) are not continuous! So the histogram

projections ϕ∗α are not continuous...
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Random histogram limits with the tight topology (I)

Continuity of projections

To make P 7→ P (A) continuous for all A in all α, we consider a

zero-dimensional refinement Y of X .

Tight topology

Consider M1(Y ) with the coarsest topology TT s.t.,

M1(Y )→ R : P 7→
∫
f dP ,

is continuous for every bounded, continuous f : Y → R.

Prokhorov

Let Y be Polish. H ⊂ M1(Y ) is tightly compact, if and only if,

for all ε > 0, there is a compact K̂ ⊂ Y s.t.,

sup
P∈H

P (Y \ K̂) < ε,

On H inner regularity holds uniformly.
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Random histogram limits with the tight topology (II)

Support of a TT -Radon probability measure Π

With G again the mean measure of Π,

suppT (Π) ⊂
{
P ∈M1(X ) : supp(P ) ⊂ supp(G)

}
.

Such Π are not limited to Radon-Nikodym densities in L1(G).

Theorem 15.1 (Existence of tight histogram limits)

Let Πα be coherent probability measures. There is a TT -Radon prob-

ability measure Π on M1(X ) projecting to Πα for all α, if and only

if:

for all ε, δ > 0 there is a compact K̂ in Y s.t.,

Πα

(
{Pα ∈M1(Xα) : Pα(Xα \ K̂α) > δ

)
< ε, (PT)

for all α ∈ A .
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Random histogram limits on compactifications

Compactification

If (PT) does not hold, Y needs more points

Stone-Čech compactification

compact Hausdorff Y̌ , i : Y → Y̌ continuous, injective, dense

Partitions α of Y̌ have histograms of i−1(α)

Condition (PT) and theorem 15.1 hold (K̂ = Y̌ )

Theorem 16.1 (Existence of histogram limits on compactifications)

Let Πα be coherent probability measures. There is a TT -Radon prob-

ability measure Π on M1(Y̌ ) projecting to Πα for all α.
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Kingman’s completely random measures

Completely random histograms

If Ai ∩Aj = ∅, then ν(Ai), ν(Aj) are independent

Cumulants

The positive measures λt : B → [0,∞] defined by,

λt(B) = log
∫
etν(B) dΠ(ν).

Theorem 17.1 (Kingman, 1967)

If all histograms are completely random and cumulants σ-finite,

ν = νn + νf + νr, (1)

where,
νn is non-random, non-atomic

νf is random purely atomic on a fixed X ′ ⊂X

νr is random purely atomic, independent of νr
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Phases of random histogram limits (I)

Theorem 18.1 (Phases of random histogram limits)

Let Πα be a system of histogram distributions with a limit Π.

(i.) (absolutely-continuous)

Under condition (PW), the random P lies in L1(G):

Π
(
{P ∈M1(X ) : P � G}

)
= 1.

(ii.) (fixed-atomic)

if, in addition, the Πα are (normalized) completely random,

P (A) = Z−1(νn(A) + νf(A)), Z = νn(X ) + νf(X ).

with νn � G non-random, non-atomic and νf random atomic,

supported on a fixed set.
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Phases of random histogram limits (II)

Theorem 18.1 (continued)

If X is Polish,

(iii.) (continuous-singular)

Under condition (PT), random P has support in support of G,

Π
(
{P ∈M1(X ) : supp(P ) ⊂ supp(G)}

)
= 1.

(iv.) (random-atomic)

if, in addition, histograms are (normalized) completely random,

P (A) = Z−1(νn(A) + νf(A) + νr(A)).

with νr atomic, supported on a random set.
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Phases of random histogram limits (III)

Theorem 18.1 (continued)

If X is Polish, Y̌ is compact Hausdorff, Ǧ ∈M1(Y̌ )

(iii.) (compact-singular)

Random P has support in support of Ǧ,

Π
(
{P ∈M1(X ) : supp(P ) ⊂ supp(Ǧ)}

)
= 1.

(iv.) (compact-atomic)

if, in addition, histograms are (normalized) completely random,

P (A) = Z−1(νn(A) + νf(A) + νr(A)).

with νr atomic, supported on a random set.
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Part III
Applications



Dirichlet histogram systems

Definition 22.1 (Dirichlet distribution)

A p = (p1, . . . , pk) pl ≥ 0 and
∑
l pl = 1 is Dirichlet distributed with

parameter ν = (ν1, . . . , νk), p ∼ Dν, if it has density

fν(p) = C(ν)
k∏
l=1

p
νl−1
l

Definition 22.2 (Dirichlet process, Ferguson 1973,1974)

Let X be Polish and let ν be a bounded positive Borel measure on

(X ,B). The Dirichlet histogram system is defined by,(
P (A1), . . . , P (AN)

)
∼ Dirν,α = D(ν(A1),...,ν(AN)),

(for all finite Borel-measurable partitions α = {A1, . . . , AN} of X ).
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Existence and phases of Dirichlet histogram limits (I)

Dirichlet histograms normalized completely random

For independent, Gamma-distributed Zi ∼ Γ(νi,1), (1 ≤ i ≤ N),(
Z1

S
, . . . ,

ZN
S

)
∼ D(ν1,...,νN)

where S = Z1 + . . .+ ZN .

Mean measure condition (Orbanz, 2011)

if the histogram means Gα : σ(α)→ [0,1],

Gα(A) =
∫
M1(Xα)

Pα(A) dDirν,α(Pα),

together form a measure (on the ring R = ∪{σ(α) : α ∈ A }), then

there is a tight histogram limit Dirν.
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Existence and phases of Dirichlet histogram limits (II)

Theorem 24.1 Let X be a Polish space and let ν be a bounded,

positive Borel measure on X . Then there is a TT -Radon probability

measure Dirν on M1(X ) projecting to Dirν,α for all α, describing a

random probability measure in the random atomic phase.

Theorem 24.2 Let X be a Polish space and let ν be a bounded,

positive, purely atomic Borel measure on X . Then there is a TW -

Radon probability measure Dirν on M1(X ), projecting to Dirν,α for all

α, describing a random probability measure in the fixed-atomic phase.
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Pólya tree histogram systems (I)

Infinite splitting

A = {αm : m ≥ 1}.
Make αm+1 from αm, by splitting every A ∈ αm into two subsets

α0 = {X }, α1 = {A0, A1}, α2 = {A00, A01, A10, A11}, . . . ,

Binary sequence labels αm = {Aε : ε = e1 . . . em ∈ Em}.

Splitting variables

Parameters βε0, βε1 ≥ 0,

Define random Vε0 ∼ Beta(βε0, βε1) (and Vε1 = 1− Vε0),

If ε 6= ε′, Vε0 and Vε′0 are independent,

P (Aε0|Aε) = Vε0, (and P (Aε1|Aε) = Vε1)
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Pólya tree histogram systems (II)

Random histograms

Random Pαm = (Pα(Aε) : ε ∈ Em),

P (Aε) = Ve1Ve1e2 . . . Ve1...em =
m∏
l=1

Ve1...el

Pólya tree histogram distributions(
P (Aε) : ε ∈ Em

)
∼ Παm

Homogeneous Pólya tree histogram systems

Choose βm > 0 for all m ≥ 1, set βε = βm, for all ε ∈ Em.
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Existence of tight Pólya tree histogram limits

Pólya tree histogram systems on (0,1]

Let X = (0,1] and αm such that Aε = (l, u] for all ε ∈ Em, (m ≥ 1).

For all m ≥ 0, om = 0 . . .0 ∈ Em and ιm = 1 . . .1 ∈ Em

Theorem 27.1 There is a TT -Radon prob msr Polβ on M1((0,1])

projecting to Παm for all m ≥ 1, if and only if,∏
m≥0

βεom0

βεom0 + βεom1
= 0, (2)

for every ε ∈ E . Polβ describes a random probability measure in the

continuous-singular phase.

Dirichlet-Pólya tree histogram systems

if βε = βε0 + βε1 for every ε, then Παm = Dirν,αm. Such Παm

describe random probability measures in the random atomic phase.
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Existence of weak Pólya tree histogram limits

Theorem 28.1 Let X be Polish. For given β’s, there is a TW -Radon

probability measure Polβ on M1(X ) projecting to Παm for all m ≥ 1,

if,

sup
m≥1

∑
ε∈Em

m∏
l=1

1

βεl−10 + βεl−11

 βε̂
βεl−10 + βεl−11 + 1

+ βε

 <∞. (3)

where ε̂ denotes ε with the last digit flipped: ε̂ = εm−1(¬em). Polβ
describes a random probability measure in the absolutely continuous

phase.

Limits of homogeneous Pólya tree systems

If β−1
m = O(m−1), the homogeneous Pólya tree histogram system

has a weak limit. (Compare with β−1
m = O(m−2) (Kraft, 1964;

Ghosal, van der Vaart, 2017)).
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Gaussian histogram systems

Definition

(a) Let X be Polish; let A be resolving and generated by a basis

(b) Let λ be a bounded signed Radon measure on X

(c) Let Σ be a bounded signed Radon measure on X ×X , s.t.

(i) symmetry Σ(A×B) = Σ(B ×A) and,

(ii) For all α = {A1, . . . , Ak}, the k × k matrix Σα

Σα,ij = Σ(Ai ×Aj),

is positive semi-definite

(d) Define random elements of M(Xα) by,(
Φα(A1), . . . ,Φα(Ak)

)
∼ Nk

(
λα,Σα

)
= Πλ,Σ,α,

(Nk(λ,Σ) denotes the multivariate normal distribution on Rk).
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The mean positive measure

Zero-mean Gaussian histograms

If Π0,Σ,α has a limit ΠΣ, then Πλ,Σ,α has a limit Πλ,Σ:

Πλ,Σ(B) = ΠΣ(B − λ).

Mean positive G

Given zero-mean Gaussian Φα ∼ Π0,Σ,α, the random positive mea-

sure |Φα| : σ(α)→ [0,∞) has a mean,

σα(A) =
∫
M(Xα)

|Φα|(A) dΠ0,Σ,α(Φα) =
√

2

π

∑
Ai⊂A

√
Σα,ii

Define the set-function σ : R → [0,∞),

σ(A) = sup
{
σα(A) : α ∈ A

}
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Tight and weak Gaussian histogram limits

Theorem 31.1 (Weak and tight Gaussian histogram limits)

Consider Φα ∼ Π0,Σ,α based on Σ ∈ M(X ×X ). Assume that σ is a

positive, locally bounded measure.

If σ is bounded (e.g. when X is compact) then there is a TW -

Radon limiting prob msr ΠΣ on M(X ), describing a random signed

measure Φ in the absolutely continuous phase.

If σ is unbounded then there is a TT -Radon limiting prob msr

ΠΣ on M(X ), describing a random signed measure Φ in the

continuous-singular phase.

Theorem 31.2 (Compactified Gaussian histogram limits)

Consider Φα ∼ Π0,Σ,α based on Σ ∈M(X ×X ).

There is a TT -Radon limiting prob msr ΠΣ on M(Y̌ ), describing

a random signed measure Φ in the compact-singular phase.
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The Gaussian Free field in d dimensions

Gaussian free field in d dimensions

Compact X = K ⊂ Rd, µ = 0 and Σ∆,d(A×B) =
∫
A×BGd(x−y) dx dy

d = 1 GFF is random function (Wiener sample path)

Theorem 31.1 works

The GFF is in the absolutely-continuous phase and we can write,

Φ(A) =
∫
A
W (t) dt.

The random RN density functions are Wiener sample paths

d ≥ 2 GFF is a random generalized function

Theorem 31.2 works (and theorem 31.1 does not).

The GFF is in the compact-singular phase and we can write,

Φ(A) =
∫
i−1(A)

φ(x) ddx

where φ is a random generalized function (on Y̌ )

32


