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Over the course of the past two decades the subject of non-parametric Bayesian statistics
has seen rapid development, enjoying widening scope and rising popularity. Driven also
by ever-increasing computational power and sophistication, applications and theory have
increased steadily, now to the point where one can speak of a true field within statistics.
A rough sub-division could be based on a (mostly purely Bayesian) sub-field focussed on
Bayesian modelling with process priors, a (mostly computer-science oriented) sub-field of
numerical /approximation methods for sampling of posterior distributions, and a (mostly
frequentist) sub-field that studies the large-sample behaviour of non-parametric posterior
distributions.

My work in those years has focussed on several subjects: model misspecification [TH2, 8,
9, 13] concerns the large-sample behaviour of posteriors for models that do not include
the distribution that generated the data. With my thesis advisor Aad van der Vaart,
minimax testing, posterior rates of convergence and the Bernstein-von Mises phenomenon
were studied. At UC Berkeley (with a TALENT grant from NWO), I worked with Peter
Bickel on a difficult subject, Efficiency of semi-parametric Bayesian estimation methods
[12, 16, 18], aimed at the formulation of a Bernstein-von Mises theorem in non-parametric
models where one is only interested in estimation of a functional, rather than the whole
distribution of the data. This work was later supported by a VENI grant from NWO and
continued with PhD-student Bartek Knapik [14]. Together with Yongdai Kim and PhD-
student Minwoo Chae, another follow-up concerned the Bernstein-von Mises phenomenon
in regression models with symmetric errors [18]. In a project with Aad van der Vaart and
PhD-student Stéphanie van der Pas, a Bayesian method for sparse variable selection with
the so-called horseshoe prior was studied [19].

Throughout, my personal interest has been focussed on large-sample concentration of
posterior distributions [8, 9, 12, 13, 15, 16, 19, 23, 27]: as the amount of available data
grows, one requires that posterior distributions become more informative by concentrating
a larger-and-larger fraction of posterior probability in smaller-and-smaller neighbourhoods
of the true distribution that generated the data. The centre piece of large-sample Bayesian
statistics has always been Lorraine Schwartz’s 1965 posterior consistency theorem, based
on the existence of test sequences and the use of so-called Kullback-Leibler priors. My
work on generalization of Schwartz’s conditions started with a detailed study of inconsis-
tent posteriors with Peter Bickel, Anthony Gamst and Ya’acov Ritov [15]. More direct
was a variation on Schwartz’s proof that merged the testing condition with the Kullback-
Leibler condition, conducted in collaboration with Yanyun Zhao! [19]. Definitive answers
are reached in [23], which combines a Bayesian variation on the test condition with a novel
form of Le Cam’s contiguity termed remote contiguity to replace the Kullback-Leibler con-
dition. This results in new and simpler frequentist consistency theorems for posteriors,
as well as consistent hypothesis-testing/model-selection with posterior odds and a general
identification of (enlarged) credible sets as frequentist confidence sets. Like contiguity,
the concept of remote contiguity is useful much more broadly and has already been used
by other authors. Based on the above, I have compiled a book on the frequentist theory
of Bayesian statistics [BK], which is in the final stages of writing and will be published



by Springer Verlag.

Besides these subjects in mathematical statistics, I have also worked on practical problems
involving real-world data: together with Peter Bickel and John Rice, I have worked on the
detection of periodicity in astronomical point-processes, to find signals of pulsars in high-
energy photon data collected by NASA’s satellite-borne EGRET gamma-ray detector.
This has resulted in publications in astrophysics journals [10, 11] and an NSEF AST grant.
Over the past four years I have worked with PhD-student Mike Derksen (in collaboration
with Robin de Vilder of hedge fund Deep Blue Capital NV) on asset price formation and
distributions for auction returns, based on a newly developed stochastic model for price
formation through supply-demand equilibria [20, 21], including a perspective on the origin
of heavy tails in distributions of daily returns [22]. (It is worth mentioning that both [11]
and [20] are considered A-journals in their respective disciplines.)

Motivated by great progress in machine learning, artificial intelligence, network science
and data science, trends in statistics over the past years have been directed towards com-
putational methods, emphasizing applications and methodology rather than theory. In
mathematical statistics there has been a corresponding shift towards numerical approx-
imation and a greater focus on increasingly detailed, model-specific calculations. For
mathematical statisticians with expertise on the very mathematical side of the spectrum
these developments have opened up possibilities on the intersections with probability the-
ory and pure mathematics. To be more specific, I believe that there are very real and
exciting opportunities to apply new ideas in probability theory and powerful methods
from functional analysis to modern questions in (mathematical) statistics, in data and
network science and in machine learning.

(a) Observed graph (b) Unobserved communities (¢) Community detection

Figure 1: A realisation of the stochastic block graph (Fig. 1(a)) with n = 12
vertices from two unobserved communities: vertices 1 through 6 belong to the
red community and vertices 6 through 12 to the blue (Fig. 1(b)). Community
detection (Fig. 1(c)) estimates the communities of Fig. 1(b), based on the pres-
ence or absence of edges in Fig. 1(a).

My present and future research is aimed at some of the resulting interdisciplinary niches.
To demonstrate with a concrete example, Jan van Waaij and I have considered the ques-
tion of community detection in the two-community version of the so-called stochastic
block model from network science: the observed data is a random graph in which edges
are present randomly with probabilities that depend on the (unobserved) communities of
the vertices that they connect; the statistical challenge is to recover the communities from
observation of the graph (see Fig. 1). Recovery of communities in this model is consid-
ered one of the central questions in network science and many recovery algorithms have



been proposed. Probabilists have analysed the lower bounds on edge sparsity required to
make recovery possible. With the methods of [23], van Waaij and I show that posteriors
recover the community structure consistently even in the most sparse graphs [24, 25, 26,
27], and more importantly, we construct exact confidence sets for community structure
from (enlarged) credible sets for finite graph sizes [27]. Finite-sample uncertainty quan-
tification in modern problems from machine learning and network science has remained
notoriously elusive so far, so the possibility to construct exact frequentist confidence sets
from (computationally far more accessible) Bayesian credible sets is a uniquely important
new tool from a methodological point of view. An NWO-ENW-M-1 proposal for a PhD
project to generalize the construction and explore this possibility further has been sub-
mitted. Although NWO'’s final decision will not be made until halfway April 2022, the
referee reports are unequivocally positive and supportive of the proposal.

Regarding the niche between pure mathematics and mathematical statistics, my efforts
are essentially based on Le Cam’s 1986 book. To read it, some basic understanding of the
version of functional analysis of Nicolas Bourbaki, Laurent Schwartz and Francois Treves
is required. Reading their works is a tremendous source of inspiration and has led to two
large projects so far: first is the answer to the question, which pairs of hypotheses are
asymptotically testable and which are not? [28]. A theorem of Lucien Le Cam and Lor-
raine Schwartz from 1960 enables the formulation of necessary and sufficient topological
conditions for the existence of test sequences, without imposing conditions on the under-
lying model, for uniform, pointwise and Bayesian testability. The existence of uniform
tests is closely related to the existence of adaptive confidence sets (a popular theme over
the last decade); the existence of Bayesian tests forms one of the two basic conditions
in [23] and determines whether posteriors concentrate; pointwise testability is a concept
that both shapes the foundations of frequentist statistics, and forms the essence of many
methodological questions (for example, model selection).
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Figure 2: Refining histograms on the interval [0,1] for the mixture of Beta-
distributions 3Beta(10,100) + {Beta(20,40) + $Beta(30,10); if a system of dis-
tributions for random histograms is provided based on an infinite sequence of
refinements, does this define a random probability distribution on [0, 1]?



Second is the formulation of existence theorems for random probability distributions de-
fined as limits of refining systems of random histograms [29] (see Fig. 2). Examples are
the well-known Dirichlet and Pdlya tree systems, which are popular for their computa-
tional accessibility and their theoretical properties, not only in non-parametric Bayesian
statistics, but more generally, in probability theory, network science and machine learning.
The existence question for these so-called inverse limit probability measures is a difficult
mathematical point that has retained the attention of (Bayesian) statisticians, proba-
bilists and functional analysts ever since Ferguson’s seminal work of the 1970’s. Based
on a theorem of Laurent Schwartz and Nicolas Bourbaki on inverse limit Radon mea-
sures, it is possible to give accessible conditions for existence, which reveal that there are
three distinct phases for random histogram limits (called singular, Cantor and absolutely
continuous respectively), depending on the degree of refinement of the model topology
and directly relevant to the (computationally important) approximative properties of the
histogram distributions. Dirichlet distributions are all in the Cantor phase, but the Pélya
tree family has examples in all three phases. When applied to signed measures, said
theorem proves the existence of what Wendelin Werner calls the Gaussian free field (a
random tempered distribution, important in Euclidean quantum field theory). With an
appeal to Martingale convergence, the theorem also proves existence of the ¢* interacting
bosonic field in four dimensions, answering a long-standing question in theoretical physics
regarding so-called asymptotic triviality of said interacting field.

To summarize, my future work will be aimed at modern questions in statistics and prob-
ability through application of the ideas of [23], [28] and [29], with an emphasis on connec-
tions with stochastic analysis, functional analysis and topology, to broaden the fantastic
perspective that stochastics offers and to explore the beauty of exact sciences in general.

(A 20-minute slide presentation of this research statement, with more detailed descrip-
tions of associated publications, (PhD. and MSc.) students and (past, present and future)
grant proposals is available on request, or can form the basis for an in-person presenta-
tion/discussion.)



