What is asymptotically testable and what is not?

Bas Kleijn
KdV Institute for Mathematics

Universiteit van Amsterdam
Asymptotic symmetric testing

Observe \textit{i.i.d.} data $X^n \sim P^n$, model $P \in \mathcal{P}$; for disjoint $B, V \subset \mathcal{P}$,

$$H_0 : P \in B, \quad \text{or} \quad H_1 : P \in V.$$

Look for test functions $\phi_n : \mathcal{X}^n \to [0, 1]$ s.t.

$$P^n \phi_n(X^n) \to 0, \quad \text{and} \quad Q^n(1 - \phi_n(X^n)) \to 0$$

for all $P \in B$ and all $Q \in V$.

Equivalently, we want,

A testing procedure that chooses for B or V based on $X^n \sim P^n$ for every $n \geq 1$, has property (D) if it is wrong only a finite number of times with P^∞-probability one.

Property (D) is sometimes referred to as "discernibility".
Some examples and unexpected answers (I)

Consider non-parametric regression with \(f : X \to \mathbb{R} \) and test for smoothness,

\[H_0 : f \in C^1(X \to \mathbb{R}), \quad H_1 : f \in C^2(X \to \mathbb{R}), \]

Consider a non-parametric density estimation with \(p : \mathbb{R} \to [0, \infty) \) and test for square-integrability,

\[H_0 : \int x^2 p(x) \, dx < \infty, \quad H_1 : \int x^2 p(x) \, dx = \infty. \]

Practical problem we cannot use the data to determine with asymptotic certainty, if CLT applies with our data.
Some examples and unexpected answers (II)

Coin-flip $X^n \sim \text{Bernoulli}(p)^n$ with $p \in [0, 1]$.

Consider Cover's rational mean problem (1973):

$$H_0 : p \in [0, 1] \cap \mathbb{Q}, \quad H_1 : p \in [0, 1] \setminus \mathbb{Q}.$$

Consider also Dembo and Peres's irrational alternative (1995):

$$H_0 : p \in [0, 1] \cap \mathbb{Q}, \quad H_1 : p \in [0, 1] \cap \sqrt{2} + \mathbb{Q},$$

Consider ultimately fractal hypotheses, e.g. with Cantor set C,

$$H_0 : p \in C, \quad H_1 : p \in [0, 1] \setminus C.$$
Three forms of testability

Definition 5.1 (ϕ_n) is a *uniform test sequence* for B vs V, if,

$$\sup_{P \in B} P^n \phi_n \to 0, \quad \sup_{Q \in V} Q^n(1 - \phi_n) \to 0.$$ \hspace{1cm} (1)

Definition 5.2 (ϕ_n) is a *pointwise test sequence* for B vs V, if,

$$\phi_n(X^n)^P \to 0, \quad \phi_n(X^n)^Q \to 1,$$ \hspace{1cm} (2)

for all $P \in B$ and $Q \in V$.

Definition 5.3 (ϕ_n) is a *Bayesian test sequence* for B vs V, if,

$$\phi_n(X^n)^P \to 0, \quad \phi_n(X^n)^Q \to 1,$$ \hspace{1cm} (3)

for Π-almost-all $P \in B$ and $Q \in V$.

Posterior odds model selection for frequentists

Johnson & Rossell (JRSSB, 2010), Taylor & Tibshirani (PNAS, 2016)

Theorem 6.1 Given measurable \(B, V \subset \Theta \) \((\Pi(B), \Pi(V) > 0)\) and,

i. there are Bayesian tests for \(B \) vs \(V \) of power \(a_n \downarrow 0\),

\[
\int_B P^n \phi_n \, d\Pi(P) + \int_V Q^n(1 - \phi_n) \, d\Pi(Q) = o(a_n),
\]

ii. and, for all \(P \in B \), \(P^n \prec a_n^{-1} P_n^n|B \); for all \(Q \in V \), \(Q^n \prec a_n^{-1} P_n^n|V \),

then posterior odds give rise to a pointwise test for \(B \) vs \(V \).

Example: KL-neighbourhoods

Definition 7.1 Given \((P_n), (Q_n)\) and a \(a_n \downarrow 0\), \(Q_n\) is \(a_n\)-remotely contiguous w.r.t. \(P_n\) \((Q_n \triangleleft a_n^{-1} P_n)\), if for any msb \(\psi_n : \mathcal{X}^n \to [0, 1]\)

\[P_n \psi_n = o(a_n) \implies Q_n \psi_n = o(1) \]

Example 7.2 Let \(\mathcal{D}\) be a model for i.i.d. data \(X^n\). Let \(P_0, P\) and \(\epsilon > 0\) be such that \(-P_0 \log(dP/dP_0) < \epsilon^2\). Then, for large enough \(n\),

\[
\frac{dP^n}{dP_0^n}(X^n) \geq e^{-\frac{n}{2}\epsilon^2},
\]

(4)

with \(P_0^n\)-probability one. So for any tests \(\psi_n\),

\[P^n \psi_n \geq e^{-\frac{1}{2}n\epsilon^2} P_0^n \psi_n. \]

(5)

So if \(P^n \phi_n = o(\exp(-\frac{1}{2} n\epsilon^2))\) then \(P_0^n \phi_n = o(1)\): \(P_0^n \triangleleft a_n^{-1} P^n\) with \(a_n = \exp(-\frac{1}{2} n\epsilon^2)\).
Example: select the DAG (I)

Observe an i.i.d. X^n of vectors of discrete random variables $X_i = (X_{1,i}, \ldots, X_{k,i}) \in \mathbb{Z}^k$, $1 \leq i \leq n$.

Define a family \mathcal{F} of kernels $p_{\theta}(\cdot|\cdot) : \mathbb{Z} \times \mathbb{Z}^l \rightarrow [0, 1]$, for $\theta \in \Theta$, $1 \leq l \leq k$. Assume that Θ is compact and,

$$\theta \mapsto \sum_{x \in \mathbb{Z}} f(x) P_{\theta}(x|z_1, \ldots, z_l)$$

is continuous, for every bounded $f : \mathbb{Z} \rightarrow \mathbb{R}$ and all $z_1, \ldots, z_l \in \mathbb{Z}$.

$X \sim P$ follows a graphical model,

$$P_{\mathcal{A}, \theta}(X_1 \in B_1, \ldots, X_k \in B_k) = \prod_{i=1}^{k} P_{\theta_i}(X_i \in B_i|\mathcal{A}_i)$$

where $\mathcal{A}_i \subset \{1, \ldots, k\}$ denotes the parents of X_i (and $\mathcal{A}_{ij} = \mathcal{A}_i \cup \mathcal{A}_j$).

Together, the \mathcal{A}_i describe a directed, a-cyclical graph (DAG).
Example: select the DAG (II)

The DAG $\mathcal{A} = (\mathcal{A}_i : 1 \leq i \leq k)$ represents a number of conditional independence statements concerning the components X_1, \ldots, X_k.

$$P_{\mathcal{A},\theta}(C_1 \in \cdot, \ldots, A_3 \in \cdot)$$

$$= P_{\theta_{C,1}}(\cdot|B_1) \times P_{\theta_{C,2}}(\cdot|B_1, B_2)$$

$$\times P_{\theta_{B,1}}(\cdot|A_1) \times P_{\theta_{B,2}}(\cdot|A_2, A_3)$$

$$\times P_{\theta_{A,1}}(\cdot) \times P_{\theta_{A,2}}(\cdot) \times P_{\theta_{A,3}}(\cdot)$$

Fig 1. An small example DAG: No arrow means $X_i \perp X_j|\mathcal{A}_{ij}$. $\mathcal{A}_{C_1} = \{B_1\}$, $\mathcal{A}_{B_2} = \{A_2, A_3\}$, so given B_1, A_2 and A_3, C_1 is independent of B_2.
Example: select the DAG \((III)\)

Define the submodels \(\mathcal{P}_A = \{P_{A, \theta} : \theta \in \Theta^k\}\), for all \(\mathcal{A}\). Given any \(\mathcal{A}' \neq \mathcal{A}\), there is a pair \(X_i \perp X_j | \mathcal{A}_{ij}\) but \(X_i \not\perp X_j | \mathcal{A}'_{ij}\).

Require that, for all \(\theta\), all \(A, B \subset \mathbb{Z}\),

\[
\left| P_{\mathcal{A}'', \theta}(X_i \in A, X_j \in B | \mathcal{A}_{ij}) - P_{\mathcal{A}'', \theta}(X_i \in A | \mathcal{A}_{ij}) P_{\mathcal{A}'', \theta}(X_j \in B | \mathcal{A}_{ij}) \right| > \epsilon,
\]

for some \(\epsilon > 0\) that depends only on \(\mathcal{A}\) and \(\mathcal{A}'\).

With a KL-prior posterior odds for \(\mathcal{P}_A\) select the correct DAG \(\mathcal{A}\).
Uniform testability: equivalent formulations

Proposition 11.1 Let \mathcal{P} be a model for i.i.d. data with disjoint B and V. The following are equivalent:

i. there exists a uniform test sequence (ϕ_n),

$$\sup_{P \in B} P^n \phi_n \to 0, \quad \sup_{Q \in V} Q^n(1 - \phi_n) \to 0,$$

ii. there is an exponentially powerful uniform test sequence (ψ_n),

$$\sup_{P \in B} P^n \psi_n \leq e^{-nD}, \quad \sup_{Q \in V} Q^n(1 - \psi_n) \leq e^{-nD}.$$
The model as a uniform space

Fig 2. Let $P \in \mathcal{P}$ and entourage $W \in \mathcal{U}_\infty$ be given. Define neighbourhood $U \in \mathcal{I}_\infty$ as $U = \{Q \in \mathcal{P} : (Q, P) \in W\}$
Uniform separation (II)

Fig 3. B and V are uniformly separated by \mathcal{U}_∞ if there is a $W \in \mathcal{U}_\infty$ that does not meet $B \times V$ and $V \times B$.
Characterisation of uniform testability

Theorem 14.1 Let \(\mathcal{P} \) be a model for i.i.d. data with disjoint \(B \) and \(V \). The following are equivalent:

(i.) there are uniform tests \(\phi_n \) for \(B \) versus \(V \),

(ii.) \(B \) and \(V \) are uniformly separated by \(\mathcal{U}_\infty \).

Corollary 14.2 (Parametrised models) Suppose \(\mathcal{P} = \{ p_\theta : \theta \in \Theta \} \), with \((\Theta, d) \) compact, metric space and \(\theta \to P_\theta \) identifiable and \(\mathcal{T}_\infty \)-continuous, (that is, for every \(f \in \mathcal{F}_n \), \(\theta \mapsto \int f dP_\theta^n \) is continuous). If \(B_0, V_0 \subset \Theta \) with \(d(B_0, V_0) > 0 \), then the images \(B = \{ P_\theta : \theta \in B_0 \} \), \(V = \{ P_\theta : \theta \in V_0 \} \) are uniformly testable.
Pointwise testability: equivalent formulations

Proposition 15.1 Let P be a model for i.i.d. data and let B, V be disjoint model subsets. The following are equivalent:

1. there are tests (ϕ_n) such that, for all $P \in B$ and $Q \in V$,
 \[P^n \phi_n \rightarrow 0, \quad Q^n (1 - \phi_n) \rightarrow 0, \]
2. there are tests (ϕ_n) such that, for all $P \in B$ and $Q \in V$,
 \[\phi_n(X^n) \xrightarrow{P} 0, \quad (1 - \phi_n(X^n)) \xrightarrow{Q} 0, \]
3. there are tests (ϕ_n) such that, for all $P \in B$ and $Q \in V$,
 \[\phi_n(X^n) \xrightarrow{P-a.s.} 0, \quad (1 - \phi_n(X^n)) \xrightarrow{Q-a.s.} 0. \]
Pointwise testability in dominated models

Definition 16.1 The testing problem has a (uniform) representation on X, if there exists a \mathcal{I}_∞-(uniformly-)continuous, surjective map $f : B \cup V \to X$ such that $f(B) \cap f(V) = \emptyset$.

Definition 16.2 The model is parametrised by Θ, if there exists a \mathcal{I}_∞-continuous bijection $P : \Theta \to \mathcal{P}$ (i.e. for every $m \geq 1$ and measurable $f : X^m \to [0, 1]$, the map $\theta \mapsto \int f dP_\theta^m$ is continuous).
Characterisation of pointwise testability

Theorem 17.1 Let \mathcal{P} be a dominated model for i.i.d. data with disjoint B, V. The following are equivalent,

i. there exists a pointwise test for B vs V,

ii. the problem has a representation $f : B \cup V \rightarrow X$ on a normal space X and there exist disjoint F_σ-sets $B', V' \subset X$ such that $f(B) \subset B'$, $f(V) \subset V'$,

iii. the problem has a uniform representation $\psi : B \cup V \rightarrow X$ on a separable, metrizable space X with $\psi(B), \psi(V)$ both F_σ- and G_δ-sets.
Finite entropy and uniform integrability

Corollary 18.1 Suppose that \mathcal{P} is dominated and TV-totally-bounded. Then disjoint $B, V \subset \mathcal{P}$ are pointwise testable, if and only if, B, V are both F_σ- and G_δ-sets in $B \cup V$ (for \mathcal{I}_{TV}).

Corollary 18.2 Suppose that \mathcal{P} is dominated by a probability measure, with a uniformly integrable family of densities. Then disjoint $B, V \subset \mathcal{P}$ are pointwise testable, if and only if, B, V are both F_σ- and G_δ-sets in $B \cup V$ (for \mathcal{I}_C).
Bayesian testability: equivalent formulations

Theorem 19.1 Let a model \((\mathcal{P}, \mathcal{G}, \Pi)\) with \(B, V \in \mathcal{G}\) be given, with \(\Pi(B) > 0, \Pi(V) > 0\). The following are equivalent,

i. there exist **Bayesian tests** for \(B\) vs \(V\),

ii. there are tests \(\phi_n\) such that for \(\Pi\)-almost-all \(P \in B, Q \in V\),

\[
P^n\phi_n \to 0, \quad Q^n(1 - \phi_n) \to 0,
\]

iii. there are tests \(\phi_n : \mathcal{X}^n \to [0,1]\) such that,

\[
\int_B P^n\phi_n d\Pi(P) + \int_V Q^n(1 - \phi_n) d\Pi(Q) \to 0,
\]

iv. for \(\Pi\)-almost-all \(P \in B, Q \in V\),

\[
\Pi(V|X^n) \xrightarrow{P} 0, \quad \Pi(B|X^n) \xrightarrow{Q} 0.
\]
Characterisation of Bayesian testability

Theorem 20.1 Let $(\mathcal{P}, \mathcal{G})$ be a measurable model with a prior Π that is a Radon measure and hypotheses B, V. There is a Bayesian test sequence for B vs V, if and only if, B, V are \mathcal{G}-measurable.
Consistent model selection

Let \mathcal{P} be a model for $i.i.d.$ data $X^n \sim P^n$, $(n \geq 1)$, and suppose that $(\mathcal{P}, \mathcal{G}, \Pi)$ has finite, measurable partition,

$$P \in \mathcal{P} = \mathcal{P}_1 \cup \ldots \cup \mathcal{P}_M.$$

Model-selection Which $1 \leq i \leq M$? (such that $P \in \mathcal{P}_i$)

Theorem 21.1 Assume that for all $1 \leq i < j \leq M$,

\mathcal{P}_i and \mathcal{P}_j are \mathcal{U}_∞-uniformly separated.

Let $1 \leq i \leq M$ be such that $P \in \mathcal{P}_i$. If Π is a KL-prior, then indicators for posterior odds,

$$\phi_n(X^n) = 1\{X^n : \Pi(\mathcal{P}_i|X^n) \geq \sum_{j \neq i} \Pi(\mathcal{P}_j|X^n)\},$$

are a pointwise test for \mathcal{P}_i vs $\cup_{j \neq i} \mathcal{P}_j$.

21
Thank you for your attention

BK, ”The frequentist validity of Bayesian limits”
arXiv:1611.08444 [math.ST]
Remote contiguity

Definition 23.1 Given \((P_n), (Q_n)\) and a \(a_n \downarrow 0\), \(Q_n\) is \(a_n\)-remotely contiguous w.r.t. \(P_n\) \((Q_n \triangleleft a_n^{-1} P_n)\), if for any msb \(\psi_n : \mathfrak{K}^n \to [0, 1]\)

\[
P_n \psi_n = o(a_n) \implies Q_n \psi_n = o(1)
\]

Lemma 23.2 \(Q_n \triangleleft a_n^{-1} P_n\) if any of the following holds:

(i) For any bnd msb \(T_n : \mathfrak{K}^n \to \mathbb{R}\), \(a_n^{-1} T_n \xrightarrow{P_n} 0\), implies \(T_n \xrightarrow{Q_n} 0\)

(ii) Given \(\epsilon > 0\), there is a \(\delta > 0\) s.t. \(Q_n \left(\frac{dP_n}{dQ_n} < \delta a_n\right) < \epsilon\) f.l.e.n.

(iii) There is a \(b > 0\) s.t. \(\liminf_{n \to \infty} b a_n^{-1} P_n \left(\frac{dQ_n}{dP_n} > b a_n^{-1}\right) = 1\)

(iv) Given \(\epsilon > 0\), there is a \(c > 0\) such that \(\|Q_n - Q_n \wedge c a_n^{-1} P_n\| < \epsilon\)

(v) Under \(Q_n\), every subsequence of \((a_n \left(\frac{dP_n}{dQ_n}\right)^{-1})\) has a further subsequence that converges in \(\mathcal{T}_C\).
The model as a uniform space

Take X a separable metrizable space, with Borel σ-algebra \mathcal{B}.

The class \mathcal{F}_n contains all bounded, \mathcal{B}^n-measurable $f : X^n \to \mathbb{R}$.

For every $n \geq 1$ and $f \in \mathcal{F}_n$, define the entourage,

$$W_{n,f} = \{(P, Q) \in \mathcal{P} \times \mathcal{P} : |P^n f - Q^n f| < 1\}.$$

Defines uniformity \mathcal{U}_n (with topology \mathcal{T}_n). Take $\mathcal{U}_\infty = \bigcup_{n \geq 1} \mathcal{U}_n$.

$$P \to Q \text{ in } \mathcal{T}_\infty \iff \int f \, dP^n \to \int f \, dQ^n,$$

for all $n \geq 1$ and all $f \in \mathcal{F}_n$. Note also,

$$\mathcal{U}_C \subset \mathcal{U}_1 \subset \cdots \subset \mathcal{U}_\infty \subset \mathcal{U}_{TV}.$$
The Dunford-Pettis theorem

Theorem 25.1 (Dunford-Pettis) Assume \mathcal{P} is dominated by a probability measure Q with densities in $\mathcal{P}_Q \subset L^1(Q)$; \mathcal{P}_Q is relatively weakly compact, if and only if, for every $\epsilon > 0$ there is an $M > 0$ such that,

$$
\sup_{P \in \mathcal{P}} \int_{\{dP/dQ > M\}} \frac{dP}{dQ} \, dQ < \epsilon,
$$

that is, \mathcal{P}_Q is uniformly Q-integrable.
Uniform separation

Definition 26.1 Subsets $B, V \subset \mathcal{P}$ are uniformly separated by \mathcal{U}_∞, if there exists an entourage $W \in \mathcal{U}_\infty$ such that,

$$(B \times V \cup V \times B) \cap W = \emptyset.$$

In other words, there are $J, m \geq 1$, $\epsilon > 0$ and bounded, measurable functions $f_1, \ldots, f_J : \mathcal{X}^m \to [0, 1]$ such that, for any $P, Q \in B \cup V$, if

$$\max_{1 \leq j \leq J} \| P^m f_j - Q^m f_j \| < \epsilon,$$

then either $P, Q \in B$, or $P, Q \in V$. (If the model is \mathcal{T}_∞-compact, $m = 1$ suffices).
The Le Cam-Schwartz theorem

Theorem 27.1 (Le Cam-Schwartz, 1960) Let \mathcal{P} be a model for i.i.d. data X^n with disjoint subsets B, V. The following are equivalent:

i. there exist (uniformly) consistent tests for B vs V,

ii. there is a sequence of \mathcal{U}_∞-uniformly continuous $\psi_n : \mathcal{P} \to [0, 1]$

\[\psi_n(P) \to 1_{V}(P), \quad (6) \]

(uniformly) for all $P \in B \cup V$.
Example: how many clusters? (I)

Observe i.i.d. $X^n \sim P^n$, where P dominated with density p.

Clusters Family \mathcal{F} of kernels $\varphi_\theta : \mathbb{R} \rightarrow [0, \infty)$, with parameter $\theta \in \Theta$. Assume Θ compact and,

$$
\theta \mapsto \int f(x) \varphi_\theta(x) \, dx,
$$

is continuous, for every bounded, measurable $f : \mathbb{R} \rightarrow \mathbb{R}$. Define $\Theta'_M = \Theta^M / \sim$.

Model Assume that there is an $M > 0$ such that p can be written as,

$$
p_{\lambda, \theta}(x) = \sum_{m=1}^{M} \lambda_m p_{\theta_m}(x),
$$

for some $M \geq 1$, with $\lambda \in S_M = \{ \lambda \in [0, 1]^M : \sum_m \lambda_m = 1 \}$, $\theta \in \Theta'_M$.

Example: how many clusters? (II)

Assume M less than some known M'. Choose prior $\Pi_{\lambda,M}$ for $\lambda \in S_M$ such that, for some $\epsilon > 0$,

$$\Pi_{\lambda,M}(\lambda \in S_M : \epsilon < \min\{\lambda_m\}, \max\{\lambda_m\} < 1 - \epsilon) = 1.$$

For $\theta \in \Theta'_M$ also choose a prior $\Pi_{\theta,M}$ that 'stays away from the edges'. Define,

$$\Pi = \sum_{M=1}^{M'} \mu_M \Pi_{\lambda,M} \times \Pi_{\theta,M}.$$

(for $\sum_M \mu_M = 1$).

If Π is a KL-prior, posterior odds select the correct number of clusters M. If there are no M' and ϵ known, there are sequences $M'_n \to \infty$ and $\epsilon_n \downarrow 0$ with priors Π_n that finds the correct number of clusters.