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What is asymptotically testable and what is not?

Bas Kleijn
KdV Institute for Mathematics

X

!

X
UNIVERSITEIT VAN AMSTERDAM



Asymptotic symmetric testing

Observe i.i.d. data X" ~ P, model P ¢ &; for disjoint B,V C 2,
Ho : Pe B, or Hy:PeV.
Look for test functions ¢, : 2" — |0, 1] s.t.

P (X™) — 0, and Q"(1—¢n(X™) —0
for all P € B and all @) € V.

Equivalently, we want,
A testing procedure that chooses for B or V based on X" ~ P"
for every n > 1, has property (D) if it is wrong only a finite

number of times with P°-probability one.

Property (D) is sometimes referred to as ‘“discernibility” .



Some examples and unexpected answers (1)

Consider non-parametric regression with f © X — R and test for
smoothness,

Hy: feCYH{X - R), Hyi: feC?’X —R),

Consider a non-parametric density estimation with p : R — [0, c0) and
test for square-integrability,

Hp : /w2p(x)d:v<oo, H1:/:L'2p(a:)dw=oo.

Practical problem we cannot use the data to determine with asymp-
totic certainty, if CLT applies with our data.



Some examples and unexpected answers (II)

Coin-flip X™ ~ Bernoulli(p)™ with p € [0, 1].

Consider Cover's rational mean problem (1973):

Hp:pel0,1]NQ, Hi:pel0,1]\Q.
Consider also Dembo and Peres’s irrational alternative (1995):
Ho:pe[0,11NQ, Hy:pel0,1]NnvV2+Q,

Consider ultimately fractal hypotheses, e.g. with Cantor set

Hy: peC, HlipE[O,l]\C.



T hree forms of testability

Definition 5.1 (¢,) is a uniform test sequence for B vs V, if,

sup P"¢, — 0, sup Q"(1 — ¢n) — O. (1)
PeB QeV

Definition 5.2 (¢,) is a pointwise test sequence for B vs V, if,
on(X™) 50, gn(x™) L1, (2)

for all Pe B and Q € V.

Definition 5.3 (¢,) is a Bayesian test sequence for B vs V, if,

on(X™) 50,  gn(X™) i1, (3)
for MNM-almost-all P € B and QQ € V.



Posterior odds model selection for frequentists

Johnson & Rossell (JRSSB, 2010), Taylor & Tibshirani (PNAS, 2016)

Theorem 6.1 Given measurable B,V ¢ © (N(B),MN(V) > 0) and,

i. there are Bayesian tests for B vs V. of power apn | O,

/B Py, dN(P) + /V Q" (1 — ¢n) dNM(Q) = o(an),

ji. and, for all P ¢ B, Phaa: PVB: for an g c v, graaztpMV,

then posterior odds give rise to a pointwise test for B vs V.

See BK, " The frequentist validity of Bayesian limits”, arXiv:1611.08444 [math.ST]



Example: KL-neighbourhoods

Definition 7.1 Given (P,), (Qr) and a an, | 0, Qn is an-remotely
contiguous w.r.t. Py, (Qn<a;, 1Py,), if for any msb ¢, : Z™ — [0, 1]

Pnyn = o(an) = Qni¥n = o(1)

Example 7.2 Let ¥ be a model for i.i.d. data X". Let Py, P and

e > 0 be such that —Pylog(dP/dPy) < €2. Then, for large enough n,
dP™ n
(XY > e 37, (4)
dPy

with Pjy-probability one. So for any tests inp,

1.2
Py, > e~ 3" P, (5)

So if P"¢, = o(exp (—%neQ)) then FPlon = o(l): P(S%Qa?;lP” with
an = exp (—%7%2).



Example: select the DAG (I)

Observe an /.i.d. X" of vectors of discrete random variables X;
(X1,4y---, Xp) €ZF, 1 <i<n.

Define a family .# of kernels py(+|) : ZxZ! — [0,1], for0 € ©, 1 <1 < k.
Assume that © is compact and,

0 — Z f(x)Py(x|z1,. .-, 21)

TEL
iS continuous, for every bounded f:Z — R and all z1,...,z € Z.

X ~ P follows a graphical model,

k
Poyo(X1 € By,..., X € By) = ]] Po,(X; € By| o)
i=1
where «7; C {1,...,k} denotes the parents of X; (and «/;; = «/; U .</;).
Together, the &7 describe a directed, a-cyclical graph (DAG).



Example: select the DAG (II)

The DAG o = (o7, : 1 <1 < k) represents a number of conditional
independence statements concerning the components Xy,..., X;.

Pyo(Cr€ ..., A3 € ")
= Py, (-|B1) x Py, ,(:|B1, B2)
X Py, (-|A1) X Fyp (1|A2, A3)
xPg, () x By, ,(-)x Py, ()

Fig 1. An small example DAG: No arrow means X; | X;|«;. @, =
{B1}, 9B, = {Ap, A3}, so given By, Ay and Az, C7 is independent of
B>.



Example: select the DAG (III)

Define the submodels &, = {P,, : 0 € ©F}, for all &. Given any
" # o/, there is a pair X; L X;|«;; but X; [ leﬂfz-/j.

Require that, for all 0, all A, B C 7,
‘Pﬂ/,g(Xi < A,Xj c B|<Q%£j)—P£{/’9(Xi c ALQZLJ) P%/ﬁ(Xj < B|<£Z77:j)‘> €,

for some ¢ > 0 that depends only on & and &’.

With a KL-prior posterior odds for &, select the correct DAG «.
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Uniform testability: equivalent formulations

Proposition 11.1 Let & be a model for i.i.d. data with disjoint B
and V. The following are equivalent:

i. there exists a uniform test sequence (¢n),

sup P"¢n, — 0, sup Q"(1 — ¢n) — O,
PeB QeV

ii. there is a exponentially powerful uniform test sequence (),

sup Py, < e_”D, sup Q" (1 —yp) < e "D
PeB QeVv
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he model as a uniform space

& /

U P

Fig 2. Let P ¢ & and entourage W € %~ be given. Define neigh-
bourhood U € I as U ={Q e & : (Q,P) e W}
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Uniform separation (II)

4 W
— /
// /
14 BxV VXV
/ /
/ /
/ //
// y
B B B V x B
/ /
/ /
/ //
B V P

Fig 3. B and V are uniformly separated by %~ if thereisa W ¢ %
that does not meet B x V and V x B.
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Characterisation of uniform testability

Theorem 14.1 Let & be a model for i.i.d. data with disjoint B and
V. The following are equivalent:

(i.) there are uniform tests ¢, for B versus 'V,

(ii.) B and V are uniformly separated by .

Corollary 14.2 (Parametrised models) Suppose & = {py : 0 € O},
with (©,d) compact, metric space and 0 — Py identifiable and Jx-
continuous, (that is, for every f € F,, 0 | fdF)' is continuous). If
B, Vo C © with d(Bg,Vp) > 0, then the images B = {F,:0 ¢ By},
V ={Fy:0¢&Vy} are uniformly testable.
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Pointwise testability: equivalent formulations

Proposition 15.1 Let & be a model for i.i.d. data and let B,V be
disjoint model subsets. The following are equivalent:

i. there are tests (¢n) such that, for all Pe B and Q €V,

ii. there are tests (¢n) such that, for all Pe€ B and Q €V,

P
on(X™) 250, (1 gn(x™) Lo,
iii. there are tests (¢n) such that, for all P e B and Q € V,

dn(X™) 2550 (1= gp(X™) L2550,
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Pointwise testability in dominated models

Definition 16.1 The testing problem has a (uniform) representation
on X, if there exists a Js-(uniformly-)continuous, surjective map
f:BUV — X such that [(B)N f(V) = .

Definition 16.2 The model is parametrised by ©, if there exists a
Iso-continuous bijection P. : © — &2 (i.e. for every m > 1 and mea-
surable f : 2" — [0,1], the map 0 — [ fdPj" is continuous).
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Characterisation of pointwise testability

Theorem 17.1 Let &/ be a dominated model for i.i.d. data with
disjoint B,V. The following are equivalent,

i. there exists a pointwise test for B vs V,

ii. the problem has a representation f . BUV — X on a normal
space X and there exist disjoint F,-sets B’ V' < X such that

f(B) C B, f(V) cV/,

iii. the problem has a uniform representation i : BUV — X on a
separable, metrizable space X with /(B),(V) both Fy- and G-
sets.
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Finite entropy and uniform integrability

Corollary 18.1 Suppose that 7 is dominated and T V-totally-bounded.
Then disjoint B,V C 27 are pointwise testable, if and only if, B,V are
both Fs- and Gg-sets in BUV (for 7y ).

Corollary 18.2 Suppose that &7 is dominated by a probability mea-
sure, with a uniformly integrable family of densities. Then disjoint
B,V C 2 are pointwise testable, if and only if, B,V are both Fs- and
Ggs-sets in BUV (for ).
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Bayesian testability: equivalent formulations

Theorem 19.1 Let a model (7,%,1) with B,V € 4 be given, with
MN(B) > 0,M(V) > 0. The following are equivalent,

i. there exist Bayesian tests for B vs V,

ii. there are tests ¢, such that for IN-almost-all P € B,Q) € V,
iii. there are tests ¢, : ™ — [0, 1] such that,

[ Prendn(P) + [ Q"(1 = ¢n)dN(Q) =0,
iv. for MN-almost-all P € B, Q €V,

novix™ 50, nBx™ <o,
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Characterisation of Bayesian testability

Theorem 20.1 Let (,%9) be a measurable model with a prior T1
that is a Radon measure and hypotheses B,V . There is a Bayesian
test sequence for B vs V, if and only if, B,V are 4-measurable.
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Consistent model selection

Let &2 be a model for /.i.d. data X" ~ P" (n > 1), and suppose that
(22,%.11) has finite, measurable partition,

Pe¥=21U...UP,.
Model-selection Which 1 <¢ < M7? (such that P € &)

Theorem 21.1 Assume that for all 1 <1 <y < M,

Z; and 33]- are Yso-uniformly separated.

Let 1 <1< M besuch that P ¢ 27;. IfIl is a KL-prior, then indicators
for posterior odds,

dn(X™) = 1{X" N2 X™) > Y n(ﬁzﬂxn)},
jFi
are a pointwise test for &; vs U;+;%;.
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Thank you for your attention

BK, " The frequentist validity of Bayesian limits”
arXiv:1611.08444 [math.ST]



Remote contiguity

Definition 23.1 Given (P,), (Qn) and a an | 0, Qn is ap-remotely
contiguous w.r.t. Py (Qn<a;, 1P,), if for any msb ¢, : Z™ — [0, 1]

Pnibn = o(an) —= Qnn = o(1)

Lemma 23.2 Q, <a, P, if any of the following holds:

(i) For any bnd msb Ty, : 2™ — R, a;lTn i 0, implies Ty, %O

(ii) Given e >0, thereisad >0 s.t. Qn(dP,/dQn < dayn) < e f.le.n.
(iii) Thereis ab>0 s.t. liminfpsooba, ' Po(dQn/dPp > ba,l) =1
(iv) Given e > 0, there is a ¢ > 0 such that |Qn — Qn A caganH < €
(v) Under Qn, every subsequence of (an(dP,/dQn)~1) has a further

subsequence that converges in J.
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The model as a uniform space

Take 2 a separable metrizable space, with Borel o-algebra A.
The class .%,, contains all bounded, #"™-measurable f: 2" —- R

For every n > 1 and [ € .%,, define the entourage,

W ={(P.Q)€ P x P :|P'[—Q"f| <1}

Defines uniformity %, (with topology 7). Take %o = Up>1%n.

P50 in Zw < /fdP”—>/fdQn,

for all n > 1 and all f € .%,. Note also,

U C U C - C Uso C Upy.
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The Dunford-Pettis theorem

Theorem 25.1 (Dunford-Pettis) Assume &2 is dominated by a proba-
bility measure Q with densities in &g C LY(Q); Pq Is relatively weakly
compact, if and only if, for every ¢ > O there is an M > 0 such that,
sup / E dQ < e,
pPe J{dP/dQ>M} dQ)
that is, @Q is uniformly Q-integrable.
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Uniform separation

Definition 26.1 Subsets B,V C 27 are uniformly separated by %o, if
there exists an entourage W ¢ %/~ such that,

(BxVUVXB)NW =g.

In other words, there are Jy,m > 1, ¢ > 0 and bounded, measurable
functions f1,...,f;: 2™ — [0, 1] such that, for any P,Q € BUV/, if,

m PR m .
DX [P = QT fj| < e
then either P,Q € B, or P,QQ € V. (If the model is Z,-compact,

m = 1 suffices).
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The Le Cam-Schwartz theorem

Theorem 27.1 (Le Cam-Schwartz, 1960) Let ¥ be a model for i.i.d.
data X' with disjoint subsets B,V . The folllowing are equivalent:

i. there exist (uniformly) consistent tests for B vs V/,
ii. there is a sequence of U~-uniformly continuous vy, : & — [0, 1],

Yn(P) — 1y (P), (6)
(uniformly) for all P € BU V.
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Example: how many clusters? (I)

Observe i.i.d. X™ ~ P"™, where P dominated with density p.

Clusters Family .# of kernels ¢y : R — [0,00), with parameter 0 € ©.
Assume © compact and,

0 [ 1(@)pp() da,

is continuous, for every bounded, measurable f : R — R. Define
e\, =M/~

Model Assume that there is an M > 0 such that p can be written as,

M
pro(x) = D Ampg,, (@),

m=1
for some M > 1, with Ae Sy ={N € [0,1]1M : S A =1}, 0 € O,
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Example: how many clusters? (II)

Assume M less than some known M'. Choose prior My 5 for A € Sy,
such that, for some € > O,

I‘I,\,M()\ € Sy e < min{m}, max{im} <1-— e) = 1.

For 6 € @QW also choose a prior Iy 5y that 'stays away from the edges’.
Define,
M/

M= > ppMyn x Mg
M=1

(for X aprupr = 1).

If N is a KL-prior, posterior odds select the correct number of clusters
M. If there are no M’ and € known, there are sequences M{,L — oo and
en 4 O with priors I, that finds the correct number of clusters.
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