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Asymptotic symmetric testing

Observe i.i.d. data Xn ∼ Pn, model P ∈P; for disjoint B, V⊂P,

H0 : P ∈ B, or H1 : P ∈ V .

Look for test functions φn : X n → [0,1] s.t.

Pnφn(Xn)→ 0, and Qn(1− φn(Xn))→ 0

for all P ∈ B and all Q ∈ V .

Equivalently, we want,

A testing procedure that chooses for B or V based on Xn ∼ Pn

for every n ≥ 1, has property (D) if it is wrong only a finite

number of times with P∞-probability one.

Property (D) is sometimes referred to as “discernibility”.
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Some examples and unexpected answers (I)

Consider non-parametric regression with f : X → R and test for

smoothness,

H0 : f ∈ C1(X → R), H1 : f ∈ C2(X → R),

Consider a non-parametric density estimation with p : R→ [0,∞) and

test for square-integrability,

H0 :
∫
x2 p(x) dx <∞, H1 :

∫
x2 p(x) dx =∞.

Practical problem we cannot use the data to determine with asymp-

totic certainty, if CLT applies with our data.
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Some examples and unexpected answers (II)

Coin-flip Xn ∼ Bernoulli(p)n with p ∈ [0,1].

Consider Cover’s rational mean problem (1973):

H0 : p ∈ [0,1] ∩ Q, H1 : p ∈ [0,1] \ Q.

Consider also Dembo and Peres’s irrational alternative (1995):

H0 : p ∈ [0,1] ∩ Q, H1 : p ∈ [0,1] ∩
√

2 + Q,

Consider ultimately fractal hypotheses, e.g. with Cantor set C,

H0 : p ∈ C, H1 : p ∈ [0,1] \ C.
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Three forms of testability

Definition 5.1 (φn) is a uniform test sequence for B vs V , if,

sup
P∈B

Pnφn → 0, sup
Q∈V

Qn(1− φn)→ 0. (1)

Definition 5.2 (φn) is a pointwise test sequence for B vs V , if,

φn(Xn)
P−−→0, φn(Xn)

Q−−→1, (2)

for all P ∈ B and Q ∈ V .

Definition 5.3 (φn) is a Bayesian test sequence for B vs V , if,

φn(Xn)
P−−→0, φn(Xn)

Q−−→1, (3)

for Π-almost-all P ∈ B and Q ∈ V .
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Posterior odds model selection for frequentists

Johnson & Rossell (JRSSB, 2010), Taylor & Tibshirani (PNAS, 2016)

Theorem 6.1 Given measurable B, V ⊂ Θ (Π(B),Π(V ) > 0) and,

i. there are Bayesian tests for B vs V of power an ↓ 0,∫
B
Pnφn dΠ(P ) +

∫
V
Qn(1− φn) dΠ(Q) = o(an),

ii. and, for all P ∈ B, PnC a−1
n P

Π|B
n ; for all Q ∈ V , QnC a−1

n P
Π|V
n ,

then posterior odds give rise to a pointwise test for B vs V .

See BK, ”The frequentist validity of Bayesian limits”, arXiv:1611.08444 [math.ST]
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Example: KL-neighbourhoods

Definition 7.1 Given (Pn), (Qn) and a an ↓ 0, Qn is an-remotely

contiguous w.r.t. Pn (QnC a−1
n Pn), if for any msb ψn : X n → [0,1]

Pnψn = o(an) ⇒ Qnψn = o(1)

Example 7.2 Let P be a model for i.i.d. data Xn. Let P0, P and

ε > 0 be such that −P0 log(dP/dP0) < ε2. Then, for large enough n,

dPn

dPn0
(Xn) ≥ e−

n
2ε

2
, (4)

with Pn0 -probability one. So for any tests ψn,

Pnψn ≥ e−
1
2nε

2
Pn0ψn. (5)

So if Pnφn = o(exp (−1
2nε

2)) then Pn0φn = o(1): Pn0 C a−1
n Pn with

an = exp (−1
2nε

2).
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Example: select the DAG (I)

Observe an i.i.d. Xn of vectors of discrete random variables Xi =

(X1,i, . . . , Xk,i) ∈ Zk, 1 ≤ i ≤ n.

Define a family F of kernels pθ(·|·) : Z×Zl → [0,1], for θ ∈ Θ, 1 ≤ l ≤ k.

Assume that Θ is compact and,

θ 7→
∑
x∈Z

f(x)Pθ(x|z1, . . . , zl)

is continuous, for every bounded f : Z→ R and all z1, . . . , zl ∈ Z.

X ∼ P follows a graphical model,

PA ,θ(X1 ∈ B1, . . . , Xk ∈ Bk) =
k∏
i=1

Pθi(Xi ∈ Bi|Ai)

where Ai ⊂ {1, . . . , k} denotes the parents of Xi (and Aij = Ai ∪Aj).

Together, the Ai describe a directed, a-cyclical graph (DAG).
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Example: select the DAG (II)

The DAG A = (Ai : 1 ≤ i ≤ k) represents a number of conditional

independence statements concerning the components X1, . . . , Xk.

PA ,θ(C1 ∈ ·, . . . , A3 ∈ ·)

= PθC,1(·|B1)× PθC,2(·|B1, B2)

×PθB,1(·|A1)× PθB2
(·|A2, A3)

×PθA,1(·)× PθA,2(·)× PθA,3(·)

Fig 1. An small example DAG: No arrow means Xi ⊥ Xj|Aij. AC1
=

{B1}, AB2
= {A2, A3}, so given B1, A2 and A3, C1 is independent of

B2.
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Example: select the DAG (III)

Define the submodels PA = {PA ,θ : θ ∈ Θk}, for all A . Given any

A ′ 6= A , there is a pair Xi ⊥ Xj|Aij but Xi 6⊥ Xj|A ′ij.

Require that, for all θ, all A,B ⊂ Z,∣∣∣PA ′,θ(Xi ∈ A,Xj ∈ B|Aij)−PA ′,θ(Xi ∈ A|Aij)PA ′,θ(Xj ∈ B|Aij)
∣∣∣> ε,

for some ε > 0 that depends only on A and A ′.

With a KL-prior posterior odds for PA select the correct DAG A .
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Uniform testability: equivalent formulations

Proposition 11.1 Let P be a model for i.i.d. data with disjoint B

and V . The following are equivalent:

i. there exists a uniform test sequence (φn),

sup
P∈B

Pnφn → 0, sup
Q∈V

Qn(1− φn)→ 0,

ii. there is a exponentially powerful uniform test sequence (ψn),

sup
P∈B

Pnψn ≤ e−nD, sup
Q∈V

Qn(1− ψn) ≤ e−nD.
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The model as a uniform space

P

P

P

W

U

Fig 2. Let P ∈ P and entourage W ∈ U∞ be given. Define neigh-

bourhood U ∈ T∞ as U = {Q ∈P : (Q,P ) ∈W}
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Uniform separation (II)

V × V

B ×B

B × V

V ×B

V

B

B

V

P

P

W

Fig 3. B and V are uniformly separated by U∞ if there is a W ∈ U∞
that does not meet B × V and V ×B.
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Characterisation of uniform testability

Theorem 14.1 Let P be a model for i.i.d. data with disjoint B and

V . The following are equivalent:

(i.) there are uniform tests φn for B versus V ,

(ii.) B and V are uniformly separated by U∞.

Corollary 14.2 (Parametrised models) Suppose P = {pθ : θ ∈ Θ},
with (Θ, d) compact, metric space and θ → Pθ identifiable and T∞-

continuous, (that is, for every f ∈ Fn, θ 7→
∫
f dPnθ is continuous). If

B0, V0 ⊂ Θ with d(B0, V0) > 0, then the images B = {Pθ : θ ∈ B0},
V = {Pθ : θ ∈ V0} are uniformly testable.
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Pointwise testability: equivalent formulations

Proposition 15.1 Let P be a model for i.i.d. data and let B, V be

disjoint model subsets. The following are equivalent:

i. there are tests (φn) such that, for all P ∈ B and Q ∈ V ,

Pnφn → 0, Qn(1− φn)→ 0,

ii. there are tests (φn) such that, for all P ∈ B and Q ∈ V ,

φn(Xn)
P−−→0, (1− φn(Xn))

Q−−→0,

iii. there are tests (φn) such that, for all P ∈ B and Q ∈ V ,

φn(Xn)
P -a.s.−−−−−→0, (1− φn(Xn))

Q-a.s.−−−−−→0.
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Pointwise testability in dominated models

Definition 16.1 The testing problem has a (uniform) representation

on X, if there exists a T∞-(uniformly-)continuous, surjective map

f : B ∪ V → X such that f(B) ∩ f(V ) = ∅.

Definition 16.2 The model is parametrised by Θ, if there exists a

T∞-continuous bijection P· : Θ → P (i.e. for every m ≥ 1 and mea-

surable f : X m → [0,1], the map θ 7→
∫
f dPmθ is continuous).
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Characterisation of pointwise testability

Theorem 17.1 Let P be a dominated model for i.i.d. data with

disjoint B, V . The following are equivalent,

i. there exists a pointwise test for B vs V ,

ii. the problem has a representation f : B ∪ V → X on a normal

space X and there exist disjoint Fσ-sets B′, V ′ ⊂ X such that

f(B) ⊂ B′, f(V ) ⊂ V ′,

iii. the problem has a uniform representation ψ : B ∪ V → X on a

separable, metrizable space X with ψ(B), ψ(V ) both Fσ- and Gδ-

sets.
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Finite entropy and uniform integrability

Corollary 18.1 Suppose that P is dominated and TV-totally-bounded.

Then disjoint B, V ⊂P are pointwise testable, if and only if, B, V are

both Fσ- and Gδ-sets in B ∪ V (for TTV ).

Corollary 18.2 Suppose that P is dominated by a probability mea-

sure, with a uniformly integrable family of densities. Then disjoint

B, V ⊂P are pointwise testable, if and only if, B, V are both Fσ- and

Gδ-sets in B ∪ V (for TC).
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Bayesian testability: equivalent formulations

Theorem 19.1 Let a model (P,G ,Π) with B, V ∈ G be given, with

Π(B) > 0,Π(V ) > 0. The following are equivalent,

i. there exist Bayesian tests for B vs V ,

ii. there are tests φn such that for Π-almost-all P ∈ B,Q ∈ V ,

Pnφn → 0, Qn(1− φn)→ 0,

iii. there are tests φn : X n → [0,1] such that,∫
B
Pnφn dΠ(P ) +

∫
V
Qn(1− φn) dΠ(Q)→ 0,

iv. for Π-almost-all P ∈ B, Q ∈ V ,

Π(V |Xn)
P−−→0, Π(B|Xn)

Q−−→0.
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Characterisation of Bayesian testability

Theorem 20.1 Let (P,G ) be a measurable model with a prior Π

that is a Radon measure and hypotheses B, V . There is a Bayesian

test sequence for B vs V , if and only if, B, V are G -measurable.
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Consistent model selection

Let P be a model for i.i.d. data Xn ∼ Pn, (n ≥ 1), and suppose that

(P,G ,Π) has finite, measurable partition,

P ∈P = P1 ∪ . . . ∪PM .

Model-selection Which 1 ≤ i ≤M? (such that P ∈Pi)

Theorem 21.1 Assume that for all 1 ≤ i < j ≤M ,

Pi and Pj are U∞-uniformly separated.

Let 1 ≤ i ≤M be such that P ∈Pi. If Π is a KL-prior, then indicators

for posterior odds,

φn(Xn) = 1
{
Xn : Π(Pi|Xn) ≥

∑
j 6=i

Π(Pj|Xn)
}
,

are a pointwise test for Pi vs ∪j 6=iPj.
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Thank you for your attention

BK, ”The frequentist validity of Bayesian limits”

arXiv:1611.08444 [math.ST]



Remote contiguity

Definition 23.1 Given (Pn), (Qn) and a an ↓ 0, Qn is an-remotely

contiguous w.r.t. Pn (QnC a−1
n Pn), if for any msb ψn : X n → [0,1]

Pnψn = o(an) ⇒ Qnψn = o(1)

Lemma 23.2 QnC a−1
n Pn if any of the following holds:

(i) For any bnd msb Tn : X n → R, a−1
n Tn

Pn−−→0, implies Tn
Qn−−→0

(ii) Given ε > 0, there is a δ > 0 s.t. Qn(dPn/dQn < δ an) < ε f.l.e.n.

(iii) There is a b > 0 s.t. lim infn→∞ b a−1
n Pn(dQn/dPn > ba−1

n ) = 1

(iv) Given ε > 0, there is a c > 0 such that ‖Qn −Qn ∧ c a−1
n Pn‖ < ε

(v) Under Qn, every subsequence of (an(dPn/dQn)−1) has a further

subsequence that converges in TC.
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The model as a uniform space

Take X a separable metrizable space, with Borel σ-algebra B.

The class Fn contains all bounded, Bn-measurable f : X n → R.

For every n ≥ 1 and f ∈ Fn, define the entourage,

Wn,f = {(P,Q) ∈P ×P : |Pnf −Qnf | < 1}.

Defines uniformity Un (with topology Tn). Take U∞ = ∪n≥1Un.

P → Q in T∞ ⇔
∫
f dPn →

∫
f dQn,

for all n ≥ 1 and all f ∈ Fn. Note also,

UC ⊂ U1 ⊂ · · · ⊂ U∞ ⊂ UTV .
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The Dunford-Pettis theorem

Theorem 25.1 (Dunford-Pettis) Assume P is dominated by a proba-

bility measure Q with densities in PQ ⊂ L1(Q); PQ is relatively weakly

compact, if and only if, for every ε > 0 there is an M > 0 such that,

sup
P∈P

∫
{dP/dQ>M}

dP

dQ
dQ < ε,

that is, PQ is uniformly Q-integrable.
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Uniform separation

Definition 26.1 Subsets B, V ⊂P are uniformly separated by U∞, if

there exists an entourage W ∈ U∞ such that,

(B × V ∪ V ×B) ∩W = ∅.

In other words, there are J,m ≥ 1, ε > 0 and bounded, measurable

functions f1, . . . , fJ : X m → [0,1] such that, for any P,Q ∈ B ∪ V , if,

max
1≤j≤J

∣∣∣Pmfj −Qmfj∣∣∣ < ε,

then either P,Q ∈ B, or P,Q ∈ V . (If the model is T∞-compact,

m = 1 suffices).
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The Le Cam-Schwartz theorem

Theorem 27.1 (Le Cam-Schwartz, 1960) Let P be a model for i.i.d.

data Xn with disjoint subsets B, V . The folllowing are equivalent:

i. there exist (uniformly) consistent tests for B vs V ,

ii. there is a sequence of U∞-uniformly continuous ψn : P → [0,1],

ψn(P )→ 1V (P ), (6)

(uniformly) for all P ∈ B ∪ V .
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Example: how many clusters? (I)

Observe i.i.d. Xn ∼ Pn, where P dominated with density p.

Clusters Family F of kernels ϕθ : R → [0,∞), with parameter θ ∈ Θ.

Assume Θ compact and,

θ 7→
∫
f(x)ϕθ(x) dx,

is continuous, for every bounded, measurable f : R → R. Define

Θ′M = ΘM/ ∼.

Model Assume that there is an M > 0 such that p can be written as,

pλ,θ(x) =
M∑

m=1

λmpθm(x),

for some M ≥ 1, with λ ∈ SM = {λ ∈ [0,1]M :
∑
m λm = 1}, θ ∈ Θ′M .
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Example: how many clusters? (II)

Assume M less than some known M ′. Choose prior Πλ,M for λ ∈ SM
such that, for some ε > 0,

Πλ,M

(
λ ∈ SM : ε < min{λm},max{λm} < 1− ε

)
= 1.

For θ ∈ Θ′M also choose a prior Πθ,M that ’stays away from the edges’.

Define,

Π =
M ′∑
M=1

µM Πλ,M ×Πθ,M .

(for
∑
M µM = 1).

If Π is a KL-prior, posterior odds select the correct number of clusters

M . If there are no M ′ and ε known, there are sequences M ′n →∞ and

εn ↓ 0 with priors Πn that finds the correct number of clusters.
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