Problem 5.1

Consider the Banach space,
\[\ell^\infty = \{ x : \mathbb{N} \to \mathbb{F} : \sup_{n \in \mathbb{N}} |x(n)| < \infty \} \]
with its norm,
\[\|x\|_\infty = \sup_{n \in \mathbb{N}} |x(n)|, \quad x \in \ell^\infty. \]

Prove or disprove each of the following statements:

(a) There exists an \(f \in (\ell^\infty)' \) such that \(f(x) = \lim_{n \to \infty} x(n) \) for every \(x \in \ell^\infty \) for which \(\lim_{n \to \infty} x(n) \) exists.

(b) There exists an \(f \in (\ell^\infty)' \) such that \(f(x) = \sum_{n=1}^\infty x(n) \) for every \(x \in \ell^\infty \) for which \(\sum_{n=1}^\infty x(n) \) exists.

(c) There exist two distinct functionals \(f, g \in (\ell^\infty)' \) such that \(f(x) = g(x) = \lim_{n \to \infty} x(n) \) for every \(x \in \ell^\infty \) for which \(\lim_{n \to \infty} x(n) \) exists.

(d) There exists an \(f \in (\ell^\infty)' \setminus \{0\} \) such that \(f(e_n) = 0 \) for all \(n \in \mathbb{N} \). (Here \(e_n \in \ell^\infty \) is defined by \(e_n(k) = \delta_{nk} \), for all \(n, k \in \mathbb{N} \).)

Problem 5.2

(a) Let \(C \) be a non-empty convex subset of a real normed space \((X, \|\cdot\|) \). Denote \(H(f, \gamma) = \{ x \in X : f(x) \leq \gamma \} \) for \(f \in X' \) and \(\gamma \in \mathbb{R} \). Show that the closure \(\overline{C} \) of \(C \) satisfies
\[\overline{C} = \bigcap_{f \in X', \gamma \in \mathbb{R} : \emptyset \subseteq H(f, \gamma)} H(f, \gamma). \]

(b) Give an example of a real normed space \((X, \|\cdot\|) \) and a non-convex set \(C \) for which the equality in (a) does not hold.
Let $(X, \|\cdot\|)$ be a reflexive Banach space. Let $\{T_n\}_{n=1}^{\infty}$ be a sequence of bounded linear operators from X into X such that $\lim_{n \to \infty} f(T_n x)$ exists for all $f \in X'$ and all $x \in X$. Show that there exists a bounded linear operator T from X into X such that,

$$f(T x) = \lim_{n \to \infty} f(T_n x) \quad \text{for all } f \in X' \text{ and all } x \in X.$$

(Hint: Use the Uniform Boundedness Principle (twice!) to show that $\sup_{n \in \mathbb{N}} \|T_n'\| < \infty$. Show that the map S defined by $(Sf)(x) := \lim_{n \to \infty} (T_n' f)(x)$ is a bounded linear operator from X' into X'. Use S' and reflexivity to find T.)