Priors for frequentists, consistency beyond Schwartz

Bas Kleijn, KdV Institute for Mathematics

UNIVERSITEIT VAN AMSTERDAM
Part I

Introduction
Bayesian and Frequentist statistics

<table>
<thead>
<tr>
<th>sample space</th>
<th>$(\mathcal{X}, \mathcal{B})$</th>
<th>measurable space</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.i.d. data</td>
<td>$X^n = (X_1, \ldots, X_n) \in \mathcal{X}^n$</td>
<td>frequentist/Bayesian</td>
</tr>
<tr>
<td>model</td>
<td>$(\mathcal{P}, \mathcal{G})$</td>
<td>model subsets $B, V \in \mathcal{G}$</td>
</tr>
<tr>
<td>prior</td>
<td>$\Pi : \mathcal{G} \rightarrow [0, 1]$</td>
<td>probability measure</td>
</tr>
<tr>
<td>posterior</td>
<td>$\Pi(\cdot</td>
<td>X^n) : \mathcal{G} \rightarrow [0, 1]$</td>
</tr>
</tbody>
</table>

- **Frequentist** assume there is P_0 \[X^n \sim P_0^n \]
- **Bayes** assume $P \sim \Pi$ \[X^n | P \sim P^n \]
Definition of the posterior

Definition 4.1 Assume that all $P \mapsto P^n(A)$ are \mathcal{G}-measurable. Given prior Π, a posterior is any $\Pi(\cdot | X^n = \cdot) : \mathcal{G} \times \mathcal{X}^n \to [0,1]$

(i) For any $G \in \mathcal{G}$, $x^n \mapsto \Pi(G | X^n = x^n)$ is \mathcal{B}^n-measurable

(ii) (Disintegration) For all $A \in \mathcal{B}^n$ and $G \in \mathcal{G}$

$$\int_A \Pi(G | X^n) \, dP^n = \int_G P^n(A) \, d\Pi(P)$$

where $P^n = \int P \, d\Pi(P)$ is the prior predictive distribution

Remark 4.2 For frequentists $(X_1, \ldots, X_n) \sim P_0^n$, so assume $P_0^n \ll P^n$
Asymptotic consistency of the posterior

Definition 5.1 Given a model \mathcal{P} with topology and a Borel prior Π, the posterior is consistent at $P \in \mathcal{P}$ if for every open nbd U of P

$$\Pi(U|X^n) \xrightarrow{P} 1$$
Doob’s and Schwartz’s consistency theorems

Theorem 6.1 (Doob (1948))
Let \mathcal{P} and \mathcal{X} be Polish spaces and let Π be a Borel prior. Assume that $P \mapsto P^n(A)$ is Borel measurable for all n, A. Then the posterior is consistent at P, for Π-almost-all $P \in \mathcal{P}$

Remark 6.2 (Schwartz (1961), Freedman (1963)) Not frequentist!

Theorem 6.3 (Schwartz (1965))
Let X_1, X_2, \ldots be an i.i.d.-sample from $P_0 \in \mathcal{P}$. Let \mathcal{P} be Hellinger totally bounded and let Π be a Kullback-Leibler (KL-)prior, i.e.

$$\Pi\left(P \in \mathcal{P} : -P_0 \log \frac{dP}{dP_0} < \epsilon \right) > 0$$

for all $\epsilon > 0$. Then the posterior is consistent at P_0 in the Hellinger topology.
The Dirichlet process

Definition 7.1 (Dirichlet distribution)
A random variable \(p = (p_1, \ldots, p_k) \) with \(p_l \geq 0 \) and \(\sum_l p_l = 1 \) is **Dirichlet distributed** with parameter \(\alpha = (\alpha_1, \ldots, \alpha_k) \), \(p \sim D_\alpha \), if it has density

\[
f_\alpha(p) = C(\alpha) \prod_{l=1}^{k} p_l^{\alpha_l-1}
\]

Definition 7.2 (Dirichlet process, Ferguson 1973-74)
Let \(\alpha \) be a finite measure on \((\mathcal{X}, \mathcal{B})\). The **Dirichlet process** \(P \sim D_\alpha \) is defined by, (for all finite msb partitions \(A = \{A_1, \ldots, A_k\} \) of \(\mathcal{X} \))

\[
\left(P(A_1), \ldots, P(A_k) \right) \sim D(\alpha(A_1), \ldots, \alpha(A_k))
\]
Weak consistency with Dirichlet priors

Theorem 8.1 (Dirichlet consistency)
Let \(X_1, X_2, \ldots\) be an i.i.d.-sample from \(P_0\). If \(\Pi\) is a Dirichlet prior \(D_\alpha\) with finite \(\alpha\) such that \(\text{supp}(P_0) \subset \text{supp}(\alpha)\), the posterior is consistent at \(P_0\) in the weak model topology.

Remark 8.2 Priors are not necessarily KL for consistency.

Remark 8.3 (Freedman (1965)) Dirichlet distributions are tailfree: if \(A'\) refines \(A\) and \(A_{i_1}' \cup \ldots \cup A_{i_l}' = A_i\), then \((P(A_{i_1}' | A_i), \ldots, P(A_{i_l}' | A_i) : 1 \leq i \leq k)\) is independent of \((P(A_1), \ldots, P(A_k))\).

Remark 8.4 \(X^n \mapsto \prod(P(A)|X^n)\) is \(\sigma_n(A)\)-measurable where \(\sigma_n(A)\) is generated by products of the form \(\prod_{i=1}^{n} B_i\) with \(B_i = \{X_i \in A\}\) or \(B_i = \{X_i \notin A\}\).
Stochastic Block Model

Definition 9.1 At step n, nodes belong to one of K_n unobserved classes: θ_i. We estimate $\theta = (\theta_1, \ldots, \theta_n) \in \Theta_n$ upon observation of $X^n = \{X_{ij} : 1 \leq i < j \leq n\}$. Edges X_{ij} occur independently with probabilities $Q_{ij}(\theta) = Q(\theta_i, \theta_j)$. The (expected) degree is denoted λ_n.

An SBM network realisation: $n = 17$, $K_n = 3$, $\lambda_n \approx 4.48$
Bayesian and Frequentist testability

For B, V be two (disjoint) model subsets

Definition 10.1 *Uniform* (or *minimax*) testability

$$\sup_{P \in B} P^n \phi_n \rightarrow 0, \quad \sup_{Q \in V} Q^n (1 - \phi_n) \rightarrow 0$$

Definition 10.2 *Pointwise* testability for all $P \in B$, $Q \in V$

$$\phi_n \xrightarrow{P-a.s.} 0, \quad \phi_n \xrightarrow{Q-a.s.} 1$$

Definition 10.3 *Bayesian* testability for Π-almost-all $P \in B$, $Q \in V$

$$\phi_n \xrightarrow{P-a.s.} 0, \quad \phi_n \xrightarrow{Q-a.s.} 1$$
Examples of uniform test sequences

Lemma 11.1 (Uniform Hellinger tests) Let $B, V \subset \mathcal{P}$ be convex with $H(B, V) > 0$. There exist a $D > 0$ and uniform test sequence (ϕ_n) s.t.

$$\sup_{P \in B} P^n \phi_n \leq e^{-nD}, \quad \sup_{Q \in V} Q^n(1 - \phi_n) \leq e^{-nD}$$

Lemma 11.2 (Minimax weak tests) Let $n \geq 1$, $\epsilon > 0$, $P_0 \in \mathcal{P}$ and a msb $f : \mathcal{X}^n \rightarrow [0, 1]$ be given. Define

$$B = \left\{ P \in \mathcal{P} : |(P^n - P_0^n)f| < \epsilon \right\}, \quad V = \left\{ P \in \mathcal{P} : |(P^n - P_0^n)f| \geq 2\epsilon \right\}$$

There exist a $D > 0$ and uniform test sequence (ϕ_n) s.t.

$$\sup_{P \in B} P^n \phi_n \leq e^{-nD}, \quad \sup_{Q \in V} Q^n(1 - \phi_n) \leq e^{-nD}$$
Testing in the Stochastic Block Model

Assume there is are q_n s.t. $0 < q_n < Q_{ij} < 1 - q_n < 1$

Lemma 12.1 For given, $B_n, V_n \subset \Theta_n$, there exists a test ϕ_n s.t.

$$\max_{\theta \in B_n} P_{\theta,n} \phi_n \leq e^{-8q_n(1-q_n)a_n^2} + \log \#(V_n)$$

$$\max_{\theta' \in V_n} P_{\theta',n}(1 - \phi_n) \leq e^{-8q_n(1-q_n)a_n^2} + \log \#(B_n)$$

where $a_n^2 = \inf_{\theta \in B_n} \inf_{\theta' \in V_n} \sum_{i<j} (Q_{ij}(\theta) - Q_{ij}(\theta'))^2$

Note: $\log \#(V_n), \log \#(B_n) \leq n \log(K_n)$

Remark 12.2 Sharper tests are available (Bickel & Chen (2009); Choi, Wolfe & Airoldi (2012); Mossel, Neeman & Sly (2012, 2014); Abbe, Bandeira & Hull (2014))
Part II

Bayesian testability
and prior-a.s.-consistency
A posterior concentration inequality

Lemma 14.1 Let \((\mathcal{P}, \mathcal{G})\) be given. For any prior \(\Pi\), any test function \(\phi\) and any \(B, V \in \mathcal{G}\),

\[
\int_B P \Pi(V|X) d\Pi(P) \leq \int_B P\phi d\Pi(P) + \int_V Q(1 - \phi) d\Pi(Q)
\]

Corollary 14.2 Consequently, in i.i.d.-context, for any sequences \((\Pi_n)\), \((B_n)\), \((V_n)\) such that \(B_n \cap V_n = \emptyset\) and \(\Pi_n(B_n) > 0\), we have,

\[
\int P^n \Pi_n(V_n|X^n) d\Pi_n(P|B_n) \leq \frac{1}{\Pi(B_n)} \left(\int_{B_n} P^n\phi_n d\Pi_n(P) + \int_{V_n} Q^n(1 - \phi_n) d\Pi_n(Q) \right)
\]
Martingale convergence

Proposition 15.1 Let \((\mathcal{P}, \mathcal{G}, \Pi)\) be given. For any \(B, V \in \mathcal{G}\), the following are equivalent,

(i) There exist Bayesian tests \((\phi_n)\) for \(B\) versus \(V\);

(ii) There exist tests \((\phi_n)\) such that,

\[
\int_B P_n^\phi d\Pi(P) + \int_V Q_n^\phi (1 - \phi_n) d\Pi(Q) \to 0,
\]

(iii) For \(\Pi\)-almost-all \(P \in B, Q \in V\),

\[
\Pi(V | X^n) \xrightarrow{P\text{-a.s.}} 0, \quad \Pi(B | X^n) \xrightarrow{Q\text{-a.s.}} 0
\]

Remark 15.2 Interpretation distinctions between model subsets are Bayesian testable, iff they are picked up by the posterior asymptotically, if(f), the Bayes factor for \(B\) versus \(V\) is consistent
Prior-almost-sure consistency

Theorem 16.1 Let Hausdorff \mathcal{P} with Borel prior Π be given. Assume that for Π-almost-all $P \in \mathcal{P}$ and any open nbd U of P, there exist a $B \subset U$ with $\Pi(B) > 0$ and Bayesian tests (ϕ_n) for B versus $\mathcal{P} \setminus U$. Then the posterior is consistent at Π-almost-all $P \in \mathcal{P}$.

Remark 16.2 Let \mathcal{P} be a Polish space and assume that all $P \mapsto P^n(A)$ are Borel measurable. Then, for any prior Π, any Borel set $V \subset \mathcal{P}$ is Bayesian testable versus $\mathcal{P} \setminus V$.

Corollary 16.3 (More than) Doob's 1948 theorem
Part III

Pointwise testability
and frequentist consistency
Le Cam’s inequality

Definition 18.1 For $B \in \mathcal{G}$ such that $\Pi(B) > 0$, the local prior predictive distribution is $P^n_{\Pi|B} = \int P^n d\Pi(P|B)$.

Remark 18.2 (Le Cam, unpublished (197?) and (1986))
Rewrite the posterior concentration inequality

$$P^n_0 \Pi(V_n|X^n) \leq \left\|P^n_0 - P^n_{\Pi|B_n}\right\|$$

$$+ \int P^n \phi_n d\Pi(P|B_n) + \frac{\Pi(V_n)}{\Pi(B_n)} \int Q^n(1 - \phi_n) d\Pi(Q|V_n)$$

Remark 18.3 For some $b_n \downarrow 0$, $B_n = \{ P \in \mathcal{P} : \|P^n - P^n_0\| \leq b_n \}$,

$$a_n^{-1} \Pi(B_n) \to \infty$$

Remark 18.4 Useful in parametric models but “a considerable nuisance” [sic] (Le Cam (1986)) in non-parametric context
Schwartz's theorem revisited

Remark 19.1 Suppose that for all $\delta > 0$, there is a B s.t. $\Pi(B) > 0$ and for all $P \in B$ and large enough n

$$P_0^n \Pi(V|X^n) \leq e^{n\delta} P^n \Pi(V|X^n)$$

then (by Fatou) for large enough m

$$\sup_{n \geq m} \left[(P_0^n - e^{n\delta} P^n|_B) \Pi(V|X^n)\right] \leq 0$$

Theorem 19.2 Let \mathcal{P} be a model with KL-prior Π; $P_0 \in \mathcal{P}$. Let $B, V \in \mathcal{G}$ be given and assume that B contains a KL-neighbourhood of P_0. If there exist Bayesian tests for B versus V of exponential power then

$$\Pi(V|X^n) \xrightarrow{P_0-a.s.} 0$$

Corollary 19.3 (Schwartz's theorem)
Remote contiguity

Definition 20.1 Given \((P_n), (Q_n)\) of prob msr’s, \(Q_n\) is contiguous w.r.t. \(P_n\) \((Q_n \triangleleft P_n)\), if for any msb \(\psi_n : \mathcal{X}^n \to [0, 1]\)

\[P_n\psi_n = o(1) \quad \Rightarrow \quad Q_n\psi_n = o(1) \]

Definition 20.2 Given \((P_n), (Q_n)\) of prob msr’s and a \(a_n \downarrow 0\), \(Q_n\) is \(a_n\)-remotely contiguous w.r.t. \(P_n\) \((Q_n \triangleleft a_n^{-1}P_n)\), if for any msb \(\psi_n : \mathcal{X}^n \to [0, 1]\)

\[P_n\psi_n = o(a_n) \quad \Rightarrow \quad Q_n\psi_n = o(1) \]

Remark 20.3 Contiguity is stronger than remote contiguity
note that \(Q_n \triangleleft P_n\) iff \(Q_n \triangleleft a_n^{-1}P_n\) for all \(a_n \downarrow 0\).

Definition 20.4 Hellinger transform \(\psi(P, Q; \alpha) = \int p^\alpha q^{1-\alpha} d\mu\)
Le Cam’s first lemma

Lemma 21.1 Given \((P_n), (Q_n)\) like above, \(Q_n \prec P_n\) iff any of the following holds:

(i) If \(T_n \stackrel{P_n}{\longrightarrow} 0\), then \(T_n \stackrel{Q_n}{\longrightarrow} 0\)

(ii) Given \(\epsilon > 0\), there is a \(b > 0\) such that \(Q_n(dQ_n/dP_n > b) < \epsilon\)

(iii) Given \(\epsilon > 0\), there is a \(c > 0\) such that \(\|Q_n - Q_n \wedge cP_n\| < \epsilon\)

(iv) If \(dP_n/dQ_n \stackrel{Q_n}{\longrightarrow} f\) along a subsequence, then \(P(f > 0) = 1\)

(v) If \(dQ_n/dP_n \stackrel{P_n}{\longrightarrow} g\) along a subsequence, then \(Eg = 1\)

(vi) \(\lim \inf_n \psi(P_n, Q_n; \alpha) \rightarrow 1\) as \(\alpha \uparrow 1\)
Criteria for remote contiguity

Lemma 22.1 Given \((P_n), (Q_n)\), \(a_n \downarrow 0\), \(Q_n \prec a_n^{-1} P_n\) if any of the following holds:

(i) For any bnd msb \(T_n : \mathcal{X}^n \to \mathbb{R}\), \(a_n^{-1} T_n \xrightarrow{P_n} 0\), implies \(T_n \xrightarrow{Q_n} 0\)

(ii) Given \(\epsilon > 0\), there is a \(\delta > 0\) s.t. \(Q_n(dP_n/dQ_n < \delta a_n) < \epsilon\) f.l.e.n.

(iii) There is a \(b > 0\) s.t. \(\liminf_{n \to \infty} b a_n^{-1} P_n(dQ_n/dP_n > b a_n^{-1}) = 1\)

(iv) Given \(\epsilon > 0\), there is a \(c > 0\) such that \(\|Q_n - Q_n \wedge c a_n^{-1} P_n\| < \epsilon\)

(v) Under \(Q_n\), \((a_n dQ_n/dP_n)\) are r.v.’s and every subseq has a weakly convergent subseq

(vi) \(\liminf_n \lim_{\alpha \uparrow 1} a_n^{-\alpha} \psi(P_n, Q_n; \alpha) > 0\)
Beyond Schwartz

Theorem 23.1 Let \((\mathcal{P}, \mathcal{G})\) with priors \((\Pi_n)\) and \((X_1, \ldots, X_n) \sim P^n_0\) be given. Assume there are \(B, V \in \mathcal{G}\) with \(\Pi(B) > 0\) and \(a_n \downarrow 0\) s.t.

(i) There exist **Bayesian tests** for \(B\) versus \(V\) of power \(a_n\),

\[
\int_B P^n \phi_n d\Pi_n(P) + \int_V Q^n (1 - \phi_n) d\Pi_n(Q) \leq a_n
\]

(ii) The sequence \(P^n_0\) satisfies \(P^n_0 \prec a_n^{-1} P^n \Pi_n|B\)

Then \(\Pi_n(V|X^n) \xrightarrow{P_0} 0\)
Application to consistency I

Remark 24.1 (Schwartz (1965))
Take $P_0 \in \mathcal{P}$, and define

$$V_n = \{P \in \mathcal{P} : H(P, P_0) \geq \epsilon\}$$
$$B_n = \{P : -P_0 \log \frac{dP}{dP_0} < \epsilon^2\}$$

With $N(\epsilon, \mathcal{P}, H) < \infty$, and a_n of form $\exp(-nD)$ the theorem proves Hellinger consistency with KL-priors.
Application to consistency II

Remark 25.1 *Dirichlet posteriors* $X^n \mapsto \prod(P(A)|X^n)$ are msb $\sigma_n(A)$ where $\sigma_n(A)$ is generated by products of the form $\prod_{i=1}^n B_i$ with $B_i = \{X_i \in A\}$ or $B_i = \{X_i \notin A\}$.

Remark 25.2 (Freedman (1965), Ferguson (1973), Lo (1984), ...)
Take $P_0 \in \mathcal{P}$, and define

$$V_n = V := \{P \in \mathcal{P} : |(P_0 - P)f| \geq 2\epsilon\}$$

$$B_n = B := \{P : |(P_0 - P)f| < \epsilon\}$$

for some bounded, measurable f. *Impose remote contiguity only for ψ_n that are $\sigma_n(A)$-measurable!* Take a_n of form $\exp(-nD)$. The theorem then proves weak consistency with a Dirichlet prior D_α, if $\text{supp}(P_0) \subset \text{supp}(\alpha)$.
Consistency with n-dependent neighbourhoods

Theorem 26.1 Let $(\mathcal{P}, \mathcal{G})$ with priors (Π_n) and $(X_1, \ldots, X_n) \sim P^n_0$ be given. Assume there are $B_n, V_n \in \mathcal{G}$ and $a_n, b_n \geq 0$, $a_n \downarrow 0$ s.t.

(i) There exist Bayesian tests for B_n versus V_n of power a_n,

$$\int_{B_n} P^n \phi_n d\Pi_n(P) + \int_{V_n} Q^n(1 - \phi_n) d\Pi_n(Q) \leq a_n$$

(ii) The prior mass of B_n is lower-bounded by b_n, $\Pi_n(B_n) \geq b_n$

(iii) The sequence P^n_0 satisfies $P^n_0 \prec b_n a_n^{-1} P_n^{\Pi_n|B_n}$

Then $\Pi_n(V_n|X^n) \xrightarrow{P_0} 0$
Application to the posterior rate of convergence

Remark 27.1 *(Ghosal-Ghosh-vdVaart (2000))*

Take $P_0 \in \mathcal{P}$, and define

$$V_n = \{ P \in \mathcal{P} : H(P, P_0) \geq \epsilon_n \}$$

$$B_n = \{ P : -P_0 \log \frac{dP}{dP_0} < \epsilon_n^2, P_0 \log^2 \frac{dP}{dP_0} < \epsilon_n^2 \}$$

With $\log N(\epsilon_n, \mathcal{P}, H) \leq n\epsilon_n^2$, and a_n and b_n of form $\exp(-Kn\epsilon_n^2)$ the theorem proves Hellinger consistency at rate ϵ_n with GGV-priors.

Remark 27.2 *Other B_n are possible! (see Kleijn and Zhao (201x))*
Consistent Bayes factors

Theorem 28.1 Let the model \((\mathcal{P}, \mathcal{G})\) with priors \((\Pi_n)\) be given. Given \(B, V \in \mathcal{G}\) with \(\Pi(B), \Pi(V) > 0\) s.t.

(i) There exist Bayesian tests for \(B\) versus \(V\) of power \(a_n \downarrow 0\),
\[
\int_B P^n \phi_n d\Pi_n(P) + \int_V Q^n (1 - \phi_n) d\Pi_n(Q) \leq a_n
\]

(ii) For every \(P \in B\), \(P^n \prec a_n^{-1} P^n_{\Pi_n|B}\)

(iii) For every \(Q \in V\), \(Q^n \prec a_n^{-1} P^n_{\Pi_n|V}\)

Then the posterior odds or Bayes factors,
\[
B_n = \frac{\Pi(B|X^n)\Pi(V)}{\Pi(V|X^n)\Pi(B)}
\]

for \(B\) versus \(V\) are consistent.