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Part I

Introduction and Motivation



Asymptotic symmetric testing

Observe i.i.d. X" ~ P, model P € &. For disjoint B,V C £,

Ho : Pe B, or Hy:PeV.

Tests ¢, : 2 — [0, 1]; asymptotically, require:

(type-I) P"¢, — 0 for P € B, and,
(type-1I) P"(1 —¢n) — 0 for P V.

Equivalently, we want,
A testing procedure that chooses for B or V based on X"
for every n > 1, has property (D) if it is wrong only a finite

number of times with P°-probability one.

Property (D) is sometimes referred to as ‘“discernibility” .



Some examples and unexpected answers (1)

Consider non-parametric regression with f © X — R and test for
smoothness,

Hy: feCYH{X - R), Hyi: feC?’X —R),

Consider a non-parametric density estimation with p : R — [0, c0) and
test for square-integrability,

Hp : /w2p(x)d:v<oo, H1:/:L'2p(a:)dw=oo.

Practical problem we cannot use the data to determine with asymp-
totic certainty, if CLT applies with our data.



Some examples and unexpected answers (II)

Coin-flip X™ ~ Bernoulli(p)™ with p € [0, 1].

Consider Cover’s rational mean problem: test for rationality:

Ho:pec[0,1]NQ, H;:pel0,1]\Q.
Consider also Dembo and Peres’s irrational alternative:
Ho:pe€l0,1]NnQ, H;:pel0,1]nv2+4Q,

Consider ultimately fractal hypotheses, e.g. with Cantor set

Hy: peC, lepe[O,l]\C.



The Le Cam-Schwartz theorem

Theorem 6.1 (Le Cam-Schwartz, 1960) Let ¥ be a model for i.i.d.
data X' with disjoint subsets B,V . The folllowing are equivalent:

i. there exist (uniformly) consistent tests for B vs V,
ii. there is a sequence of Zso-uniformly continuous vy, : & — [0, 1],

Yn(P) — 1y (P), (1)
(uniformly) for all P € BUV.

Topological context uniform space (£, Z~o).



The Dembo-Peres theorem

Theorem 7.1 (Dembo and Peres, 1995) Let &/ be a model dom-
inated by Lebesgue measure p for i.i.d. data X". Model subsets
B,V that are contained in disjoint countable unions of closed sets
for Prokhorov's weak topology have tests with property (D). If there

exists an a > 1 such that [(dP/dp)®dp < oo for all P € &2, then the
converse is also true.

Topological context Ll—weakly compact, dominated model & with
Prokhorov's weak topology.



T hree forms of testability

Definition 8.1 (¢,) is a uniform test sequence for B vs V, if,

sup P"¢, — 0, sup Q"(1 — ¢n) — O. (2)
PeB QeV

Definition 8.2 (¢,) is a pointwise test sequence for B vs V, if,
on(X™) 50, gn(x™) L1, (3)

for all Pe B and Q € V.

Definition 8.3 (¢,) is a Bayesian test sequence for B vs V, if,

P
on(X™) 50,  gn(X™) i1, (4)
for MNM-almost-all P € B and QQ € V.



Questions

Existence
Existence of uniform tests?
Existence of pointwise tests?
Existence of Bayesian tests?
Construction
How does one model-select? Are there constructive solutions?
Examples

Select the correct directed, acyclical graph in a graphical model;
select the right number of clusters in a clustering model.



Part 11

Existence



Uniform testability has exponential power

Proposition 11.1 Let & be a model for i.i.d. data with disjoint B
and V. The following are equivalent:

i. there exists a uniform test sequence (¢n),

sup P"¢n, — 0, sup Q"(1 — ¢n) — O,
PeB QeV

ii. there is a exponentially powerful uniform test sequence (), i.e.
there is a D > 0 such that,

sup Py, < e_”D, sup Q"(1 — ) < e "D
PeB QeVv
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The model as a uniform space (I)

Take 2 a separable metrizable space, with Borel o-algebra A.

The class .%#,, contains all bounded, #™-measurable f: 2™ — R.

For every n > 1 and [ € .%,, define the entourage,
Whor={(P,Q)ePxZ |P'f-Q"f <1}
Defines uniformity %, (with topology 7). Take %o = Up>1%n.
P>QinZe & [rap"— [raqQn,
for all n > 1 and all f € .%,,. Note also,

U C U C - C Uso C Upy.
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The model as a uniform space (II)

P /

U P

Fig 1. Let P ¢ 2 and entourage W be given. A neighbourhood U
correspondsto U ={Q € &£ : (Q,P) ¢ W}
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Uniform separation (I)

Definition 14.1 Subsets B,V C & are uniformly separated by %o, if
there exists an entourage W ¢ %~ such that,

(BxVUuUVxxB)NW =ga.

In other words, there are J,m > 1, ¢ > 0 and bounded, measurable
functions f1,...,f;: 2™ — [0, 1] such that, for any P,QQ € BUV, if,

0ax [P — QM fj| < e,
then either P,QQ € B, or P,Q € V. (If the model is J-compact,

m = 1 suffices).
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Uniform separation (II)

4 W
— /
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/ /
/ /
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B V P

Fig 2. Let B,V C & and entourage W be given. W separates B and
Vit BxV and V x B do not meet W.
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Characterisation of uniform testability

Theorem 16.1 Let & be a model for i.i.d. data with disjoint B and
V. The following are equivalent:

(i.) there exist uniform tests ¢, for B versusV,
(ii.) the subsets B and V' are uniformly separated by %so.

Corollary 16.2 (Parametrised models) Suppose & = {py : 0 € ©},
with (©,d) compact, metric space and 6§ — Py identifiable and -
continuous, (that is, for every [ € .y, 0w | fdP) Is continuous). If
Bg, Vo C © with d(Bg,Vp) > 0, then the images B = {F : 0 € Bp},
V={Fy:0¢c\Vy} are uniformly testable.
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Closures are important

Proposition 17.1 Let & be a model for i.i.d. data and let B,V be
disjoint model subsets with J-closures B and V. If B,V are uniformly
separated by Z~., then BNV = @. If & is relatively J~-compact, the
converse s also true.

Theorem 17.2 (Dunford-Pettis) Assume &2 is dominated by a proba-
bility measure Q with densities in &g C LY(Q); Pq Is relatively weakly
compact, if and only if, for every ¢ > O there is an M > 0 such that,

e’

that is, ng is uniformly Q-integrable.
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Pointwise testability: equivalent formulations

Proposition 18.1 Let & be a model for i.i.d. data and let B,V be
disjoint model subsets. The following are equivalent:

i. there are tests (¢n) such that, for all Pe B and Q €V,

ii. there are tests (¢n) such that, for all Pe€ B and Q €V,

P
on(X™) 250, (1 gn(x™) Lo,
iii. there are tests (¢n) such that, for all P e B and Q € V,

dn(X™) 2550 (1= gp(X™) L2550,
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Pointwise testability from consistent estimators

Consistent estimators P, : ™ — &2: for all P and nbd U of P,
Pn(Pn(Xn) € U) — 1, as n — oo.

For open B,V C £, define ¢pp(X™) = 1{P, € V}. Forany Pc B, B is
a neighbourhood of P so P"¢, = P"(P, € V) < P"(P, € B) — 0. For
any Q eV, Q"(1 —¢,) — 0. So (¢n) is a pointwise test sequence for
B vs V.

Restrict to ' = BUV, then B and V are clopen sets.

Proposition 19.1 If P € & can be estimated consistently and B is
clopen, there exist pointwise tests for B vs its complement.
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Necessary conditions: pointwise non-testability

Suppose that there exist pointwise tests (¢,) for B, V. Define,

gn . & — [0,1] : P+~ P"¢n,

which are all Zs-uniformly continuous.

Proposition 20.1 If there is a pointwise test (¢n) for B vs V, then
B,V are both Gs- and Fs-sets with respect to J (in the subspace
BUV).

Corollary 20.2 Suppose & = B UV is Polish in the 5 -topology.
Pairs B,V that are pointwise testable, are both Polish spaces.

Corollary 20.3 If there exists a Baire subspace D of &2 in which both
DN B and DNV are dense, then B is not testable versus V.
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Pointwise non-testability: examples (1)

Example 21.1 Is Cover’s rational means problem testable?

Dunford-Pettis theorem shows that & is J.-compact and [0,1] —
P pw— Ppis a Iso-homeomorphism. Since [0, 1] is a complete metric
space, ¥ is a Baire space for the 7.-topology. Because both [0, 1]NQ
and [0,1]\ Q are dense in [0,1], the images Py = {Pp:p € [0,1]NQ}
and 1 :={P, :p € [0,1]\Q} are T-dense in & there is no pointwise
test for p € [0,1] N Q versus p € [0,1] \ Q.
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Pointwise non-testability: examples (II)

Example 22.1 Is Dembo and Peres’s irrational alternative testable?

Any countable & is Polish in the discrete topology. Any subset B of
& is a countable union of closed sets (B = Uy-p{b}), so it remains
possible that there exists a pointwise test for Dembo and Peres’s
problem.

Example 22.2 Is Cantor’s fractal alternative testable?

The interval [0,1] is Polish and & is homeomorphic. The Cantor
set C' is closed and its complement is open. Open sets in metrizable
spaces are Fs-sets. So it remains possible there exists a pointwise
test for Cantor’s fractal alternative.
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Pointwise non-testability: examples (III)

Example 23.1 Is integrability of a real-valued X, P|X| < oo, testable?

Model &7 = {all probability distributions on R}. &2 is Baire space for
Iryv. Define,

B={Pec?: P|X|<oo}, V={PecP:P|X|l=o0}

B cannot be tested versus V.

Namely Let P € B and Q € V be given. For any 0 < e < 1, P/ =
(1 — )P + €@ satisfies |P' — P|| = ¢||(P + Q)| < 2¢, but P € V.
Conclude that V lies 97y -dense in .

Conversely, () is tight, so for every ¢ > 0, there exists an M > 0O
such that |Q(A) — Q(A||X| < M)| < e for all measurable A C R. Since
QG| X| < M) e B, we also see that B lies Iy -dense in &.
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Pointwise testability in dominated models

Definition 24.1 The testing problem has a (uniform) representation
on X, if there exists a Jx-(uniformly-)continuous, surjective map
f:BUV — X such that f[(B)N f(V) = .

Definition 24.2 The model is parametrised by ©, if there exists a
Iso-continuous bijection P. : © — &2 (i.e. for every m > 1 and mea-
surable f . 2" — [0,1], the map 0 — [ fdPy" is continuous).

If © is compact, any parametrization is a homeomorphism, so the
inverse gives rise to representations of testing problems in £2.
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Characterisation of pointwise testability

Theorem 25.1 Let &/ be a dominated model for i.i.d. data with
disjoint B,V. The following are equivalent,

i. there exists a pointwise test for B vs V,

ii. the problem has a representation f . BUV — X on a normal
space X and there exist disjoint F,-sets B’ V' < X such that

f(B) C B, f(V) cV/,

iii. the problem has a uniform representation i : BUV — X on a
separable, metrizable space X with /(B),(V) both Fy- and G-
sets.
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Pointwise testability: corollaries (I)

Corollary 26.1 Suppose that & is dominated and there exist disjoint
F,-sets B, V' in the completion & (for %) with B ¢ B, V < V',
Then B is pointwise testable versus V.

Corollary 26.2 Suppose that 7 is dominated and complete (for U~ )
with disjoint subsets B,V . Then B is pointwise testable versus V, if
and only if, there exist disjoint Fy-sets B', V' c & withBC B',V c V',
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Pointwise testability: corollaries (II)

Corollary 27.1 Suppose that 7 is dominated and T V-totally-bounded.
Then disjoint B,V C 27 are pointwise testable, if and only if, B,V are
both Fs- and Gg-sets in BUV (for 7y ).

Corollary 27.2 Suppose that &7 is dominated by a probability mea-
sure, with a uniformly integrable family of densities. Then disjoint
B,V C 2 are pointwise testable, if and only if, B,V are both Fs- and
Ggs-sets in BUV (for ).
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Pointwise testability: examples (I)

Example 28.1 Is independence of two events A and B testable?
Let A,B € %4 be msb subsets. Consider,

Hy : P(ANB) = P(A)P(B), Hy: P(AnB) # P(A)P(B).
Define %/1-continuous f; : & — [0,1], (1 = 1,2,3),

f1(P) =P(ANB), [f2(P)=P(A), [f3(P)=P(B),

and continuous ¢ : [0,1]3 — [1,—1], g(x1, 20, 23) = 21 — xox3. Now,

h: 2 —[0,1]: P —|go (f1, f2, f3)(P)],

is %i-continuous. Then B = h~'({0}) is closed (for 7,) and (since
the complement V' is open in [0,1], it is Fy, so) V. = h= (V') is F, (for
7). So independence of events A and B is asymptotically testable.
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Pointwise testability: examples (II)

Example 29.1 Is independence of real-valued X and Y testable?

Let A,. € ox,B; € oy be generators. Consider,

Ho @ YV P(Ap N B)) = P(A)P(By), Hy : 35 P(A, N By) # P(AL)P(B).
Define 7/1-continuous fy,;;: & — [0,1], (i = 1,2,3),

fri1(P) =P(A N By, frao(P)=P(AL), fi3(P)=P(B),

and continuous ¢ : [0,1]3 — [1, 1], g(x1, 20, 23) = 21 — xox3. Now,

h: P —[0,11" : P (lgo (fur1s fro f13)(P)]: k1 > 1),

is %i-continuous. Then B = h~'({0}) is closed (for 7~,) and (since
the complement V' is open in [0,1]Y, it is F,, so) V. = h=1(V") is F,
(for 7~ ). So independence of X and Y is asymptotically testable.
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Bayesian testability: equivalent formulations

Theorem 30.1 Let a model (7,%,1) with B,V € 4 be given, with
MN(B) > 0,M(V) > 0. The following are equivalent,

i. there exist Bayesian tests for B vs V,

ii. there are tests ¢, such that for IN-almost-all P € B,Q) € V,
iii. there are tests ¢, : ™ — [0, 1] such that,

[ Prendn(P) + [ Q"(1 = ¢n)dN(Q) =0,
iv. for MN-almost-all P € B, Q €V,

novix™ 50, nBx™ <o,
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Characterisation of Bayesian testability

Definition 31.1 Given model (£7,%,11). An event B ¢ 2°° is called
a MN-zero-one set, if P> (B) € {0,1}, for lN-almost-all P € &. A model
subset G € 4 is called a N-one set if there is a I'l-zero-one set B such
that G ={P e & . P>*(B)=1}.

Proposition 31.2 (Martingale convergence) Let (7,9 .,11) be given.

Let V be a N-one set. Then, for I'-almost-all P € &,

VX" 22225 1 (P). (5)

Theorem 31.3 Let (,%9) be a measurable model with a prior T1
that is a Radon measure and hypotheses B,V . There is a Bayesian
test sequence for B vs V, if and only if, B,V are 4-measurable.
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Part Il

Constructive results



Bayesian testing power

Denote the density for the local prior predictive distribution PJL_"B with

respect to unp = anB - PTTW by PBn and similar for PTIL_”V.

Proposition 33.1 Let (,9,11) be a model with measurable B,V .
T here are tests ¢,, such that,

/B P"¢n dMN(P) + /V Q" (1 — ¢n) dN(Q)
o 1—a (6)
< [(NB) ppa@) (M) pya@))  dun(a),

for every n > 1 and any 0 < o < 1.

Proposition 33.2 For every n > 1, the test,
On(X™) = {X": M(V|X™) > N(B|X™)},
based on posterior odds has optimal Bayesian testing power.
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Posterior odds model selection for frequentists

Theorem 34.1 For all n > 1, let the model be a probability space
(,4.1,). Consider disjoint, measurable B,V C © with M, (B),MNy(V) >
O such that,

i. There are Bayesian tests for B vs V' of power a, | O,

/B P dMn(P) + /V Q"(1 — ¢n) dNn(Q) = o(an),

ji. for all P B, Pr<aa: PP for a0 c v, Qnaaz V.

Then the indicators ¢n(X™) = 1{X™ : T(V|X™) > N(B|X™)} for pos-
terior odds form a pointwise test sequence for B vs V.

See arXiv:1611.08444 [math.ST]
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Remote contiguity

Definition 35.1 Given (P,), (Qn) and a an | 0, Qn is ap-remotely
contiguous w.r.t. Py (Qn<a;, 1P,), if for any msb ¢, : Z™ — [0, 1]

Pnibn = o(an) —= Qnn = o(1)

Lemma 35.2 Q, <a, P, if any of the following holds:

(i) For any bnd msb Ty, : 2™ — R, a;lTn i 0, implies Ty, %O

(ii) Given e >0, thereisad >0 s.t. Qn(dP,/dQn < dayn) < e f.le.n.
(iii) Thereis ab>0 s.t. liminfpsooba, ' Po(dQn/dPp > ba,l) =1
(iv) Given e > 0, there is a ¢ > 0 such that |Qn — Qn A caganH < €
(v) Under Qn, every subsequence of (an(dP,/dQn)~1) has a further

subsequence that converges in J.
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Example: KL-neighbourhoods

Example 36.1 Let & be a model for i.i.d. data X". Let Py, P and

e > 0 be such that —Pylog(dP/dPy) < €2. Then, for large enough n,
dP™ n
(X)) > 73, (7)
Py

with Pj-probability one. So for any tests vn,

1
Papy, > ¢ 31 Plapy,. (8)

So if P'¢, = o(exp (—4ne?)) then Pl¢, = o(1l): P¥<ia,'P™ with
an = exp (—%neQ).
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Consistent model selection

Let &2 be a model for /.i.d. data X" ~ P" (n > 1), and suppose that
(22,%.11) has finite, measurable partition,

Pe¥=21U...UP,.
Model-selection Which 1 <¢ < M7? (such that P € &)

Theorem 37.1 Assume that for all 1 <1 <y < M,

Z; and 33]- are Yso-uniformly separated.

Let 1 <1< M besuch that P ¢ 27;. IfIl is a KL-prior, then indicators
for posterior odds,

dn(X™) = 1{X" N2 X™) > Y n(ﬁzﬂxn)},
jFi
are a pointwise test for &; vs U;+;%;.
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Example: select the DAG (I)

Observe an j.i.d. X" of vectors of discrete random variables X, =

(X145, Xps) € ZF. We assume that X ~ P follows a graphical
model,

k
Pﬁ)@(Xl € Bq,..., X} € Bk) = H P@i(XZ' c BZ|<QZL>
=1

where o/, C {1,..., k} denotes the parents of X,. Together, the &
describe a directed, a-cyclical graph.

Family .# of kernels pg(:|-) : Z x Z! — [0,1], for 6 € ©, 1 <1 < k.
Assume that © is compact and,

0— > flx)Py(z|z1,-..,7)

el
is continuous, for every bounded f:7Z — R and all z1,...,z € Z.
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Example: select the DAG (II)

The DAG o = («7; : 1 <1 < k) represents a number of conditional
independence statements concerning the components Xq,..., X for
all 1 <4< j <k, given X; =z for all | € &, U.«;, X; is independent of

X;.

Define the submodels 7, = {P,, 0 € ©F}, for all &. Given a
conditional independence relation for &/, we require that, for all 0, all
zcZ, all A,B C Z, any &' #

Puyig(X; € A, X € B|X; = 2)
_Pd’,H(Xi c AlX; = Z) P@{/,Q(Xj € B|X; = Z)|> €,

for some ¢ > 0 that depends only on & and &’.

With a KL-prior posterior odds for &, select the correct DAG «.
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Example: how many clusters? (I)

Observe i.i.d. X™ ~ P"™, where P dominated with density p.

Clusters Family .# of kernels ¢y : R — [0,00), with parameter 0 € ©.
Assume © compact and,

0 [ 1(@)pp() da,

is continuous, for every bounded, measurable f : R — R. Define
e\, =M/~

Model Assume that there is an M > 0 such that p can be written as,

M
pro(x) = D Ampg,, (@),

m=1
for some M > 1, with Ae Sy ={N € [0,1]1M : S A =1}, 0 € O,
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Example: how many clusters? (II)

Assume M less than some known M'. Choose prior My 5 for A € Sy,
such that, for some € > O,

I‘I,\,M()\ € Sy e < min{m}, max{im} <1-— e) = 1.

For 6 € @QW also choose a prior Iy 5y that 'stays away from the edges’.
Define,
M/

M= > ppMyn x Mg
M=1

(for X aprupr = 1).

If N is a KL-prior, posterior odds select the correct number of clusters
M. If there are no M’ and € known, there are sequences M{,L — oo and
en 4 O with priors I, that finds the correct number of clusters.
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