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Part I
Introduction and Motivation



Asymptotic symmetric testing

Observe i.i.d. Xn ∼ Pn, model P ∈P. For disjoint B, V ⊂P,

H0 : P ∈ B, or H1 : P ∈ V .

Tests φn : X n → [0,1]; asymptotically, require:

(type-I) Pnφn → 0 for P ∈ B, and,

(type-II) Pn(1− φn)→ 0 for P ∈ V .

Equivalently, we want,

A testing procedure that chooses for B or V based on Xn

for every n ≥ 1, has property (D) if it is wrong only a finite

number of times with P∞-probability one.

Property (D) is sometimes referred to as “discernibility”.
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Some examples and unexpected answers (I)

Consider non-parametric regression with f : X → R and test for

smoothness,

H0 : f ∈ C1(X → R), H1 : f ∈ C2(X → R),

Consider a non-parametric density estimation with p : R→ [0,∞) and

test for square-integrability,

H0 :
∫
x2 p(x) dx <∞, H1 :

∫
x2 p(x) dx =∞.

Practical problem we cannot use the data to determine with asymp-

totic certainty, if CLT applies with our data.
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Some examples and unexpected answers (II)

Coin-flip Xn ∼ Bernoulli(p)n with p ∈ [0,1].

Consider Cover’s rational mean problem: test for rationality:

H0 : p ∈ [0,1] ∩ Q, H1 : p ∈ [0,1] \ Q.

Consider also Dembo and Peres’s irrational alternative:

H0 : p ∈ [0,1] ∩ Q, H1 : p ∈ [0,1] ∩
√

2 + Q,

Consider ultimately fractal hypotheses, e.g. with Cantor set C,

H0 : p ∈ C, H1 : p ∈ [0,1] \ C.
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The Le Cam-Schwartz theorem

Theorem 6.1 (Le Cam-Schwartz, 1960) Let P be a model for i.i.d.

data Xn with disjoint subsets B, V . The folllowing are equivalent:

i. there exist (uniformly) consistent tests for B vs V ,

ii. there is a sequence of U∞-uniformly continuous ψn : P → [0,1],

ψn(P )→ 1V (P ), (1)

(uniformly) for all P ∈ B ∪ V .

Topological context uniform space (P,U∞).
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The Dembo-Peres theorem

Theorem 7.1 (Dembo and Peres, 1995) Let P be a model dom-

inated by Lebesgue measure µ for i.i.d. data Xn. Model subsets

B, V that are contained in disjoint countable unions of closed sets

for Prokhorov’s weak topology have tests with property (D). If there

exists an α > 1 such that
∫

(dP/dµ)α dµ < ∞ for all P ∈ P, then the

converse is also true.

Topological context L1-weakly compact, dominated model P with

Prokhorov’s weak topology.
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Three forms of testability

Definition 8.1 (φn) is a uniform test sequence for B vs V , if,

sup
P∈B

Pnφn → 0, sup
Q∈V

Qn(1− φn)→ 0. (2)

Definition 8.2 (φn) is a pointwise test sequence for B vs V , if,

φn(Xn)
P−−→0, φn(Xn)

Q−−→1, (3)

for all P ∈ B and Q ∈ V .

Definition 8.3 (φn) is a Bayesian test sequence for B vs V , if,

φn(Xn)
P−−→0, φn(Xn)

Q−−→1, (4)

for Π-almost-all P ∈ B and Q ∈ V .
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Questions

Existence

Existence of uniform tests?

Existence of pointwise tests?

Existence of Bayesian tests?

Construction

How does one model-select? Are there constructive solutions?

Examples

Select the correct directed, acyclical graph in a graphical model;

select the right number of clusters in a clustering model.
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Part II
Existence



Uniform testability has exponential power

Proposition 11.1 Let P be a model for i.i.d. data with disjoint B

and V . The following are equivalent:

i. there exists a uniform test sequence (φn),

sup
P∈B

Pnφn → 0, sup
Q∈V

Qn(1− φn)→ 0,

ii. there is a exponentially powerful uniform test sequence (ψn), i.e.

there is a D > 0 such that,

sup
P∈B

Pnψn ≤ e−nD, sup
Q∈V

Qn(1− ψn) ≤ e−nD.
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The model as a uniform space (I)

Take X a separable metrizable space, with Borel σ-algebra B.

The class Fn contains all bounded, Bn-measurable f : X n → R.

For every n ≥ 1 and f ∈ Fn, define the entourage,

Wn,f = {(P,Q) ∈P ×P : |Pnf −Qnf | < 1}.

Defines uniformity Un (with topology Tn). Take U∞ = ∪n≥1Un.

P → Q in T∞ ⇔
∫
f dPn →

∫
f dQn,

for all n ≥ 1 and all f ∈ Fn. Note also,

UC ⊂ U1 ⊂ · · · ⊂ U∞ ⊂ UTV .
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The model as a uniform space (II)

P

P

P

W

U

Fig 1. Let P ∈ P and entourage W be given. A neighbourhood U

corresponds to U = {Q ∈P : (Q,P ) ∈W}
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Uniform separation (I)

Definition 14.1 Subsets B, V ⊂P are uniformly separated by U∞, if

there exists an entourage W ∈ U∞ such that,

(B × V ∪ V ×B) ∩W = ∅.

In other words, there are J,m ≥ 1, ε > 0 and bounded, measurable

functions f1, . . . , fJ : X m → [0,1] such that, for any P,Q ∈ B ∪ V , if,

max
1≤j≤J

∣∣∣Pmfj −Qmfj∣∣∣ < ε,

then either P,Q ∈ B, or P,Q ∈ V . (If the model is T∞-compact,

m = 1 suffices).
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Uniform separation (II)

V × V

B ×B

B × V

V ×B

V

B

B

V

P

P

W

Fig 2. Let B, V ⊂P and entourage W be given. W separates B and

V if B × V and V ×B do not meet W .
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Characterisation of uniform testability

Theorem 16.1 Let P be a model for i.i.d. data with disjoint B and

V . The following are equivalent:

(i.) there exist uniform tests φn for B versus V ,

(ii.) the subsets B and V are uniformly separated by U∞.

Corollary 16.2 (Parametrised models) Suppose P = {pθ : θ ∈ Θ},
with (Θ, d) compact, metric space and θ → Pθ identifiable and T∞-

continuous, (that is, for every f ∈ Fn, θ 7→
∫
f dPnθ is continuous). If

B0, V0 ⊂ Θ with d(B0, V0) > 0, then the images B = {Pθ : θ ∈ B0},
V = {Pθ : θ ∈ V0} are uniformly testable.
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Closures are important

Proposition 17.1 Let P be a model for i.i.d. data and let B, V be

disjoint model subsets with T∞-closures B and V . If B, V are uniformly

separated by U∞, then B∩V = ∅. If P is relatively T∞-compact, the

converse is also true.

Theorem 17.2 (Dunford-Pettis) Assume P is dominated by a proba-

bility measure Q with densities in PQ ⊂ L1(Q); PQ is relatively weakly

compact, if and only if, for every ε > 0 there is an M > 0 such that,

sup
P∈P

∫
{dP/dQ>M}

dP

dQ
dQ < ε,

that is, PQ is uniformly Q-integrable.
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Pointwise testability: equivalent formulations

Proposition 18.1 Let P be a model for i.i.d. data and let B, V be

disjoint model subsets. The following are equivalent:

i. there are tests (φn) such that, for all P ∈ B and Q ∈ V ,

Pnφn → 0, Qn(1− φn)→ 0,

ii. there are tests (φn) such that, for all P ∈ B and Q ∈ V ,

φn(Xn)
P−−→0, (1− φn(Xn))

Q−−→0,

iii. there are tests (φn) such that, for all P ∈ B and Q ∈ V ,

φn(Xn)
P -a.s.−−−−−→0, (1− φn(Xn))

Q-a.s.−−−−−→0.
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Pointwise testability from consistent estimators

Consistent estimators P̂n : X n →P: for all P and nbd U of P ,

Pn
(
P̂n(Xn) ∈ U

)
→ 1, as n→∞.

For open B, V ⊂P, define φn(Xn) = 1{P̂n ∈ V }. For any P ∈ B, B is

a neighbourhood of P so Pnφn = Pn(P̂n ∈ V ) ≤ Pn(P̂n 6∈ B)→ 0. For

any Q ∈ V , Qn(1− φn)→ 0. So (φn) is a pointwise test sequence for

B vs V .

Restrict to P ′ = B ∪ V , then B and V are clopen sets.

Proposition 19.1 If P ∈ P can be estimated consistently and B is

clopen, there exist pointwise tests for B vs its complement.
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Necessary conditions: pointwise non-testability

Suppose that there exist pointwise tests (φn) for B, V . Define,

gn : P → [0,1] : P 7→ Pnφn,

which are all U∞-uniformly continuous.

Proposition 20.1 If there is a pointwise test (φn) for B vs V , then

B, V are both Gδ- and Fσ-sets with respect to T∞ (in the subspace

B ∪ V ).

Corollary 20.2 Suppose P = B ∪ V is Polish in the T∞-topology.

Pairs B, V that are pointwise testable, are both Polish spaces.

Corollary 20.3 If there exists a Baire subspace D of P in which both

D ∩B and D ∩ V are dense, then B is not testable versus V .
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Pointwise non-testability: examples (I)

Example 21.1 Is Cover’s rational means problem testable?

Dunford-Pettis theorem shows that P is T∞-compact and [0,1] →
P : p 7→ Pp is a T∞-homeomorphism. Since [0,1] is a complete metric

space, P is a Baire space for the T∞-topology. Because both [0,1]∩Q
and [0,1] \Q are dense in [0,1], the images P0 := {Pp : p ∈ [0,1]∩Q}
and P1 := {Pp : p ∈ [0,1]\Q} are T∞-dense in P: there is no pointwise

test for p ∈ [0,1] ∩ Q versus p ∈ [0,1] \ Q.
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Pointwise non-testability: examples (II)

Example 22.1 Is Dembo and Peres’s irrational alternative testable?

Any countable P is Polish in the discrete topology. Any subset B of

P is a countable union of closed sets (B = ∪b∈B{b}), so it remains

possible that there exists a pointwise test for Dembo and Peres’s

problem.

Example 22.2 Is Cantor’s fractal alternative testable?

The interval [0,1] is Polish and P is homeomorphic. The Cantor

set C is closed and its complement is open. Open sets in metrizable

spaces are Fσ-sets. So it remains possible there exists a pointwise

test for Cantor’s fractal alternative.
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Pointwise non-testability: examples (III)

Example 23.1 Is integrability of a real-valued X, P |X| <∞, testable?

Model P = {all probability distributions on R}. P is Baire space for

TTV . Define,

B = {P ∈P : P |X| <∞}, V = {P ∈P : P |X| =∞}.

B cannot be tested versus V .

Namely Let P ∈ B and Q ∈ V be given. For any 0 < ε < 1, P ′ =

(1 − ε)P + εQ satisfies ‖P ′ − P‖ = ε‖(P + Q)‖ ≤ 2ε, but P ′ ∈ V .

Conclude that V lies TTV -dense in P.

Conversely, Q is tight, so for every ε > 0, there exists an M > 0

such that |Q(A)−Q(A||X| ≤ M)| < ε for all measurable A ⊂ R. Since

Q(·||X| ≤M) ∈ B, we also see that B lies TTV -dense in P.
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Pointwise testability in dominated models

Definition 24.1 The testing problem has a (uniform) representation

on X, if there exists a T∞-(uniformly-)continuous, surjective map

f : B ∪ V → X such that f(B) ∩ f(V ) = ∅.

Definition 24.2 The model is parametrised by Θ, if there exists a

T∞-continuous bijection P· : Θ → P (i.e. for every m ≥ 1 and mea-

surable f : X m → [0,1], the map θ 7→
∫
f dPmθ is continuous).

If Θ is compact, any parametrization is a homeomorphism, so the

inverse gives rise to representations of testing problems in P.
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Characterisation of pointwise testability

Theorem 25.1 Let P be a dominated model for i.i.d. data with

disjoint B, V . The following are equivalent,

i. there exists a pointwise test for B vs V ,

ii. the problem has a representation f : B ∪ V → X on a normal

space X and there exist disjoint Fσ-sets B′, V ′ ⊂ X such that

f(B) ⊂ B′, f(V ) ⊂ V ′,

iii. the problem has a uniform representation ψ : B ∪ V → X on a

separable, metrizable space X with ψ(B), ψ(V ) both Fσ- and Gδ-

sets.
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Pointwise testability: corollaries (I)

Corollary 26.1 Suppose that P is dominated and there exist disjoint

Fσ-sets B′, V ′ in the completion P̂ (for U∞) with B ⊂ B′, V ⊂ V ′.
Then B is pointwise testable versus V .

Corollary 26.2 Suppose that P is dominated and complete (for U∞)

with disjoint subsets B, V . Then B is pointwise testable versus V , if

and only if, there exist disjoint Fσ-sets B′, V ′ ⊂P with B ⊂ B′, V ⊂ V ′.
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Pointwise testability: corollaries (II)

Corollary 27.1 Suppose that P is dominated and TV-totally-bounded.

Then disjoint B, V ⊂P are pointwise testable, if and only if, B, V are

both Fσ- and Gδ-sets in B ∪ V (for TTV ).

Corollary 27.2 Suppose that P is dominated by a probability mea-

sure, with a uniformly integrable family of densities. Then disjoint

B, V ⊂P are pointwise testable, if and only if, B, V are both Fσ- and

Gδ-sets in B ∪ V (for TC).
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Pointwise testability: examples (I)

Example 28.1 Is independence of two events A and B testable?

Let A,B ∈ B be msb subsets. Consider,

H0 : P (A ∩B) = P (A)P (B), H1 : P (A ∩B) 6= P (A)P (B).

Define U1-continuous fi : P → [0,1], (i = 1,2,3),

f1(P ) = P (A ∩B), f2(P ) = P (A), f3(P ) = P (B),

and continuous g : [0,1]3 → [1,−1], g(x1, x2, x3) = x1 − x2x3. Now,

h : P → [0,1] : P 7→ |g ◦ (f1, f2, f3)(P )|,

is U1-continuous. Then B = h−1({0}) is closed (for T∞) and (since

the complement V ′ is open in [0,1], it is Fσ, so) V = h−1(V ′) is Fσ (for

T∞). So independence of events A and B is asymptotically testable.
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Pointwise testability: examples (II)

Example 29.1 Is independence of real-valued X and Y testable?

Let Ak ∈ σX , Bl ∈ σY be generators. Consider,

H0 : ∀k,l P (Ak ∩Bl) = P (Ak)P (Bl), H1 : ∃k,l P (Ak ∩Bl) 6= P (Ak)P (Bl).

Define U1-continuous fkl,i : P → [0,1], (i = 1,2,3),

fkl,1(P ) = P (Ak ∩Bl), fk,2(P ) = P (Ak), fl,3(P ) = P (Bl),

and continuous g : [0,1]3 → [1,−1], g(x1, x2, x3) = x1 − x2x3. Now,

h : P → [0,1]N : P 7→ (|g ◦ (fkl,1, fk,2, fl,3)(P )|: k, l ≥ 1),

is U1-continuous. Then B = h−1({0}) is closed (for T∞) and (since

the complement V ′ is open in [0,1]N, it is Fσ, so) V = h−1(V ′) is Fσ
(for T∞). So independence of X and Y is asymptotically testable.
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Bayesian testability: equivalent formulations

Theorem 30.1 Let a model (P,G ,Π) with B, V ∈ G be given, with

Π(B) > 0,Π(V ) > 0. The following are equivalent,

i. there exist Bayesian tests for B vs V ,

ii. there are tests φn such that for Π-almost-all P ∈ B,Q ∈ V ,

Pnφn → 0, Qn(1− φn)→ 0,

iii. there are tests φn : X n → [0,1] such that,∫
B
Pnφn dΠ(P ) +

∫
V
Qn(1− φn) dΠ(Q)→ 0,

iv. for Π-almost-all P ∈ B, Q ∈ V ,

Π(V |Xn)
P−−→0, Π(B|Xn)

Q−−→0.
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Characterisation of Bayesian testability

Definition 31.1 Given model (P,G ,Π). An event B ∈ B∞ is called

a Π-zero-one set, if P∞(B) ∈ {0,1}, for Π-almost-all P ∈P. A model

subset G ∈ G is called a Π-one set if there is a Π-zero-one set B such

that G = {P ∈P : P∞(B) = 1}.

Proposition 31.2 (Martingale convergence) Let (P,G ,Π) be given.

Let V be a Π-one set. Then, for Π-almost-all P ∈P,

Π(V |Xn)
P -a.s.−−−−−→1V (P ). (5)

Theorem 31.3 Let (P,G ) be a measurable model with a prior Π

that is a Radon measure and hypotheses B, V . There is a Bayesian

test sequence for B vs V , if and only if, B, V are G -measurable.
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Part III
Constructive results



Bayesian testing power

Denote the density for the local prior predictive distribution P
Π|B
n with

respect to µn = P
Π|B
n + P

Π|V
n by pB,n, and similar for P

Π|V
n .

Proposition 33.1 Let (P,G ,Π) be a model with measurable B, V .

There are tests φn such that,∫
B
Pnφn dΠ(P ) +

∫
V
Qn(1− φn) dΠ(Q)

≤
∫ (

Π(B) pB,n(x)
)α(

Π(V ) pV,n(x)
)1−α

dµn(x),
(6)

for every n ≥ 1 and any 0 ≤ α ≤ 1.

Proposition 33.2 For every n ≥ 1, the test,

φn(Xn) = 1{Xn : Π(V |Xn) ≥ Π(B|Xn)},

based on posterior odds has optimal Bayesian testing power.
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Posterior odds model selection for frequentists

Theorem 34.1 For all n ≥ 1, let the model be a probability space

(P,G ,Πn). Consider disjoint, measurable B, V ⊂ Θ with Πn(B),Πn(V ) >

0 such that,

i. There are Bayesian tests for B vs V of power an ↓ 0,∫
B
Pnφn dΠn(P ) +

∫
V
Qn(1− φn) dΠn(Q) = o(an),

ii. for all P ∈ B, PnC a−1
n P

Πn|B
n ; for all Q ∈ V , QnC a−1

n P
Πn|V
n .

Then the indicators φn(Xn) = 1{Xn : Π(V |Xn) ≥ Π(B|Xn)} for pos-

terior odds form a pointwise test sequence for B vs V .

See arXiv:1611.08444 [math.ST]
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Remote contiguity

Definition 35.1 Given (Pn), (Qn) and a an ↓ 0, Qn is an-remotely

contiguous w.r.t. Pn (QnC a−1
n Pn), if for any msb ψn : X n → [0,1]

Pnψn = o(an) ⇒ Qnψn = o(1)

Lemma 35.2 QnC a−1
n Pn if any of the following holds:

(i) For any bnd msb Tn : X n → R, a−1
n Tn

Pn−−→0, implies Tn
Qn−−→0

(ii) Given ε > 0, there is a δ > 0 s.t. Qn(dPn/dQn < δ an) < ε f.l.e.n.

(iii) There is a b > 0 s.t. lim infn→∞ b a−1
n Pn(dQn/dPn > ba−1

n ) = 1

(iv) Given ε > 0, there is a c > 0 such that ‖Qn −Qn ∧ c a−1
n Pn‖ < ε

(v) Under Qn, every subsequence of (an(dPn/dQn)−1) has a further

subsequence that converges in TC.
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Example: KL-neighbourhoods

Example 36.1 Let P be a model for i.i.d. data Xn. Let P0, P and

ε > 0 be such that −P0 log(dP/dP0) < ε2. Then, for large enough n,

dPn

dPn0
(Xn) ≥ e−

n
2ε

2
, (7)

with Pn0 -probability one. So for any tests ψn,

Pnψn ≥ e−
1
2nε

2
Pn0ψn. (8)

So if Pnφn = o(exp (−1
2nε

2)) then Pn0φn = o(1): Pn0 C a−1
n Pn with

an = exp (−1
2nε

2).
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Consistent model selection

Let P be a model for i.i.d. data Xn ∼ Pn, (n ≥ 1), and suppose that

(P,G ,Π) has finite, measurable partition,

P ∈P = P1 ∪ . . . ∪PM .

Model-selection Which 1 ≤ i ≤M? (such that P ∈Pi)

Theorem 37.1 Assume that for all 1 ≤ i < j ≤M ,

Pi and Pj are U∞-uniformly separated.

Let 1 ≤ i ≤M be such that P ∈Pi. If Π is a KL-prior, then indicators

for posterior odds,

φn(Xn) = 1
{
Xn : Π(Pi|Xn) ≥

∑
j 6=i

Π(Pj|Xn)
}
,

are a pointwise test for Pi vs ∪j 6=iPj.
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Example: select the DAG (I)

Observe an i.i.d. Xn of vectors of discrete random variables Xi =

(X1,i, . . . , Xk,i) ∈ Zk. We assume that X ∼ P follows a graphical

model,

PA ,θ(X1 ∈ B1, . . . , Xk ∈ Bk) =
k∏
i=1

Pθi(Xi ∈ Bi|Ai)

where Ai ⊂ {1, . . . , k} denotes the parents of Xk. Together, the Ai

describe a directed, a-cyclical graph.

Family F of kernels pθ(·|·) : Z × Zl → [0,1], for θ ∈ Θ, 1 ≤ l ≤ k.

Assume that Θ is compact and,

θ 7→
∑
x∈Z

f(x)Pθ(x|z1, . . . , zl)

is continuous, for every bounded f : Z→ R and all z1, . . . , zl ∈ Z.
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Example: select the DAG (II)

The DAG A = (Ai : 1 ≤ i ≤ k) represents a number of conditional

independence statements concerning the components X1, . . . , Xk: for

all 1 ≤ i < j ≤ k, given Xl = z for all l ∈ Ai ∪Aj, Xi is independent of

Xj.

Define the submodels PA = {PA ,θ : θ ∈ Θk}, for all A . Given a

conditional independence relation for A , we require that, for all θ, all

z ∈ Z, all A,B ⊂ Z, any A ′ 6= A ,∣∣∣PA ′,θ(Xi ∈ A,Xj ∈ B|Xl = z)

−PA ′,θ(Xi ∈ A|Xl = z)PA ′,θ(Xj ∈ B|Xl = z)
∣∣∣> ε,

for some ε > 0 that depends only on A and A ′.

With a KL-prior posterior odds for PA select the correct DAG A .
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Example: how many clusters? (I)

Observe i.i.d. Xn ∼ Pn, where P dominated with density p.

Clusters Family F of kernels ϕθ : R → [0,∞), with parameter θ ∈ Θ.

Assume Θ compact and,

θ 7→
∫
f(x)ϕθ(x) dx,

is continuous, for every bounded, measurable f : R → R. Define

Θ′M = ΘM/ ∼.

Model Assume that there is an M > 0 such that p can be written as,

pλ,θ(x) =
M∑

m=1

λmpθm(x),

for some M ≥ 1, with λ ∈ SM = {λ ∈ [0,1]M :
∑
m λm = 1}, θ ∈ Θ′M .
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Example: how many clusters? (II)

Assume M less than some known M ′. Choose prior Πλ,M for λ ∈ SM
such that, for some ε > 0,

Πλ,M

(
λ ∈ SM : ε < min{λm},max{λm} < 1− ε

)
= 1.

For θ ∈ Θ′M also choose a prior Πθ,M that ’stays away from the edges’.

Define,

Π =
M ′∑
M=1

µM Πλ,M ×Πθ,M .

(for
∑
M µM = 1).

If Π is a KL-prior, posterior odds select the correct number of clusters

M . If there are no M ′ and ε known, there are sequences M ′n →∞ and

εn ↓ 0 with priors Πn that finds the correct number of clusters.
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