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Part I

Introduction and Motivation



Bayesian and Frequentist statistics
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Definition of the posterior

Definition 4.1 Assume that all 0 — I, (A) are ¥-measurable. Fix
n > 1. Given prior Ny, a posterior is any N(-| X" =) :9 x 2, — [0, 1]

(i) For any G €%, x" v+ (G| X" = z2") is #,-measurable
(ii) (Bayes's Rule/Disintegration) For all A € $, and G € ¢
/A n(G|X™) dP = /G Py, (A) dMy,(0)

where PTU' = | Py.n, dMy,(0) is the prior predictive distribution

Remark 4.2 For frequentists X" ~ Py, so assume Pg,, < P/



Asymptotic consistency of the posterior
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Definition 5.1 Given © and a Borel
prior 1, the posterior is consistent at 6 € © |if for every nbd U of 0
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he i.i.d. consistency theorems (I)

Theorem 6.1 (Bayesian, Doob (1948))

Assume that X" = (Xq,...,Xp) are i.i.d. Let & and 2 be Polish
spaces and let 'l be a Borel prior. Then the posterior is consistent at
P, for M-almost-all P € &

Example 6.2 For some Q € &2, take N = é6g. Then MN(:|X") =g as
well, P)l-almost-surely. If X1,...,Xn ~ P} (require P} < P\l =Q"),
the posterior is not frequentist consistent.

Non-trivial counterexamples are due to Schwartz (1961) and Freed-
man (1963,1965,...)



The i.i.d. consistency theorems (II)

Theorem 7.1 (Frequentist, Schwartz (1965))
Let X1,Xo,... be i.i.d.-FPy for some Py € &. If,

(i) For every nbd U of Py, there are ¢, : %, — [0,1], s.t.
Pi¢n =o(1), sup Q"(1— ¢n) = o(1),
QeUc
(ii) and N is a Kullback-leibler prior, i.e. for all § > 0,

dP
N Pe ¥ . —Pylo —<5>>O,
< 0199 4P,

then M(U|x™) 20222, 1.

(1)

(2)



The Dirichlet process

Definition 8.1 (Dirichlet distribution)
Ap= (p1,.---,p) p; > 0 and > ;p; = 1 is Dirichlet distributed with
parameter oo = (o, ..., a), p~ Dq, if it has density

k
fa(p) = C(a) I p
=1

Definition 8.2 (Dirichlet process, Ferguson 1973,1974)
Let 2 be Polish and let o« be a finite Borel msr on (Z,%). The
Dirichlet process P ~ D, is defined by,

(P(A1), .., P(AR) ~ Dia(ay),...a(4y))



The i.i.d. consistency theorems (III)

Theorem 9.1 (Frequentist, Dirichlet consistency)

Let X1,Xo,... be an i.i.d.-sample from Py If 1 is a Dirichlet prior Dg,
with finite v such that supp(FPy) C supp(«), the posterior is consistent
at Py in Prohorov's weak topology

Remark 9.2 (Freedman (1963))

Dirichlet priors are tailfree: if A’ refines A and A, U ... U A,’ﬂi —
A;, then (P(Agl\Az-),...,P(Aglz_\AZ-) .1 < ¢ < k) is independent of
(P(A1),...,P(AL)).

Remark 9.3 X" — M(P(A)|X™) is on(A)-measurable where o, (A) is
generated by products of the form [[i_, B; with B; = {X; € A} or
B; ={X; & A}.



Part II

Bayesian test sequences



Bayesian and Frequentist testability

Definition 11.1 Uniform testability

sup Py n,én —+ 0, sup Py ,(1—¢n) —0
0eB 0cV

Definition 11.2 Pointwise testability all

P, P

Pn
Definition 11.3 Bayesian testability [M-almost-all

Py P
an ,n; 07 ¢n 777?71} 1
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A posterior concentration inequality (I)

Lemma 12.1 Let (£,¥) be given. For any prior N, any test function
¢ and any B,V € ¥,

/B PO(V|X)dn(P) < /B Podln(P) + /V Q(1 — ¢) dN(Q)

Proof Due to Bayes's Rule and monotone convergence,
/(1 ~ (X)) N(V|X) dPT = /V P(1 — ) dN(P).
Accordingly,
[ PL=0() (VX)) dn(P)
< [@-eCNNVIX) P = | P(1—0)an(r),
The lemma now follows from the fact that (Vv |X) < 1. []
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A posterior concentration inequality (II)

Definition 13.1 For B € ¥ such that I,,(B) > 0, the local prior
predictive distribution is defined, for every A € %,

= f - o
P, A)= | Py ,,(A)dlN,(0|B) = ———~ | FPy,(A)dlN,(0).
Corollary 13.2 Consequently, for any sequences (IMy), (Brn), (Vn)
such that B, NV, = @ and MNy(By) > 0, we have,
M|By
PP v, xm) = /P97nI‘I(Vn|X”) My (8] Bn)

L |
< AES ([, Ponndtn(®) + [ Pon(1=6n) dna(0))
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Martingale convergence

Proposition 14.1 Let (©,9,11) be given. For any B,V € ¥, the
following are equivalent,

(i) There exist Bayesian tests (¢n) for B versus V;

(ii) There exist tests (¢, ) such that,
/B Py b d(0) + /v Py (1 = ¢n) dr(6) — 0,
(iii) For M-almost-all 6 € B, n €V,
n PQ,n n Pn,n
nwvix")—o, n(B|X")——0

Remark 14.2 Interpretation distinctions between model subsets are
Bayesian testable, iff they are picked up by the posterior asymptoti-
cally, iff, the Bayes factor for B versus V is consistent
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Prior-almost-sure consistency
Corollary 15.1 Let Hausdorff completely reqgular © with Borel prior
M be given. Then the following are equivalent,

(i) for M-almost-all 8 € © and any nbd U of 6 there exist a msb B C U
with I'(B) > 0 and Bayesian tests (¢n) for Bvs V =@\ U,

(ii) the posterior is consistent at MN-almost-all 6 € ©.

Remark 15.2 Let & be a Polish space and assume that all P —
P""(A) are Borel measurable. Then, for any prior I, any Borel set
V C & is Bayesian testable versus &2\ V.

Corollary 15.3 (More than) Doob’s 1948 theorem

15



Part III

Remote contiguity



Le Cam’s inequality

Definition 17.1 For B € ¢ such that I'l,(B) > 0, the local prior
predictive distribution is Py'" = [ Py, d,(0|B).

Remark 17.2 (L.e Cam, unpublished (197X) and (1986))
Rewrite the posterior concentration inequality

PIM(Vi| X™) < HPg _ pMiBn

N(Va)
M(Bn)

+ [ P ¢n dn(P|By) + [ Q"1 = ¢n) dN(QIV)

Remark 17.3 Useful in parametric models (e.g. BvM) but “a con-
siderable nuisance” [sic, Le Cam (1986)] in non-parametric context
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Schwartz’'s theorem revisited

Remark 18.1 Suppose that for all § > 0, there is a B s.t. N(B) >0
and for I'l-almost-all ¢ € B and large enough n

PYN(VIX™) < ™ Py ,,M(V|X™)
then (by Fatou) for large enough m

limsup|(PY — e RBYyn(vix™)| <o

n—oo
Theorem 18.2 Let & be a model with KL-prior N; Py € &2. Let
B,V € 4 be given and assume that B contains a KlL-neighbourhood
of FPo. If there exist Bayesian tests for B versus V of exponential
power then

Py—a.s.
NV 2222, 0

Corollary 18.3 (Schwartz’s theorem)

18



Remote contiguity

Definition 19.1 Given (Py), (Qn), Qn is contiguous w.r.t. Py (Qn < Pr),
if for any msb 1, . 2™ — [0, 1]

Ppipn =0(1) = Qnin =o0(1)

Definition 19.2 Given (P,), (Qn) and a an | 0, Qn is an-remotely
contiguous w.r.t. Py (Qn<a, 'Py), if for any msb ¢, : Z™ — [0, 1]

Ppim = O(Cln) = Qnin = o(1)

Remark 19.3 Contiguity is stronger than remote contiguity
note that Qn < Py, iff Qn < a, 1P, for all an | 0.

Definition 19.4 Hellinger transform (P, Q: o) = [p%gt Y du
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Le Cam’s first lemma

Lemma 20.1 Given (Pn), (Qr) like above, Qn < Py, iff:

() IFT, 50, then T, 2™ 0

(ii) Given e > 0, there is a b > 0 such that Qn(dQn/dPy >b) < €

(iii) Given e > 0, there is a ¢ > 0 such that ||Qn — Qn A c Py < ¢

Qn-w.

(iv) If dP,,/dQ), [ along a subsequence, then P(f >0) =1

(v) If dQ), /d P}, Mg along a subsequence, then Eqg =1
(vi) iminfp Y (Pn,Qn,a) -1 as a1

20



Criteria for remote contiguity

Lemma 21.1 Given (P), (Qn), an | 0, Qn<a, P, if any of the
following holds:

(i) For any bnd msb T, : 2" — R, angn iO, implies Ty, %O

(ii) Given e >0, thereisa § >0 s.t. Qn(dP,/dQn < dan) <€ f.l.e.n.
(iii) Thereis ab>0 s.t. liminfy,sooba, ' Ppo(dQn/dPp > ba,l) =1
(iv) Given e > 0, there is a ¢ > 0 such that ||Qn — Qn A ca, 1Pyl < €

(v) Under Qn, every subsequence of (an(dP,/dQyn)~1) has a weakly
convergent subsequence

[(vi) limgqpq liminfy an™% (P, Qn; a) > 0]
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Part IV

Frequentist consistency



Beyond Schwartz

Theorem 23.1 Let (©,9,1) and (Xq,...,Xpn) ~ Py, be given. As-
sume there are B,V € 4 with I'(B) >0 and a,, | O s.t.

(i) There exist Bayesian tests for B versus V of power an,

/B Py ,,¢n dN(0) + /V Py (1 — ¢n) dN(0) = o(an)

(ii) The sequence (Py ) satisfies Py, < at P,,';”B

Then n(v|xm) 220
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Application to i.i.d. consistency (I)

Remark 24.1 (Schwartz (1965))
Take Py € &2, and define

Vn={Pc & H(P Fy) = ¢}
Bn={P:—PylogdP/dPy < 2¢°}

With N(e, &, H) < oo, and ay of form exp(—nD) the theorem proves
Hellinger consistency with KL-priors.
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Application to i.i.d. consistency (II)

Remark 25.1 Dirichlet posteriors X™ — M(P(A)|X™) are msb o,(A)
where on(A) is generated by products of the form [[_, B; with B; =
{Xi c A} or Bi gl {XZ € A}

Remark 25.2 (Freedman (1965), Ferguson (1973), ...)
Take Py € &2, and define

V=V ={PecP:|Py(A) — P(A)| > 2¢}
Bn =B :={P:|Py(A) — P(A)| < ¢}
for some measurable A. Impose remote contiguity only for i, that

are on(A)-measurable! Take a, of form exp(—nD). The theorem
then proves weak consistency with a Dirichlet prior Dy, if supp(Py) C

supp(a).
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Consistency with n-dependence

Theorem 26.1 Let (£,%) with priors (My) and (Xq,...,Xn) ~ Py p
be given. Assume there are By, V, € Y and an,by, > 0, ap = o(by) S.t.

(i) There exist Bayesian tests for By, versus Vi, of power ay,

(ii) The prior mass of B,, is lower-bounded by by, My(Bn) > by,

(iii) The sequence (P ) satisfies P <1 bpay,* PS”'B”

Then M,,(1,|x") 2250
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Application to i.i.d. consistency (III)

Remark 27.1 (Barron-Schervish-Wasserman (1999), Ghosal-Ghosh-
vdVaart (2000), Shen-Wasserman (2001))
Take Py € &2, and define

Va={Pe P:H(P P > en}
Bn={P:—PylogdP/dPy < e, Pylog?dP/dPy < 5ei

With log N(en, 2, H) < ne2, and an and by, of form exp(—Kne2) the
theorem proves Hellinger consistency at rate ey,

Remark 27.2 Larger By, are possible, under conditions on the model
(see Kleijn and Zhao (201x))
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Consistent Bayes factors

Theorem 28.1 Let the model (£,%) with priors (IN,) be given.
Given B,V € ¢ with N(B),N(V) > 0 s.t.

(i) There are Bayesian tests for B versus V of power ay | 0O,

| Pon@ndNa(0) + | Pyn(1 = ¢n) dMn(6) = o(an)

(ii) For every 6 € B, Py, < a,! pinlB

(iii) For every n eV, Pypn < at PE”'V

Then or Bayes factors (or posterior odds),
_ nesxm)nv)
(VX)) M(B)
for B versus V' are consistent.

n
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Random-walk goodness-of-fit testing (I)

Given (5,.7) state space for a discrete-time, stationary Markov pro-
cess with transition kernel P(:|-) : . x S — [0, 1], the data consists of
random walks X™.

Choose a finite partition a = {A4,..., Ay} of S and ‘bin the data’:
Z"™ in finite state space S,. Z" is stationary Markov chain on S, with
transition probabilities

pa(k|l) = P(X; € Ag|X;—1 € Ap),

We assume that pq is ergodic with equilibrium distribution .

We are interested in Bayes factors for goodness-of-fit testing of tran-
sition probabilities.
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Random-walk goodness-of-fit testing (II)

Fix Py, e > 0 and hypothesize on ‘bin probabilities’ pa(k,1) = pa(k|l)7a(l),
Hp : max‘pa(k 1) — po(k, 1)\ <e, Hy: max\pa(k D) — po(k, 1)| > ¢,
Define, for 6, | O,
Bp={pa €O : n?f?llx‘pa(k,l) —po(k, 1) | < €= n}
Vit = {pa € © : |pa(k,1) — po(k, 1)| > e},
Vikin=1pa € ©: palk,l) —po(k,l) > €+ dn},

V—,k,l,n — {pOé €O : pOé(kal) _p0<k7l) < —€— 5n}
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Random-walk goodness-of-fit testing (III)

Choquet pa(kll) = X ges AEE(K|l) where the N transition kernels E
are deterministic. Define,

Sn=1{\g € SN Ap > Ao/NN"1 for all E € &),
for A\, | O.
Theorem 31.1 Choose a prior Tl < u on SNN with continuous density
that is everywhere strictly positive. Assume that,
(i) nA262/log(n) — oo,
(i) M(B\ Bn),N(© \ Sp) = o(n=N"/2),
Gi1) M(Viey\ (Vi o UV pin)) = o(n= N/, for all 1 < k,1 < N.

Then the Bayes factors F,, for Hy versus Hq1 are consistent.
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Part V

Uncertainty quantification



Credible sets and confidence sets

Let & denote a collection of measurable subsets of ©

Definition 33.1 Let (©,¥) with priors I'l,, be given. Denote the se-
quence of posteriors by I(-|-) : ¢ x %, — |0,1]. A sequence of credi-
ble sets (Dy) of credible levels 1 — a, (with an | 0) is a sequence of
set-valued maps D,, : Z, — & such that,

N(©\ Dn(X"™)[X™) = o(an),

Pln_almost-surely.

Definition 33.2 A sequence of maps x — Cyp(x) C © forms an asymp-
totically consistent sequence of confidence sets, if,

Pyon( 00 € Cn(X™) ) — 1
for all g € ©.
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Enlargement of credible sets (I)

Definition 34.1 Let DD be a credible set in © and let B denote a set
function 0 — B(0) C ©. A model subset C is said to be a confidence
set associated with D under B, if for all 0 € © \ C,

BOO)ND =g

Definition 34.2 The intersection Cqy of all C' like above is a confidence
set associated with D under B, called the minimal confidence set
associated with D under B.
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Enlargement of credible sets (II)

A credible set D and its associated confidence set C under B in terms
of Venn diagrams: additional points 6§ € C'\ D are characterized by
non-empty intersection B(0) N D # .
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Enlarged credible sets are confidence sets

Theorem 36.1 LetO0<an <1, anl 0andb, > 0 such that a,, = o(by)
be given and let D,, denote level-(1 — a,,) credible sets. Furthermore,
for all 0 € ©, let B,, be set functions such that,

(i) Mn(Bn(0o)) = bn,
. — My |Bn
(il) Pyyp <bnay* Py [Bn(f0)

Then any confidence sets C,, associated with the credible sets Dy
under B,, are asymptotically consistent, that is,

Pyon( 00 € Cn(X™) ) — 1.
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Methodology: confidence sets from posteriors (I)

Corollary 37.1 Given (©,%), (I,) and (B,) with N,(By) > b, and
Py, < PE”'B”, any credible sets Dy, of level 1 —a, with a, = o(by) have
associated confidence sets under B, that are asymptotically consis-

tent.

Next, assume that (X1, X»o,...,Xp) € Z" ~ PY for some Py ¢ &.

Corollary 37.2 Let I'l,, denote Borel priors on &2, with constant C > 0
and rate sequence ¢, | O such that:

dP dP \ 2 >
M| Pe & . —Pylo —<2,P(Io —) <2>> —Cnep
n( 0] gdPO €n 0] gdPo €n | Z €

Given credible sets Dy of level 1 — exp(—C'ne2), for some ' > (.
Then radius-e, Hellinger-enlargements C,, are asymptotically consis-
tent confidence sets.
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Methodology: confidence sets from posteriors (II)

Note the relation between diameters,

diampyg(Cr(X™)) = diamyg(Dp(X™)) + 2e¢p,.
If, in addition, tests satisfying

Py nn(X"™) dn(6) + /Vn Pyn(1 = ¢n(X™)) dMy(6) = olan),

with a, = exp(—C'ne2) exist, the posterior is Hellinger consistent at
rate en, so that diamgy(Dp(X"™)) < Me, for some M > 0.

If ¢, is the minimax rate of convergence for the problem, the confi-
dence sets C,(X™) are rate-optimal (Low, (1997)).

Remark 38.1 Rate-adaptivity (Hengartner (1995), Cai, Low and Xia
(2013), Szabo, vdVaart, vZanten (2015)) is not possible like this
because a definite choice for the sets in B, IS required.

38



Conclusions

(i) Thereis a systematic way of taking Bayesian limits into frequentist
limits based on generalization of Schwartz’'s prior mass condition

(ii) Bayesian tests are natural: place low prior weight where testing
is difficult, and high weight where testing is easy, ideally.

(iii) Development of new Bayesian methods benefits from a simple,

insightful, fully general perspective to guide the search for suitable
priors

(iv) Methodology: use priors that induce remote contiguity to enable
conversion of credible sets to confidence sets

Thank you for your attention
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