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Chapter 1

Introduction

Motivation

Many problems in statistics are estimation problems for independent and identically dis-

tributed measurements: given a set P of candidate probability distributions (the model) and

a given set of n measurement results X1, . . . , Xn (the sample) distributed i.i.d. according to

an unknown distribution P0, give an estimate P̂n in P for P0. Sometimes the goal is more

modest and one is interested only in certain characteristic properties of the underlying distri-

bution P0. Simple examples are the mean or median of X, more complicated are the degree

of smoothness or the number of maxima of the density of P0. These estimation problems

usually involve certain assumptions about P0, if only to make the questions meaningful: if

we consider properties of the density for X, we have already assumed that it is distributed

continuously; if we are interested in its mean, the implied assumption is that of integrability.

Other reasons to place conditions on the true distribution are often motivated from a math-

ematical perspective: some theorems only hold under certain, often quite natural conditions

on P0.

Obviously, estimation problems require a choice for the model P. Usually, the model

choice is made on the basis of interpretability of the parameterisation, in relation to the

specific quantities that play a role in the background of the problem. For instance, the

ever-popular normal model (which comprises all normal distributions on the space in which

measurements take their values) leaves mean and variance of the data to be estimated, both of

which are readily interpreted. In less extreme cases, (parametric or non-parametric) models

are chosen as reasonable approximations to the well-specified situation (although it is often left

unclear in which sense the approximation is reasonable). Another reason for the use of simple

but misspecified models is, again, mathematical convenience: a small collection of candidate

distributions often makes the estimation problem less complicated. Note that generically we

can not guarantee that P0 lies in the model beforehand, so the choice of a model amounts

1



2 Introduction

to a bias in the estimate. This bias will be smaller if a larger model is chosen. (Whether or

not such a bias is problematic depends on the context of the estimation problem.) So there

is a trade-off here: on the one hand, a small, restrictive model leads to interpretability and

mathematical simplicity, on the other hand, a large model leads to answers that are closer to

the truth.

These two aspects of statistical estimation, the choice for the model P and assumptions

on the underlying distribution P0 are linked by the assumption that the model is well specified,

i.e.

P0 ∈ P. (1.1)

Properties of P0 are then implied by the choice of P. Again, mathematical convenience often

dictates this assumption: the mathematical analysis is greatly simplified if we know that P0

is among the candidates beforehand. In fact, this assumption is so common in mathematical

statistics that it is omitted in the statement of theorems habitually. In applied statistics,

theorems that rely on (1.1) are often used without mention of the fact that, in all likelihood,

the true distribution of the data does not lie in the model.

However, there is a good reason for applied statisticians to ‘abuse’ these theorems in this

way: they often work regardless! To the mathematical statistician this raises the question why,

i.e. “Is it possible to prove those same theorems without the assumption that P0 ∈ P?”. That

summarises exactly the point of view we adopt in this thesis. Note that it is not implied that

there will be no conditions on P0: the point is to formulate conditions on P0 that are weaker

than (1.1) above. The resulting restrictions on P0 delimit the theorem’s range of applicability

more appropriately (if not entirely). We shall speak of a misspecified model in that case. In

principle, theoretical results for misspecified models give the statistician more freedom in his

choice of model, because interpretability and well specification cease to compete while the

accuracy of approximation (the bias mentioned earlier) plays only a minimal role.

The theorems that we consider from the misspecified point of view concern the asymptotic

behaviour of Bayesian procedures. Asymptotic statistics asks the question what happens to

statistical procedures in the large-sample limit. Bayesian statistics can be viewed as the

strict consequence of interpreting the likelihood as an (unnormalised) probability density, as

suggested already by the word ‘likelihood’. As it turns out, theorems on Bayesian consistency,

rate of convergence and limiting shape of the posterior distribution can be proved using a

suitably defined point of convergence within a (possibly misspecified) model (be it the true

distribution P0 or some ‘closest’ alternative P ∗). The right definition for the closest alternative

turns out to be the point in the model at minimal Kullback-Leibler divergence with respect to

P0, while other conditions remain comparable to those found in the well-specified situation.

Given the range of application of present-day statistics and more particularly, Bayesian

statistics, this should be useful beyond the extent of a mere academic exercise in (applied)

mathematics.

The current chapter provides an introduction to Bayesian statistics, asymptotic statistics,
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Bayesian asymptotics and model misspecification. It has been written for the broadest possible

audience (which implies that for some the presentation may be too elementary) and has two

primary goals: firstly to discuss the most important concepts used in following chapters

at an introductory level and secondly to formulate appropriate analogies between Bayesian

asymptotic concepts and similar concepts in the theory of point estimation. Most of this

chapter is concerned with well-specified, smooth, parametric estimation problems. This way,

readers unfamiliar with Bayesian methods are offered the opportunity to acquaint themselves

with the most important definitions and their properties in a relatively simple (and well-

specified) context, before meeting the same concepts in more complicated situations in later

chapters. For instance, in section 1.3 we consider asymptotic consistency in Bayesian statistics,

formulating it as weak convergence of the posterior to a degenerate measure located at the

point in the (well-specified) model that corresponds to the true distribution. We also indicate

how this definition relates to consistency as defined in point estimation. The analogous

definition of ‘consistency’ in misspecified situations will be given in chapter 2.

The next three chapters each contain an article on a specific aspect of the asymptotic

behaviour of Bayesian methods in situations where the model is misspecified. Each is preceded

by a brief introduction relating it to the rest of the thesis.

1.1 Bayesian statistics

In this section, we consider the basic definitions of Bayesian statistics with the emphasis on

the definition of prior and posterior distributions. Furthermore, we discuss some aspects of

Bayesian point estimation and the choice of the prior distribution. The discussion as presented

here is necessarily very brief. Various books providing an overview of Bayesian statistics can

be recommended, depending on the background and interest of the reader: a very theoretical

treatment can be found in Le Cam (1986) [67]. For a more mundane version, the reader is

referred to Van der Vaart (1998) [91] and Le Cam and Yang (1990) [68]. A general and fairly

comprehensive reference of a more practical inclination is Berger (1985) [6] and finally, Ripley

(1996) [79] discusses matters with (decision-theoretical, pattern-classification) applications in

mind but does not loose sight of the statistical background.

1.1.1 Prior and posterior distributions

Formalising the Bayesian procedure can be done in several ways. We start this subsection

with considerations that are traditionally qualified as being of a ‘subjectivist’ nature, but

eventually we revert to the ‘frequentist’ point of view. Concretely this means that we derive

an expression for the posterior and prove regularity in the subjectivist framework. In a

frequentist setting, this expression is simply used as a definition and properties like regularity

and measurability are imposed. Ultimately, the philosophical motivation becomes irrelevant

from the mathematical point of view once the posterior and its properties are established.
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The observation Y lies in a space Y with σ-algebra B and the model Θ is assumed to

be a measurable space as well, with σ-algebra G . Perhaps the most elegant (and decidedly

subjectivist) Bayesian framework unifies observation space and model as follows: we start from

the product-space Y × Θ with product σ-algebra F = σ(B × G ) and probability measure

Π : σ(B × G ) → [0, 1] which is not a product measure. The marginal probability Π on

G is called the prior and is interpreted as the subjectivist’s ‘degree of belief’ attached to

subsets of the model a priori (that is, before any observation has been made). The fact that

we have defined a probability measure on the product of sample space and model makes it

possible to condition on Y or on θ (in particular). The conditional probability distribution1

ΠY |θ : B ×Θ → [0, 1] is such that:

(i) for every A ∈ B, the map θ 7→ ΠY |θ(A, θ) is G -measurable,

(ii) for Π-almost-all θ ∈ Θ, the map A 7→ ΠY |θ(A, θ) defines a probability measure.

The measures ΠY |θ( · |θ = θ) form a (Π-almost-sure) version of the elements Pθ of the model

P:

Pθ = ΠY |θ( · | θ = θ ) : B → [0, 1]

Consequently, frequentist’s notion of a model can only be represented up to null-sets of the

prior in this setting.

Specific to the Bayesian framework is the conditional probability distribution:

Πθ|Y : G × Y → [0, 1], (1.2)

which is called the posterior distribution and can be interpreted as a version of the prior

corrected by observation of Y through conditioning. If we choose Y equal to the n-fold

product of the sample space X (with σ-algebra A ), the observation is written as Y =

(X1, X2, . . . , Xn). The additional assumption that the sample is i.i.d. (a statement concerning

the conditional independence of the observations given θ = θ) takes the form:

ΠY |θ(X1 ∈ A1, . . . , Xn ∈ An | θ = θ ) =
n∏

i=1

ΠY |θ(Xi ∈ Ai | θ = θ ) =
n∏

i=1

Pθ(Xi ∈ Ai),

1The precise definition of the conditional distribution is rather subtle: we may define the sub-σ-algebra

C = {Y × G : G ∈ G } and condition by means of the Π-almost-sure definition ΠY |C (A, ω) = E[1A|C ](ω)

(ω = (y, θ) ∈ Y ×Θ) for each A ∈ B separately. However, the fact that exceptional Π-null-sets depend on A

may render the map ΠY |C : B × (Y ×Θ) → [0, 1] ill-defined, since its domain of definition has an exceptional

set equal to the union of exceptional null-sets over all A ∈ B. We require that ΠY |C ( · , ω) is well-defined

Π-almost-surely as a probability measure, that is, as a map on all of B rather that for each A separately

(in which case, ΠY |C is called a regular conditional probability). A sufficient condition for the existence of a

regular version of ΠY |C is that Y is a so-called Polish space, i.e. a complete, separable, metric space with Borel

σ-algebra (see e.g. Dudley (1989) [28], section 10.2 and in particular theorem 10.2.2). Note also that due to

the special choice for C , C -measurability implies that ΠY |C ( .· , (y, θ)) depends on θ alone. Hence we denote it

ΠY |θ : B ×Θ → [0, 1].
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for all (A1, . . . , An) ∈ A n. Assuming that the model P = {Pθ : θ ∈ Θ} is dominated by a

σ-finite measure on X , the above can also be expressed in terms of µ-densities pθ : X → R.

Using Bayes’ rule, we obtain the following expression for the posterior distribution:

Πn(G |X1, X2, . . . , Xn ) =

∫
G

n∏
i=1

p(Xi) dΠ(P )

∫
P

n∏
i=1

p(Xi) dΠ(P )

, (1.3)

whereG ∈ G is a measurable subset of the model P. Note that we have simplified our notation

for the posterior somewhat (compare with (1.2)) and omitted representation in terms of the

variable θ. Finally, there exists also a marginal for the observations which takes the form:

ΠY (X1 ∈ A1, . . . , Xn ∈ An ) =
∫

Θ

n∏
i=1

Pθ(Ai) dΠ(θ)

This distribution is called the prior predictive distribution and describes a Bayesian’s expec-

tations concerning observations X1, X2, . . . , Xn based on the prior Π. Note the relation with

de Finetti’s theorem, which says that the distribution of a sequence (X1, . . . , Xn) of random

variables is of the form on the r.h.s. of the above display (with uniquely determined prior Π)

if and only if the X1, . . . , Xn are exchangeable. The prior predictive distribution is subject

to correction by observation through substitution of the prior by the posterior: the resulting

posterior predictive distribution is interpreted as the Bayesian’s expectation concerning the

distribution of the observations Xn+1, Xn+2, . . . given the observations X1, X2, . . . , Xn.

We conclude this discussion of the distributions that play a role in Bayesian statistics

with an important point: note that at no stage an ‘underlying distribution of the sample’ was

used or needed. For this reason, the ‘pure’ Bayesian is reluctant to assume the existence of a

distribution P0 for the sample.

The distribution P0 could not play a role in this thesis if we did not choose to adopt a

different, rather more frequentist point of view: we assume the sample of observations in X

to be i.i.d. P0-distributed and we have a model P which is a probability space (P,G ,Π) with

a probability measure Π which we refer to as the prior. In this way, model and sample space

are left in the separate roles they are assigned by the frequentist. We then proceed to define

the posterior by expression (1.3). To guarantee measurability, we assume (or impose) that

the properties (i) and (ii) above are satisfied (see Schervish (1995) [81] and Barron, Schervish

and Wasserman (1999) [5] for a detailed analysis).

Finally, we note that it is not necessary that the model is dominated. One easily shows

that posterior can be rewritten using the Radon-Nikodym derivative2 of P with respect to

2The measure P can be decomposed uniquely in a P0-absolutely-continuous part P‖ and a P0-singular

part P⊥: P = P‖ + P⊥. Following Le Cam, we use the convention that if P is not dominated by P0, the

Radon-Nikodym derivative refers to the P0-absolutely-continuous part only: dP/dP0 = dP‖/dP0.
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P0:

Πn(A |X1, X2, . . . , Xn ) =

∫
A

n∏
i=1

dP

dP0
(Xi) dΠ(P )

∫
P

n∏
i=1

dP

dP0
(Xi) dΠ(P )

, (Pn
0 − a.s.) (1.4)

In cases where the model is not dominated, (1.4) may be used as the definition of the posterior

measure. Alternatively, any σ-finite measure that dominates P0 may be used instead of P0 in

(1.4) while keeping the definition Pn
0 -almost-sure. This is used in chapter 3.

1.1.2 Bayesian point estimation

The link between Bayesian procedures and ordinary (point-)estimation methods is provided by

estimator sequences derived from the posterior. The most straightforward, if rather primitive

way is by a simply drawing a point from the posterior distribution. However, there exist other

methods that do not randomise once the posterior is determined: to give a few examples, we

consider a model P with metric d. First of all, we define the posterior mean (or posterior

expectation):

P̂n =
∫

P
P dΠn(P |X1, . . . , Xn ), (1.5)

if P is suitably integrable with respect to Πn( · |X1, . . . , Xn ). Note that unless P is convex,

P̂n ∈ P is not guaranteed. Also note that if we consider a measurable map θ 7→ Pθ of a

(convex) parameter-set Θ with prior measure Π(dθ) onto a space of probability measures P

(with induced prior Π(dP )), it makes a difference whether we consider the posterior mean

as defined in (1.5), or calculate Pθ̂n
. More generally, we may define so-called formal Bayes

estimators [67] as minimisers over the model of functions:

P 7→
∫

P
`n(d(P,Q)) dΠn(Q |X1, . . . , Xn ),

where `n is a sequence of convex loss functions. If the model and the map P 7→ d2(P,Q) are

convex, the posterior mean can be viewed as a formal Bayes estimator if we choose `n(x) = x2;

the posterior median is obtained if we choose `n(x) = |x|. Another useful point estimator

derived from the posterior is defined (for given ε > 0) as a maximiser of the function:

P 7→ Πn(Bd(P, ε) |X1, . . . , Xn ),

where Bd(P, ε) is the d-ball in P of radius ε centred on P . Similarly, for fixed p such that

1/2 < p < 1, we may define a point estimator by the centre point of the smallest d-ball

with posterior mass greater than or equal to p. If the posterior is dominated by a σ-finite

measure µ, we can define the so-called maximum a posteriori estimator as a maximum of the

posterior density (sometimes referred to as the posterior mode). Note that a different choice

of dominating measure leads to a different definition of the MAP estimator.
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1.1.3 The choice of the prior

Bayesian procedures have been the object of much criticism, often focusing on the choice of

the prior as an undesirable source of ambiguity. The answer of the subjectivist that the prior

represents the ‘belief’ of the statistician or ‘expert knowledge’ pertaining to the measurement

elevates this ambiguity to a matter of principle, thus setting the stage for a heated debate

between ‘pure’ Bayesians and ‘pure’ Frequentists concerning the philosophical merits of either

school within statistics. The issue is complicated further by the fact that the basic setup for the

Bayesian procedure, as described in subsection 1.1.1, does not refer to the ‘true’ distribution

P0 for the observation, providing another point of fundamental philosophical disagreement for

the fanatically pure to lock horns over.

Leaving the philosophical argumentation to others, we shall try to discuss the choice of a

prior at a more practical level. First, let us seek the appropriate analogy with the choices that

are made in ordinary point estimation. The support of the prior3 can be viewed as the Bayesian

analog of the choice of model in frequentist statistics. If the true, underlying distribution lies

outside the model (or the support of the prior), one can speak of misspecification, so this

point is of considerable importance for the following chapters.

The subjective aspect of a prior is more subtle because it depends not only on the support

but on all details of the prior distribution: even when the support of the prior is fixed, there is

a large collection of possible priors left to be considered, each leading to a different posterior

distribution. Arguably, the freedom of choice left in ordinary point estimation at this stage

concerns all possible point estimators within the chosen model, so the choice of a prior is not

the embarrassment of riches it is sometimes made out to be.

Subjectiveness finds its mathematical expression when high prior belief or expert knowl-

edge are translated in relatively large amounts of assigned prior mass for certain regions of the

model. Attempts to minimise the amount of such prejudice introduced by the prior therefore

focus on uniformity (argumentation that departs from the Shannon entropy in discrete prob-

ability spaces reaches the same conclusion (see, for example, Ghosh and Ramamoorthi (2003)

[41], p. 47)). The original references on Bayesian methods (Bayes (1763) [3], Laplace (1774)

[61]) use uniform priors as well. Uniformity of the prior introduces a number of complications,

however. If we consider, for example, a parametric model Θ ⊂ Rk and Θ → P : θ 7→ Pθ,

straightforward uniformity of the prior on Θ would force us to choose it proportional to the

Lebesgue measure. However, we would have to require that Θ be compact in order to maintain

our definition of the prior as a probability measure. Even if this rather restrictive condition

is accepted, new problems with this construction emerge. The sense in which uniformity is

achieved here is parameterisation-dependent since uniformity on Θ has no intrinsic meaning

for P. For twice-differentiable parametric models, a construction from Riemannian geometry

can be borrowed to define a parameterisation-independent prior (see Jeffreys (1946), (1961)

3If the σ-algebra on the model is the Borel-σ-algebra, the support of a measure is defined as the set of all

points for which all open neighbourhoods have measure strictly greater than zero.
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[50, 51]) if we interpret the Fisher information as a Riemannian metric on the model (as first

proposed by Rao (1945) [77] and extended by Efron (1975) [29]; for an overview, see Amari

(1990) [1]) and use the square-root of its determinant as a density with respect to the Lebesgue

measure:

Π(dθ) =
√

det(Iθ) dθ.

Other constructions and criteria exist; for an overview of these non-informative priors (also

referred to as non-subjective, reference (see Bernardo (1979) [11], Berger and Bernardo (1992)

[7]) or objective priors), the reader is referred to Kass and Wasserman (1995) [53]. Returning

to definition (1.3), we see that it is not strictly necessary to have a probability measure Π to

define the posterior. Multiplication of Π by an arbitrary non-zero constant leaves the posterior

invariant and, in fact, it is possible to have an infinite measure Π (a so-called improper prior),

as long as we can somehow guarantee that the posterior remains a probability measure. Non-

informative priors, including Jeffreys prior in many situations, are often improper. Finally,

certain classes of probability measures are closed under the operation of conditioning on the

sample: so if we choose a prior in such a class, then the whole sequence of posteriors lies in

that class as well. Such classes are called conjugate classes (and one speaks of a conjugate

prior).

Fortunately, subjectiveness of the prior turns out to be a concern in finite-sample statistics

primarily; for the asymptotic properties of the Bayesian procedure the important aspects of

the choice of prior are of an entirely different nature as we shall see in section 1.3.

Bayesian procedures can be implemented using Markov Chain Monte Carlo simulation.

The simplicity of MCMC algorithms, their applicability in non-parametric situations and the

fact that they generate samples from the posterior that can be used directly to approximate

integrals (e.g. the posterior mean), give Bayesian methods a very broad computational range.

The interested reader is referred to the overview article by Escobar and West (1995) [30] and

the comprehensive book by Robert (2001) [78].

1.2 Asymptotic statistics

Given an infinite i.i.d. sample X1, X2, . . . drawn from P0 and a model P, an estimation pro-

cedure prescribes a sequence of estimates P̂n ∈ P, each calculated using only the first n

observations. More generally, any statistical procedure can be indexed by the size n of the

sample used to calculate it, leading to sequences of (parameter) estimates, tests, confidence

regions, etcetera. Properties of such sequences reflect the behaviour of the estimation pro-

cedure with growing sample-size. An intuitively reasonable requirement of any estimation

procedure is a property known as consistency: the sequence P̂n approaches the true distribu-

tion P0 to within arbitrary precision if the sample on which the estimation is based is made

large enough. Similarly, samples of arbitrarily large size should enable one to test with power

arbitrarily close to one and define arbitrarily small confidence regions. Further analysis of a
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consistent sequence P̂n concerns the (suitably rescaled) distribution of the estimator-sequence

around its point of convergence. The mathematical formulation of these concepts is based on

so-called limit theorems, which describe the behaviour of an estimation procedure in the limit

that the number of measurements goes to infinity.

The study of the asymptotic regime of an estimation procedure is interesting for two rea-

sons. First of all, asymptotic results provide approximations to exact values; finite-sample

calculations often become intractable, even in relatively simple (parametric) situations. How-

ever, the analysis of the large-sample limit is often still possible when finite-sample procedures

are intractable or otherwise hard to carry out exactly. The answer obtained in the large-

sample limit may then be used as an approximation4 to the finite-sample answer (asymptotic

confidence intervals are a good example). Secondly, if we have several possible estimation

procedures available for a certain problem, asymptotic behaviour provides us with the means

to compare their performance on (very) large samples. Of course, the first performance cri-

terion is consistency. To choose between two consistent procedures, one may consider rate of

convergence and properties of the limit distribution characterising the degree of concentration

(like asymptotic variance or asymptotic risk).

In this section, we give an overview of the aspects of asymptotic point estimation that

are most important for the following chapters. It should be noted that this discussion is

not intended to be comprehensive, nor is it stretched to full generality: the focus is on the

asymptotic regime of smooth parametric estimation methods and even in that respect we are

far from complete. For a more comprehensive presentation, the reader is referred to some of

the excellent textbooks on the subject, like Ibragimov and Has’minskii (1981) [47], Le Cam

and Yang (1990) [68] and Van der Vaart (1998) [91].

1.2.1 Consistency, rate and limit distribution

A sequence of estimators P̂n is said to be (asymptotically) consistent (respectively almost-

surely consistent) if the estimator converges to the true distribution P0 in probability (re-

spectively almost-surely) as the sample-size goes to infinity. More precisely, a sequence P̂n of

estimators in a model P (with metric d) for P0 ∈ P is said to be consistent if:

d(P̂n, P0)
P0−→ 0.

In the case of a parametric model (with k-dimensional parameter set Θ, open in Rk) defined by

P = {Pθ : θ ∈ Θ} with metric d(Pθ1 , Pθ2) = ‖θ1 − θ2‖, estimation of θ0 (such that P0 = Pθ0)

by θ̂n is consistent if θ̂n
P0−→ θ0. A consistent estimator may be analysed further by appraisal

4A valid objection to the use of asymptotic approximations is the fact that this practice does not provide

any relation between the accuracy of the approximation and the size n of the sample for which answers are

approximated. Limit theorems guarantee that approximation errors fall below arbitrarily small bounds for

‘large enough’ n, but do not specify what ‘large enough’ is exactly. It is common practice to ignore this fact

and assume that the asymptotic answer is a ‘good’ approximation for sample sizes that are deemed ‘large

enough’.
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of its rate of convergence and limit distribution. Let us define the rate of convergence first: a

sequence rn such that

r−1
n d(P̂n, P0) = OP0(1), (1.6)

i.e. the l.h.s. in the above display is bounded in probability5, then rn is an upper bound to the

rate of convergence of the estimator sequence P̂n with respect to the metric d. The rate thus

gives the speed with which balls around the point of convergence may be shrunk while still

capturing the estimator with high probability. Note that Prohorov’s theorem guarantees weak

convergence of a subsequence of the sequence rn d(P̂n, P0). In particular, the distribution of

the rescaled metric distance of the estimator to the point of convergence is asymptotically

tight along the subsequence. Heightening the level of detail even further, we can require that

the sequence of estimators, when centred on its point of convergence and rescaled by the rate,

converges weakly to a non-degenerate distribution over the (localised) model, the so-called

limit distribution. It should be noted that, in general, both rate and limit distribution depend

not only on the quantity that is to be estimated and the used estimation procedure, but on

the model and on specific properties of the point of convergence as well6. Specialising again

to the parametric case, we say that θ̂n converges to θ0 at rate r−1
n with limit distribution Lθ0

if:

r−1
n (θ̂n − θ0)

θ0 Lθ0 . (1.7)

To illustrate these definitions, we consider the application of the strong law of large numbers

and the central limit theorem. The strong law can be used to prove (almost-sure) consis-

tency and the central limit theorem refines the analysis, proving
√
n-rate of convergence and

a normal limit distribution. In parametric models with parameters that can be identified

with expectations of certain integrable random variables, the law of large numbers proves

consistency of i.i.d.-sample averages as follows. Assume that θ ∈ Θ parameterises the model

and that there is a θ0 ∈ Θ such that Pθ0 = P0. Let the parameter θ0 for the true distribution

equal the expectation Pθ0T for some (σ(X)-measurable) and integrable random variable T

(for example the observation X, estimating the location µ of a normal distribution N(µ, σ2)),

the sample-average PnT is a consistent estimator for θ0 since:

PnT =
1
n

n∑
i=1

T (Xi)
Pθ0

−a.s.
−→ Pθ0T = θ0,

which implies convergence in Pθ0-probability in particular. If, in addition, the random vari-

able T is square-integrable, the sample-average converges at rate 1/
√
n with a normal limit

distribution due to the central limit theorem:

GnT =
√
n(Pn − Pθ0)T

Pθ0 N(0,VarPθ0
(T )).

5Written out in full, this amounts to the requirement that for every ε > 0 there exists a bound M > 0 such

that sup{P n
0 (r−1

n d(P̂n, P0) > M) : n ≥ 1} < ε.
6More accurately, the rate depends on the size of the model (see e.g. chapter 3 and section 7 in Ghosal and

Van der Vaart (2001) [40]). The dependence of the limit distribution on model and point of convergence is the

subject of subsection 1.2.2, which is closely related to the material presented in chapter 2.
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Using quantiles of the normal distribution on the r.h.s. the above provides an asymptotic

approximation of confidence regions as alluded to in the introduction of this section. Together

with the delta-rule7 (see Van der Vaart (1998) [91], chapter 3) and the maximum-likelihood es-

timator (see the end of this subsection), the above completes the basic ‘asymptotic toolkit’ for

parametric models. Its remarkable simplicity is also its strength and the range of applications

for the above is endless.

Other estimation methods often rely on the strong law and central limit theorem as well,

albeit indirectly: for instance, the moment method solves (for some integrable f , originally

f(x) = xk for some k ≥ 1, whence the name ‘moment method’) the equation Pnf = Pθf for

θ. The strong law asserts that Pnf converges to Pθ0f , Pθ0-almost-surely. If the dependence

θ 7→ e(θ) = Pθf is one-to-one in an open neighbourhood of the point of convergence, the

moment-estimator takes the form: θ̂n = e−1(Pnf) for large enough n. If, in addition, f is

square-integrable with respect to Pθ0 and e−1 is differentiable with non-singular derivative at

θ0, the delta-rule guarantees that the moment estimator θ̂n is asymptotically normal:
√
n(θ̂n − θ0) =

√
n
(
e−1(Pnf)− e−1(Pθ0f)

) θ0 N(0,Σ), (1.8)

with covariance matrix equal to Σ = (e−1)′(e0)
T
Pθ0ff

T (e−1)′(e0), where e0 = Pθ0f .

Another important class of estimators consists of so-calledM -estimators, which are defined

as maximisers of criterion functions Mn : Θ → R (dependent on (X1, . . . , Xn)) with respect

to θ ∈ Θ: the estimators θ̂n satisfy8

Mn(θ̂n) = sup
θ∈Θ

Mn(θ),

(assuming, of course, that the supremum exists in R). Often the criterion function depends

on the sample through the empirical distribution: Mn(θ) = Pnmθ, where mθ is a σ(X)-

measurable random variable. If mθ is P0-integrable for every θ, point-wise convergence of the

form:

Mn(θ) = Pnmθ
P0−a.s.−→ P0mθ = M(θ), (1.9)

is guaranteed by the strong law. Given that we choose the random variable mθ such that

the maximum of M over Θ exists, is unique and well-separated, it would seem reasonable to

expect (near-)maximisers θ̂n of Mn to converge to the maximiser of M . A suitable choice for

m guarantees that a maximiser of M(θ) coincides with θ0 such that Pθ0 = P0. Note, however,

that the condition of maximisation is a global one, whereas (1.9) provides only point-wise

convergence. So the strong law may be insufficient to prove consistency of M -estimators.

Indeed a basic proof of consistency can be given under the rather strong condition that the

7The delta-rule roughly says that the application of differentiable functions to estimator sequences leaves

the rate unchanged (if the derivative does not happen to be zero in θ0) and induces a linear transformation on

the limiting random variable, see e.g. (1.8).
8In many circumstances, the definition of an M -estimator sequence can be relaxed to include near-

maximisers of the criterion function, which satisfy Mn(θ̂n) ≥ supθ∈Θ Mn(θ) − oP0(an) for some sequence

an ↓ 0 to be specified (see the formulation of theorem 1.1 for an example).
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class {mθ : θ ∈ Θ} is Glivenko-Cantelli, (although this requirement is far stronger than is

actually needed). A well-known alternative set of conditions for consistency of M -estimation

was given by Wald9 [94]. For a more elaborate discussion of consistent M -estimation in

parametric models, see e.g. section 5.2 in Van der Vaart (1998) [91].

Once consistency is established, M -estimators are asymptotically normal under differen-

tiability conditions and a Lipschitz condition on the function mθ, (which together constitute

a set of so-called regularity conditions, see the next subsection) as exemplified in the following

theorem. We assume that Θ is open in Rk, that P0 = Pθ0 for the point θ0 in Θ that maximises

θ 7→ P0mθ, and that θ̂n is a consistent estimator sequence for θ0, defined as near-maximisers

of criterion functions as in (1.9).

Theorem 1.1. For each θ ∈ Θ, let x 7→ mθ(x) be a measurable function such that θ 7→ mθ(X)

is P0-almost-surely differentiable at θ0 with derivative ṁθ0(X). Furthermore, suppose that

there exists a P0-square-integrable random variable ṁ such that for all θ1, θ2 in a neighbour-

hood of θ0: ∣∣mθ1(X)−mθ2(X)
∣∣ ≤ ṁ(X) ‖θ1 − θ2‖, (P0 − a.s.). (1.10)

Let the map θ 7→ P0mθ have a second-order Taylor expansion around θ0:

P0mθ = P0mθ0 + 1
2(θ − θ0)TVθ0(θ − θ0) + o(‖θ − θ0‖2), (θ→ θ0). (1.11)

with non-singular second-derivative matrix Vθ0. Then any consistent sequence of estimators

θ̂n such that Pnmθ̂n
≥ supθ Pnmθ − oP0(n

−1) satisfies:

√
n(θ̂n − θ0) = − 1√

n

n∑
i=1

V −1
θ0
ṁθ0(Xi) + oP0(1).

In particular, the sequence
√
n(θ̂n−θ0) is asymptotically normal with mean zero and covariance

matrix V −1
θ0

P0

[
ṁθ0

ṁT
θ0

]
V −1

θ0
.

Proof The proof of this theorem can be found in Van der Vaart (1998) [91], p. 54. �

Note that the Taylor-expansion (1.11) lacks a first-order term because θ0 maximises θ 7→
P0mθ and ∂θ[P0mθ]θ=θ0 = P0∂θ[mθ]θ=θ0 as a result of the domination condition (1.10).

We mention oneM -estimation procedure in particular: the maximum-likelihood estimator,

which maximises the criterion function θ 7→ Pn log pθ with pθ the density of Pθ with respect

to a suitable dominating measure for the model10. If the map θ 7→ log pθ(X) is Pθ0-almost-

surely differentiable for all θ, we define the so-called score-function ˙̀
θ as the vector of partial

derivatives of the log-likelihood at θ:

˙̀
θ(X) = ∂θ[log pθ(X)]. (1.12)

9Wald’s conditions are actually fairly close to the Glivenko-Cantelli property, see section 5 in Van der Vaart

(1999) [92] for a detailed explanation)
10The condition of domination for the entire model may be weakened: note that the criterion function is

well-defined P n
0 -almost-surely if we use pθ = dPθ/dP0, even though P0 may not dominate all Pθ.
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Then the point θ = θ̂n of maximum-likelihood solves the so-called score-equation:

Pn
˙̀
θ = 0,

Score-equations are sometimes easier to solve than the maximisation problem for the log-

likelihood. If the function θ 7→ log pθ satisfies the conditions of theorem 1.1 and the second-

order Taylor coefficient Vθ0 equals11 the Fisher information Iθ0 = P0
˙̀
θ0

˙̀
θ0 at the point θ0,

then the maximum-likelihood estimator θ̂n converges to θ0 as follows:

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

I−1
θ0

˙̀
θ0(Xi) + oP0(1). (1.13)

Since P0
˙̀
θ0 = 0, the r.h.s. of the above display equals I−1

θ0
Gn

˙̀
θ0 up to order oP0(1), which

implies that
√
n(θ̂n − θ0)

P0 N(0, I−1
θ0

) by the central limit theorem. Hence the rate of con-

vergence equals 1/
√
n and the normal limit distribution has the inverse Fisher information

as its covariance. Under these circumstances, the maximum-likelihood estimator is optimal,

by which we mean that the rate can not be improved upon and the asymptotic variance is

minimal (a property usually called (asymptotic) efficiency of estimation). To prove optimality,

however, requires a far more detailed analysis which is discussed in the following subsection.

1.2.2 Local asymptotic normality

Theorem 1.1 and other theorems like it are formulated with the help of (sometimes very

extensive) differentiability assumptions, supplemented with domination conditions to justify

the interchange of differentiation and integration (like (1.10)). As noted by Le Cam (1970) [64],

there exist very simple and well-behaved (read, asymptotically normal, parametric) examples

in which such elaborate systems of conditions are not satisfied, suggesting that there exist

less stringent conditions leading to the same or similar assertions. The crucial property turns

out to be that of differentiability in quadratic mean, which is intimately related to a model-

property called local asymptotic normality. Indeed, the ‘local structure of the model’ turns

out to be far more important than appears to be the case from ‘classical’ theorems like (1.1).

For many applications, knowledge of the asymptotic behaviour under the law Pθ0 alone is not

enough and it is necessary to consider the behaviour under laws that are ‘asymptotically close’

to Pθ0 as well. For example, an unambiguous definition of optimality of estimation can only

be given if we limit the class of estimators in a suitable way. The class in question consists of

regular estimators and its definition depends crucially on the local structure of the model as

alluded to above.

Again, we consider a parametric model Θ which we assume to be well specified, i.e.

P0 = Pθ0 for some θ0 ∈ Θ, and we assume that θ0 is an internal point of Θ. We reparameterise

11If θ 7→ log pθ is twice-differentiable (P0−a.s.) and differentiation and P0-expectation may be interchanged,

then Vθ0 = −Iθ0 , because −P0
῭
θ0 = P0

˙̀
θ0

˙̀
θ0 , which follows from differentiation of the identity P0(pθ/pθ0) = 1

(valid for all θ since P0 = Pθ0).
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neighbourhoods of the point of convergence θ0 in terms of a so-called local parameter h defined

analogously to the l.h.s. of (1.7): a point h ∈ Rk corresponds to a sequence θn = θ0 + h/
√
n,

the tail of which falls inside Θ since θ0 is an internal point by assumption. The first definition

concerns a form of model-differentiability: a (µ-dominated) model is said to be differentiable

in quadratic mean (or Hellinger differentiable) at θ0 if there exists an Rk-valued random vector
˙̀
θ0 such that12: ∫ (√

pθ0+h −
√
pθ0 − 1

2h
T ˙̀

θ0

√
pθ0

)2
dµ = o(‖h‖2), (h→ 0). (1.14)

When viewed as the (µ− a.e.) defining property for the vector ˙̀
θ0 , Hellinger differentiability

generalises definition (1.12): if θ 7→ log pθ(X) is P0-almost-surely differentiable at θ0, we may

choose ˙̀
θ0 = ∂θ[log pθ]θ=θ0 to satisfy the above display (but the converse is not always true).

The following theorem asserts that Hellinger differentiability is sufficient for an asymptotic

expansion of the log-likelihood that is referred to as ‘local asymptotic normality’ (defined as

in the assertion of the following theorem).

Theorem 1.2. (Local asymptotic normality) Suppose that the model {Pθ : θ ∈ Θ} is dif-

ferentiable in quadratic mean at θ0. Then Pθ0
˙̀
θ0 = 0 and the Fisher information matrix

Iθ0 = Pθ0
˙̀
θ0

˙̀T
θ0

exists. Furthermore, for every converging sequence hn → h:

log
n∏

i=1

pθ0+hn/
√

n

pθ0

(Xi) =
1√
n

n∑
i=1

hT ˙̀
θ0(Xi)−

1
2
hT Iθ0h+ oPθ0

(1). (1.15)

Proof A proof for this theorem can be found in van der Vaart (1998) [91], pp. 94–95. �

Note that the r.h.s. of the expansion (1.15) equals Gnh
T ˙̀

θ0 , which converges weakly to a

normal limit distribution N(0, hT Iθ0h) as a result of the central limit theorem. The second

term in the expansion shifts the location of this distribution and the last term converges to zero

in probability, whence we conclude that (1.15) implies weak convergence of (log-)likelihood

products as follows:

log
n∏

i=1

pθ0+hn/
√

n

pθ0

(Xi)
Pθ0 N(−1

2h
T Iθ0h, h

T Iθ0h).

The latter property of the log-likelihood in a neighbourhood of θ0 may serve to explain the

name ‘local asymptotic normality’, although a better explanation will be given later on in this

subsection.

We have yet to specify the estimation problem: the quantity of interest is a functional

ψ : Θ → R which we estimate by a sequence of statistics Tn = Tn(X1, . . . , Xn). We assume

that this can be done consistently and with
√
n-rate under the sequence of laws Pθ0+h/

√
n for

every h, so we write:
√
n
(
Tn − ψ

(
θ0 +

h√
n

)) θ0+h/
√

n
 Lθ0,h, (1.16)

12The original reference for this definition is Le Cam (1970) [64]. Many authors (see, for example [47, 85,

75, 91]) have reviewed its consequences since.
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where Lθ0,h is the limit distribution13.

The following theorem (which is based on theorems 7.10 and 8.14 in Van der Vaart (1998)

[91]) shows that under differentiability conditions for both model and estimated parameter,

the limit of the estimators Tn in the sequence of ‘localised models’ {Pθ0+h/
√

n : h ∈ Rk} can

be described in terms of a statistic in the collection of normal distributions (Lθ0,h : h ∈ Rk)

(referred to as the limit experiment).

Theorem 1.3. Assume that the model {Pθ : θ ∈ Θ} is differentiable in quadratic mean

at θ0 with non-singular Fisher information matrix Iθ0 and that ψ : Θ → R is a functional

differentiable at θ0. Let Tn be estimators in the models {Pθ0+h/
√

n : h ∈ Rk} such that (1.16)

holds for every h. Then there exists a randomised statistic S in the model {N(h, Iθ0) : h ∈ Rk}
such that:

√
n
(
Tn − ψ

(
θ0 +

h√
n

)) θ0+h/
√

n
 S − ψ̇θ0h. (1.17)

Proof We define:

∆n,θ0 =
1√
n

n∑
i=1

˙̀
θ0(Xi), Sn =

√
n
(
Tn − ψ(θ0)

)
. (1.18)

Concerning Sn, we note that:

Sn =
√
n
(
Tn − ψ

(
θ0 +

h√
n

))
+
√
n
(
ψ
(
θ0 +

h√
n

)
− ψ(θ0)

)
.

The last term on the r.h.s. of the above display converges to ψ̇θ0h as a result of the differ-

entiability of ψ at θ0. Hence Sn − ψ̇θ0h differs from the l.h.s. of (1.16) by a term of order

o(1) and has the same weak limit. Concerning ∆n,θ0 , we note that due to theorem 1.2,

P0
˙̀
θ0 = 0 and the score-function is P0-square-integrable, so ∆n,θ0 = Gn

˙̀
θ0

P0 N(0, Iθ0). Pro-

horov’s theorem guarantees that the sequences ∆n,θ0 and Sn − ψ̇θ0h are both uniformly tight

under P0. Since marginal (uniform) tightness implies joint (uniform) tightness, we use Pro-

horov’s theorem again (in the other direction) to conclude that the pair (Sn − ψ̇θ0h,∆n,θ0)

converges weakly along a subsequence under P0. The marginal limits of this subsequence

follow from the above: (Sn − ψ̇θ0h,∆n,θ0) converges to (V,∆) along a subsequence under P0,

where V ∼ Lθ0,0 and ∆ ∼ N(0, Iθ0). We re-define the index n, denoting the converging

subsequence by (Sn − ψ̇θ0h,∆n,θ0). Since according to (1.15), the log-likelihood converges to

hT ∆− 1
2h

T Iθ0h in P0-probability, we also see that(
Sn − ψ̇θ0h, log

n∏
i=1

pθ0+h/
√

n

pθ0

(Xi)
)

θ0 (V, hT ∆− 1
2h

T Iθ0h).

13In this context, it is customary to speak of the experiment 14 (Pθ : θ ∈ Θ) rather than the model. The

distinction lies in the fact that in this case, we consider convergence of the estimators under a collection of

laws in the model (c.f. (1.16) which holds for all h ∈ Rk), whereas before, we used only the true distribution

Pθ0 . Note that the estimator Tn depends only on the observations (X1, X2, . . . , Xn) (and not on θ directly).

It can therefore be referred to as a statistic in the experiment (Pθ : θ ∈ Θ), with a law that depends on θ only

through the observations. We shall not make this distinction in the following for the sake of simplicity and

refer to ‘experiments’ as ‘models’ throughout.



16 Introduction

Since hT ∆ ∼ N(0, hT Iθ0h), we find the marginal limit distribution to be normal with location

and variance related as follows:

log
n∏

i=1

pθ0+h/
√

n

pθ0

(Xi)
θ0 N(−1

2h
T Iθ0h, h

T Iθ0h),

which, according to Le Cam’s first lemma, implies that Pθ0 and the sequence Pθ0+h/
√

n are

mutually contiguous. We then use (the general form of) Le Cam’s third lemma to conclude

that:

Sn − ψ̇θ0h
θ0+h/

√
n

 Lθ0,h,

where the limit distribution Lθ0,h is given by:

Lθ0,h(B) = Eθ01B(V )eh
T ∆−1

2hT Iθ0
h,

for all measurable B. Given (V,∆), there exists a measurable map V : Rk × [0, 1] → Rd ×Rk

such that for U ∼ U [0, 1] (defined on the same probability space as (V,∆) and independent

thereof), (V (∆, U),∆) and (V,∆) have the same law (for a proof, see lemma 7.11 in Van der

Vaart (1998) [91], pp. 99–100). Now, for given h, let X be distributed according to N(h, I−1
θ0

).

Under h = 0, the distributions of Iθ0X and ∆ are identical and by Fubini’s theorem,

Ph

(
V (Iθ0X,U) ∈ B

)
=
∫
P
(
(V (Iθ0x,U) ∈ B

)
dN(h, I−1

θ0
)(x)

=
∫
P
(
(V (Iθ0x,U) ∈ B

) dN(h, I−1
θ0

)

dN(0, I−1
θ0

)
(x) dN(0, I−1

θ0
)(x) = Lθ0,h(B).

Given h, the random variable V is a randomised statistic with law Lθ0,h defined in the normal

model consisting of distributions of the form N(h, I−1
θ0

). Defining S = V + ψ̇θ0h, the weak

limit of the sequence Sn given h, we establish (1.17). �

This theorem specifies the r.h.s. of (1.16) further in estimation problems where both the

model and the functional to be estimated are smooth: the limit distribution of the estimator

sequence can be viewed as the distribution of a statistic in the normal model {N(h, Iθ0) : h ∈
Rk}. This normal limiting-behaviour of estimator sequences in a neighbourhood of θ0 may

serve as an alternative explanation for the name ‘local asymptotic normality’.

One caveat remains: the dependence on h of the limit distribution in (1.16) leaves room

for highly irregular behaviour under small perturbations of the parameter or estimator se-

quence. As it turns out, this has especially grave consequences for efficiency and optimality.

With regard to optimality the question is whether there are bounds to asymptotic estimation

performance that are intrinsic to the estimation problem (i.e. which hold for any applied

estimator sequence) and whether those bounds can actually be achieved. In the current sit-

uation, we have already assumed that Tn is consistent and converges at
√
n-rate. Further

criteria for asymptotic performance are formulated in terms of the extent to which the limit

distribution is concentrated around 0. Obviously there are many ways to quantify the ‘degree
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of concentration’ (corresponding the risk under various choices for a loss-function), but we

concentrate on asymptotic variance. Recall that an estimator sequence is said to be efficient

if the variance of the limit distribution is minimal. Based on the arguments put forth thus

far, this variance can be identified with the variance of a randomised statistic in the nor-

mal limit model in the case of a differentiable functional on a smooth, parametric model.

More specifically, any estimator sequence Tn satisfying (1.16) estimates ψ(θ0) consistently

at rate
√
n and Sn =

√
n
(
Tn − ψ(θ0)

)
(as used in the proof of theorem 1.3) converges to

S under Pθ0+h/
√

n. Hence an efficient estimator sequence Tn for ψ(θ0) has a variance that

equals the minimal variance of an estimator S for ψ̇θ0h in the normal limit model. If we can

determine the best estimator for ψ̇θ0h in the normal model, we have a bound for optimal

estimation of ψ(θ0). Theorems concerning minimal-variance estimation in the normal model,

however, involve additional requirements on the class of estimators under consideration. For

instance, the Cramér-Rao theorem guarantees that the minimal variance equals the Fisher

information if we restrict attention to the class of unbiased estimators. In the case at hand,

suppose that S = ψ̇θ0X (which is an unbiased estimator for ψ̇θ0h since X ∼ N(h, I−1
θ0

). Then

S − ψ̇θ0h ∼ N(0, ψ̇θ0I
−1
θ0
ψ̇T

θ0
), which is of minimal variance within the class of unbiased es-

timators according to the Cramér-Rao bound. Taking h = 0, we see that the best possible

performance of an ‘asymptotically unbiased’ estimator sequence Tn is characterised in terms

of the minimal variance ψ̇θ0I
−1
θ0
ψ̇T

θ0
for the limit law.

Another, more important restricted class in which optimality criteria can be formulated,

is the class of so-called regular estimators, defined as follows: an estimator sequence Tn is

said to be regular at θ0 for estimation of ψ(θ0) if the limit distribution appearing in (1.16) is

independent of h, i.e. for all h:

√
n
(
Tn − ψ

(
θ0 +

h√
n

)) θ0+h/
√

n
 Lθ0 . (1.19)

Regularity is also referred to as ‘asymptotic equivariance-in-law’ because the limit-distribution

is invariant under ‘shifts’ in the model as parameterised by h. Applying this definition to the

situation under consideration in theorem 1.3, we see that for a regular estimation sequence

Tn,

S − ψ̇θ0h
h∼ Lθ0 ,

for every h ∈ Rk. For example, when we estimate θ0 itself by an estimator sequence Tn such

that S = X in the normal model {N(h, I−1
θ0

) : h ∈ Rk}, then S − h ∼ N(0, I−1
θ0

) for every h,

i.e. the limit distribution is independent of h, Lθ0,h = Lθ0 , and Tn is regular.

Regular estimators have a number of very remarkable properties, most notably the so-

called convolution theorem (see Hájek (1970) [43] and theorem 8.8 in Van der Vaart (1998)

[91]), which characterises the limit distribution for regular estimator sequences as convolutions

of the form N(0, ψ̇θ0I
−1
θ0
ψ̇T

θ0
) ∗Mθ0 for some probability distribution Mθ0 , which implies that

the (co-)variance of Lθ0 is lower-bounded by ψ̇θ0I
−1
θ0
ψ̇T

θ0
. Also related to regularity is the

so-called locally asymptotic minimax theorem (see Hájek (1972) [44]) which formulates a
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lower-bound for the uniform risk in small neighbourhoods of the true parameter θ0 (for a

more precise formulation, see the original references or theorem 8.11 in Van der Vaart (1998)

[91], pp. 117–118). In a one-dimensional model, if an estimator sequence satisfies the local

asymptotic minimax criterion for a loss-function in a fairly general class, then this estimator

sequence is also a best regular sequence (see lemma 8.13 in Van der Vaart (1998) [91]). Within

the limited extent of this introductory overview, a more detailed discussion of the convolution

and locally asymptotic minimax theorems would take us to far afield. We do mention an

equivalent characterisation of best regular estimators, however, in the form of the following

theorem.

Theorem 1.4. (Best regular estimation) Assume that the model {Pθ : θ ∈ Θ} is differentiable

in quadratic mean at θ0 with non-singular Fisher information matrix Iθ0. Let Tn be statistics

in the models {Pθ0+h/
√

n : h ∈ Rk} estimating a functional ψ : Θ → R (differentiable at θ0).

Then the following two assertions are equivalent:

(i) The sequence Tn is best regular for estimation of ψ(θ0).

(ii) The sequence Tn satisfies:

√
n(Tn − ψ(θ0)) =

1√
n

n∑
i=1

ψ̇θ0I
−1
θ0

˙̀
θ0(Xi) + oPθ0

(1).

Proof The proof of this theorem can be found in Van der Vaart (1998) [91], pp. 120–121. �

Comparing the above with expansion (1.13), we see that under the regularity conditions

of theorem 1.1, the maximum-likelihood estimator is best regular. Already in the 1940’s

(see Cramér (1946) [22]) it was known that maximum-likelihood estimation is asymptoti-

cally optimal under differentiability and Lipschitz conditions that are now known as ‘classical

conditions’.

That a condition like regularity to restrict the class of estimators over which an asymptotic

optimality criterion is formulated, is necessary, is established by the construction of explicit

counterexamples. It is possible to construct estimator sequences that elude the lower bound for

the asymptotic variance (or even display a higher rate of convergence) if the true parameter

θ0 happens to be a specific point in the model, while maintaining the optimal rate and

asymptotic variance for all other points. This phenomenon is called super-efficiency for obvious

reasons. The first super-efficient estimator was found by Hodges in 1951 and others have

been constructed since, e.g. shrinkage estimators (see, for instance, James and Stein (1961)

[49]). The above theorems show that super-efficient estimator sequences for differentiable

functionals in smooth parametric models cannot be regular. Furthermore, it was shown by Le

Cam (1953) [63] that super-efficiency in can occur only on a set of Lebesgue measure equal

to zero (Le Cam’s (first) proof relies on the Bernstein-Von-Mises theorem, which is discussed

in section 1.3 and of chapter 2). Indeed a version of the convolution theorem exists that does

not require regularity of the estimator sequence, but holds only Lebesgue almost-everywhere



Bayesian asymptotics 19

on the parameter space (see Van der Vaart (1998) [91], theorem 8.9 and lemma 8.10). The

conclusion has to be that on the one hand it is possible to improve on estimator performance

on a selected set of points, but on the other hand, that this set cannot have Lebesgue-measure

greater than zero and that the very basic requirement of regularity is enough to exclude this.

The interested reader is referred to reviews on super-efficiency, e.g. Pollard (2001) [76] and

Van der Vaart (1997) [90].

1.3 Bayesian asymptotics

Obviously the limit of infinite sample-size can be studied in the Bayesian context as well. In

Bayesian procedures, we have on the one hand a prior Π on a model P and on the other the

i.i.d. sampleX1, X2, . . ., which through conditioning defines a sequence of posterior probability

measures Πn( · |X1, X2, . . . , Xn ) on the model P. The asymptotic behaviour of the Bayesian

procedure concerns the way in which posterior measures concentrate their mass around a

point (or set of points) of convergence. Note that the estimation procedure is entirely fixed as

soon as we choose prior and model, so all conditions for theorems are formulated in terms of Π

and P. We have already noted in section 1.1 that the posterior measure allows for a number

of derived point estimators like the posterior mean and median. The asymptotic properties

of such point estimators can be related to the asymptotic properties of the posterior sequence

on which they are based. Therefore bounds on rate and efficiency of point estimators such as

those mentioned in section 1.2, have implications for the Bayesian procedure as well.

One can choose from several techniques to approach questions in Bayesian asymptotics;

the approach we choose is based on test functions. Test functions and the properties that we

need are discussed in more detail in the next section.

1.3.1 Bayesian consistency theorems

Consistency, certainly incontestable as an asymptotic criterion from the frequentist point of

view, is not free of controversy in Bayesian statistics. Specifically, the subjectivist Bayesian

point of view does not attach value to any special point of convergence P0 because no ‘un-

derlying’ or ‘true’ distribution for the sample X1, X2, . . . is assumed within the subjectivist

paradigm. The notion of ‘merging’ is perhaps closer to the subjectivist’s philosophy: given

two different priors Π1 and Π2 on a model Θ, merging is said to occur if the total-variation

distance between the posterior predictive distributions goes to zero (see Blackwell and Dubins

(1962) [19] and, for an overview, Ghosh and Ramamoorthi (2003) [41]).

Here we choose a different point of view, which is essentially of a frequentist nature and

motivation: we assume that the sample is i.i.d. P0 and we assume moreover that P0 ∈ P (for

now). The question is whether the Bayesian procedure converges to the point P0 in a suitable

way. Relations between merging and posterior consistency as defined below are discussed in

Diaconis and Freedman (1986) [24].
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We start by defining consistency, Bayesian style. Let P be a model with topology T

and prior Π on the corresponding Borel σ-algebra. Assume that X1, X2, . . . is an infinite

i.i.d. sample from an unknown distribution P0 ∈ P. We say that the sequence of posterior

measures Π( · |X1, X2, . . . , Xn) is consistent if for every open neighbourhood U of P0

Πn(U |X1, X2, . . . , Xn ) P0−a.s.−→ 1. (1.20)

In the case of a metric model P (with metric d), which covers all cases we shall consider,

consistency is equivalent to the condition that for every ε > 0:

Πn( d(P, P0) ≥ ε |X1, X2, . . . , Xn ) P0−a.s.−→ 0, (1.21)

since the above display is the complement of an open ball and every open neighbourhood of

P0 contains an open ball centred on P0.

Lemma 1.1. Assume that P has a countable basis at P0. Then definition (1.20) implies that

the sequence of posterior measures Πn on P converges weakly to the measure degenerate at

P0,

Πn( · |X1, X2, . . . , Xn ) δP0 , (P0 − a.s.). (1.22)

If P is a normal space the converse holds as well.

Proof Assume that (1.20) holds for every open neighbourhood of P0. Let the sequence

Uk, k ≥ 1 denote the countable basis15 at P0. Define for every k ≥ 1 the set Ωk such that

P∞0 (Ωk) = 1 and the limit in (1.20) with U = Uk holds on Ωk. Note that Ω′ = ∩k≥1Ωk

satisfies P∞0 (Ω′) = 1 and for all ω ∈ Ω′ and all k ≥ 1:

Πn

(
Uk

∣∣ X1(ω), X2(ω), . . . , Xn(ω)
)
→ 1, (n→∞).

Fix ω ∈ Ω′, let the open neighbourhood U of P0 be given. Then U contains Ul for certain

l ≥ 1 and hence:

Πn

(
U
∣∣ X1(ω), X2(ω), . . . , Xn(ω)

)
≥ Πn

(
Ul

∣∣ X1(ω), X2(ω), . . . , Xn(ω)
)
→ 1

as n → ∞. So the countable basis at P0 ensures that (1.20) does not only hold P0-almost-

surely for each U separately, but P0-almost-surely for all U simultaneously.

Let (X1, . . . , Xn) = (X1(ω), . . . , Xn(ω)) for some ω ∈ Ω′. Let f : P → R be bounded and

continuous. Let η > 0 be given. Choose M > 0 such that |f | ≤M and (using the continuity

of f at P0) let U be a neighbourhood of P0 such that |f(P ) − f(P0)| ≤ η for all P ∈ U .

15A topological space (X, T ) has a countable basis at a point x, if there exists a sequence Un, (n ≥ 1), of

open neighbourhoods of x, such that every open neighbourhood U of x contains a Ul, for some l ≥ 1. For this

and other topological definitions used in this subsection, see, for example, Munkres (2000) [72], sections 32, 33

and 34.
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Consider the absolute difference between the expectations with respect to the posterior and

with respect to δP0 :∣∣∣∫
P
f(P ) dΠn(P |X1, . . . , Xn)− f(P0)

∣∣∣
≤
∫

P\U
|f(P )− f(P0)| dΠn(P |X1, . . . , Xn) +

∫
U
|f(P )− f(P0)| dΠn(P |X1, . . . , Xn)

≤ 2M Πn( P \ U |X1, X2, . . . , Xn ) + sup
P∈U

|f(P )− f(P0)|Πn(U |X1, X2, . . . , Xn )

≤ η + o(1), (n→∞).

We conclude that Πn( · |X1, X2, . . . , Xn ) δP0 , P0-almost-surely.

Conversely, assume that the sequence of posteriors converges weakly to the Dirac-measure

at P0, P0-almost-surely. Let U , an open neighbourhood of P0, be given. Assuming that P is a

normal space (which implies that P is T0 and hence the singleton {P0} is closed), Urysohn’s

lemma (see Munkres (2000) [72], theorem 33.1) guarantees the existence of a continuous

f : P → [0, 1] that separates the set {P0} from the (closed) complement of U , i.e. f = 1 at

{P0} and f = 0 on P \ U . Hence:

lim inf
n→∞

Πn(U |X1, X2, . . . , Xn ) = lim inf
n→∞

∫
P

1U (P ) dΠn(P |X1, . . . , Xn)

≥ lim inf
n→∞

∫
P
f(P ) dΠn(P |X1, . . . , Xn) =

∫
P
f(P ) dδP0(P ) = 1,

which holds P0-almost-surely. �

A few remarks concerning the topological conditions are in order at this point. First of

all, the essence of the property we use in the second part of the above proof (the existence

of a continuous function separating points (or rather, (closed) singletons) from closed sets)

is usually referred to as complete regularity (or the T
3
1
2

property, between regularity (T3)

and normality (T4)). Urysohn’s lemma guarantees that normal spaces are completely regular,

but strictly speaking the requirement of normality is too strong for the purpose. Secondly,

metrisable spaces are first countable and normal, so the above implies the following corollary

immediately.

Corollary 1.1. If P is a model with metric d, (1.20), (1.21) and (1.22) are equivalent.

The popular16 condition that the model be a separable metric space (which is also sufficient

to prove that weak convergence implies (1.20)) is therefore too strong. Note that compact

Hausdorff spaces are normal and that regular spaces with a countable basis are metrisable by

Urysohn’s metrisation theorem.

Throughout the rest of this thesis, we shall be concerned with metric spaces P only, so we

could also have chosen to specify lemma 1.1 to the metric situation immediately. The reason

16see, for instance, Ghosh and Ramamoorthi (2003) [41], p. 17.



22 Introduction

for doing this in more detail is the introduction of the T4 and T
3
1
2

properties. In the following

chapters, we shall make frequent use of so-called test-functions, whose conceptual purpose

is that of Urysohn’s separating function in a statistical setting, generalising the well-known

hypothesis test based on critical regions. The analogy shall become clear in due course (for

the less-than-patient, see condition (1.23)).

Point-estimators derived from a consistent Bayesian procedure are consistent themselves

under some mild conditions. We reiterate that the notion of a point-estimator is not an

entirely natural extension to the Bayesian framework: for example, if the model is non-

convex, the expectation based on the posterior measure may lie outside the model. Similarly,

perfectly well-defined posteriors may lead to ill-defined point-estimators due to integrability

issues or non-existence of maximisers, which become more severe as the model becomes more

complicated.

We endow the model P with the (restriction) of the norm-topology that follows from the

total-variation norm ‖ . ‖. We assume that the σ-algebra on P contains the corresponding

Borel σ-algebra.

Theorem 1.5. Assume that prior Π and underlying distribution P0 ∈ P are such that

the sequence of posteriors is consistent. Then the posterior mean P̂n is a P0-almost-surely

consistent point-estimator with respect to total-variation.

Proof Note that the domain of definition of the map P 7→ ‖P − P0‖ extends to the convex

hull co(P) of P (in the collection of all probability distributions on the sample space). Since

P 7→ ‖P − P0‖ is convex by virtue of the triangle inequality, Jensen’s inequality (see, e.g.

theorem 10.2.6 in Dudley (1989) [28]) says that the posterior mean P̂n satisfies:

‖P̂n − P0‖ =
∥∥∥∫

P
P dΠn(P |X1, . . . , Xn )− P0

∥∥∥ ≤ ∫
P
‖P − P0‖ dΠn(P |X1, . . . , Xn ).

Since P  P0 under the sequence of posterior laws Πn = Πn( · |X1, . . . , Xn ) and the map

P 7→ ‖P − P0‖ is bounded and continuous in the norm-topology, we conclude that the r.h.s.

in the above display converges to the expectation of ‖P − P0‖ under the limit law δP0 , which

equals zero. Hence

P̂n→P0, (P0 − a.s.).

in total variation. �

More generally, given an arbitrary convex metric d on the model P, theorem 1.5 can

be proved if the metric d is bounded on P. Similar arguments can be used to demonstrate

consistency for other classes of point estimators derived from a consistent sequence of posterior

distributions, for example Le Cam’s so-called formal Bayes estimators [67].

Having discussed the definition of Bayesian consistency and its consequences for derived

point-estimators, we move on to sufficient conditions for consistency. Perhaps the most famous
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consistency theorem in Bayesian statistics is that given by Doob as early as 1948 [27], which

states the following.

Theorem 1.6. (Doob’s consistency theorem) Suppose that both the model Θ and the sample

space X are Polish spaces endowed with their respective Borel-σ-algebras. Assume that the

map Θ → P : θ 7→ Pθ is one-to-one. Then the sequence of posteriors is consistent Π-almost-

surely.

Proof The proof of this theorem is an application of Doob’s martingale convergence theorem

and can be found in Van der Vaart (1998) [91] and in Ghosh and Ramamoorthi (2003) [41].

�

For many Bayesians, Doob’s theorem is more than enough: for parametric models with a

prior that dominates the restriction of the Lebesgue measure to Θ, the above theorem leaves

room for inconsistency only on sets of Lebesgue measure zero. A popular way of stating

this, is that consistency theorems like the above show that “the data overrides prior beliefs

asymptotically”. Conclusions like that should be drawn less readily and less strongly, however.

First of all, consistency occurs only if the true distribution was not excluded from consideration

in the first place by an ill-chosen prior. If the support of the prior does not contain the true

distribution, inconsistency is guaranteed. In fact, this situation should be compared to that

of ordinary model misspecification as discussed in section 1.4 and later chapters investigate

exactly this situation.

But there is a more subtle point of criticism to be made: Doob’s proof says nothing about

specific points in the model, i.e. given a particular P0 ∈ P underlying the sample, Doob’s

theorem does not give conditions that can be checked to see whether the Bayesian procedure

will be consistent at this point in the model: it is always possible that P0 belongs to the null-

set for which inconsistency occurs. That, indeed, this may lead to grave problems, especially

in non-parametric situations, becomes apparent when we consider some rather awkward (but

nonetheless perfectly acceptable) counterexamples given by Freedman (1963,1965) [34, 35]

and Diaconis and Freedman (1986) [24, 25]. Non-parametric examples of inconsistency in

Bayesian regression can be found in Cox (1993) [21] and Diaconis and Freedman (1998) [26].

Basically what is shown is that the null-set on which inconsistency occurs in Doob’s theorem

can be rather large in non-parametric situations. Some authors are tempted to present the

above as definitive proof of the fact that Bayesian statistics are useless in non-parametric

estimation problems. More precise would be the statement that not every choice of prior is

suitable and some may lead to unforeseen instances of inconsistency. The fact that they are

unforeseen is related to the non-specific nature of the exceptional null-set in Doob’s theorem.

Fortunately, a theorem exists that provides sufficient conditions for consistency at a specific

point P0 ∈ P.

Theorem 1.7. (Schwartz’ consistency theorem) Let P be a model with a metric d, dominated

by a σ-finite measure µ and assume that this model is well specified: P0 ∈ P. Let Π be a

prior on P and assume that the following two conditions hold:



24 Introduction

(i) For every η > 0,

Π
(
P ∈ P : −P0 log

p

p0
≤ η

)
> 0,

(ii) For every ε > 0, there exists a sequence φn of test-functions such that:

Pn
0 φn → 0, sup

{P :d(P,P0)>ε}
P (1− φn) → 0. (1.23)

Then all open neighbourhoods of P0 have posterior measure equal to one asymptotically, i.e.:

Πn

(
d(P, P0) ≥ ε |X1, X2, . . . , Xn

) P0−a.s.−→ 0, (1.24)

for all ε > 0.

Proof Let ε > 0 be given. Define V to be the complement of the open d-ball of radius ε

around P0 in P:

V = {P ∈ P : d(P, P0) ≥ ε }.

We start by splitting the n-th posterior measure of V with the test function φn and taking

the limes superior:

lim sup
n→∞

Πn

(
V |X1, . . . , Xn

)
≤ lim sup

n→∞
Πn

(
V |X1, . . . , Xn

)
(1− φn) + lim sup

n→∞
Πn

(
V |X1, . . . , Xn

)
φn.

(1.25)

For given η > 0 (to be fixed at a later stage) we consider the subset Kη = {P ∈ P :

−P0 log(p/p0) ≤ η}. For every P ∈ Kη, the strong law of large numbers says that:

∣∣∣Pn log
p

p0
− P0 log

p

p0

∣∣∣→ 0, (P0 − a.s.).

Hence for every α > η and all P ∈ Kη, there exists an N ≥ 1 such that for all n ≥ N ,∏n
i=1(p/p0)(Xi) ≥ e−nα, Pn

0 -almost-surely. This can be used to lower-bound the denominator

in the expression for the posterior Pn
0 -almost-surely as follows:

lim inf
n→∞

enα

∫
P

n∏
i=1

p

p0
(Xi) dΠ(P ) ≥ lim inf

n→∞
enα

∫
Kη

n∏
i=1

p

p0
(Xi) dΠ(P )

≥
∫

Kη

lim inf
n→∞

enα
n∏

i=1

p

p0
(Xi) dΠ(P ) ≥ Π(Kη),

where we use Fatou’s lemma to obtain the second inequality. Since by assumption, Π(Kη) > 0
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we see that the first term on the r.h.s. of (1.25) can be estimated as follows:

lim sup
n→∞

Πn(V |X1, . . . , Xn)(1− φn)(X1, . . . , Xn)

= lim sup
n→∞

∫
V

n∏
i=1

p

p0
(Xi) (1− φn)(X1, . . . , Xn) dΠ(P )

∫
P

n∏
i=1

p

p0
(Xi) dΠ(P )

≤
lim sup

n→∞
enα

∫
V

n∏
i=1

(p/p0)(Xi) (1− φn)(X1, . . . , Xn) dΠ(P )

lim inf
n→∞

enα

∫
P

n∏
i=1

(p/p0)(Xi) dΠ(P )

≤ 1
Π(Kη)

lim sup
n→∞

fn(X1, . . . , Xn),

(1.26)

where we use the following, P∞0 -almost-surely defined sequence of non-negative random vari-

ables (fn)n≥1, fn : X n → R:

fn(X1, . . . , Xn) = enα

∫
V

n∏
i=1

p

p0
(Xi) (1− φn)(X1, . . . , Xn) dΠ(P ).

Fubini’s theorem and the fact that the test-sequence can be assumed to be uniformly exponen-

tial (see lemma 1.2) guarantee that there exists a constant β > 0 such that for large enough

n,

P∞0 fn = Pn
0 fn = enα

∫
V
Pn

0

( n∏
i=1

p

p0
(Xi) (1− φn)(X1, . . . , Xn)

)
dΠ(P )

≤ enα

∫
V
Pn(1− φn) dΠ(P ) ≤ e−n(β−α).

(1.27)

We choose η strictly below β and can then choose α such that η < α < 1
2(β + η). Markov’s

inequality can be used to show that:

P∞0
(
fn > e−

n
2 (β−η)) ≤ en(α−1

2 (β+η)).

Hence the series
∑∞

n=1 P
∞
0 (fn > exp−n

2 (β − η)) converges and the first Borel-Cantelli lemma

then leads to the conclusion that:

0 = P∞0

( ∞⋂
N=1

⋃
n≥N

{
fn > e−

n
2 (β−η)}) ≥ P∞0

(
lim sup

n→∞

(
fn − e−

n
2 (β−η)) > 0

)
Since fn ≥ 0, we see that fn → 0, (P0 − a.s.), which we substitute in (1.26).

We estimate the last term on the r.h.s. of (1.25) with an argument similar to that used

above for the functions fn. Note that Pn
0 Π(V |X1, . . . , Xn)φn ≤ Pn

0 φn ≤ e−nC for some
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positive constant C, according to lemma 1.2. Markov’s inequality and the first Borel-Cantelli

lemma suffice to show that:

φnΠ
(
V |X1, . . . , Xn

) P0−a.s.−→ 0. (1.28)

Combination of (1.26) and (1.28) proves that (1.25) equals zero. Positivity of the posterior

measure completes the proof of (1.24). �

Here we come back to the remarks on normality following the proof of lemma 1.1. Com-

paring condition (1.23) with the assertion of Urysohn’s lemma or the definition of complete

regularity, one notices conceptually similar roles for separating functions and test functions:

the sequence of test functions in (1.23) ‘separates’ the singleton {P0} from the alternative,

albeit as a stochastic, uniform limit.

The condition of domination in the above theorem is strictly speaking redundant: it is

possible to give the entire proof in its present form, if we replace p/p0 by the Radon-Nikodym

derivative dP/dP0 (see footnote 2) throughout and we change the third equality in (1.27)

into less-or-equal. Furthermore, it should be noted that the examples of non-parametric

Bayesian inconsistency given by Diaconis and Freedman mentioned earlier in this subsection

fail the prior-mass condition for Kullback-Leibler neighbourhoods of the true distribution in

Schwartz’ theorem (see Barron et al. (1999) [5]). Questions concerning the conditions under

which suitable sequences of tests exist are answered, for instance, in Birge (1983,1984) [15, 16],

Le Cam (1986) [67], Van der Vaart (1998) [91] and Ghosal et al. (2000) [39]. We conclude

this subsection with the lemma referred to earlier, which is a special case of lemma 2.6.

Lemma 1.2. Suppose that for given ε > 0 there exists a sequence of tests (φn)n≥1 such that:

Pn
0 φn → 0, sup

P∈Vε

Pn(1− φn) → 0

where Vε = {P ∈ P : d(P, P0) ≥ ε}. Then there exists a sequence of tests (ωn)n≥1 and positive

constants C,D such that:

Pn
0 ωn ≤ e−nC , sup

P∈Vε

Pn(1− ωn) ≤ e−nD (1.29)

1.3.2 Bayesian rates of convergence

Recalling the formulation of posterior consistency given in (1.21), we define the rate of conver-

gence for a consistent sequence of posteriors as the maximal speed with which we can let the

balls d(P, P0) < ε shrink to radius zero, while still capturing a posterior mass that converges

to one in the limit n → ∞. We formalise this as follows. Again, let P be a model with

metric d and prior Π. Assume that X1, X2, . . . is an infinite i.i.d. sample from an unknown

distribution P0 ∈ P. Let the sequence εn be such that εn > 0 and εn ↓ 0. We say that the

sequence of posterior measures Π( · |X1, X2, . . . , Xn) converges to P0 (at least) at rate εn if

for all sequences Mn →∞:

Πn

(
d(P, P0) ≥Mnεn |X1, X2, . . . , Xn

) P0−→ 0, (1.30)
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This definition differs from (1.21) in two respects: firstly, the radius of the balls is now n-

dependent and secondly, the mode of convergence with respect to the distribution of the

sample is in P0-probability.

To demonstrate how this definition relates to the rate of convergence for derived point-

estimators like the posterior mean, we consider the following. We assume that the σ-algebra

on the model contains the Borel σ-algebra corresponding to the metric topology generated by

d. We also assume that the sequence of posteriors satisfies (1.30). With the sequence εn, we

define moreover the point estimators P̃n as (near-)maximisers in the model of the maps:

P 7→ Πn(B(P, εn) |X1, . . . , Xn ),

where B(P, ε) ⊂ P is the d-ball of radius ε around P in the model.

Lemma 1.3. For every sequence Mn →∞, the estimator sequence P̃n satisfies

Pn
0

(
d(P̃n, P0) ≤ 2Mnεn

)
→ 1 (1.31)

As a result, ε−1
n is a lower bound for the rate at which P̃n converges to P0 with respect to d.

Proof Let P̃n like above be given. By definition of a near-maximiser:

Πn(B(P̃n,Mnεn) |X1, . . . , Xn ) ≥ sup
P∈P

Π(B(P,Mnεn) |X1, . . . , Xn )− oP0(1)

≥ Π(B(P0,Mnεn) |X1, . . . , Xn )− oP0(1).

Because the first term on the r.h.s. of the above display converges to one (according to (1.30))

and the second to zero in P0-probability, the l.h.s. converges to one in P0-probability. Since

B(P̃n,Mnεn)∩B(P0,Mnεn) = Ø if d(P̃n, P0) > 2Mnεn, the fact that the total posterior mass

of the model does not exceed one guarantees that d(P̃n, P0) ≤ 2Mnεn with P0-probability

growing to one as n→∞, demonstrating that ε−1
n is a lower bound to the rate. �

A proof that does not differ in an essential way from the above can be given for the centre

point of the d-ball of minimal radius containing posterior mass p > 1/2. For the posterior

mean we can prove a similar result if we specify the convergence of the posterior measure of

complements of balls a little further. Consider a model P with Hellinger metric H and the

corresponding Borel σ-algebra. By the convexity of P 7→ H2(P, P0), the fact that this map can

be extended to the convex hull of P and Jensen’s inequality (see the proof of theorem 1.5):

H2(P̂n, P0) = H2
(∫

P
P dΠn(P |X1, . . . , Xn ), P0

)
≤
∫

P
H2(P, P0) dΠn(P |X1, . . . , Xn )

=
∫
{H(P,P0)>Mnεn}

H2(P, P0) dΠn(P |X1, . . . , Xn )

+
∫
{H(P,P0)≤Mnεn}

H2(P, P0) dΠn(P |X1, . . . , Xn )

≤ 2Πn(H(P, P0) > Mnεn |X1, . . . , Xn )

+M2
nε

2
nΠn(H(P, P0) ≤Mnεn |X1, . . . , Xn )
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If Πn(H2(P, P0) > a2
n |X1, . . . , Xn ) = oP0(a

2
n) for all (deterministic) sequences an ↓ 0, the

above display implies that H(P̂n, P0) is bounded in probability by a multiple of Mnεn (c.f.

(1.31)) for all sequences Mn →∞, leading to the same conclusion as that of lemma 1.3.

The possibility to construct point estimator sequences from posterior distributions con-

verging at the same rate (e.g. P̃n above), implies that limitations on the rate of convergence

(arising in particular in non-parametric estimation problems, see (1.39) below, for example)

derived for point estimation, apply unabated to Bayesian rates. This argument applies to

other asymptotic performance criteria as well.

With regard to sufficient conditions for the defining property (1.30) of the Bayesian rate

of convergence, we note that the number of references on this subject is relatively small

when compared to the literature concerning Bayesian consistency. We note first of all, Le

Cam (1973) [66] and Ibragimov and Has’minskii (1981) [47], who prove that under regularity

conditions, posteriors on parametric models achieve
√
n-rate of convergence. We do not discuss

their results here, because the next subsection deals with the more detailed Bernstein-Von

Mises theorem which implies
√
n-rate of convergence. Le Cam (1986) [67] considers rates

of convergence of formal Bayes estimators. Two references dealing with Bayesian rates of

convergence in non-parametric models are Ghosal, Ghosh and Van der Vaart (2000) [39] and

Shen and Wasserman (2001) [83]. We follow the approach of the former, not only here but

also in chapter 3.

Again, we assume a (non-parametric) model P with metric d and prior Π. To formulate

the main theorem of this subsection, we define, for every ε > 0, a particular variant of the

Kullback-Leibler neighbourhood used in Schwartz’ theorem (theorem 1.7).

B(ε) =
{
P ∈ P : −P0 log

p

p0
≤ ε2, P0

(
log

p

p0

)2
≤ ε2

}
. (1.32)

Theorem 1.8. Suppose that for a sequence εn such that εn > 0, εn ↓ 0 and nε2n → ∞, the

following two conditions hold:

(i) There exists a constant C > 0 such that:

Π
(
B(εn)

)
≥ e−nCε2n . (1.33)

(ii) There exists a sequence φn of test-functions φn and a constant L > 0 such that:

Pn
0 φn → 0, sup

P :d(P,P0)≥εn

Pn(1− φn) ≤ e−nLε2n . (1.34)

Then for a sufficiently large M > 0,

Pn
0 Πn( d(P, P0) ≥Mεn |X1, . . . , Xn ) → 0. (1.35)

Note that the assertion establishes convergence in P0-expectation, which implies conver-

gence in P0-probability, c.f. (1.30).
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Proof Define, for every η > 0, A(η) = {P ∈ P : d(P, P0) ≥ η}. The expectation in (1.35)

can be decomposed using the tests φn; for every n ≥ 1 and every M > 1, we have:

Pn
0 Πn

(
A(Mεn)

∣∣ X1, . . . , Xn

)
= Pn

0 φn(X) Πn

(
A(Mεn)

∣∣ X1, . . . , Xn

)
+ Pn

0 (1− φn)(X) Πn

(
A(Mεn)

∣∣ X1, . . . , Xn

)
.

We estimate the terms on the right-hand side separately. Due to the first inequality in (1.34),

the first term converges to zero. To estimate the second term, we substitute (1.4) to obtain:

Pn
0 Πn

(
A(Mεn)

∣∣ X1, . . . , Xn

)
(1− φn)(X)

= Pn
0

[ ∫
A(Mεn)

n∏
i=1

p

p0
(Xi) dΠ(P ) (1− φn)(X)

/ ∫
P

n∏
i=1

p

p0
(Xi) dΠ(P )

] (1.36)

in which the denominator can be lower-bounded by application of lemma 1.4, since by as-

sumption (1.33), Π(B(εn)) > 0. Let Ωn be the subset in X n for which the inequality between

left- and right-hand sides in the following display holds:∫
P

n∏
i=1

p

p0
(Xi) dΠ(P ) ≥

∫
B(εn)

n∏
i=1

p

p0
(Xi) dΠ(P ) ≥ e−(1+K)nε2nΠ(B(εn)), (1.37)

as in (1.40), with K > 0 as yet unspecified. Decomposing the Pn
0 -expectation in (1.36) into

separate integrals over Ωn and X n \ Ωn, we find:

Pn
0 Πn

(
A(Mεn)

∣∣ X1, . . . , Xn

)
(1− φn)

≤ Pn
0 Πn

(
A(Mεn)

∣∣ X1, . . . , Xn

)
(1− φn)1Ωn + Pn

0 (X n \ Ωn).

Note that Pn
0 (X n \Ωn) = o(1) as n→∞ according to (1.40). The first term is estimated as

follows:

Pn
0 Πn

(
A(Mεn)

∣∣ X1, . . . , Xn

)
(1− φn) 1Ωn

≤ e(1+K)nε2n

Π(B(εn))
Pn

0

(
(1− φn)

∫
A(Mεn)

n∏
i=1

p

p0
(Xi) dΠ(P )

)
≤ e(1+K)nε2n

Π(B(εn))

∫
A(Mεn)

Pn
(
1− φn

)
dΠ(P )

≤ e(1+K)nε2n
Π(A(Mεn))
Π(B(εn))

sup
P∈A(Mεn)

Pn
(
1− φn

)
,

(1.38)

where we have substituted (1.37) and used the positivity of the integrand, applied Fubini’s

theorem and bounded the integrand by its supremum over A(Mεn). Application of the second

inequality in (1.34) gives:

Pn
0 Πn

(
A(Mεn)

∣∣ X1, . . . , Xn

)
(1− φn) ≤ e(1+K+C−M2L)nε2n + o(1).
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Hence, for all K > 0 there exists a constant M > 0 such that the above expression converges

to zero. This leads us to conclude that:

Pn
0 Πn

(
A(Mεn)

∣∣ X1, . . . , Xn

)
→ 0, (n→∞).

for sufficiently large M > 0. �

The rate theorem given here is a variation on theorem 2.1 in Ghosal, Ghosh and Van der

Vaart (2000) [39]; their version is more general in two respects: first of all, they allow for

a sequence of priors Πn, replacing Π in definition (1.4). Secondly, they restrict attention to

a sequence of models Pn that grows in Πn-measure to the full model P (sufficiently fast).

More importantly, however, instead of the condition requiring the existence of suitable test

functions, they impose the following alternative condition:

(ii a) The ε-packing numbers17 D(ε,Pn, d) for the models Pn satisfy:

D(εn,Pn, d) ≤ enε2n . (1.39)

Under certain, fairly general conditions, this entropy condition implies the existence of a

suitable sequence of test functions, as is shown in section 7 of Ghosal et al. (2000). (See also

Birgé (1983,1984) [15, 16] and Le Cam (1986) [67].) As such, the entropy condition is less

general than the version given in theorem 1.8. However, for most models entropy numbers are

well-known or can be calculated, whereas the existence of suitable test sequences is certainly

more involved. Furthermore, if d is the Hellinger metric, suitable test sequences exist and

conditions like (1.39) are often viewed as representing the optimal rate of convergence. Under

certain conditions (for instance, if likelihood ratios are bounded away from zero and infinity),

optimality is proved in Birgé (1983) [15] and Le Cam (1973,1986) [66, 67]. Referring to

chapter 3, condition (3.7) is of a similar nature and extensive explanation concerning the

relation between test sequences and entropy can be found in section 3.6 (note that the choice

P ∗ = P0 renders the discussion given there applicable to well-specified models).

The attentive reader will have noticed that the condition nε2n → ∞ precludes
√
n-rates

of convergence. So in its present form the theorem is unable to establish rate-optimality of

Bayesian methods in many estimation problems, including those involving smooth paramet-

ric models as discussed in section 1.2. Indeed, application of the theorem in such situations

typically leads to unnecessary (log n)α-factors. Similarly, the theorem would lead to unnec-

essary logarithmic factors when applied to finite-dimensional sieves. At first sight, one might

suspect that this is related to the nature of the assertion (1.35), which ascribes to εn only

the role of an lower bound for the rate, but the situation is more complicated. As it turns

17The packing number D(η, X , ρ) of a space X with metric ρ is defined as the maximal number of points

in X such that the ρ-distance between all pairs is at least η. This number is related to the so-called covering

number N(η, X , ρ) which is defined as the minimal number of ρ-balls of radius η needed to cover X , by the

following inequalities: N(η, X , ρ) ≤ D(η, X , ρ) ≤ N(η/2, X , ρ).
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out,
√
n-rates require localised18 versions of conditions (1.33) and (1.39) and a more subtle

sequence of estimations to replace the inequalities (1.38). However, the essential ingredients

of the proof are unchanged and a comprehensive presentation of the (mostly technical) details

here would conflict with the introductory nature of this chapter. The interested reader is

referred to Ghosal et al. [39], section 5 and theorems 2.4, 7.1. More specifically with regard

to
√
n-rates of convergence in smooth parametric models, we refer to the next subsection and

chapter 2 in this thesis.

To conclude this section we give the lemma needed in the proof of theorem 1.8 to lower-

bound the denominator of the posterior in probability.

Lemma 1.4. Let ε > 0 be given and let B(ε) be defined as in (1.32). If Π(B(ε)) > 0, then

for every K > 0:

Pn
0

(∫
B(ε)

n∏
i=1

p

p0
(Xi) dΠ(P ) ≤ e−nε2(1+K)Π(B(ε))

)
≤ 1
nK2ε2

. (1.40)

Proof The proof of this lemma can be found as lemma 8.1 in Ghosal et al. [39] and follows

from the proof of lemma 3.17 if we choose P ∗ = P0. �

1.3.3 The Bernstein-Von-Mises theorem

Having considered consistency and rate of convergence in the previous two subsections, we turn

to the Bayesian analog of the limit distribution next. More particularly, we prove the so-called

Bernstein-Von-Mises theorem, which states that, under regularity conditions comparable to

those we saw in subsection 1.2.2, the posterior distribution for
√
n(θ − θ0) converges (in a

suitable sense) to a normal distribution with location ∆n,θ0 (c.f. (1.18)) and covariance equal

to the inverse Fisher information I−1
θ0

. The first results concerning limiting normality of a

posterior distribution date back to Laplace (1820) ([62]). Later, Bernstein (1917) [4] and

Von Mises (1931) [71] proved results to a similar extent. Le Cam used the term ‘Bernstein-

Von-Mises theorem’ in 1953 [63] and proved its assertion in greater generality in relation to

his work concerning super-efficiency (see the remarks made at the end of subsection 1.2.2).

Walker (1969) [95] and Dawid (1970) [23] gave extensions to these results and Bickel and

Yahav (1969) [12] proved a limit theorem for posterior means. The theorem as given here can

be found in Van der Vaart (1998) [91] which follows (and streamlines) the presentation given

in [68].

We consider an infinite, i.i.d. P0-distributed sample X1, X2, . . . and a parametric, well-

specified model {Pθ : θ ∈ Θ}, where the parameter set Θ is open in Rk and with θ0 ∈ Θ such

that P0 = Pθ0 .

18For a definition of what is meant by localisation in this context, see the remarks preceding lemma 3.10 and

the conditions of theorem 3.8.
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Theorem 1.9. (Bernstein-Von-Mises) Let the model be differentiable in quadratic mean at

θ0 with non-singular Fisher information matrix Iθ0. Suppose that for every ε > 0 there exists

a sequence of tests such that:

Pn
θ0
φn → 0, sup

‖θ−θ0‖>ε
Pn

θ (1− φn) → 0. (1.41)

Furthermore, suppose that in a neighbourhood of θ0, the prior is dominated by the Lebesgue

measure and that the corresponding density is continuous and strictly positive in θ0. Then the

sequence of posterior measures converges as follows:∥∥∥Π√
n( θ−θ0)|X1,...,Xn

−N(∆n,θ0 , I
−1
θ0

)
∥∥∥ P0−→ 0.

Proof The proof of this theorem can be found in Van der Vaart (1998) [91], pp. 141–144.

Alternatively, the reader may refer to theorem 2.1, which forms the misspecified version of

the above (under more stringent conditions appropriate to the misspecified situation) and

substitute P ∗ = P0. �

The conditions in the above theorem again comprise a uniform testing condition separating

θ0 from the complements of balls and a condition that lower-bounds the prior mass of neigh-

bourhoods of the true distribution19. Note that the testing condition (1.41) is considerably

weaker than that of theorem 1.8 (c.f. (1.34)), whereas the conclusion of the Bernstein-Von-

Mises theorem is stronger. The difference lies in the fact that theorem 1.8 applies to non-

parametric and parametric models alike, whereas the above Bernstein-Von-Mises theorem is

formulated only for smooth parametric models. Suitably differentiable Euclidean models al-

low for the definition of uniformly exponential (score-)test sequences which make it possible

to extend tests against fixed alternatives to shrinking neighbourhoods (see, e.g. the proof of

theorem 2.3). With reference to condition (1.39), we also note that (localised) covering num-

bers for Euclidean spaces grow like (1/ε)d (where d is the dimension) with decreasing ε (see,

for instance, the proof of lemma 4.15).

The (proof of the) Bernstein-Von-Mises theorem depends crucially on local asymptotic

normality of the model at θ0, as required through differentiability in quadratic mean (see the

first condition of theorem 1.2). A heuristic explanation of the role of this model-property in the

proof can be given as follows. Suppose that the prior is as required in the Bernstein-Von-Mises

theorem. Then the posterior for the local parameter H =
√
n(θ− θ0) has a Lebesgue-density

given by:

πn(h |X1, X2, . . . , Xn )

=
n∏

i=1

pθ0+h/
√

n(Xi)π(θ0 + h/
√
n)
/ ∫ n∏

i=1

pθ0+h′/
√

n(Xi)π(θ0 + h′/
√
n) dh′,

19A sufficient condition could be given in the form of an n-dependent lower bound on the prior mass of a

sequence of balls around θ0 shrinking at rate
√

n, similar to (1.33). The stated condition, however, is sufficient

and in most situations, more convenient.
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Pn
0 -almost-surely. Continuity of π at θ0 implies that (up to an n-dependent proportionality

constant), π(θ0 +h/
√
n) converges to the constant π(θ0), which is strictly positive by assump-

tion. This makes it plausible that upon substitution of the likelihood expansion (1.15), the

posterior density converges to:∏n
i=1 pθ0+h/

√
n(Xi)∫ ∏n

i=1 pθ0+h′/
√

n(Xi) dh′
≈ eh

T ∆n,θ0
−1

2hT Iθ0
h∫

eh
′T ∆n,θ0

−1
2h′T Iθ0

h′ dh′
→

dN(h, I−1
θ0

)(∆)∫
dN(h′, I−1

θ0
)(∆) dh′

(in a suitable sense with respect to P0). Here ∆ is an observation in the normal limit model

{N(h, I−1
θ0

) : h ∈ Rk} (Recall from the proof of theorem 1.3 that under P0, ∆n,θ0 converges

weakly to ∆ ∼ N(0, I−1
θ0

)). The l.h.s. of the last display equals dN(∆, I−1
θ0

)(h) and is the

posterior based on a sample consisting only of ∆ and the (improper) Lebesgue prior for the

limit model.

Regarding the assertion of the Bernstein-Von-Mises theorem, we note that the centring

sequence ∆n,θ0 for the normal limit sequence may be chosen differently. According to theo-

rem 1.4, any best-regular estimator sequence θ̃n for θ0 satisfies:

√
n(θ̃n − θ0) = ∆n,θ0 + oP0(1). (1.42)

Since the total-variational distance ‖N(µ,Σ)−N(ν,Σ)‖ is bounded by a multiple of ‖µ− ν‖,
we find that the assertion of the Bernstein-Von-Mises theorem can also be formulated with
√
n(θ̃n−θ0) replacing ∆n,θ0 . Using the invariance of total-variation under rescaling and shifts,

this leads to the conclusion that:∥∥∥Πθ|X1,...,Xn
−N(θ̃n, n

−1I−1
θ0

)
∥∥∥ P0−→ 0,

for any best-regular estimator-sequence θ̃n. In particular, recall that according to theorem 1.1

and the limit (1.13), the maximum-likelihood estimator is best-regular under smoothness

conditions on the (log-)likelihood. This serves to motivate the often-heard statement that

“Bayesian statistics coincides with the maximum-likelihood estimator asymptotically”. With

regard to point estimators derived from the posterior distribution, we note that the model

P can be regarded as a subset of the sphere of unity in the Banach space of all finite,

signed measures on the sample space endowed with the total-variation norm. Any continuous

functional f on this Banach space satisfies:∣∣∣f(Π√
n( θ−θ∗)|X1,...,Xn

)
− f

(
N(∆n,θ0 , I

−1
θ0

)
)∣∣∣ ≤ ‖f‖

∥∥∥Π√
n( θ−θ∗)|X1,...,Xn

−N(∆n,θ0 , I
−1
θ0

)
∥∥∥,

and the r.h.s. of the above display converges to zero in P0-probability by the Bernstein-Von-

Mises theorem. So all point estimators that are also continuous functionals have asymptotic

behaviour that is controlled by the Bernstein-Von Mises theorem.

The range of practical statistical problems for which a Bernstein-Von-Mises theorem or

an argument of similar content is useful, extends far beyond the strict range of applicability
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of theorem 1.9 above. More particularly, a general non- or semi-parametric version of the

Bernstein-Von-Mises theorem does not exist (see, however, Shen (2002) [84]). Although it

is sometimes claimed that Bernstein-Von-Mises-like results cannot hold in non-parametric

models (see e.g., Cox (1993) [21] and Freedman (1999) [36]), examples of locally normal

limiting behaviour of the marginal posterior distribution for a marginal, finite-dimensional

parameter of interest can be shown to occur in specific situations (see, for instance, recent work

by Y. Kim and J. Lee [55, 56] on survival models). A more general theorem would be highly

desirable and serve a wide range of applications: consider, for example, asymptotic confidence

regions for efficient estimators in semi-parametric models (see, for example, Bickel, Ritov,

Klaassen and Wellner [14]). According to a yet-to-be-devised semi-parametric Bernstein-Von-

Mises theorem, confidence regions for efficient regular estimators (e.g. the maximum-likelihood

estimator in many situations) asymptotically coincide with sets of high posterior probability.

MCMC simulation of Bayesian procedures may thus lead to (numerical approximations to)

asymptotic confidence regions for semi-parametric maximum-likelihood estimators.

1.4 Misspecification

Let us briefly revisit the first few steps in statistical estimation: as has been explained in the

first section of this chapter, most statistical procedures start with the definition of a model

P and immediately proceed to assume that this model choice realises the requirement of

well-specification, i.e. it contains the distribution P0 underlying the sample:

P0 ∈ P.

If the above display does not hold, the model is said to be misspecified. Since the sample

(and with it, the distribution P0) is given and unknown in statistical problems, the above

display is a condition for the model rather than for P0. However, in many cases it is used

the other way around: a choice P for the model that imposes convenient properties for its

elements (from mathematical, computational or practical point of view) together with well-

specification, implies that P0 itself displays those properties.

Usually a model choice is motivated by interpretability of the parameters in the description.

For example, imagine a problem in which data is to be classified into N classes through

estimation of the density: modelling each of the classes by a component of a discrete mixture

of Gaussians on the sample space may lead to misspecification. Note that the number of

interpretable classes is fixed and unimodality of the components implies that for each class

there is a representative centre point. Similarly, the popularity of very simple parametric

models (like normal families) lies not only in the simplicity of calculations within such a

model, but also in the fact that it is parameterised by a location and a variance, both readily

interpreted.

Whether out of convenience or interpretability, well-specified models are hard to motivate

realistically. The only model that is guaranteed to be well specified is the fully non-parametric
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model, i.e. the space of all probability distributions on the sample space. As soon as we impose

any restrictions, we introduce a bias as well, and the larger the restriction (i.e. the smaller

the model), the larger the bias. Whether or not such bias is problematic depends on the

specific problem: if we are interested exclusively in some (rough) location estimate, a family

of normal distributions may be misspecified yet suitable. If, on the other hand, we need a

precise estimate of a certain density for predictive purposes, the same misspecified family of

normals is wholly inadequate.

Many theorems in statistics involve well-specified models and surprisingly often, this as-

sumption is far too strong. A more refined point of view arises when we dissociate the defini-

tion of the model from sufficient assumptions on P0. Misspecified theorems are hence longer

but state in far greater detail their maximal domain of applicability as far as the distribution

of the data is concerned: given the model P and an i.i.d. P0-distributed sample X1, . . . , Xn,

the assertion holds if P0 satisfies stated requirements. Usually, ‘stated requirements’ are sat-

isfied by all P ∈ P and in optima forma also by a large set of other distributions, so that the

misspecified theorem generalises its well specified version. In the present context, our primary

interest is in theorems concerning consistency, rate and limit distribution of point estimation

and Bayesian procedures.

1.4.1 Misspecification and maximum-likelihood estimation

One class of point estimators that generalises easily to the misspecified situation is that

of M -estimators. Consider the sequence θ̂n of (near-)maximisers of the functions Mn over

a model Θ, defined as in subsection 1.2.1. The argumentation around (1.9) holds in the

misspecified case as well with one exception: the point θ∗ at which M(θ) is maximal is such

that Pθ∗ 6= P0. If a unique maximum does not exist, the model is flawed more seriously than

just by misspecification: in that case it is not P0-identifiable (see section 3.3 for a formal

definition). Roughly speaking, the existence of more than one maximum means that it is

impossible to distinguish between them on the basis of a sample from P0. Such situations

do arise, for example if the model contains distinct P1, P2 differing only on a null-set of P0.

Identifiability issues are not specific to the misspecified situation: the fact that the function

M must have a unique, well-separated maximum holds in the well-specified situation as well.

Otherwise, the possibility arises that the sequence of maximum-likelihood estimators (if at all

well-defined) does not converge to a point, but to a set of points.

For theorems concerning the asymptotic behaviour of estimation procedures, we therefore

generalise θ∗ like above to a point P ∗ ∈ P serving as an alternative point of convergence

for the estimator sequence in the misspecified model. This alternative is the optimal approx-

imation for P0 within P, in a sense that is to be specified further. As such, P ∗ may be

loosely interpreted as a ‘projection’ of P0 on the model P, with uniqueness of the projection

equivalent to identifiability under P0.

Practically, the usefulness of theorems concerning misspecification should be clear: conclu-
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sions regarding properties of the distribution that underlies the sample can only be trusted to

the extent one is willing to trust the assumption of well-specification. Said conclusions are of-

ten drawn while consciously neglecting the fact that well-specification is rather hard to justify.

Justification is nevertheless found in practical experience: in many cases the conclusion holds

all the same, despite model misspecification. Apparently, the condition of well-specification

was too strong, but exactly when this is the case remains unclear unless we formulate the

same theorem in a misspecified setting.

Theoretically, there is an important area of application for theorems concerning misspec-

ified asymptotics in the field of adaptive estimation. Suppose that P0 is known to be in a

model P with metric d. If we want this assumption to be weak, P will often have to be a

large, non-parametric model. With reference to formula (1.39) it is noted that the rate of con-

vergence may suffer. Therefore, we choose a sequence of nested submodels Pn ⊂ Pn+1 ⊂ P

and we choose the estimator P̂n in Pn. We define P ∗n to be such that:

d(P ∗n , P0) = inf
P∈Pn

d(P, P0),

and we impose that d(P ∗n , P0) → 0 as n → ∞, so P equals the closure of the union ∪nPn.

A sequence of submodels like this is called a sieve for estimation in P. The metric distance

from the estimator to P0 satisfies:

d(P̂n, P0) ≤ d(P̂n, P
∗
n) + d(P ∗n , P0). (1.43)

Since P̂n is chosen within Pn, the first term equals the rate of convergence appropriate for

estimation within Pn (which may be as fast as
√
n if the submodel is chosen ‘small enough’).

On the other hand, the rate at which the second term in the above converges to zero is higher

when the submodels are chosen ‘large enough’. A suitable choice of submodels Pn balances

the two terms on the right (ideally), in the sense that they both go to zero at the same

rate, which, ideally, is optimal for estimation of P0 in P and subject to bounds like (1.39).

Furthermore, if P0 ∈ Pk for some fixed k ≥ 1, the second term on the r.h.s. in the above

display equals zero, and one would like to find that P̂n converges to P ∗n = P ∗k = P0 at a

rate appropriate within the k-th submodel. The sequence d(P̂n, P
∗
n) is determined by the rate

at which estimation in the submodel Pn can be made, with one important difference from

‘standard’ rate calculations: the model is misspecified, since P0 6∈ Pn.

As an example of an estimation problem under misspecification, we consider maximum-

likelihood estimation in a smooth parametric model P = {Pθ : θ ∈ Θ} without the assumption

that P0 ∈ P. One quickly finds this problem to be an M -estimation problem if we choose

the maximisation function m as:

mθ(X) = log pθ(X).

This leads to a sequence of estimators θ̂n that are (near-)maximisers of θ 7→ Pn log pθ. Under

conditions (e.g. Wald’s conditions) for consistent M -estimation, the sequence θ̂n converges to
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the point θ∗ ∈ Θ that minimises the so-called Kullback-Leibler divergence of Pθ with respect

to P0:

θ 7→ −P0 log
pθ

p0
,

over the model Θ. That θ∗ does not correspond to the true distribution P0 is inconsequential:

the maximum-likelihood procedure defines the ‘best’ approximation of P0 within P to be the

point of minimal Kullback-Leibler divergence. In order to assess rate and limit distribution,

note that we can still use theorem 1.1 which takes the following specific form.

Theorem 1.10. For each θ ∈ Θ, let x 7→ log pθ(x) be a measurable function such that

θ 7→ log pθ(X) is P0-almost-surely differentiable at θ∗ with derivative ˙̀
θ∗(X). Furthermore,

suppose that there exists a P0-square-integrable random variable ṁ such that for all θ1, θ2 in

a neighbourhood of θ∗: ∣∣∣ log
pθ1

pθ2

(X)
∣∣∣ ≤ ṁ(X) ‖θ1 − θ2‖, (P0 − a.s.).

Let the expectations θ 7→ −P0 log pθ have a second-order Taylor expansion around θ∗:

−P0 log
pθ

pθ∗
= 1

2(θ − θ∗)TVθ∗(θ − θ∗) + o(‖θ − θ∗‖2), (θ→ θ∗).

with non-singular second-derivative matrix Vθ∗. Then any sequence of estimators θ̂n such that

θ̂n
P0−→ θ∗ and Pn log pθ̂n

≥ supθ Pn log pθ − oP0(n
−1) satisfies:

√
n(θ̂n − θ∗) =

1√
n

n∑
i=1

V −1
θ∗

˙̀
θ∗(Xi) + oP0(1).

In particular, the sequence
√
n(θ̂n−θ∗) is asymptotically normal with mean zero and covariance

matrix:

V −1
θ∗ P0 [ ˙̀θ∗ ˙̀T

θ∗ ]V
−1
θ∗ .

Only in the last assertion of the theorem do we see a significant departure from the well-

specified situation: where previously the inverse Fisher-information and the expectation of the

square of the score eliminated each other, this does not happen in the misspecified situation.

Ultimately, this is a consequence of the fact that in general (refer to footnote 11 in this chapter

for an explanation):

P0

( pθ

pθ∗

)
6= 1,

unless the model is well specified and θ∗ is such that Pθ∗ = P0, a fact that will also play a

prominent role in the chapters that follow.

To summarise the conclusions concerning maximum-likelihood estimation, we consider

consistency, rate and limit distribution separately. Obviously, a misspecified model does not

leave room for consistency in the truest sense: at best, the model is dense in another model that

does contain P0 and estimation may be such that d(P̂n, P0)
P0−→ 0. Generically, however, this

distance does not go to zero and it is even possible that it does not even converge if more than
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one point P ∗ in the model is ‘closest’ to P0. Assuming that a unique ‘best’ approximation P ∗

for P0 exists (or under sufficient conditions to that effect, like inM -estimation) ‘consistency’ in

misspecified models means that d(P̂n, P
∗) P0−→ 0. With regard to rate and limit distribution, we

note that the rate often remains 1/
√
n and the limit distribution is still normal in theorem 1.10,

but the asymptotic variance may change.

1.4.2 Misspecification in Bayesian statistics

What is meant by misspecification in Bayesian statistics is not immediately clear, because

it is the prior (and not its support) that is native to the Bayesian framework. However,

a choice for the prior with a support that does not contain P0 is the Bayesian analog of a

misspecified model. Equivalently, the model is misspecified in the Bayesian sense if there

exists a neighbourhood of P0 with prior mass zero (note that this is dependent on the choice

of topology).

Before we continue under the assumption of Bayesian misspecification (valid throughout

the following chapters unless specified otherwise), we briefly consider more sophisticated al-

ternatives for the choice of a prior. Instead of making an (un)educated guess at the model it

is also possible to choose the prior based on the sample, a method known as empirical Bayes

(a variation on this theme, called hierarchical Bayes, assumes a second prior on the space of

possible choices for the prior, conditioning on the data to obtain a posterior). For more on

this subject, see, for instance, Berger (1985) [6] or Ripley (1996) [79]. From an asymptotic

point of view, this opens the interesting possibility to consider adaptive Bayesian procedures.

Bayesian model selection (for an overview, see Kass and Raftery (1995) [52]), which chooses

from a collection of priors with different supports and model averaging (which mixes by means

of a posterior in such a collection), particularly on a sieve within a non-parametric model (for

instance, adaptive density estimation in smoothness classes (see e.g. Birgé and Massart (1997)

[17])) seem to be viable.

This level of refinement is not the setting of this discussion, however: we assume through-

out the rest of this thesis that the choice of prior has been made and has a support that does

not necessarily include P0 (a possibility that cannot be discounted when doing empirical Bayes

either). To gain some insight, we end this chapter with a numerical exploration of Bayesian

statistics with misspecified models. More specifically, we consider a normal location model:

P = {N(θ, 1) : θ ∈ [−1, 2] },

and prior Π with polynomial Lebesgue-density of the form:

π(θ) = 1
2 −

4
18(θ − 1

2)2, (θ ∈ [−1, 2]).

The sample is drawn i.i.d. from a uniform distribution on the interval [0, 2]. Figure 1.1

shows the posterior density at growing sample sizes. Under the premise of an extension of

the Bernstein-Von-Mises theorem to misspecified models, we formulate our expectations and
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Figure 1.1 Convergence of the posterior density over a misspecified model. The

samples, consisting of n observations, are i.i.d. uniform U [0, 2], the model consists

of all normal distributions with mean between −1 and 2 and variance 1 and has a

polynomial prior, shown in the first (n = 0) graph. The horizontal axis parameterises

the location of the estimating normal distribution. On the vertical axis the posterior

density is represented (note that the scale of the vertical axis varies). For all sample

sizes, the maximum a posteriori and maximum likelihood estimators are indicated by

a vertical line and a dashed vertical line respectively. Expectation and variance of

the posterior distribution can be found in table 1.1.

discuss the extent to which they are realised here: if the model is suitably regular and the

prior has a density that is continuous and strictly positive at θ∗, then we expect that posterior

converges to a normal distribution like:∥∥∥Πθ|X1,...,Xn
−N(θ̃n, n

−1Vθ∗)
∥∥∥ P0−→ 0,

for a centring sequence θ̃n and asymptotic covariance Vθ∗ . The actual theorem forms the

subject of chapter 2. First of all, we would expect consistency: the posterior should converge

to a degenerate measure at θ∗, which appears to be happening for θ∗ ≈ 1.0. From n = 16

onward, moreover, the posterior densities display a marked resemblance with normal densities

of shrinking variance. Since convergence in total variation is equivalent to L1-convergence of

densities, this is to be expected from the Bernstein-Von-Mises theorem (although the small

sample-sizes for which it obtains in this example are perhaps somewhat surprising). That,

indeed, the rate of convergence 1/
√
n applies, becomes apparent when we evaluate the asymp-
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totic variance of the posterior and rescale by a factor n (see table 1.1). Based on the close

n Πnθ nVarΠn(θ)

0 0.500 —

1 0.792 0.350

4 1.038 0.634

9 0.790 0.880

16 1.039 0.909

25 1.172 0.926

n Πnθ nVarΠn(θ)

36 0.995 0.964

64 0.835 0.984

100 0.993 0.988

144 0.964 0.992

256 0.997 0.995

400 1.005 0.997

Table 1.1 The table gives the sample size n, posterior expectation Πnθ and n-

rescaled posterior variance nΠn(θ − Πnθ)2 corresponding to the samples that were

used in figure 1.1.

relationship that exists between maximum-likelihood estimation and Bayesian methods and

on the material presented at the end of the previous subsection, the point of convergence θ∗

is expected to equal the location of the minimum of the Kullback-Leibler divergence. In this

model,

−P0 log
pθ

p0
= 1

2P0(X − θ)2 + constant.

which is minimised by θ∗ = P0X. In the case at hand P0 = U [0, 2], so θ∗ = 1. This implies

that:

−P0 log
pθ

pθ∗
= 1

2Vθ∗(θ − θ∗)2

with Vθ∗ = 1. According to theorem 2.1, the variance of the normal distribution to which the

posterior converges equals Vθ∗ , in this case 1, in agreement with table 1.1.

With regard to the centring sequence we consider the relation between Bayesian and

maximum-likelihood estimation. To that end, the MLE has been included in the graphs of

figure 1.1 as well. Bridging the two concepts is the maximum a-posteriori estimator which

is also represented in the graphs. Referring to formula (1.3) we see that the MAP estimator

maximises20:

θ 7→
n∏

i=1

pθ(Xi)π(θ).

If the prior had been uniform, the last factor would have dropped out and the maximisation of

the posterior density is maximisation of the likelihood, so differences between ML and MAP

20There is an interesting connection with penalised maximum likelihood estimation (see, Van de Geer (2000)

[37]) here: Bayes’ rule applied to the posterior density πn(θ|X1, . . . , Xn) gives:

log πn(θ|X1, . . . , Xn) = log πn(X1, . . . , Xn|θ) + log π(θ) + constant.

The first term equals the log-likelihood and the logarithm of the prior plays the role of a penalty term when

maximising over θ.
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estimators are entirely due to non-uniformity of the prior. Asymptotically, non-uniformity

of the prior becomes irrelevant and MAP and ML estimators converge, as indicated by the

Bernstein-Von-Mises theorem: the likelihood product overwhelms the last factor in the above

display as n→∞.





Chapter 2

The Bernstein-Von-Mises theorem

under misspecification

The main result of this chapter is theorem 2.1, the analog of the Bernstein-Von-Mises the-

orem 1.9 under misspecification. The ordinary Bernstein-Von-Mises theorem 1.9 has three

principle conditions: regularity of the model at θ0, uniform testability of Pθ0 versus alterna-

tives at fixed distance and sufficiency of prior mass in neighbourhoods of θ0. We shall see

that analogous conditions apply in the misspecified case. Regularity conditions to guarantee

local asymptotic normality of the model under P0 (see lemma 2.2) are slightly stronger than

those found in theorem 1.9 and resemble the regularity conditions of theorems 1.1 and 1.10.

The other principle condition of theorem 2.1 requires
√
n-rate of posterior convergence (see

condition (2.6)). In later sections we show that this rate can be ensured by uniform testability

and prior mass conditions analogous to those in theorem 1.9.

In view of the results given in chapter 3 on (non-parametric) posterior rates of convergence,

it may seem strange that uniform testability of P0 versus fixed alternatives is sufficient. As

it turns out, the regularity properties formulated in lemma 2.2 also enable the extension of

such tests to complements of shrinking balls. Locally, the construction relies on score-tests

to separate the point of convergence from complements of neighbourhoods shrinking at rate

1/
√
n, using Bernstein’s inequality to obtain exponential power. Assumed tests for fixed

alternatives are used to extend those local tests to the full model. Of course, the condition on

the prior measure guarantees that the rate of convergence is not limited by sparsity of prior

mass in neighbourhoods of the point of convergence (by comparison, see theorem 1.8 and,

more specifically, condition (1.33)).

Finally, we give a fairly general lemma to exclude testable model subsets, which implies

a misspecified version of Schwartz’ consistency theorem as given in 1.7. The presentation of

these results as found in the remainder of this chapter is to be submitted to the Annals of

Statistics for publication.
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The Bernstein-Von-Mises theorem

under misspecification

B.J.K. Kleijn and A.W. van der Vaart

Free University Amsterdam

Abstract

We prove that the posterior distribution based on an i.i.d. sample in misspecified

parametric models converges to a normal limit in total variation under conditions

that are comparable to those in the well-specified situation. Besides regularity

conditions, uniform testability against fixed alternatives and sufficiency of prior

mass in neighbourhoods of the point of convergence are required. The rate of

convergence is considered in detail, with special attention for the existence and

construction of suitable test sequences. We also give a lemma to exclude testable

model subsets which implies a misspecified version of Schwartz’ consistency theo-

rem, establishing weak convergence of the posterior to a measure degenerate at the

point at minimal Kullback-Leibler divergence with respect to the true distribution.

2.1 Introduction

Basic estimation problems involving a sample of n observations X1, . . . , Xn (assumed to be

i.i.d. P0), require an estimate P̂n for P0 in a model P. Such problems involve certain

assumptions about P0 and require a definite choice for the model P unless some form of

model-selection is used. Assumptions concerning P0 often arise from the context of the exper-

iment.Usually, the model choice is made on the basis of interpretability of the parameterisa-

tion. For instance, the ever-popular normal model leaves only the expectation and variance of

the data to be estimated, both of which are readily interpreted. In less extreme cases, models

are chosen as ‘reasonable approximations’ to P0, where assumed properties of P0 play a large

role in the motivation for the approximation. Ultimately, P̂n lies in P, so in principle the

choice of a model introduces a bias and, of course, the smaller the model, the larger this bias

is.
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These two aspects of statistical estimation, the choice for the model P and assumptions

on the underlying distribution P0 are often linked by the assumption that the model is well

specified, i.e.

P0 ∈ P. (2.1)

Properties of P0 are then implied by the choice of P and the bias introduced by the choice of a

model is assumed equal to zero. Although (2.1) can be very convenient from a mathematical

point of view, otherwise the assumption is hard to justify. However, it is so common in

mathematical statistics that it is omitted in the statement of theorems habitually. In applied

statistics, theorems that rely on (2.1) are often used without mention of the fact that, in all

likelihood, the true distribution of the data does not lie in the model.

The ‘abuse’ of well-specified theorems without proof of (2.1) in applications is motivated

(and justified to a certain extent) by the fact that they often work regardless. This raises

the question why, i.e. “Is it possible to prove those same theorems without the assumption

P0 ∈ P ?”. This does not mean that no assumptions on P0 are made, the point is merely to

find restrictions on P0 that delimit the theorem’s range of applicability more appropriately.

In this paper, this point of view is applied to the Bernstein-Von-Mises theorem and other

theorems concerning the asymptotic behaviour of Bayesian procedures.

As is well-known, Bayesian procedures and maximum-likelihood estimation have a lot in

common. Crude argumentation starts with the observation that both methods concentrate

around regions in the model where the likelihood is high and hence one might expect that

both minimise the Kullback-Leibler divergence asymptotically (see, for instance, Huber (1967)

[46]). In well-specified models, this minimum obtains at the point P0 in the model, so if

the model is suitably identifiable and regular, one would expect that both methods lead to

consistent estimates. Replacing P0 in a well-specified model by a (unique) point P ∗ at which

the Kullback-Leibler divergence with respect to P0 is minimal, the heuristic relation between

maximum-likelihood estimation and Bayesian procedures extends to the misspecified situation

without fundamental differences.

The Bernstein-Von-Mises theorem says that in well-specified, smooth, parametric models,

the analogy between ML estimation and Bayesian methods goes a lot further, asserting that a

suitably centred and rescaled version of the posterior distribution converges in total variation

to a normal limit distribution centred at the maximum-likelihood estimator with covariance

equal to the inverse Fisher-information. This fact renders Bayesian credible sets and confi-

dence regions for the maximum-likelihood estimator interchangeable asymptotically. The first

results concerning limiting normality of a posterior distribution date back to Laplace (1820)

[62]. Later, Bernstein (1917) [4] and Von Mises (1931) [71] proved results to a similar extent.

Le Cam used the term ‘Bernstein-Von-Mises theorem’ in 1953 [63] and proved its assertion in

greater generality. Walker (1969) [95] and Dawid (1970) [23] gave extensions to these results

and Bickel and Yahav (1969) [12] proved a limit theorem for posterior means. A version of the

theorem involving only first derivatives of the log-likelihood in combination with testability
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and prior mass conditions (compare with Schwartz’ consistency theorem, Schwartz (1965) [82])

can be found in Van der Vaart (1998) [91] which follows (and streamlines) the presentation

given in [68]. More recently, posterior rates of convergence were considered in non-parametric

models (see Ghosal, Ghosh and Van der Vaart (2000) [39] and Shen and Wasserman (2001)

[83]), while semi-parametric versions of the Bernstein-Von-Mises theorem have been given in

Shen (2002) [84] and by Kim and Lee [55, 56].

Based on the above heuristic argument, the sequence of posterior distributions in a mis-

specified model may be expected to concentrate its mass asymptotically in sets at minimal

Kullback-Leibler divergence with respect to the true distribution P0. Indeed results to this

extent have been obtained (for early references on misspecification in Bayesian asymptotics,

see Berk (1966,1970) [8, 9]). Posterior rates of convergence in misspecified non-parametric

models were considered in Kleijn and Van der Vaart (2003) [57]. The misspecified version of

the Bernstein-Von-Mises theorem is expected to involve the maximum-likelihood estimator as

a centring sequence. Indeed, this conclusion is reached by Bunke and Milhaud (1998) [20].

Unfortunately, the conditions of theorem 4.1 therein are numerous and stringent and cannot

be compared with conditions in the well-specified case.

Below we give a derivation of the Bernstein-Von-Mises theorem under misspecification

that holds with conditions comparable to those given in Van der Vaart (1998) [91]. The

presentation is split up along
√
n-rate of posterior convergence, which is a condition in the

statement of the main theorem (theorem 2.1) and the assertion of theorem 2.2. Both rely

on the same set of regularity conditions, as put forth in lemma 2.2, which establishes local

asymptotic normality under misspecification. The extension of uniform tests for P0 versus

fixed alternatives to tests concerning growing alternatives is the subject of theorem 2.3. We

conclude with a lemma (applicable in parametric and non-parametric situations alike) to

exclude testable model subsets, which implies a misspecified version of Schwartz’ consistency

theorem.

2.2 Posterior limit distribution

2.2.1 Preliminaries

Let Θ be an open subset of Rd parameterising a model P = {Pθ : θ ∈ Θ}. For simplicity, we

assume that there exists a single measure µ that dominates all Pθ and P0, although our results

seem to be generalisable to non-dominated parametric models. The density of P0 with respect

to µ is denoted p0, the densities of Pθ are denoted pθ. We assume that the Kullback-Leibler

divergence with respect to P0 is not infinite over the entire model and that it has a unique

minimum θ∗ ∈ Θ, i.e.:

−P0 log
pθ∗

p0
= inf

θ∈Θ
−P0 log

pθ

p0
<∞. (2.2)
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The prior measure Π on Θ (with Borel sigma-algebra A ) is assumed to be a probability

measure with Lebesgue-density π, continuous on a neighbourhood of θ∗ and strictly positive

at θ∗. Priors satisfying these criteria assign enough mass to (sufficiently small) balls around

θ∗ to allow for optimal (i.e.
√
n-) rates of convergence of the posterior if certain regularity

conditions are met (see section 2.3). Although there are other, less stringent conditions, the

above constitutes a sufficient and simple way to guarantee that the rate is not limited by

the choice of prior, formulated in a fashion that can be regarded as ‘natural’ in a parametric

context.

The posterior based on the n-th sample (X1, X2, . . . , Xn) is denoted Πn( · |X1, . . . , Xn):

Πn

(
A
∣∣ X1, . . . , Xn

)
=

∫
A

n∏
i=1

pθ(Xi)π(θ) dθ

∫
Θ

n∏
i=1

pθ(Xi)π(θ) dθ

, (2.3)

for A ∈ A . To denote the random variable associated with the posterior distribution, we use

the notation θ. In the majority of this paper, we ‘localise’ the model by centring on θ∗ and

rescaling by a factor of
√
n, introducing a parameter H =

√
n(θ− θ∗) ∈ Rd. The posterior for

H (defined on a σ-algebra denoted B), follows from that for θ by Πn(H ∈ B|X1, . . . , Xn) =

Πn(
√
n( θ − θ∗) ∈ B|X1, . . . , Xn) for all B ∈ B. Furthermore, for any measurable K ⊂ Rd

such that Πn(H ∈ K|X1, . . . , Xn) > 0, ΠK
n ( · |X1, . . . , Xn) denotes the posterior conditional

on K:

ΠK
n

(
B
∣∣ X1, . . . , Xn

)
=

Πn(B ∩K |X1, . . . , Xn )
Πn(K |X1, . . . , Xn )

, (2.4)

for all B ∈ B.

2.2.2 Main result

The multivariate normal distribution located at ∆ ∈ Rd with covariance V is denoted N∆,V . If

∆ is a statistic or other random variable, the corresponding multivariate normal distribution

is a random quantity as well. So given a fixed, invertible covariance matrix Vθ∗ , the sequence

∆n,θ∗ = V −1
θ∗ Gn

˙̀
θ∗ (2.5)

may serve as a (random) sequence of locations, where ˙̀
θ∗ denotes the score function at θ∗ and

Gn =
√
n(Pn−P0) is the empirical process. The posterior distribution is a random measure as

it depends on the sample through definition (2.3). Note that the assertion of the main theorem

(theorem 2.1 below) involves convergence in P0-probability, reflecting the sample-dependent

nature of the two sequences of measures converging in total-variation norm.

Theorem 2.1. Let the sample X1, X2, . . . be distributed i.i.d.-P0. Let the model Θ, θ∗ ∈ Θ

and prior Π be as indicated above. Assume that the Kullback-Leibler divergence and the log-

likelihood satisfy the conditions of lemma 2.2 with invertible Vθ∗. Furthermore, assume that
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for every sequence of balls (Kn)n≥1 ⊂ Rd with radii Mn →∞, we have:

Πn

(
H ∈ Kn

∣∣ X1, . . . , Xn

) P0−→ 1. (2.6)

Then the sequence of posteriors converges to a sequence of normal distributions in total vari-

ation:

sup
B∈B

∣∣∣Πn

(
H ∈ B

∣∣ X1, . . . , Xn

)
−N∆n,θ∗ ,Vθ∗ (B)

∣∣∣ P0−→ 0. (2.7)

Proof The proof is split into two parts: in the first part, we prove the assertion conditional

on an arbitrary compact set K ⊂ Rd and in the second part we use this to prove (2.7).

Throughout the proof we denote the posterior for H given X1, X2, . . . by Πn and the normal

distribution N∆n,θ∗ ,Vθ∗ by Φn. For K ∈ Rd, conditional versions (c.f. (2.4)) are denoted ΠK
n

and ΦK
n respectively.

Let K ⊂ Rd be a compact subset of Rd. For every open neighbourhood U ⊂ Θ of θ∗ there

exists an N ≥ 1 such that for all n ≥ N , θ∗ +K/
√
n ⊂ U . Since θ∗ is an internal point of Θ,

we can define, for large enough n, the random functions fn : K ×K → R by:

fn(g, h) =
(
1− φn(h)

φn(g)
sn(g)
sn(h)

πn(g)
πn(h)

)
+
,

where φn : K → R is the Lebesgue density of the (randomly located) distribution N∆n,θ∗ ,Vθ∗

(with Vθ∗ as in (2.13)), πn : K → R is the Lebesgue density of the prior for the centred and

rescaled parameter H and sn : K → R equals the likelihood product:

sn(h) =
n∏

i=1

pθ∗+h/
√

n

pθ∗
(Xi).

Since the conditions of lemma 2.2 are met by assumption, we have for every random sequence

(hn)n≥1 ⊂ K:

log sn(hn) = hnGn
˙̀
θ∗ − 1

2h
T
nVθ∗hn + oP0(1),

log φn(hn) = −1
2(hn −∆n,θ∗)TVθ∗(hn −∆n,θ∗) + constant.

For any two sequences (hn)n≥1, (gn)n≥1 ⊂ K, πn(gn)/πn(hn) → 1 as n→∞. Combining this

with the above display and (2.5), we see that:

log
φn(hn)
φn(gn)

sn(gn)
sn(hn)

πn(gn)
πn(hn)

= −hnGn
˙̀
θ∗ + 1

2h
T
nVθ∗hn + gnGn

˙̀
θ∗ − 1

2g
T
nVθ∗gn + oP0(1)

− 1
2(hn −∆n,θ∗)TVθ∗(hn −∆n,θ∗) + 1

2(gn −∆n,θ∗)TVθ∗(gn −∆n,θ∗)

= oP0(1)

as n→∞. Since x 7→ (1−ex)+ is continuous on R, we conclude that for every pair of random

sequences (gn, hn)n≥1 ⊂ K ×K:

fn(gn, hn) P0−→ 0, (n→∞).
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For fixed, large enough n, Pn
0 -almost-sure continuity of (g, h) 7→ log sn(g)/sn(h) on K ×K is

guaranteed by the Lipschitz-condition (2.12), since it implies that for all g1, g2, h1, h2 ∈ K:∣∣∣ log
sn(g1)
sn(h1)

− log
sn(g2)
sn(h2)

∣∣∣ ≤ ∣∣∣ log
sn(g1)
sn(g2)

∣∣∣+ ∣∣∣ log
sn(h1)
sn(h2)

∣∣∣
≤
√
n Pnmθ∗ (‖g1 − g2‖+ ‖h1 − h2‖), (Pn

0 − a.s.),

and tightness of mθ∗ suffices. As a result of lemma 2.3, we see that:

‖∆n,θ∗‖ ≤ ‖V −1
θ∗ ‖ ‖Gn

˙̀
θ∗‖ =

√
n‖V −1

θ∗ ‖ ‖(Pn − P0) ˙̀
θ∗‖ ≤

√
n‖V −1

θ∗ ‖Pnmθ∗ ,

Pn
0 -almost-surely. Hence the location of the normal distribution N∆θ∗ ,Vθ∗ is Pn

0 -tight and

we see that (g, h) 7→ φn(g)/φn(h) is continuous on all of K × K Pn
0 -almost-surely as well.

Continuity (in a neighbourhood of θ∗) and positivity of the prior density guarantee that this

holds for (g, h) 7→ πn(g)/πn(h) as well. We conclude that for large enough n, the random

functions fn are continuous on K × K, Pn
0 -almost-surely. Application of lemma 2.10 then

leads to the conclusion that:

sup
g,h∈K

fn(g, h) P0−→ 0, (n→∞). (2.8)

Assume that K contains a neighbourhood of 0 (which guarantees that Φn(K) > 0) and

let Ξn denote the event that Πn(K) > 0. Let η > 0 be given and based on that, define the

events:

Ωn =
{
ω : sup

g,h∈K
fn(g, h) ≤ η

}
.

Consider the expression (recall that the total-variation norm ‖ · ‖ is bounded by 2):

Pn
0

∥∥ΠK
n − ΦK

n

∥∥1Ξn ≤ Pn
0

∥∥ΠK
n − ΦK

n

∥∥1Ωn∩Ξn + 2Pn
0 (Ξn \ Ωn). (2.9)

As a result of (2.8) the latter term is o(1) as n → ∞. The remaining term on the r.h.s. can

be calculated as follows:

1
2P

n
0

∥∥ΠK
n − ΦK

n

∥∥1Ωn∩Ξn = Pn
0

∫ (
1− dΦK

n

dΠK
n

)
+
dΠK

n 1Ωn∩Ξn

= Pn
0

∫
K

(
1− φK

n (h)

∫
K sn(g)πn(g)dg
sn(h)πn(h)

)
+
dΠK

n (h) 1Ωn∩Ξn

= Pn
0

∫
K

(
1−

∫
K

sn(g)πn(g)φK
n (h)

sn(h)πn(h)φK
n (g)

dΦK
n (g)

)
+
dΠK

n (h) 1Ωn∩Ξn .

Note that for all g, h ∈ K, φK
n (h)/φK

n (g) = φn(h)/φn(g), since on K φK
n differs from φn only

by a normalisation factor. We use Jensen’s inequality (with respect to the ΦK
n -expectation)

for the (convex) function x 7→ (1− x)+ to derive:

1
2P

n
0

∥∥ΠK
n − ΦK

n

∥∥1Ωn∩Ξn ≤ Pn
0

∫ (
1− sn(g)πn(g)φn(h)

sn(h)πn(h)φn(g)

)
+
dΦK

n (g) dΠK
n (h)1Ωn∩Ξn

≤ Pn
0

∫
sup

g,h∈K
fn(g, h)1Ωn∩ΞndΦ

K
n (g) dΠK

n (h) ≤ η.
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Combination with (2.9) shows that for all compact K ⊂ Rd containing a neighbourhood of 0,

Pn
0

∥∥ΠK
n − ΦK

n

∥∥1Ξn → 0.

Now let (Km)m≥1 be a sequence of balls centred at 0 with radii Mm → ∞. For each

m ≥ 1, the above display holds, so if we choose a sequence of balls (Kn)n≥1 that traverses

the sequence Km slowly enough, convergence to zero can still be guaranteed. Moreover, the

corresponding events Ξn = {ω : Πn(Kn) > 0} satisfy Pn
0 (Ξn) → 1 as a result of (2.6). We

conclude that there exists a sequence of radii (Mn)n≥1 such that Mn →∞ and

Pn
0

∥∥ΠKn
n − ΦKn

n

∥∥→ 0, (2.10)

(where it is understood that the conditional probabilities on the l.h.s. are well-defined on sets

of probability growing to one). Combining (2.6) and lemma 2.12, we then use lemma 2.11 to

conclude that:

Pn
0

∥∥Πn − Φn

∥∥→ 0,

which implies (2.7). �

Regarding the centring sequence ∆n,θ∗ and its relation to the maximum-likelihood es-

timator, we note the following straightforward lemma concerning the limit distribution of

maximum-likelihood sequences.

Lemma 2.1. Assume that the model satisfies the conditions of lemma 2.2 with non-singular

Vθ∗. Then a sequence of estimators θ̂n such that θ̂n
P0−→ θ∗ and

Pn log pθ̂n
≥ sup

θ
Pn log pθ − oP0(n

−1)

satisfies the asymptotic expansion:

√
n(θ̂n − θ∗) =

1√
n

n∑
i=1

V −1
θ∗

˙̀
θ∗(Xi) + oP0(1). (2.11)

Proof The proof of this lemma is a more specific version of the proof found in Van der Vaart

(1998) [91] on page 54. �

First of all, the above implies that for maximum-likelihood estimators that converge to

θ∗, the sequence
√
n(θ̂n − θ∗) has a normal limit distribution with mean zero and covariance

matrix V −1
θ∗ P0[ ˙̀θ∗ ˙̀T

θ∗ ]V
−1
θ∗ . More important for present purposes, however, is the fact that

according to (2.11), this sequence differs from ∆n,θ∗ only by a term of order oP0(1). Since

the total-variational distance ‖Nµ,Σ −Nν,Σ‖ is bounded by a multiple of ‖µ− ν‖ as (µ→ ν),

the assertion of the Bernstein-Von-Mises theorem can also be formulated with the sequence
√
n(θ̂n − θ∗) as the locations for the normal limit sequence. Using the invariance of total-

variation under rescaling and shifts, this leads to the conclusion that:

sup
A∈A

∣∣∣Πn

(
θ ∈ A

∣∣ X1, . . . , Xn

)
−Nθ̂n,n−1Vθ∗

(A)
∣∣∣ P0−→ 0,
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which, perhaps, demonstrates the usual interpretation of the Bernstein-Von-Mises theorem

more clearly: the sequence of posteriors resembles more and more closely a sequence of ‘sharp-

ening’ normal distributions centred at the maximum-likelihood estimators. More generally,

any sequence of estimators satisfying (2.11) may be used to centre the normal limit sequence

on. Note that the conditions for lemma 2.1, which derive directly from a fairly general set

of conditions for efficiency in parametric M -estimation (see, theorem 5.23 in Van der Vaart

(1998) [91]), are very close to the conditions of the above Bernstein-Von-Mises theorem.

Condition (2.6) fixes the rate of convergence of the posterior distribution (see Kleijn and

Van der Vaart (2003) [57] for general results on posterior rates in misspecified (parametric

and non-parametric) models). Since the balls Kn correspond to balls in Θ that shrink to {θ∗}
at a rate (slightly slower than) 1/

√
n, condition (2.6) can be stated equivalently by requiring

that the posterior converges at rate 1/
√
n to a Dirac measure degenerate at θ∗. Sufficient

conditions are given in section 2.3.

2.2.3 Misspecification and local asymptotic normality

Asymptotic normality of the sequence of posterior distributions depends crucially on local

asymptotic normality of the model. Lemmas that establish this property (for and overview,

see, for instance Van der Vaart (1998) [91]) usually assume a well-specified model, whereas

current interest requires local asymptotic normality in misspecified situations. To that end

we consider the following lemma which gives sufficient conditions.

Lemma 2.2. If the function θ 7→ log pθ(X) is differentiable at θ∗ (P0− a.s.) (with derivative
˙̀
θ∗) and:

(i) there is an open neighbourhood U of θ∗ and a non-negative, square-integrable random

variable mθ∗ such that for all θ1, θ2 ∈ U :∣∣∣ log
pθ1

pθ2

∣∣∣ ≤ mθ∗‖θ1 − θ2‖, (P0 − a.s.), (2.12)

(ii) the Kullback-Leibler divergence with respect to P0 has a second-order Taylor-expansion

around θ∗:

−P0 log
pθ

pθ∗
= 1

2(θ − θ∗)Vθ∗(θ − θ∗) + o(‖θ − θ∗‖2), (θ → θ∗), (2.13)

where Vθ∗ is the positive-definite d× d-matrix of second derivatives with respect to θ of

−P0 log(pθ/pθ∗) evaluated in θ∗.

then, for every random sequence (hn)n≥1 in Rd that is bounded in P0-probability:

log
n∏

i=1

pθ∗+hn/
√

n

pθ∗
(Xi) = hT

nGn
˙̀
θ∗ − 1

2h
T
nVθ∗hn + oP0(1) (2.14)



Posterior limit distribution 53

Proof Using lemma 19.31 in Van der Vaart (1998) [91] for `θ(X) = log pθ(X), the conditions

of which are satisfied by assumption, we see that for any sequence (hn)n≥1 that is bounded

in P0-probability:

Gn

(√
n
(
`θ∗+(hn/

√
n) − `θ∗

)
− hT

n
˙̀
θ∗

)
P0−→ 0. (2.15)

Hence, we see that

nPn log
pθ∗+hn/

√
n

pθ∗
−Gnh

T
n

˙̀
θ∗ − nP0 log

pθ∗+hn/
√

n

pθ∗
= oP0(1),

Using the second-order Taylor-expansion (2.13):

P0 log
pθ∗+hn/

√
n

pθ∗
− 1

2n
hT

nVθ∗hn = oP0(1),

and substituting the log-likelihood product for the first term, we find (2.14). �

First of all, it should be noted that other formulations1 may suffice to prove (2.14) as

well. However, the regularity conditions in this lemma are also used in a number of other

places throughout this paper, for example to prove the existence of suitable test sequences in

subsection 2.3.2. Secondly, both differentiability of densities and the Lipschitz condition on

log-likelihoods can be controlled by a suitable choice of the model and some mild assumptions

concerning P0. It seems that the most restrictive condition (in the sense that it limits the set of

P0 that are suited) is the existence of a second-order Taylor-expansion for the Kullback-Leibler

divergence. Note, however, that the formulation and conditions given above are comparable

to those found in the well-specified situation (see e.g. Van der Vaart (1998) [91], chapter 10).

Comparison to conditions (A1)–(A11) of Bunke and Milhaud (1998) [20] is also appropriate

(see theorem 4.1 therein).

The following lemma collects some other important consequences of the conditions posed

for lemma 2.2, expressed as properties of the score-function ˙̀
θ∗ . (Note that the Lipschitz

condition (2.34) which is slightly weaker than (2.12), is in fact sufficient in the proof.)

Lemma 2.3. Under the conditions of P0-almost-sure differentiability and Lipschitz continuity

for θ 7→ log pθ(X) at θ∗ (as in lemma 2.2), the score function is bounded as follows:

‖ ˙̀
θ∗(X)‖ ≤ mθ∗(X), (P0 − a.s.). (2.16)

Furthermore, we have:

P0
˙̀
θ∗ = ∂θ

[
P0 log pθ

]
θ=θ∗

= 0. (2.17)

Proof P0-almost-sure differentiability implies:∣∣∣ log
pθ

pθ∗

∣∣∣ = ∣∣(θ − θ∗)T ˙̀
θ∗ + o(‖θ − θ∗‖)

∣∣ ≤ mθ∗‖θ − θ∗‖, (P0 − a.s.),

1it is not unthinkable that a misspecified variation on Hellinger differentiability can be formulated and used

to this end (by comparison, see theorem 7.2 in Van der Vaart (1998) [91]).
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in the limit θ → θ∗. Using the triangle-inequality, we derive (for P0-almost-all X):∣∣∣ ˙̀
θ∗(X)T (θ − θ∗)

‖θ − θ∗‖

∣∣∣ ≤ mθ∗(X) + o(1),

Fix X, let ε > 0 be given and choose η = εmθ∗ . There exists a δ > 0 such that for all θ

with ‖θ − θ∗‖ < δ, the absolute value of the o(1)-term in the above falls below εmθ∗ . Then

the r.h.s. of the above display is bounded by (1 + ε)mθ∗ . Choosing θ on a sphere of radius
1
2δ around θ∗ and taking the supremum, we find that ‖ ˙̀

θ∗‖ ≤ (1 + ε)mθ∗ , P0-almost-surely.

Since this holds for all ε > 0, we conclude that ‖ ˙̀
θ∗‖ ≤ mθ∗ . To prove the second assertion,

let (δn)n≥1 be a sequence such that δn → 0. Then:

∂θ

[
P0 log pθ

]
θ=θ∗

= lim
n→∞

P0

( 1
δn

log
pθ∗+δn

pθ∗

)
For large enough n, the modulus of the differential quotient on the r.h.s. is dominated by

mθ∗ , (P0 − a.s.), which is P0-integrable by assumption. This implies

∂θ

[
P0 log pθ

]
θ=θ∗

= P0
˙̀
θ∗ ,

by dominated convergence. The Kullback-Leibler divergence with respect to P0 is differen-

tiable at θ∗ and since θ∗ satisfies (2.2), we conclude that the previous display equals zero.

�

2.3 Rate of convergence

In a Bayesian context, the rate of convergence is determined by the maximal speed at which

balls around the point of convergence can be shrunk to radius zero while still capturing a

posterior mass that converges to one asymptotically. Current interest lies in the fact that the

formulation of the Bernstein-Von-Mises theorem as given in the previous section has condition

(2.6). That requirement prescribes
√
n-rate, since for given sequence of radii Mn →∞:

Πn

(
H ∈ Kn

∣∣ X1, . . . , Xn

)
= Πn

(
‖θ − θ∗‖ ≤Mn/

√
n
∣∣ X1, . . . , Xn

)
A convenient way of establishing the above is through the condition that suitable test se-

quences exist2. As has been shown in a well-specified context in Ghosal et al. (2000) [39] and

under misspecification in Kleijn and Van der Vaart (2003) [57], the most important require-

ment for convergence of the posterior at a certain rate is the existence of a test-sequence that

separates the point of convergence from the complements of balls shrinking at said rate.

This is also the approach we follow here: we show that the sequence of posterior probabil-

ities in the above display converges to zero in P0-probability if a test sequence exists that is

2Another condition ensures that sufficient prior mass is present in certain Kullback-Leibler neighbourhoods

of the point of convergence. In the (parametric) case at hand, quite mild conditions on the prior suffice (see

2.2.1), but in non-parametric models this changes.
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suitable in the sense given above (see the proof of theorem 2.2). However, under the regularity

conditions that were formulated to establish local asymptotic normality under misspecifica-

tion in the previous section, more can be said: not complements of shrinking balls, but fixed

alternatives are to be suitably testable against P0, thus relaxing the testing condition con-

siderably. Locally, the construction relies on score-tests to separate the point of convergence

from complements of neighbourhoods shrinking at rate 1/
√
n, using Bernstein’s inequality to

obtain exponential power. The tests for fixed alternatives are used to extend those local tests

to the full model.

In this section we prove that a prior mass condition and suitable test sequences suffice to

prove convergence at the rate required for the Bernstein-Von-Mises theorem as formulated in

section 2.2. The theorem that begins the next subsection summarizes the conclusion.

2.3.1 Posterior rate of convergence

With use of theorem 2.3, we formulate a theorem that ensures
√
n-rate of convergence for the

posterior distributions of smooth, testable models with sufficient prior mass around the point

of convergence. The testability condition is formulated using measures Qθ, which are defined

as follows:

Qθ(A) = P0

( pθ

pθ∗
1A

)
for all A ∈ A and all θ ∈ Θ. Note that Qθ is not necessarily a finite measure, that all Qθ are

dominated by P0 and that Qθ∗ = P0. Also note that if the model is well specified, Pθ∗ = P0

which implies that Qθ = Pθ for all θ. Therefore the use of Qθ instead of Pθ to formulate the

testing condition is relevant only in the misspecified situation (see Kleijn and Van der Vaart

(2003) [57] for more on this subject).

Theorem 2.2. Assume that the model satisfies the smoothness conditions of lemma 2.2 and

that the prior has the properties described in the second paragraph of subsection 2.2.1. Fur-

thermore, assume that for every ε > 0 there exists a sequence of tests (φn)n≥1 such that:

Pn
0 φn → 0, sup

{θ:‖θ−θ∗‖≥ε}
Qn

θ (1− φn) → 0.

Then the posterior converges at rate 1/
√
n, i.e. for every sequence (Mn)n≥1, Mn →∞:

Π
(
θ ∈ Θ : ‖θ − θ∗‖ ≥Mn/

√
n
∣∣ X1, X2, . . . , Xn

) P0−→ 0.

Proof Let (Mn)n≥1 be given, define the sequence (εn)n≥1 by εn = Mn/
√
n. According to

lemma 2.3 there exists a sequence of tests (ωn)n≥1 and a constant D > 0, such that (2.23)

holds. We use these tests to split the Pn
0 -expectation of the posterior measure as follows:

Pn
0 Π
(
θ : ‖θ − θ∗‖ ≥ εn

∣∣ X1, X2, . . . , Xn

)
≤ Pn

0 ωn + Pn
0 (1− ωn)Π

(
θ : ‖θ − θ∗‖ ≥ εn

∣∣ X1, X2, . . . , Xn

)
.
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Note that the first term is of order o(1) as n → ∞. Given a constant ε > 0 (to be specified

later), the second term is decomposed as:

Pn
0 (1− ωn)Π

(
θ : ‖θ − θ∗‖ ≥ εn

∣∣ X1, X2, . . . , Xn

)
= Pn

0 (1− ωn)Π
(
θ : ‖θ − θ∗‖ ≥ ε

∣∣ X1, X2, . . . , Xn

)
+ Pn

0 (1− ωn)Π
(
θ : εn ≤ ‖θ − θ∗‖ < ε

∣∣ X1, X2, . . . , Xn

)
.

(2.18)

Given two constants M,M ′ > 0 (also to be specified at a later stage), we define the sequences

(an)n≥1, an = M
√

log n/n and (bn)n≥1, bn = M ′εn. Based on an and bn, we define two

sequences of events:

Ξn =
{∫

Θ

n∏
i=1

pθ

pθ∗
(Xi) dΠ(θ) ≤ Π

(
B(an, θ

∗;P0)
)
e−na2

n(1+C)
}
,

Ωn =
{∫

Θ

n∏
i=1

pθ

pθ∗
(Xi) dΠ(θ) ≤ Π

(
B(bn, θ∗;P0)

)
e−nb2n(1+C)

}
.

The sequence (Ξn)n≥1 is used to split the first term on the r.h.s. of (2.18) and estimate it as

follows:

Pn
0 (1− ωn)Π

(
θ : ‖θ − θ∗‖ ≥ ε

∣∣ X1, X2, . . . , Xn

)
≤ P0(Ξn) + Pn

0 (1− ωn) 1Ω\Ξn
Π
(
θ : ‖θ − θ∗‖ ≥ ε

∣∣ X1, X2, . . . , Xn

)
.

According to lemma 2.4, the first term is of order o(1) as n → ∞. The second term is

estimated further with the use of lemmas 2.4 and 2.5 (for some C > 0):

Pn
0 (1−ωn) 1Ω\Ξn

Π
(
θ : ‖θ − θ∗‖ ≥ ε

∣∣ X1, X2, . . . , Xn

)
≤ ena2

n(1+C)

Π
(
B(an, θ∗;P0)

) ∫
{θ:‖θ−θ∗‖≥ε}

Pn
0

( n∏
i=1

pθ

pθ∗
(Xi)(1− ωn)

)
dΠ(θ)

=
ena2

n(1+C)

Π
(
B(an, θ∗;P0)

) ∫
{θ:‖θ−θ∗‖≥ε}

Qn
θ (1− ωn) dΠ(θ)

≤ en(a2
n(1+C)−Dε2)

Π
(
B(an, θ∗;P0)

)Π( θ : ‖θ − θ∗‖ ≥ ε
)
.

In the last step, we make use of the uniform bound on the power of the test function, as

given in theorem 2.3. Since an → 0, a2
n(1 + C) ≤ 1

2Dε
2 for large enough n and therefore

a2
n(1 + C)−Dε2 ≤ −a2

n(1 + C), which we use as follows:

Pn
0 (1− ωn) 1Ω\Ξn

Π
(
θ : ‖θ − θ∗‖ ≥ ε

∣∣ X1, X2, . . . , Xn

)
≤ en(a2

n(1+C)−Dε2)

Π
(
B(an, θ∗;P0)

)
≤ K−1e−na2

n(1+C)(an)−d ≤ Md/2

K
(log n)−d/2n−M(1+C)+

d
2 ,

for large enough n, using (2.20). A suitably large choice of M then ensures that the expression

on the l.h.s. in the previous display is of order o(1) as n→∞.



Rate of convergence 57

The sequence (Ωn)n≥1 is used to split the second term on the r.h.s. of (2.18) after which

we estimate it in a similar manner. Again the term that derives from 1Ωn is of order o(1), and

Pn
0 (1−ωn) 1Ω\Ξn

Π
(
θ : εn ≤ ‖θ − θ∗‖ < ε

∣∣ X1, X2, . . . , Xn

)
≤ enε2n(1+C)

Π
(
B(εn, θ∗;P0)

) ∫
{θ:εn≤‖θ−θ∗‖<ε}

Pn
0

( n∏
i=1

pθ

pθ∗
(Xi)(1− ωn)

)
dΠ(θ)

=
enε2n(1+C)

Π
(
B(εn, θ∗;P0)

) ∫
{θ:εn≤‖θ−θ∗‖<ε}

Qn
θ (1− ωn) dΠ(θ)

=
enε2n(1+C)

Π
(
B(εn, θ∗;P0)

) J∑
j=1

∫
An,j

Qn
θ (1− ωn) dΠ(θ).

where we have split the domain of integration into spherical shells An,j , (1 ≤ j ≤ J , with J

the smallest integer such that (J + 1)εn > ε), of width εn defined as follows:

An,j =
{
θ : jεn ≤ ‖θ − θ∗‖ ≤

(
(j + 1)εn

)
∧ ε
}
.

Applying theorem 2.3 to each of the shells separately, we obtain:

Pn
0 (1−ωn) 1Ω\Ξn

Π
(
θ : εn ≤ ‖θ − θ∗‖ < ε

∣∣ X1, X2, . . . , Xn

)
=

J∑
j=1

enε2n(1+C) sup
θ∈An,j

Qn
θ (1− ωn)

Π(An,j)
Π
(
B(εn, θ∗;P0)

)
≤

J∑
j=1

enε2n(1+C)−nDj2ε2n
Π
{
θ : ‖θ − θ∗‖ ≤ (j + 1)εn

}
Π
(
B(εn, θ∗;P0)

)
For a small enough choice of ε and large enough n, the sets

{
θ : ‖θ − θ∗‖ ≤ (j + 1)εn

}
all

fall within the neighbourhood U of θ∗ on which the prior density π is continuous. Hence π is

uniformly bounded by a constant R > 0 and we see that:

Π
{
θ : ‖θ − θ∗‖ ≤ (j + 1)εn

}
≤ RVd(j + 1)dεdn.

Combining this with (2.20), we see that there exists a constant K ′ > 0 such that for large

enough n (and with the choice M ′ < D2/2(1 + C)):

Pn
0 (1−ωn) 1Ω\Ξn

Π
(
θ : εn ≤ ‖θ − θ∗‖ < ε

∣∣ X1, . . . , Xn

)
≤ K ′

J∑
j=1

enε2n(1+C)−nDj2ε2n(j + 1)d

≤ K ′e−nM ′ε2n(1+C)
∞∑

j=1

(j + 1)de−nD(j2−1)ε2n .

The series is convergent and we conclude that this term is also of order o(1) as n→∞. �
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In the above proof, lower bounds in probability on the denominators of posterior proba-

bilities (c.f. (2.3)) are needed. The following lemma provides the required bound, expressing

it in terms of the prior mass of Kullback-Leibler neighbourhoods of θ∗ of the form:

B(ε, θ∗;P0) =
{
θ ∈ Θ : −P0 log

pθ

pθ∗
≤ ε2, P0

(
log

pθ

pθ∗

)2
≤ ε2

}
. (2.19)

(for some ε > 0).

Lemma 2.4. For given ε > 0 and θ∗ ∈ Θ such that P0 log(p0/pθ∗) <∞ define B(ε, θ∗;P0) by

(2.19). Then for every C > 0 and probability measure Π on Θ:

Pn
0

(∫
Θ

n∏
i=1

pθ

pθ∗
(Xi) dΠ(θ) ≤ Π

(
B(ε, θ∗;P0)

)
e−nε2(1+C)

)
≤ 1
C2nε2

.

Proof This lemma can also be found as lemma 7.1 in Kleijn and Van der Vaart (2003) [57].

The proof is analogous to that of lemma 8.1 in Ghosal et al. (2000) [39]. �

Moreover, the prior mass of the Kullback-Leibler neighbourhoods Π
(
B(ε, θ∗;P0)

)
can be

lower-bounded if we make the regularity assumptions for the model used in section 2.2 and

the assumption the prior has a Lebesgue density that is well-behaved at θ∗.

Lemma 2.5. Under the smoothness conditions of lemma 2.2 and assuming that the prior

density π is continuous and strictly positive in θ∗, there exists a constant K > 0 such that the

prior mass of the Kullback-Leibler neighbourhoods B(ε, θ∗;P0) satisfies:

Π
(
B(ε, θ∗;P0)

)
≥ Kεd. (2.20)

for small enough ε > 0.

Proof As a result of the smoothness conditions, we have, for some constants d1, d2 > 0 and

small enough ‖θ − θ∗‖:

−P0 log
pθ

pθ∗
≤ d1‖θ − θ∗‖2, P0

(
log

pθ

pθ∗

)2 ≤ d2‖θ − θ∗‖2.

Defining d = (1/d1 ∧ 1/d2)1/2, this implies that for small enough ε > 0,{
θ ∈ Θ : ‖θ − θ∗‖ ≤ dε

}
⊂ B(ε, θ∗;P0). (2.21)

Since the Lebesgue-density π of the prior is continuous and strictly positive in θ∗, we see that

there exists a δ′ > 0 such that for all 0 < δ ≤ δ′:

Π
(
θ ∈ Θ : ‖θ − θ∗‖ ≤ δ

)
≥ 1

2Vdπ(θ∗) δd > 0, (2.22)

where Vd is the Lebesgue-volume of the d-dimensional ball of unit radius. Hence, for small

enough ε, dε ≤ δ′ and we obtain (2.20) upon combination of (2.21) and (2.22). �
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2.3.2 Suitable test sequences

In this subsection we prove that the existence of test sequences (under misspecification) of

uniform exponential power for complements of shrinking balls around θ∗ versus P0 (as needed

in the proof of theorem 2.2), is guaranteed whenever asymptotically consistent test-sequences

exist for complements of fixed balls around θ∗ versus P0 and the conditions of lemmas 2.2

and 2.7 are met. The following theorem is inspired by lemma 10.3 in Van der Vaart (1998)

[91].

Theorem 2.3. Assume that the conditions of lemma 2.2 are satisfied, where in addition, it is

required that P0(pθ/pθ∗) <∞ for all θ in a neighbourhood of θ∗ and P0(esmθ∗ ) <∞ for some

s > 0. Furthermore, suppose that for every ε > 0 there exists a sequence of test functions

(φn)n≥1, such that:

Pn
0 φn → 0, sup

{θ:‖θ−θ∗‖≥ε}
Qn

θ (1− φn) → 0.

Then for every sequence (Mn)n≥1 such that Mn →∞ there exists a sequence of tests (ωn)n≥1

such that for some constants D > 0, ε > 0 and large enough n:

Pn
0 ωn → 0, Qn

θ (1− ωn) ≤ e−nD(‖θ−θ∗‖2∧ε2), (2.23)

for all θ ∈ Θ such that ‖θ − θ∗‖ ≥Mn/
√
n.

Proof Let (Mn)n≥1 be given. We construct two sequences of tests: one sequence to test P0

versus {Qθ : θ ∈ Θ1} with Θ1 = {θ ∈ Θ : Mn/
√
n ≤ ‖θ − θ∗‖ ≤ ε}, and the other to test P0

versus {Qθ : θ ∈ Θ2} with Θ2 = {θ : ‖θ−θ∗‖ > ε}, both uniformly with exponential power (for

a suitable choice of ε). We combine these sequences to test P0 versus {Qθ : ‖θ−θ∗‖ ≥Mn/
√
n}

uniformly with exponential power.

For the construction of the first sequence, a constant L > 0 is chosen to truncate the score-

function coordinate-wise (i.e. for all 1 ≤ k ≤ d, ( ˙̀L
θ∗)k = 0 if |( ˙̀

θ∗)k| ≥ L and ( ˙̀L
θ∗)k = ( ˙̀

θ∗)k

otherwise) and we define:

ω1,n = 1
{
‖(Pn − P0) ˙̀L

θ∗‖ >
√
Mn/n

}
,

Because the function ˙̀
θ∗ is square integrable, we can ensure that the matrices P0( ˙̀

θ∗
˙̀T
θ∗),

P0( ˙̀
θ∗( ˙̀L

θ∗)
T ) and P0( ˙̀L

θ∗( ˙̀L
θ∗)

T ) are arbitrarily close (for instance in operator norm) by a

sufficiently large choice for the constant L. We fix such an L throughout the proof.

By the central limit theorem Pn
0 ω1,n = Pn

0

(
‖
√
n(Pn − P0) ˙̀L

θ∗‖2 > Mn

)
→ 0. Turning to

Qn
θ (1− ω1,n) for θ ∈ Θ1, we note that for all θ:

Qn
θ

(
‖(Pn − P0) ˙̀L

θ∗‖ ≤
√
Mn/n

)
= Qn

θ

(
sup
v∈S

vT (Pn − P0) ˙̀L
θ∗ ≤

√
Mn/n

)
= Qn

θ

(⋂
v∈S

{
vT (Pn − P0) ˙̀L

θ∗ ≤
√
Mn/n

})
≤ inf

v∈S
Qn

θ

(
vT (Pn − P0) ˙̀L

θ∗ ≤
√
Mn/n

)
,
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where S is the sphere of unity in Rd. With the choice v = (θ − θ∗)/‖θ − θ∗‖ as an upper

bound for the r.h.s. in the above display, we note that:

Qn
θ

(
(θ−θ∗)T (Pn − P0) ˙̀L

θ∗ ≤
√
Mn/n‖θ − θ∗‖

)
(2.24)

= Qn
θ

(
(θ∗−θ)T (Pn − Q̃θ) ˙̀L

θ∗ ≥ (θ − θ∗)T (Q̃θ − Q̃θ∗) ˙̀L
θ∗ −

√
Mn/n‖θ − θ∗‖

)
.

where we have used the notation (for all θ ∈ Θ1 with small enough ε > 0) Q̃θ = ‖Qθ‖−1Qθ

and the fact that P0 = Qθ∗ = Q̃θ∗ . By straightforward manipulation, we find:

(θ − θ∗)T
(
Q̃θ − Q̃θ∗

) ˙̀L
θ∗

=
1

P0(pθ/pθ∗)
(θ − θ∗)T

(
P0

(
(pθ/pθ∗ − 1) ˙̀L

θ∗
)

+
(
1− P0(pθ/pθ∗)

)
P0

˙̀L
θ∗

)
.

(2.25)

In view of lemma 2.7 and conditions (2.12), (2.13), (P0(pθ/pθ∗)− 1) is of order O(‖θ − θ∗‖2)

as (θ → θ∗), which means that if we approximate the above display up to order o(‖θ− θ∗‖2),

we can limit attention on the r.h.s. to the first term in the last factor and equate the first

factor to 1. Furthermore, using the differentiability of θ 7→ log(pθ/pθ∗), condition (2.12) and

lemma 2.7, we see that:

P0

∥∥∥( pθ

pθ∗
− 1− (θ − θ∗)T ˙̀

θ∗

)
˙̀L
θ∗

∥∥∥
≤ P0

∥∥∥( pθ

pθ∗
− 1− log

pθ

pθ∗

)
˙̀L
θ∗

∥∥∥+ P0

∥∥∥(log
pθ

pθ∗
− (θ − θ∗)T ˙̀

θ∗

)
˙̀L
θ∗

∥∥∥ = o
(
‖θ − θ∗‖

)
.

Also note that since Mn →∞ and for all θ ∈ Θ1, ‖θ − θ∗‖ ≥Mn/
√
n,

−‖θ − θ∗‖
√
Mn/n ≥ −‖θ − θ∗‖2 1√

Mn
.

Summarizing the above and combining with the remark made at the beginning of the proof

concerning the choice of L, we find that for every δ > 0, there exist choices of ε > 0, L > 0

and N ≥ 1 such that for all n ≥ N and all θ in Θ1:

(θ − θ∗)T
(
Q̃θ − Q̃θ∗

) ˙̀L
θ∗ −

√
Mn/n‖θ − θ∗‖ ≥ (θ − θ∗)TP0

( ˙̀
θ∗

˙̀T
θ∗
)
(θ − θ∗)− δ‖θ − θ∗‖2.

We denote ∆(θ) = (θ−θ∗)TP0( ˙̀
θ∗

˙̀T
θ∗)(θ−θ∗) and we assume that ∆(θ) > 0 (we discuss the case

∆(θ) = 0 separately at a later stage). Choosing c > 0 to be the smallest non-zero eigenvalue

of P0( ˙̀
θ∗

˙̀T
θ∗) (note that this matrix is positive) we see that −δ‖θ − θ∗‖2 ≥ −δ/c∆(θ). Hence

there exists a constant r(δ) (depending only on the matrix P0( ˙̀
θ∗

˙̀T
θ∗) and with the property

that r(δ) → 1 if δ → 0) such that:

Qn
θ (1− ω1,n) ≤ Qn

θ

(
(θ∗ − θ)T (Pn − Q̃θ) ˙̀L

θ∗ ≥ r(δ)∆(θ)
)
,

for small enough ε, large enough L and large enough n, demonstrating that the type-2 error

is bounded above by the (unnormalized) tail probability Qn
θ (W̄n ≥ r(δ)∆(θ)) of the mean of

the variables (1 ≤ i ≤ n):

Wi = (θ∗ − θ)T ( ˙̀L
θ∗(Xi)− Q̃θ

˙̀L
θ∗),
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so that Q̃θWi = 0. The random variables Wi are independent and bounded since:

|Wi| ≤ ‖θ − θ∗‖
(
‖ ˙̀L

θ∗(Xi)‖+ ‖Q̃θ
˙̀L
θ∗‖
)
≤ 2L

√
d‖θ − θ∗‖.

The variance of Wi under Q̃θ is expressed as follows:

VarQ̃θ
Wi = (θ − θ∗)T

[
Q̃θ

( ˙̀L
θ∗( ˙̀L

θ∗)
T
)
− Q̃θ

˙̀L
θ∗Q̃θ( ˙̀L

θ∗)
T
]
(θ − θ∗)

Referring to the argument following (2.25) and using that P0
˙̀
θ∗ = 0 (see lemma 2.3), the above

can be estimated like before, with the result that there exists a constant s(δ) (depending only

on (the largest eigenvalue of) the matrix P0( ˙̀
θ∗

˙̀T
θ∗) and with the property that s(δ) → 1 as

δ → 0) such that:

VarQ̃θ
(Wi) ≤ s(δ)∆(θ),

for small enough ε and large enough L. We apply Bernstein’s inequality (see, for instance,

Pollard (1984) [74], pp. 192–193) to obtain:

Qn
θ (1− ω1,n) = ‖Qθ‖n Q̃n

θ

(
W1 + . . .+Wn ≥ nr(δ)∆(θ)

)
≤ ‖Qθ‖n exp

(
−1

2
r(δ)2 n∆(θ)

s(δ) + 3
2L
√
d‖θ − θ∗‖r(δ)

)
.

(2.26)

The factor t(δ) = r(δ)2(s(δ) + 3
2L
√
d‖θ − θ∗‖r(δ))−1 lies arbitrarily close to 1 for sufficiently

small choices of δ and ε. As for the n-th power of the norm of Qθ, we use lemma 2.7, (2.12)

and (2.13) to estimate the norm of Qθ as follows:

‖Qθ‖ = 1 + P0 log
pθ

pθ∗
+ 1

2P0

(
log

pθ

pθ∗

)2
+ o(‖θ − θ∗‖2)

≤ 1 + P0 log
pθ

pθ∗
+ 1

2(θ − θ∗)TP0

( ˙̀
θ∗

˙̀T
θ∗
)
(θ − θ∗) + o(‖θ − θ∗‖2)

≤ 1− 1
2(θ − θ∗)TVθ∗(θ − θ∗) + 1

2u(δ)∆(θ)

(2.27)

for some constant u(δ) such that u(δ) → 1 if δ → 0. Because 1 + x ≤ ex for all x ∈ R, we

obtain, for sufficiently small ‖θ − θ∗‖:

Qn
θ (1− ω1,n) ≤ exp

(
−n

2
(θ − θ∗)TVθ∗(θ − θ∗) +

n

2
(
u(δ)− t(δ)

)
∆(θ)

)
. (2.28)

Note that u(δ) − t(δ) → 0 as δ → 0 and ∆(θ) is upper bounded by a multiple of ‖θ − θ∗‖2.

Since Vθ∗ is assumed to be invertible, we conclude that there exists a constant C > 0 such

that for large enough L, small enough ε > 0 and large enough n:

Qn
θ (1− ω1,n) ≤ e−Cn‖θ−θ∗‖2 . (2.29)

Coming back to the assumption ∆(θ) > 0, we note the following: if θ is such that ∆(θ) = 0,

we can omit the discussion that led to (2.26) and immediately estimate Qn
θ (1 − ω1,n) by the

n-th power of the norm of Qθ. In that case, the term of order o(‖θ−θ∗‖2) in (2.27) is absorbed
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by means of a constant v(δ) (depending only on the matrix Vθ∗ and with the property that

v(δ) → 1 as δ → 0) when we replace (2.28) by:

Qn
θ (1− ω1,n) ≤ ‖Qθ‖n ≤ exp

(
−n

2
v(δ)(θ − θ∗)TVθ∗(θ − θ∗)

)
,

leading to (2.29) by the same argument.

As for the range ‖θ − θ∗‖ > ε, an asymptotically consistent test-sequence of P0 versus

Qθ exists by assumption, what remains is the exponential power; the proof of lemma 2.6

demonstrates the existence of a sequence of tests (ω2,n)n≥1 such that (2.30) holds. The

sequence (ψn)n≥1 is defined as the maximum of the two sequences defined above: ψn =

ω1,n ∨ ω2,n for all n ≥ 1, in which case Pn
0 ψn ≤ Pn

0 ω1,n + Pn
0 ω2,n → 0 and:

sup
θ∈An

Qn
θ (1− ψn) = sup

θ∈Θ1

Qn
θ (1− ψn) ∨ sup

θ∈Θ2

Qn
θ (1− ψn)

≤ sup
θ∈Θ1

Qn
θ (1− ω1,n) ∨ sup

θ∈Θ2

Qn
θ (1− ω2,n).

Combination of the bounds found in (2.29) and (2.30) and a suitable choice for the constant

D > 0 lead to (2.23). �

The following lemma shows that for a sequence of tests that separates P0 from a fixed

model subset V , there exists a exponentially powerful version without further conditions.

Note that this lemma holds in non-parametric and parametric situations alike.

Lemma 2.6. Suppose that for given measurable subset V of Θ, there exists a sequence of

tests (φn)n≥1 such that:

Pn
0 φn → 0, sup

θ∈V
Qn

θ (1− φn) → 0.

Then there exists a sequence of tests (ωn)n≥1 and strictly positive constants C,D such that:

Pn
0 ωn ≤ e−nC , sup

θ∈V
Qn

θ (1− ωn) ≤ e−nD (2.30)

Proof For given 0 < ζ < 1, we split the model subset V in two disjoint parts V1 and V2

defined by:

V1 =
{
θ ∈ V : ‖Qθ‖ ≥ 1− ζ

}
, V2 =

{
θ ∈ V : ‖Qθ‖ < 1− ζ

}
Note that for every test-sequence (ωn)n≥1,

sup
θ∈V

Qn
θ (1− ωn) = sup

θ∈V1

Qn
θ (1− ωn) ∨ sup

θ∈V2

Qn
θ (1− ωn)

≤ sup
θ∈V1

Qn
θ (1− ωn) ∨ (1− ζ)n.

(2.31)

Let δ > 0 be given. By assumption there exists an N ≥ 1 such that for all n ≥ N + 1,

Pn
0 φn ≤ δ, sup

θ∈V
Qn

θ (1− φn) ≤ δ. (2.32)
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Every n ≥ N + 1 can be written as an m-fold multiple of N (m ≥ 1) plus a remainder

1 ≤ r ≤ N : n = mN + r. Given n ≥ N , we divide the sample X1, X2, . . . , Xn into (m − 1)

groups of N consecutive X’s and a group of N + r X’s and apply φN to the first (m − 1)

groups and φN+r to the last group, to obtain:

Y1,n = φN

(
X1, X2, . . . , XN

)
Y2,n = φN

(
XN+1, XN+2, . . . , X2N

)
...

Ym−1,n = φN

(
X(m−2)N+1, X(m−2)N+2, . . . , X(m−1)N

)
Ym,n = φN+r

(
X(m−1)N+1, X(m−1)N+2, . . . , XmN+r

)
which are bounded, 0 ≤ Yj,n ≤ 1 for all 1 ≤ j ≤ m and n ≥ 1. From that we define the

following test-statistic:

Y m,n =
1
m

(Y1,n + . . .+ Ym,n).

and the test-function based on a critical value η > 0 to be chosen at a later stage:

ωn = 1
{
Y m,n ≥ η

}
.

Using the first bound in (2.32), the Pn
0 -expectation of the test-function can be bounded as

follows:

Pn
0 ωn = Pn

0

(
Y1,n + . . .+ Ym,n ≥ mη

)
= Pn

0

(
Z1,n + . . .+ Zm,n ≥ mη −

m−1∑
j=1

Pn
0 Yj,n − PN+r

0 Ym,n

)
≤ Pn

0

(
Z1,n + . . .+ Zm,n ≥ m(η − δ)

)
where Zj,n = Yj,n−Pn

0 Yj,n for all 1 ≤ j ≤ m− 1 and Zm,n = Ym,n−PN+r
0 Ym,n. Furthermore,

the variables Zj,n are bounded aj ≤ Zj,n ≤ bj where bj − aj = 1. Imposing η > δ we may use

Hoeffding’s inequality to conclude that:

Pn
0 ωn ≤ e−2m(η−δ)2 . (2.33)

A similar bound can be derived for Qθ(1− ωn) as follows. First we note that:

Qn
θ (1− ωn) = Qθ

(
Y m,n > η

)
= Qn

θ

(
Y1,n + . . .+ Ym,n < mη

)
= Qn

θ

(
Z1,n + . . .+ Zm,n > −mη +

m−1∑
j=1

QN
θ Yj,n +QN+r

θ Ym,n

)
,

where, in this case, we have used the following definitions for the variables Zj,n:

Zj,n = −Yj,n +QN
θ Yj,n, Zm,n = −Ym,n +QN+r

θ Ym,n,
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for 1 ≤ j ≤ m − 1. We see that aj ≤ Zj,n ≤ bj with bj − aj = 1. Choosing ζ ≤ 1 − (4δ)1/N

(for small enough δ > 0) and η between δ and 2δ, we see that for all θ ∈ V1:

m−1∑
j=1

QN
θ Yj,n +QN+r

θ Ym,n −mη ≥ m(‖Qθ‖N − δ − η) ≥ m
(
(1− ζ)N − 3δ

)
≥ mδ > 0.

based on the second bound in (2.32). This implies that Hoeffding’s inequality (see, for instance,

Pollard (1984) [74], theorem B.2) can be applied with the following result:

Qn
θ (1− ωn) ≤ exp

(
−1

2m
(
‖Qθ‖ − 3δ

)2 +m log ‖Qθ‖N
)
.

In the case that ‖Qθ‖ < 1, we see that:

Qn
θ (1− ωn) ≤ e−

1
2mδ2

In the case that ‖Qθ‖ ≥ 1, we use the identity log q ≤ q−1 and the fact that−1
2(q−3δ)2+(q−1)

has no zeroes for q ∈ [1,∞) if we choose δ < 1/6, to conclude that the exponent is negative

and bounded away from 0:

Qn
θ (1− ωn) ≤ e−mc.

for some c > 0. Combining the two last displayed bounds leads to the assertion, if we notice

that m = (n − r)/N ≥ n/N − 1, absorbing eventual constants multiplying the exponential

factor in (2.23) by a slightly lower choice of D (and for large enough n). �

The following lemma is used in the proof of theorem 2.3 to control the behaviour of ‖Qθ‖
in neighbourhoods of θ∗.

Lemma 2.7. Assume that P0(pθ/pθ∗) and −P0 log(pθ/p0) are finite for all θ in a neighbour-

hood U ′ of θ∗. Furthermore, assume that there exist a measurable function m such that∣∣∣ log
pθ

pθ∗

∣∣∣ ≤ m‖θ − θ∗‖, (P0 − a.s.). (2.34)

for all θ ∈ U ′ and such that P0(esm) <∞ for some s > 0. Then

P0

∣∣∣ pθ

pθ∗
− 1− log

pθ

pθ∗
− 1

2

(
log

pθ

pθ∗

)2∣∣∣ = o
(
‖θ − θ∗‖2

)
.

Proof The function R(x) defined by ex = 1 + x + 1
2x

2 + x2R(x) increases from −1
2 in the

limit (x → −∞) to ∞ as (x → ∞), with R(x) → R(0) = 0 if (x → 0). We also have

|R(−x)| ≤ R(x) ≤ ex/x2 for all x > 0. The l.h.s. of the assertion of the lemma can be written

as

P0

(
log

pθ

pθ∗

)2∣∣∣R(log
pθ

pθ∗

)∣∣∣ ≤ ‖θ − θ∗‖2P0

(
m2R(m‖θ − θ∗‖)

)
.

The expectation on the r.h.s. of the above display is bounded by P0m
2
θR(εmθ) if ‖θ−θ∗‖ ≤ ε.

The functions m2R(εm) are dominated by esm for sufficiently small ε and converge pointwise

to m2R(0) = 0 as ε ↓ 0. The lemma then follows from the dominated convergence theorem.

�
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2.4 Consistency and testability

The conditions for the theorems concerning rates of convergence and limiting behaviour of

the posterior distribution discussed in the previous sections include several requirements on

the model involving the true distribution P0. Depending on the specific model and true

distribution, these requirements may be rather stringent, disqualifying for instance models in

which −P0 log pθ/pθ∗ = ∞ for θ in neighbourhoods of θ∗. To drop this kind of condition from

the formulation and nevertheless maintain the current proof(s), we have to find other means to

deal with ‘undesirable’ subsets of the model. In this section we show that if Kullback-Leibler

neighbourhoods of the point of convergence receive enough prior mass and asymptotically

consistent uniform tests for P0 versus such subsets exist, they can be excluded from the

model beforehand. As a special case, we derive a misspecified version of Schwartz’ consistency

theorem (see Schwartz (1965) [82]). Results presented in this section hold for the parametric

models considered in previous sections, but are also valid in non-parametric situations.

2.4.1 Exclusion of testable model subsets

We start by formulating and proving the lemma announced above, in its most general form.

Specializing to less general situations, we derive a corollary that can be used in most cir-

cumstances and we cast the lemma in a form reminiscent of Schwartz’s consistency theorem,

asserting that the posterior concentrates its mass in every neighbourhood of the point(s) at

minimal Kullback-Leibler divergence with respect to the true distribution P0.

Lemma 2.8. Let V ⊂ Θ be a (measurable) subset of the model Θ. Assume that for some

ε > 0:

Π
(
θ ∈ Θ : −P0 log

pθ

pθ∗
≤ ε
)
> 0, (2.35)

and there exist a constant β > ε and a sequence (φn)n≥1 of test-functions such that:

Pn
0 φn → 0, sup

θ∈V
Qn

θ (1− φn) ≤ e−nβ (2.36)

for large enough n ≥ 1. Then:

Pn
0 Π
(
V |X1, X2, . . . , Xn

)
→ 0.

Proof We start by splitting the Pn
0 -expectation of the posterior measure of V with the test

function φn and taking the limes superior:

lim sup
n→∞

Pn
0 Π
(
V |X1, X2, . . . , Xn

)
≤ lim sup

n→∞
Pn

0 Π
(
V |X1, X2, . . . , Xn

)
(1− φn) + lim sup

n→∞
Pn

0 φn

= lim sup
n→∞

P∞0 Π
(
V |X1, X2, . . . , Xn

)
(1− φn)

≤ P∞0

(
lim sup

n→∞
Π
(
V |X1, X2, . . . , Xn

)
(1− φn)

)
(2.37)
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by Fatou’s lemma. We therefore concentrate on the quantities

lim sup
n→∞

Πn(V |X1, X2, . . . , Xn)(1− φn)(X1, X2, . . . , Xn)

= lim sup
n→∞

∫
V

n∏
i=1

pθ

pθ∗
(Xi) (1− φn)(X1, X2, . . . , Xn) dΠ(θ)

∫
Θ

n∏
i=1

pθ

pθ∗
(Xi) dΠ(θ)

,
(2.38)

and, more particularly, show that suitable upper and lower bounds exist for the numerator

and denominator of the fraction on the r.h.s. of the last display in the limit that n→∞.

Starting with the denominator, we consider the subset Kε = {θ ∈ Θ : −P0 log(pθ/pθ∗) ≤
ε}. For every θ ∈ Kε, the strong law of large numbers says that:∣∣∣Pn log

pθ

pθ∗
− P0 log

pθ

pθ∗

∣∣∣→ 0, (P0 − a.s.).

Hence for every α > ε and all P ∈ Kε, there exists an N ≥ 1 such that for all n ≥ N ,∏n
i=1(pθ/pθ∗)(Xi) ≥ e−nα, Pn

0 -almost-surely. This can be used to lower-bound the denomina-

tor of (2.38) Pn
0 -almost-surely as follows:

lim inf
n→∞

enα

∫
Θ

n∏
i=1

pθ

pθ∗
(Xi) dΠ(θ) ≥ lim inf

n→∞
enα

∫
Kε

n∏
i=1

pθ

pθ∗
(Xi) dΠ(θ)

≥
∫

Kε

lim inf
n→∞

enα
n∏

i=1

pθ

pθ∗
(Xi) dΠ(θ) ≥ Π(Kε),

where we use Fatou’s lemma to obtain the second inequality. Since by assumption, Π(Kε) > 0

we see that:

lim sup
n→∞

∫
V

n∏
i=1

pθ

pθ∗
(Xi) (1− φn)(X1, X2, . . . , Xn) dΠ(θ)

∫
Θ

n∏
i=1

pθ

pθ∗
(Xi) dΠ(θ)

≤
lim sup

n→∞
enα

∫
V

n∏
i=1

pθ

pθ∗
(Xi) (1− φn)(X1, X2, . . . , Xn) dΠ(θ)

lim inf
n→∞

enα

∫
Θ

n∏
i=1

pθ

pθ∗
(Xi) dΠ(θ)

≤ 1
Π(Kε)

lim sup
n→∞

fn(X1, X2, . . . , Xn),

(2.39)

where we use the following, P∞0 -almost-surely defined sequence of random variables (fn)n≥1,

fn : X n → R:

fn(X1, X2, . . . , Xn) = enα

∫
V

n∏
i=1

pθ

pθ∗
(Xi) (1− φn)(X1, X2, . . . , Xn) dΠ(θ).
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Fubini’s theorem and the assumption that the test-sequence is uniformly exponential, guar-

antee that for large enough n,

P∞0 fn = Pn
0 fn = enα

∫
V
Qn

θ (1− φn) dΠ(θ) ≤ e−n(β−α).

Markov’s inequality can then be used to show that:

P∞0
(
fn > e−

n
2 (β−ε)) ≤ en(α−1

2 (β+ε)).

Since β > ε, we can choose α such that ε < α < 1
2(β + ε) so that the series

∑∞
n=1 P

∞
0 (fn >

exp−n
2 (β − ε)) converges. The first Borel-Cantelli lemma then leads to the conclusion that:

P∞0

( ∞⋂
N=1

⋃
n≥N

{
fn > e−

n
2 (β−ε)}) = P∞0

(
lim sup

n→∞

(
fn − e−

n
2 (β−ε)) > 0

)
= 0

Since fn ≥ 0, we see that fn → 0, (P0− a.s.), which we substitute in (2.39) and subsequently

in (2.38) and (2.37) to conclude the proof. �

In many situations, (2.35) is satisfied for every ε > 0. In that case the construction of

uniform exponentially powerful tests from asymptotically consistent tests (as demonstrated in

the proof of lemma 2.6) can be used to fulfil (2.36) under the condition that an asymptotically

consistent uniform test-sequence exists.

Corollary 2.1. Let V ⊂ Θ be a (measurable) subset of the model Θ. Assume that for all

ε > 0 (2.35) is satisfied and that there exists a test-sequence (φn)n≥1 such that:

Pn
0 φn → 0, sup

θ∈V
Qn

θ (1− φn) → 0 (2.40)

Then

Pn
0 Π
(
V
∣∣ X1, X2, . . . , Xn

)
→ 0.

In this corollary form, the usefulness of lemma 2.8 is most apparent. All subsets V of the

model that can be distinguished from P0 based on a characteristic property (formalised by

the test functions above) in a uniform manner (c.f. (2.40)) may be discarded from proofs like

that of theorem 2.2: before the first step in the proof, we split up the posterior by intersecting

with V and with its complement. The assertion of the above corollary guarantees that the

first term converges to zero, leaving us to give the proof only for θ in the complement of V .

Hence the properties assumed in the statement of (for instance) theorem 2.2, can be left out

as conditions if a suitable test sequence exist.

Whether or not a suitable test sequence can be found depends on the particular model

and true distribution in question and little can be said in any generality. We discuss one

construction in particular though: the following lemma demonstrates that a subset of the

model in which the Kullback-Leibler divergence differs from the minimal value in the model

sufficiently in a uniform manner, can be excluded on the basis of lemma 2.8.
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Lemma 2.9. Let V ∈ Θ be a (measurable) subset of the model Θ. Assume that for all ε > 0

(2.35) is satisfied and suppose that there exists a sequence (Mn)n≥1 of positive numbers such

that Mn →∞ and

Pn
0

(
inf
θ∈V

−Pn log
pθ

pθ∗
<

1
n
Mn

)
→ 0. (2.41)

Then

Pn
0 Π
(
V
∣∣ X1, X2, . . . , Xn

)
→ 0.

Proof Define the sequence of test functions:

ψn = 1
{

inf
θ∈V

−Pn log
pθ

pθ∗
<

1
n
Mn

}
According to assumption (2.41), Pn

0 ψn → 0. Let θ ∈ V be given.

Qn
θ (1− ψn) = Pn

0

( dPn
θ

dPn
θ∗

(1− ψ)
)

= Pn
0

( dPn
θ

dPn
θ∗

1
{

sup
θ∈V

nPn log
pθ

pθ∗
≤ −Mn

})
= Pn

0

( dPn
θ

dPn
θ∗

1
{

sup
θ∈V

log
dPn

θ

dPn
θ∗
≤ −Mn

})
≤ e−MnPn

0

(
sup
θ∈V

log
dPn

θ

dPn
θ∗
≤ −Mn

)
≤ e−Mn → 0.

Since Mn does not depend on θ, convergence to 0 is uniform over V . Corollary 2.1 then gives

the assertion. �

Finally, we note that lemma 2.8 can also be used to prove consistency. Presently, we do

not assume that there exists a unique point of minimal Kullback-Leibler divergence; we define

Θ∗ to be the set of points in the model at minimal Kullback-Leibler divergence with respect

to the true distribution P0, Θ∗ = {θ ∈ Θ : −P0 log(pθ/p0) = infΘ−P0 log(pθ/p0)} (assuming,

of course, that this set is measurable), and we consider the posterior probability of this set

under the conditions of corollary 2.1. We write d(θ,Θ∗) for the infimum of ‖θ − θ∗‖ over

θ∗ ∈ Θ∗.

Corollary 2.2. (Schwartz consistency) Assume that for all ε > 0 (2.35) is satisfied and that

for all η > 0 there exists a test-sequence (φn)n≥1 such that:

Pn
0 φn → 0, sup

θ:d(θ,Θ∗)>η
Qn

θ (1− φn) → 0

Then

Pn
0 Π
(
Θ∗ ∣∣ X1, X2, . . . , Xn

)
→ 1.

2.5 Three lemmas used in the main proof

In this section, we state and prove three lemmas that are used in the proof of theorem 2.1. The

first lemma shows that for a sequence of continuous random functions, uniform convergence

on a compact set is equivalent to convergence for all sequences in the compactum. The other

two lemmas serve to extend convergence in total variation for a growing sequence of compacta

as obtained in (2.10) to the assertion of the theorem.
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Lemma 2.10. Let (fn)n≥1 be a sequence of random functions K → R, where K is compact.

Assume that for large enough n ≥ 1, fn is continuous Pn
0 -almost-surely. Then the following

are equivalent3:

(i) Uniform convergence in probability:

sup
h∈K

∣∣fn(h)
∣∣ P0−→ 0, (n→∞),

(ii) For any random sequence (hn)n≥1 ⊂ K:

fn(hn) P0−→ 0, (n→∞),

Proof ((ii)⇒(i), by contradiction.) Assume that there exist δ, ε > 0 such that:

lim sup
n→∞

P0

(
sup
h∈K

∣∣fn(h)
∣∣ > δ

)
= ε.

Since the functions fn are continuous P0-almost-surely, there exists (with P0-probability one)

a sequence (h̃n)n≥1 such that for every n ≥ 1, h̃n ∈ K and∣∣fn(h̃n)
∣∣ = sup

h∈K

∣∣fn(h)
∣∣.

Consequently, for this particular random sequence in K, we have:

lim sup
n→∞

P0

(∣∣fn(h̃n)
∣∣ > δ

)
= ε > 0.

which contradicts (ii). ((i)⇒(ii).) Given a random sequence (hn)n≥1 ⊂ K, and for every

δ > 0,

P0

(
sup
h∈K

∣∣fn(h)
∣∣ > δ

)
≥ P0

(∣∣fn(hn)
∣∣ > δ

)
.

Given (i), the l.h.s. converges to zero and hence so does the r.h.s.. �

The next lemma shows that given two sequences of probability measures, a sequence of

balls that grows fast enough can be used conditionally to calculate the difference in total-

variational distance, even when the sequences consist of random measures.

Lemma 2.11. Let (Πn)n≥1 and (Φn)n≥1 be two sequences of random probability measures on

Rd. Let (Kn)n≥1 be a sequence of subsets of Rd such that

Πn(Rd \Kn) P0−→ 0, Φn(Rd \Kn) P0−→ 0. (2.42)

Then ∥∥Πn − Φn

∥∥− ∥∥ΠKn
n − ΦKn

n

∥∥ P0−→ 0. (2.43)

3Measurability of the (possibly uncountable) supremum is guaranteed if K is a subset of a metric space; in

that case totally boundedness assures the existance of a dense countable subset K′ so that:

sup
h∈K

F (h) = sup
h′∈K′

F (h′),

for every continuous function F : K → R. Measurability of the h̃n, (n ≥ 1) used in the proof is more difficult

to establish.
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Proof Let K, a measurable subset of Rd and n ≥ 1 be given and assume that Πn(K) > 0

and Φn(K) > 0. Then for any measurable B ⊂ Rd we have:∣∣Πn(B)−ΠK
n (B)

∣∣ = ∣∣∣Πn(B)− Πn(B ∩K)
Πn(K)

∣∣∣
=
∣∣Πn

(
B ∩ (Rd \K)

)
+
(
1−Πn(K)−1

)
Πn(B ∩K)

∣∣
=
∣∣Πn

(
B ∩ (Rd \K)

)
−Πn(Rd \K)ΠK

n (B)
∣∣

≤ Πn

(
B ∩ (Rd \K)

)
+ Πn(Rd \K)ΠK

n (B)

≤ 2Πn(Rd \K).

and hence also:∣∣∣(Πn(B)−ΠK
n (B)

)
−
(
Φn(B)− ΦK

n (B)
)∣∣∣ ≤ 2

(
Πn(Rd \K) + Φn(Rd \K)

)
. (2.44)

As a result of the triangle inequality, we then find that the difference in total-variation dis-

tances between Πn and Φn on the one hand and ΠK
n and ΦK

n on the other is bounded above

by the expression on the right in the above display (which is independent of B).

Define An, Bn to be the events that Πn(Kn) > 0, Φn(Kn) > 0 respectively. On Ξn = An∩
Bn, ΠKn

n and ΦKn
n are well-defined probability measures. Assumption (2.42) guarantees that

Pn
0 (Ξn) converges to 1. Restricting attention to the event Ξn in the above upon substitution

of the sequence (Kn)n≥1 and using (2.42) for the limit of (2.44) we find (2.43), where it is

understood that the conditional probabilities on the l.h.s. are well-defined with probability

growing to 1. �

To apply the above lemma in the concluding steps of the proof of theorem 2.1, rate

conditions for both posterior and limiting normal sequences are needed. The rate condition

(2.6) for the posterior is assumed and the following lemma demonstrates that its analog for

the sequence of normals is satisfied when the sequence of centre points ∆n,θ∗ is uniformly

tight.

Lemma 2.12. Let Kn be a sequence of balls centred on the origin with radii Mn → ∞.

Let (Φn)n≥1 be a sequence of normal distributions (with fixed covariance matrix V ) located

respectively at the (random) points (∆n)n≥1 ⊂ Rd. If the sequence ∆n is uniformly tight, then:

Φn(Rd \Kn) = N∆n,V (Rd \Kn) P0−→ 0.

proof Let δ > 0 be given. Uniform tightness of the sequence (∆n)n≥1 implies the existence

of a constant L > 0 such that:

sup
n≥1

Pn
0 (‖∆n‖ ≥ L) ≤ δ.

For all n ≥ 1, call An = {‖∆n‖ ≥ L}. Let µ ∈ Rd be given. Since N(µ, V ) is tight, there

exists for every given ε > 0 a constant L′ such that Nµ,V (B(µ,L′)) ≥ 1 − ε (where B(µ,L′)
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defines a ball of radius L′ around the point µ. Assuming that µ ≤ L, B(µ,L′) ⊂ B(0, L+L′)

so that with M = L+L′, Nµ,V (B(0,M)) ≥ 1− ε for all µ such that ‖µ‖ ≤ L. Choose N ≥ 1

such that Mn ≥M for all n ≥ N . Let n ≥ N be given. Then:

Pn
0

(
Φn(Rd \B(0,Mn) > ε

)
≤ Pn

0

(
An

)
+ Pn

0

({
Φn(Rd \B(0,Mn) > ε

}
∩Ac

n

)
≤ δ + Pn

0

({
N∆n,V (B(0,Mn)c) > ε

}
∩Ac

n

) (2.45)

Note that on the complement of An, ‖∆n‖ < L, so:

N∆n,V (B(0,Mn)c) ≤ 1−N∆n,V (B(0,M)) ≤ 1− inf
‖µ‖≤L

Nµ,V (B(0,M)) ≤ ε,

and we conclude that the last term on the r.h.s. of (2.45) equals zero. �





Chapter 3

Misspecification in

non-parametric Bayesian statistics

Often, estimation procedures behave far more erratic when used in a non-parametric than in

a parametric model. For instance, where maximum-likelihood estimation is a straightforward

and generally well-defined procedure in parametric situations, its behaviour is far more difficult

to control in non-parametric models. As far as rates of convergence are concerned, we recall

the relation that exists between metric entropy numbers and optimality of rates. In non-

parametric models, restrictions like (1.39) play a far-more-serious role.

The relative difficulty of infinite-dimensional estimation has its consequences for Bayesian

methods as well. To begin with, the definition of prior measures on infinite-dimensional

collections of probability measures is non-trivial (see e.g. Ghosh and Ramamoorthi (2003)

[41]). On the other hand, Schwartz’ consistency theorem (theorem 1.7) and the rates-of-

convergence theorem 1.8 are applicable in non-parametric models. Both rely on conditions

involving the prior mass of certain Kullback-Leibler neighbourhoods of P0 and the existence

of suitable test sequences. As pointed out in subsection 1.3.2, condition (1.39) for the optimal

(Hellinger) rate can be related to an existence proof for suitable tests.

In this chapter, we formulate a number of theorems (e.g. theorems 3.1 and 3.2–3.4) con-

cerning Bayesian rates of convergence under misspecification. Although a number of new

difficulties arise (most importantly, the somewhat complicated relation between so-called en-

tropy numbers for testing under misspecification (see the definition preceding inequality (3.4))

and ordinary metric entropy numbers; see lemma 3.1) the basic structure of the conditions

remains as described above, including the relation between entropy numbers and the existence

of suitable test sequences. In many cases, the rate of convergence under misspecification is

the same rate that is achieved in the case of a well-specified model. The results are applied

to a number of models, including Gaussian mixtures and non-parametric regression. The

presentation of these results as found in the remainder of this chapter has been (tentatively)

accepted for publication in the Annals of Statistics.
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non-parametric Bayesian statistics

B.J.K. Kleijn and A.W. van der Vaart

Free University Amsterdam

Abstract

We consider the asymptotic behavior of posterior distributions if the model is

misspecified. Given a prior distribution and a random sample from a distribution

P0, which may not be in the support of the prior, we show that the posterior

concentrates its mass near the points in the support of the prior that minimize

the Kullback-Leibler divergence with respect to P0. An entropy condition and a

prior-mass condition determine the rate of convergence. The method is applied

to several examples, with special interest for infinite-dimensional models. These

include Gaussian mixtures, nonparametric regression and parametric models.

3.1 Introduction

Of all criteria for statistical estimation, asymptotic consistency is among the least disputed.

Consistency requires that the estimation procedure comes arbitrarily close to the true, un-

derlying distribution, if enough observations are used. It is of a frequentist nature, because

it presumes a notion of an underlying, true distribution for the observations. If applied to

posterior distributions it is also considered a useful property by many Bayesians, as it could

warn one away from prior distributions with undesirable, or unexpected, consequences. Priors

which lead to undesirable posteriors have been documented in particular for non- or semi-

parametric models (see e.g. Diaconis and Freedman (1986) [24, 25]), in which case it is also

difficult to motivate a particular prior on purely intuitive, subjective grounds.

In the present paper we consider the situation that the posterior distribution cannot pos-

sibly be asymptotically consistent, because the model, or the prior, is misspecified. From

a frequentist point of view the relevance of studying misspecification is clear, because the
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assumption that the model contains the true, underlying distribution may lack realistic moti-

vation in many practical situations. From an objective Bayesian point of view the question is

of interest, because in principle the Bayesian paradigm allows unrestricted choice of a prior,

and hence we must allow for the possibility that the fixed distribution of the observations

does not belong to the support of the prior. In this paper we show that in such a case the

posterior will concentrate near a point in the support of the prior that is closest to the true

sampling distribution as measured through the Kullback-Leibler divergence, and we give a

characterization for the rate of concentration near this point.

Throughout the paper we assume that X1, X2, . . . are i.i.d. observations, each distributed

according to a probability measure P0. Given a model P and a prior Π, supported on P,

the posterior mass of a measurable subset B ⊂ P is given by:

Πn

(
B
∣∣ X1, . . . , Xn

)
=
∫

B

n∏
i=1

p(Xi) dΠ(P )
/ ∫

P

n∏
i=1

p(Xi) dΠ(P ). (3.1)

Here it is assumed that the model is dominated by a σ-finite measure µ, and the density

of a typical element P ∈ P relative to the dominating measure is written p and assumed

appropriately measurable. If we assume that the model is well specified, i.e. P0 ∈ P, then

posterior consistency means that the posterior distributions concentrate an arbitrarily large

fraction of their total mass in arbitrarily small neighborhoods of P0, if the number of observa-

tions used to determine the posterior is large enough. To formalise this, we let d be a metric

on P and say that the Bayesian procedure for the specified prior is consistent, if for every

ε > 0, Πn({P : d(P, P0) > ε}|X1, . . . , Xn) → 0, in P0-probability. More specific information

concerning the asymptotic behaviour of an estimator is given by its rate of convergence. Let

εn > 0 be a sequence that decreases to zero and suppose that there exists a constant M > 0

such that:

Πn

(
P ∈ P : d(P, P0) > Mεn

∣∣ X1, . . . , Xn

)
→ 0, (3.2)

in P0-probability. The sequence εn corresponds to a decreasing sequence of neighborhoods of

P0, the d-radius of which goes to zero with n, while still capturing most of the posterior mass.

If (3.2) is satisfied, then we say that the rate of convergence is at least εn.

If P0 is at a positive distance from the model P and the prior concentrates all its mass

on P, then the posterior is inconsistent as it will concentrate all its mass on P as well.

However, in this paper we show that the posterior will still settle down near a given measure

P ∗ ∈ P, and we shall characterize the sequences εn such that the preceding display is valid

with d(P, P ∗) taking the place of d(P, P0).

One would expect the posterior to concentrate its mass near minimum Kullback-Leibler

points, since asymptotically the likelihood
∏n

i=1 p(Xi) is maximal near points of minimal

Kullback-Leibler divergence. The integrand in the numerator of (3.1) is the likelihood, so

subsets of the model in which the (log-)likelihood is large account for a large fraction of the

total posterior mass. Hence it is no great surprise that the appropriate point of convergence

P ∗ is a minimum Kullback-Leibler point in P, but the general issue of rates (and which
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metric d to use) turns out to be more complicated than expected. We follow the work by

Ghosal et al. (2000) [39] for the well-specified situation, but need to adapt, change or extend

many steps.

After deriving general results, we consider several examples in some detail, including

Bayesian fitting of Gaussian mixtures using Dirichlet priors on the mixing distribution, the

regression problem, and parametric models. Our results on the regression problem allows

one, for instance, to conclude that a Bayesian approach in the nonparametric problem that

uses a prior on the regression function, but employs a normal distribution for the errors, will

lead to consistent estimation of the regression function, even if the regression errors are non-

Gaussian. This result, which is the Bayesian counterpart of the well-known fact that least

squares estimators (the maximum likelihood estimators if the errors are Gaussian) perform

well even if the errors are non-Gaussian, is important to validate the Bayesian approach to

regression but appears to have received little attention in the literature.

A few notes concerning notation and organization are in order. Let L1(X ,A ) denote

the set of all finite signed measures on (X ,A ) and let co(Q) be the convex hull of a set

of measures Q: the set of all finite linear combinations
∑

i λiQi for Qi ∈ Q and λi ≥ 0

with
∑

i λi = 1. For a measurable function f let Qf denote the integral
∫
f dQ. The paper

is organized as follows. Section 3.2 contains the main results of the paper, in increasing

generality. Sections 3.3, 3.4, and 3.5 concern the three classes of examples that we consider:

mixtures, the regression model, and parametric models. Sections 3.6 and 3.7 contain the

proofs of the main results, where the necessary results on tests are developed in section 3.6

and are of independent interest. The final section is a technical appendix.

3.2 Main results

Let X1, X2, . . . be an i.i.d. sample from a distribution P0 on a measurable space (X ,A ).

Given a collection P of probability distributions on (X ,A ) and a prior probability measure

Π on P, the posterior measure is defined as in (3.1) (where 0/0 = 0 by definition). Here it

is assumed that the ‘model’ P is dominated by a σ-finite measure µ and that x 7→ p(x) is a

density of P ∈ P relative to µ such that the map (x, p) 7→ p(x) is measurable, relative to the

product of A and an appropriate σ-field on P, so that the right side of (3.1) is a measurable

function of (X1, . . . , Xn) and a probability measure as a function of B for every X1, . . . , Xn

such that the denominator is positive. The ‘true’ distribution P0 may or may not belong to

the model P. For simplicity of notation we assume that P0 possesses a density p0 relative to µ

as well. (Alternatively, fractions of densities may be replaced by Radon-Nikodym derivatives

throughout, eliminating the need for a dominating measure.)

Informally we think of the model P as the ‘support’ of the prior Π, but we shall not make

this precise in a topological sense. At this point we only assume that the prior concentrates

on P in the sense that Π(P) = 1 (but we note later that this too can be relaxed). Further

requirements are made in the statements of the main results. Our main theorems implicitly
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assume the existence of a point P ∗ ∈ P minimizing the Kullback-Leibler divergence of P0 to

the model P. In particular, the minimal Kullback-Leibler divergence is assumed to be finite,

i.e. P ∗ satisfies:

−P0 log
p∗

p0
<∞. (3.3)

By the convention that log 0 = −∞, the above implies that P0 � P ∗ and hence we assume

without loss of generality that the density p∗ is strictly positive at the observations.

Our theorems give sufficient conditions for the posterior distribution to concentrate in

neighborhoods of P ∗ at a rate that is determined by the amount of prior mass ‘close to’ the

minimal Kullback-Leibler point P ∗ and the ‘entropy’ of the model. To specify the terms

between quotations marks, we make the following definitions.

We define the entropy and the neighborhoods in which the posterior is to concentrate

its mass relative to a semi-metric d on P. The general results are formulated relative to

an arbitrary semi-metric and next the conditions will be simplified for more specific choices.

Whether or not these simplifications can be made depends on the model P, convexity being an

important special case (see lemma 3.2). Unlike the case of well-specified priors, considered e.g.

in Ghosal et al. (2000) [39], the Hellinger distance is not always appropriate in the misspecified

situation. The general entropy bound is formulated in terms of a covering number for testing

under misspecification, defined for ε > 0 as follows: we define Nt(ε,P, d;P0, P
∗) as the

minimal number N of convex sets B1, . . . , BN of probability measures on (X ,A ) needed to

cover the set {P ∈ P : ε < d(P, P ∗) < 2ε} such that, for every i,

inf
P∈Bi

sup
0<α<1

− logP0

( p
p∗

)α
≥ ε2

4
. (3.4)

If there is no finite covering of this type we define the covering number to be infinite. We refer

to the logarithms logNt(ε,P, d;P0, P
∗) as entropy numbers for testing under misspecification.

Because the measures P0 and P ∗ are fixed in the following, we may delete them from the

notation and write the covering number as Nt(ε,P, d). These numbers differ from ordinary

metric entropy numbers in that the covering sets Bi are required to satisfy the preceding

display rather than to be balls of radius ε. We insist that the sets Bi be convex and that (3.4)

hold for every P ∈ Bi. This implies that (3.4) may involve measures P that do not belong to

the model P if this is not convex itself.

For ε > 0 we define a specific kind of Kullback-Leibler neighborhoods of P ∗ by

B(ε, P ∗;P0) =
{
P ∈ P : −P0 log

p

p∗
≤ ε2, P0

(
log

p

p∗

)2
≤ ε2

}
. (3.5)

Theorem 3.1. For a given model P with prior Π and some P ∗ ∈ P assume that the

Kullback-Leibler divergence with respect to P0 −P0 log(p∗/p0) is finite and that P0(p/p∗) <∞
for all P ∈ P. Suppose that there exists a sequence of strictly positive numbers εn with εn → 0

and nε2n →∞ and a constant L > 0, such that for all n:

Π
(
B(εn, P ∗;P0)

)
≥ e−Lnε2n , (3.6)

Nt

(
ε,P, d;P0, P

∗) ≤ enε2n , for all ε > εn. (3.7)
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Then for every sufficiently large constant M , as n→∞,

Πn

(
P ∈ P : d(P, P ∗) ≥Mεn

∣∣ X1, . . . , Xn

)
→ 0, in L1(Pn

0 ). (3.8)

The proof of this theorem is given in section 3.7. The theorem does not explicitly require

that P ∗ is a point of minimal Kullback-Leibler divergence, but this is implied by the conditions

(see lemma 3.16 below). The theorem is extended to the case of non-unique minimal Kullback-

Leibler points in section 3.2.4.

The two main conditions of theorem 3.1 are a prior mass condition (3.6) and an entropy

condition (3.7), which can be compared to Schwartz’ conditions for posterior consistency (see

Schwartz (1965) [82]), or the two main conditions for the well-specified situation in Ghosal et

al. (2000) [39]. Below we discuss the background of these conditions in turn.

The prior mass condition reduces to the corresponding condition for the correctly specified

case in Ghosal et al. (2000) [39] if P ∗ = P0. Because −P0 log(p∗/p0) < ∞, we may rewrite

the first inequality in the definition (3.6) of the set B(ε, P ∗;P0) as:

−P0 log
p

p0
≤ −P0 log

p∗

p0
+ ε2.

Therefore the set B(ε, P ∗;P0) contains only P ∈ P that are within ε2 of the minimal Kullback-

Leibler divergence with respect to P0 over the model. The lower bound (3.6) on the prior

mass of B(ε, P ∗;P0) requires that the prior measure assigns a certain minimal share of its total

mass to Kullback-Leibler neighborhoods of P ∗. As argued in Ghosal et al. (2000) [39] a rough

understanding of the exact form of (3.6) for the ‘optimal’ rate εn is that an optimal prior

spreads its mass ‘uniformly’ over P. In the proof of theorem 3.1, the prior mass condition

serves to lower-bound the denominator in the expression for the posterior.

The background of the entropy condition (3.6) is more involved, but can be compared

to a corresponding condition in the well-specified situation given in theorem 2.1 of Ghosal

et al. (2000) [39]. The purpose of the entropy condition is to measure the complexity of the

model, a larger entropy leading to a smaller rate of convergence. The entropy used in Ghosal

et al. (2000) [39] is either the ordinary metric entropy logN(ε,P, d), or the local entropy

logN
(
ε/2, {P ∈ P : ε < d(P, P0) < 2ε}, d

)
. For d the Hellinger distance the minimal εn

satisfying logN(εn,P, d) = nε2n is roughly the fastest rate of convergence for estimating a

density in the model P relative to d obtainable by any method of estimation (c.f. Birgé

(1983) [15]). We are not aware of a concept of ‘optimal rate of convergence’ if the model is

misspecified, but a rough interpretation of (3.7) given (3.6) would be that in the misspecified

situation the posterior concentrates near the closest Kullback-Leibler point at the optimal

rate pertaining to the model P.

Misspecification requires that the complexity of the model is measured in an different,

somewhat complicated way. In examples, depending on the semi-metric d, the covering num-

bers Nt(ε,P, d;P0, P
∗) can be related to ordinary metric covering numbers N(ε,P, d). For

instance, we show below (see lemmas 3.1–3.3) that if the model P is convex, then the numbers
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Nt(ε,P, d;P0, P
∗) are bounded by the covering numbers N(ε,P, d) if the distance d(P1, P2)

equals the Hellinger distance between the measures Qi defined by dQi = (p0/p
∗) dPi, i.e.

a weighted Hellinger distance between P1 and P2. In the well-specified situation we have

P ∗ = P0, thus reducing d to the Hellinger distance (without weight factor). In that case

there appears to be no use for the covering numbers as defined by (3.4) but in the general,

misspecified situation they are essential, even for standard parametric models, such as the

one-dimensional normal location model.

At a more technical level the entropy condition of Ghosal et al. (2000) [39] ensures the

existence of certain tests of the measures P versus the true measure P0. In the misspecified

case it is necessary to compare the measures P to the minimal Kullback-Leibler point P ∗,

rather than to P0. It turns out that the appropriate comparison is not a test of the measures P

versus the measure P ∗ in the ordinary sense of testing, but to test the measures Q(P ) defined

by dQ(P ) = (p0/p
∗) dP versus the measure P0 (see (3.47)). With Q the set of measures Q(P )

where P ranges over P this leads to consideration of minimax testing risks of the type

inf
φ

sup
Q∈Q

(
Pn

0 φ+Qn(1− φ)
)
,

where the infimum is taken over all measurable functions φ taking values in [0, 1]. A difference

with the usual results on minimax testing risks is that the measures Q may not be probability

measures (and may in fact be infinite in general).

Extending arguments of Le Cam and Birgé, we show in section 3.6 that for a convex set

Q the minimax testing risk in the preceding display is bounded above by

inf
0<α<1

sup
Q∈Q

ρα(P0, Q)n, (3.9)

where the function α 7→ ρα(P0, Q) is the Hellinger transform ρα(P,Q) =
∫
pαq1−α dµ. For

Q = Q(P ), the Hellinger transform reduces to the map

α 7→ ρ1−α

(
Q(P ), P0

)
= P0(p/p∗)α,

also encountered in (3.4). If the inequality in (3.4) is satisfied, then P0(p/p∗)α ≤ e−ε2/4 and

hence the set of measures Q(P ) with P ranging over Bi can be tested with error probabilities

bounded by e−nε2/4. For ε bounded away from zero, or converging slowly to zero, these

probabilities are exponentially small, ensuring that the posterior does not concentrate on the

‘unlikely alternatives’ Bi.

The testing bound (3.9) is valid for convex alternatives Q, but the alternatives of interest

{P ∈ P : d(P, P ∗) > Mε} are complements of balls and hence typically not convex. A test

function for non-convex alternatives can be constructed using a covering of P by convex sets.

The entropy condition (3.7) controls the size of this cover and hence the rate of convergence

in misspecified situations is determined by the covering numbers Nt(ε,P, d;P0, P
∗). Because

the validity of the theorem only relies on the existence of suitable tests, the entropy condition

(3.7) could be replaced by a testing condition. To be precise: condition (3.7) can be replaced

by the condition that the conclusion of theorem 3.11 is satisfied with D(ε) = enε2n .
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3.2.1 Distances and testing entropy

Because the entropies for testing are somewhat abstract, it is useful to relate them to ordinary

entropy numbers. For our examples the bound given by the following lemma is useful. We

assume that for some fixed constants c, C > 0 and for every m ∈ N, λ1, . . . , λm ≥ 0 with∑
i λi = 1 and every P, P1, . . . , Pm ∈ P with d(P, Pi) ≤ c d(P, P ∗),

∑
i

λid
2(Pi, P

∗)− C
∑

i

λid
2(Pi, P ) ≤ sup

0<α<1
− logP0

(∑
i λipi

p∗

)α
. (3.10)

Lemma 3.1. If (3.10) holds, then there exists a constant A > 0 depending only on C such

that for all ε > 0, Nt(ε,P, d;P0) ≤ N
(
Aε, {P ∈ P : ε < d(P, P ∗) < 2ε}, d

)
. (Any constant

A ≤ (1/8) ∧ (1/4
√
C) works.)

Proof For a given constant A > 0 we can cover the set Pε := {P ∈ P : ε < d(P, P ∗) < 2ε}
with N = N

(
Aε,Pε, d

)
balls of radius Aε. If the centers of these balls are not contained in

Pε, then we can replace these N balls by N balls of radius 2Aε with centers in Pε whose union

also covers the set Pε. It suffices to show that (3.4) is valid for Bi equal to the convex hull

of a typical ball B in this cover. Choose 2A < c. If P ∈ Pε is the center of B and Pi ∈ B for

every i, then d(Pi, P
∗) ≥ d(P, P ∗)− 2Aε by the triangle inequality and hence by assumption

(3.10) the left side of (3.4) with Bi = co(B) is bounded below by
∑

i λi

(
(ε−2Aε)2−C(2Aε)2

)
.

This is bounded below by ε2/4 for sufficiently small A. �

The logarithms logN
(
Aε, {P ∈ P : ε < d(P, P ∗) < 2ε}, d

)
of the covering numbers in

the preceding lemma are called ‘local entropy numbers’ and also the Le Cam dimension of

the model P relative to the semi-metric d. They are bounded above by the simpler ordinary

entropy numbers logN(Aε,P, d). The preceding lemma shows that the entropy condition

(3.7) can be replaced by the ordinary entropy condition logN(εn,P, d) ≤ nε2n whenever the

semi-metric d satisfies (3.10).

If we evaluate (3.10) with m = 1 and P1 = P , then we obtain, for every P ∈ P,

d2(P, P ∗) ≤ sup
0<α<1

− logP0

( p
p∗

)α
. (3.11)

(Up to a factor 16 this inequality is also implied by finiteness of the covering numbers for

testing.) This simpler condition gives an indication about the metrics d that may be used in

combination with ordinary entropy. In lemma 3.2 we show that if d and the model P are

convex, then the simpler condition (3.11) is equivalent to (3.10).

Because − log x ≥ 1 − x for every x > 0, we can further simplify by bounding minus the

logarithm in the right side by 1− P0(p/p∗)α. This yields the bound

d2(P, P ∗) ≤ sup
0<α<1

[
1− P0

( p
p∗

)α]
.

In the well-specified situation we have P0 = P ∗ and the right side for α = 1/2 becomes

1−
∫ √

p
√
p0 dµ, which is 1/2 times the Hellinger distance between P and P0. In misspecified
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situations this method of lower bounding can be useless, as 1 − P0(p/p∗)α may be negative

for α = 1/2. On the other hand, a small value of α may be appropriate, as it can be shown

that as α ↓ 0 the expression 1−P0(p/p∗)α is proportional to the difference of Kullback-Leibler

divergences P0 log(p∗/p), which is positive by the definition of P ∗. If this approximation can

be made uniform in p, then a semi-metric d which is bounded above by the Kullback-Leibler

divergence can be used in the main theorem. We discuss this further in section 3.6 and use

this in the examples of sections 3.4 and 3.5.

The case of convex models P is of interest, in particular for non- or semiparametric

models and permits some simplification. For a convex model the point of minimal Kullback-

Leibler divergence (if it exists) is automatically unique (up to redefinition on a null-set of P0).

Moreover, the expectations P0(p/p∗) are automatically finite, as required in theorem 3.1, and

condition (3.10) is satisfied for a weighted Hellinger metric. We show this in lemma 3.3, after

first showing that validity of the simpler lower bound (3.11) on the convex hull of P (if the

semi-metric d is defined on this convex hull) implies the bound (3.10).

Lemma 3.2. If d is defined on the convex hull of P, the maps P 7→ d2(P, P ′) are convex on

co(P) for every P ′ ∈ P and the inequality (3.11) is valid for every P in the convex hull of

P, then (3.10) is satisfied for 1
2d instead of d.

Lemma 3.3. If P is convex and P ∗ ∈ P is a point at minimal Kullback-Leibler divergence

with respect to P0, then P0(p/p∗) ≤ 1 for every P ∈ P and (3.10) is satisfied with

d2(P1, P2) =
1
4

∫
(
√
p1 −

√
p2)2

p0

p∗
dµ.

Proof For the proof of lemma 3.2 we first apply the triangle inequality repeatedly to find∑
i

λid
2(Pi, P

∗) ≤ 2
∑

i

λid
2(Pi, P ) + 2d2(P, P ∗)

≤ 2
∑

i

λid
2(Pi, P ) + 4d2

(
P,
∑

i

λiPi

)
+ 4d2

(∑
i

λiPi, P
∗
)

≤ 6
∑

λid
2(Pi, P ) + 4d2

(∑
i

λiPi, P
∗
)
,

by the convexity of d2. It follows that

d2(
∑

i

λiPi, P
∗) ≥ (1/4)

∑
i

λid
2(Pi, P

∗)− 3/2
∑

i

λid
2(Pi, P ).

If (3.11) holds for P =
∑

i λiPi, then we obtain (3.10) with d2 replaced by d2/4 and C = 6.

Next we prove lemma 3.3. For P ∈ P define a family of convex combinations {Pλ : λ ∈
[0, 1]} ⊂ P by Pλ = λP + (1− λ)P ∗. For all values of λ ∈ [0, 1]:

0 ≤ f(λ) := −P0 log
pλ

p∗
= −P0 log

(
1 + λ

( p
p∗
− 1
))
, (3.12)

since P ∗ ∈ P is at minimal Kullback-Leibler divergence with respect to P0 in P by assump-

tion. For every fixed y ≥ 0 the function λ 7→ log(1 + λy)/λ is non-negative and increases
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monotonously to y as λ ↓ 0. The function is bounded in absolute value by 2 for y ∈ [−1, 0]

and λ ≤ 1
2 . Therefore, by the monotone and dominated convergence theorems applied to the

positive and negative parts of the integrand in the right side of (3.12):

f ′(0+) = 1− P0

( p
p∗

)
.

Combining the fact that f(0) = 0 with (3.12), we see that f ′(0+) ≥ 0 and hence we find

P0(p/p∗) ≤ 1. The first assertion of lemma 3.3 now follows.

For the proof that (3.11) is satisfied, we first note that − log x ≥ 1− x, so that it suffices

to show that 1− P0(p/p∗)1/2 ≥ d2(P, P ∗). Now∫
(
√
p∗ −√p)2 p0

p∗
dµ = 1 + P0

p

p∗
− 2P0

√
p

p∗
≤ 2− 2P0

√
p

p∗
,

by the first part of the proof. �

3.2.2 Extensions

In this section we give some generalizations of theorem 3.1. Theorem 3.2 enables us to prove

that optimal rates are achieved in parametric models. Theorem 3.3 extends theorem 3.1 to

situations in which the model, the prior and the point P ∗ are dependent on n. Third, we

consider the case in which the priors Πn assign a mass slightly less than 1 to the models Pn.

Theorem 3.1 does not give the optimal (
√
n-) rate of convergence for finite-dimensional

models P, both because the choice εn = 1/
√
n is excluded (by the condition nε2n → ∞)

and because the prior mass condition is too restrictive. The following theorem remedies this,

but is more complicated. The adapted prior mass condition takes the following form: for all

natural numbers n and j,

Π
(
P ∈ P : jεn < d(P, P ∗) < 2jεn

)
Π
(
B(εn, P ∗;P0)

) ≤ enε2nj2/8. (3.13)

Theorem 3.2. For a given model P with prior Π and some P ∗ ∈ P, assume that the

Kullback-Leibler divergence −P0 log(p∗/p0) is finite and that P0(p/p∗) <∞ for all P ∈ P. If

εn are strictly positive numbers with εn → 0 and lim inf nε2n > 0, such that (3.13) and (3.7)

are satisfied, then, for every sequence Mn →∞, as n→∞,

Πn

(
P ∈ P : d(P, P ∗) ≥Mnεn

∣∣ X1, . . . , Xn

)
→ 0, in L1(P0). (3.14)

There appears to be no compelling reason to choose the model P and the prior Π the same

for every n. The validity of the preceding theorems does not depend on this. We formalize

this fact in the following theorem. For each n, we let Pn be a set of probability measures

on (X ,A ) given by densities pn relative to a σ-finite measure µn on this space. Given a

prior measure Πn on an appropriate σ-field, we define the posterior by (3.1) with P ∗ and Π

replaced by P ∗n and Πn.
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Theorem 3.3. The preceding theorems remain valid if P, Π, P ∗ and d depend on n, but

satisfy the given conditions for each n (for a single constant L).

As a final extension we note that the assertion

Pn
0 Πn(P ∈ Pn : dn(P, P ∗n) ≥Mnεn

∣∣X1, . . . , Xn) → 0

of the preceding theorems remains valid even if the priors Πn do not put all their mass on

the ‘models’ Pn (but the models Pn do satisfy the entropy condition). Of course, in such

cases the posterior puts mass outside the model and it is desirable to complement the above

assertion with the assertion that Πn(Pn

∣∣X1, . . . , Xn) → 1 in L1(P0). The latter is certainly

true if the priors put only very small fractions of their mass outside the models Pn. More

precisely, the latter assertion is true if

1
Πn

(
B(εn, P ∗n , P0)

) ∫
Pc

n

(
P
p0

p∗n

)n
dΠn(P ) ≤ o(e−2nε2n). (3.15)

This observation is not relevant for the examples in the present paper. However, it may prove

relevant to alleviate the entropy conditions in the preceding theorems in certain situations.

These conditions limit the complexity of the models and it seems reasonable to allow a trade-off

between complexity and prior mass. Condition (3.15) allows a crude form of such a trade-off:

a small part Pc
n of the model may be more complex, provided that it receives a negligible

amount of prior mass.

3.2.3 Consistency

The preceding theorems yield a rate of convergence εn → 0, expressed as a function of prior

mass and model entropy. In certain situations the prior mass and entropy may be hard to

quantify. In contrast, for inferring consistency of the posterior such quantification is unnec-

essary. This could be proved directly, as Schwartz (1965) [82] achieved in the well-specified

situation, but it can also be inferred from the preceding rate theorems. (A direct proof might

actually give the same theorem with a slightly bigger set B(ε, P ∗;P0).) We consider this for

the situation of theorem 3.1 only.

Corollary 3.1. For a given model P with prior Π and some P ∗ ∈ P, assume that the

Kullback-Leibler divergence −P0 log(p∗/p0) is finite and that P0(p/p∗) < ∞ for all P ∈ P.

Suppose that for every ε > 0

Π
(
B(ε, P ∗;P0)

)
> 0,

Nt

(
ε,P, d;P0, P

∗) <∞,
(3.16)

Then for every ε > 0, as n→∞,

Πn

(
P ∈ P : d(P, P ∗) ≥ ε

∣∣ X1, . . . , Xn

)
→ 0, in L1(Pn

0 ). (3.17)
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Proof Define functions f and g as follows:

f(ε) = Π
(
B(ε, P ∗;P0)

)
, g(ε) = Nt

(
ε,P, d;P0, P

∗).
We shall show that there exists a sequence εn → 0 such that f(εn) ≥ e−nε2n and g(εn) ≤ enε2n

for all sufficiently large n. This implies that the conditions of theorem 3.1 are satisfied for

this choice of εn and hence the posterior converges with rate at least εn.

To show the existence of εn define functions hn by:

hn(ε) = e−nε2
(
g(ε) +

1
f(ε)

)
.

This is well defined and finite by the assumptions and hn(ε) → 0 as n → ∞, for every fixed

ε > 0. Therefore, there exists εn ↓ 0 with hn(εn) → 0 (e.g. fix n1 < n2 < · · · such that

hn(1/k) ≤ 1/k for all n ≥ nk; next define εn = 1/k for nk ≤ n < nk+1). In particular, there

exists an N such that hn(εn) ≤ 1 for n ≥ N . This implies that f(εn) ≥ e−nε2n and g(εn) ≤ enε2n

for every n ≥ N . �

3.2.4 Multiple points of minimal Kullback-Leibler divergence

In this section we extend theorem 3.1 to the situation that there exists a set P∗ of minimal

Kullback-Leibler points.

Multiple minimal points can arise in two very different ways. First consider the situation

where the true distribution P0 and the elements of the model P possess different supports.

Because the observations are sampled from P0, they fall with probability one in the set where

p0 > 0 and hence the exact nature of the elements p of the model P on the set {p0 = 0} is

irrelevant. Clearly multiple minima arise if the model contains multiple extensions of P ∗ to

the set on which p0 = 0. In this case the observations do not provide the means to distinguish

between these extensions and consequently no such distinction can be made by the posterior

either. Theorems 3.1 and 3.2 may apply under this type of non-uniqueness, as long as we

fix one of the minimal points, and the assertion of the theorem will be true for any of the

minimal points as soon as it is true for one of the minimal points. This follows because under

the conditions of the theorem, d(P ∗1 , P
∗
2 ) = 0 whenever P ∗1 and P ∗2 agree on the set p0 > 0, in

view of (3.11).

Genuine multiple points of minimal Kullback-Leibler divergence may occur as well. For

instance, one might fit a model consisting of normal distributions with means in (−∞,−1] ∪
[1,∞) and variance one, in a situation where the true distribution is normal with mean 0.

The normal distributions with means −1 and 1 both have the minimal Kullback-Leibler diver-

gence. This situation is somewhat artificial and we are not aware of more interesting examples

in the nonparametric or semiparametric case that interests us most in the present paper. Nev-

ertheless, because it appears that the situation might arise, we give a brief discussion of an

extension of theorem 3.1.
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Rather than to a single measure P ∗ ∈ P the extension refers to a finite subset P∗ ⊂ P of

points at minimal Kullback-Leibler divergence. We give conditions under which the posterior

distribution concentrates asymptotically near this set of points. We redefine our ‘covering

numbers for testing under misspecification’ Nt(ε,P, d;P0,P∗) as the minimal number N of

convex sets B1, . . . , BN of probability measures on (X ,A ) needed to cover the set {P ∈ P :

ε < d(P,P∗) < 2ε} such that

sup
P ∗∈P∗

inf
P∈Bi

sup
0<α<1

− logP0

( p
p∗

)α
≥ ε2

4
. (3.18)

This roughly says that for every P ∈ P there exists some minimal point to which we can

apply arguments as before.

Theorem 3.4. For a given model P, prior Π on P and some subset P∗ ⊂ P assume that

−P0 log(p∗/p0) < ∞ and P0(p/p∗) < ∞ for all P ∈ P and P ∗ ∈ P∗. Suppose that there

exists a sequence of strictly positive numbers εn with εn → 0 and nε2n → ∞ and a constant

L > 0, such that for all n and all ε > εn:

inf
P ∗∈P∗

Π
(
B(εn, P ∗;P0)

)
≥ e−Lnε2n , (3.19)

Nt

(
ε,P, d;P0,P

∗) ≤ enε2n . (3.20)

Then for every sufficiently large constant M > 0, as n→∞,

Πn

(
P ∈ P : d(P,P∗) ≥Mεn

∣∣ X1, . . . , Xn

)
→ 0, in L1(Pn

0 ). (3.21)

3.3 Mixtures

Let µ denote the Lebesgue measure on R. For each z ∈ R let x 7→ p(x|z) be a fixed µ-

probability density on a measurable space (X ,A ) that depends measurably on (x, z) and for

a distribution F on R define the µ-density:

pF (x) =
∫
p(x|z) dF (z).

Let PF be the corresponding probability measure. In this section we consider mixture models

P = {PF : F ∈ F}, where F is the set of all probability distributions on a given compact

interval [−M,M ]. We consider consistency for general mixtures and derive a rate of conver-

gence in the special case that the family p(·|z) is the normal location family, i.e. with φ the

standard normal density:

pF (x) =
∫
φ(x− z) dF (z). (3.22)

The observations are an i.i.d. sample X1, . . . , Xn drawn from a distribution P0 on (X ,A )

with µ-density p0 which is not necessarily of the mixture form. As a prior for F we use a

Dirichlet process distribution (see Ferguson (1973, 1974) [32, 33]) on F .
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3.3.1 General mixtures

We say that the model is P0-identifiable if for all pairs F1, F2 ∈ F :

F1 6= F2 ⇒ P0( pF1 6= pF2 ) > 0.

Imposing this condition on the model excludes the first way in which non-uniqueness of P ∗

may occur (as discussed in subsection 3.2.4).

Lemma 3.4. Assume that −P0 log(pF /p0) < ∞ for some F ∈ F . If the map z 7→ p(x|z) is

continuous for all x, then there exists an F ∗ ∈ F that minimizes F 7→ −P0 log(pF /p0) over

F . If the model is P0-identifiable, then this F ∗ is unique.

Proof If Fn is a sequence in F with Fn → F for the weak topology on F , then pFn(x) →
pF (x) for every x, since the kernel is continuous in z (and hence also bounded as a result of

the compactness of [−M,M ]) and the portmanteau lemma. Consequently, pFn → pF in L1(µ)

by Scheffé’s lemma. It follows that the map F 7→ pF from F into L1(µ) is continuous for the

weak topology on F . The set F is compact for this topology, by Prohorov’s theorem. The

Kullback-Leibler divergence p 7→ −P0 log(p/p0) is lower semi-continuous as a map from L1(µ)

to R. Therefore, the map F 7→ −P0 log(pF /p0) is lower semi-continuous on the compactum

F and hence attains its infimum on F .

The map p 7→ −P0 log(p/p0) is also convex. By the strict convexity of the function

x 7→ − log x we have, for any λ ∈ (0, 1):

−P0 log
(λp1 + (1− λ)p2

p0

)
< −λP0 log

p1

p0
− (1− λ)P0 log

p2

p0
,

unless P0( p1 = p2 ) = 1. This shows that the point of minimum of F 7→ P0 log(pF /p0) is

unique if F is P0-identifiable. �

Thus a minimal Kullback-Leibler point PF ∗ exists and is unique under mild conditions on

the kernel p. Because the model is convex, lemma 3.3 next shows that (3.11) is satisfied for

the weighted Hellinger distance, whose square is equal to

d2(PF1 , PF2) = 1
2

∫
(
√
pF1 −

√
pF2)

2 p0

pF ∗
dµ. (3.23)

If p0/pF ∗ ∈ L∞(µ), then this distance is bounded by the squared Hellinger distance H between

the measures PF1 and PF2 .

Because F is compact for the weak topology and the map F 7→ pF from F to L1(µ) is

continuous, the model P = {PF : F ∈ F} is compact relative to the total variation distance.

Because the Hellinger and total variation distances define the same uniform structure, the

model is also compact relative to the Hellinger distance and hence it is totally bounded, i.e.

the covering numbers N(ε,P,H) are finite for all ε. Combined with the result of the preceding

paragraph and lemma’s 3.2 and 3.3 this yields that the entropy condition of Corollary 3.1 is

satisfied for d as in (3.23) if p0/pF ∗ ∈ L∞(µ) and we obtain the following theorem.

Theorem 3.5. If p0/pF ∗ ∈ L∞(µ) and Π
(
B(ε, PF ∗ ;P0)

)
> 0 for every ε > 0, then Πn

(
F :

d(PF , PF ∗) ≥ ε
∣∣ X1, . . . , Xn

)
→ 0 in L1(Pn

0 ) for d given by (3.23).
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3.3.2 Gaussian mixtures

Next we specialize to the situation where p(x|z) = φ(x− z) is a Gaussian convolution kernel

and derive the rate of convergence. The Gaussian convolution model is well known to be

P0-identifiable if P0 is Lebesgue absolutely continuous (see e.g. Pfanzagl (1988) [73]). Let d

be defined as in (3.23). We assume that P0 is such that −P0 log(pF /p0) is finite for some F ,

so that there exists a minimal Kullback-Leibler point F ∗, by lemma 3.4.

Lemma 3.5. If for some constant C1 > 0, d(pF1 , pF2) ≤ C1H(pF1 , pF2), then the entropy

condition:

logN(εn,P, d) ≤ nε2n,

is satisfied for εn a large enough multiple of log n/
√
n.

Proof Because the square of the Hellinger distance is bounded above by the L1-norm the

assumption implies that d2(PF1 , PF2) ≤ C2
1 ‖PF1 − PF2 ‖1 . Hence, for all ε > 0, we have

N(C1ε,P, d) ≤ N(ε2,P, ‖ · ‖1 ). As a result of lemma 3.3 in Ghosal and Van der Vaart

(2001) [40], there exists a constant C2 > 0 such that:

‖PF1 − PF2 ‖1 ≤ C2
2 ‖PF1 − PF2 ‖∞ max

{
1,M,

√
log+

1
‖PF1 − PF2 ‖∞

}
, (3.24)

from which it follows that N(C2
2ε log(1/ε)1/2,P, ‖ · ‖1 ) ≤ N(ε,P, ‖ · ‖∞ ) for small enough

ε. With the help of lemma 3.2 in Ghosal and Van der Vaart (2001) [40], we see that there

exists a constant C3 > 0 such that for all 0 < ε < e−1:

logN(ε,P, ‖ · ‖∞ ) ≤ C3

(
log

1
ε

)2
.

Combining all of the above, we note that for small enough ε > 0:

logN
(
C1C2ε

1/2
(
log

1
ε

)1/4
,P, d

)
≤ logN(ε,P, ‖ · ‖∞ ) ≤ C3

(
log

1
ε

)2
.

So if we can find a sequence εn such that for all n ≥ 1, there exists an ε > 0 such that:

C1C2ε
1/2
(
log

1
ε

)1/4
≤ εn, and C3

(
log

1
ε

)2
≤ nε2n,

then we have demonstrated that:

logN(εn,P, d) ≤ logN
(
C1C2ε

1/2
(
log

1
ε

)1/4
,P, d

)
≤ C3

(
log

1
ε

)2
≤ nε2n.

One easily shows that this is the case for εn = max{C1C2, C3}(log n/
√
n) (in which case we

choose, for fixed n, ε = 1/n), if n is taken large enough. �

We are now in a position to apply theorem 3.1. We consider, for given M > 0, the

location mixtures (3.22) with the standard normal density φ as the kernel. We choose the

prior Π equal to a Dirichlet prior on F specified by a finite base measure α with compact

support and positive, continuous Lebesgue-density on [−M,M ].



Mixtures 89

Theorem 3.6. Let P0 be a distribution on R dominated by Lebesgue measure µ. Assume

that p0/pF ∗ ∈ L∞(µ). Then the posterior distribution concentrates its mass around PF ∗

asymptotically, at the rate log n/
√
n relative to the distance d on P given by (3.23).

Proof The set of mixture densities pF with F ∈ F is bounded above and below by the

upper and lower envelope functions

U(x) = φ(x+M)1{x<−M} + φ(x−M)1{x>M} + φ(0)1{−M≤x≤M},

L(x) = φ(x−M)1{x<0} + φ(x+M)1{x≥0},

So for any F ∈ F ,

P0

( pF

pF ∗

)
≤ P0

U

L

≤ φ(0)
φ(2M)

P0[−M,M ] + P0

(
e−2MX1{X<−M} + e2MX1{X>M}

)
<∞,

because p0 is essentially bounded by a multiple of pF ∗ and PF ∗ has sub-Gaussian tials. In view

of lemmas 3.2 and 3.3 the covering number for testing Nt(ε,P, d;P0) in (3.7) is bounded above

by the ordinary metric covering number N(Aε,P, d), for some constant A. Then lemma 3.5

demonstrates that the entropy condition (3.7) is satisfied for εn a large multiple of log n/
√
n.

It suffices to verify the prior mass condition (3.6). Let ε be given such that 0 < ε < e−1.

By lemma 3.2 in Ghosal and Van der Vaart (2001) [40], there exists a discrete distribution

function F ′ ∈ D[−M,M ] supported on at most N ≤ C2 log(1/ε) points {z1, z2, . . . , zN} ⊂
[−M,M ] such that ‖ pF ∗ − pF ′ ‖∞ ≤ C1ε, where C1, C2 > 0 are constants that depend on

M only. We write: F ′ =
∑N

j=1 pjδzj . Without loss of generality, we may assume that the set

{zj : j = 1, . . . , N} is 2ε-separated. Namely, if this is not the case, we may choose a maximal

2ε-separated subset of {zj : j = 1, . . . , N} and shift the weights pj to the nearest point in the

subset. A discrete F ′′ obtained in this fashion satisfies ‖ pF ′ − pF ′′ ‖∞ ≤ 2ε ‖φ′ ‖∞ . So by

virtue of the triangle inequality and the fact that the derivative of the standard normal kernel

φ is bounded, a given F ′ may be replaced by a 2ε-separated F ′′ if the constant C1 is changed

accordingly.

By lemma 3.3 in Ghosal and Van der Vaart (2001) [40] there exists a constant D1 such

that the L1-norm of the difference satisfies:

‖PF ∗ − PF ′ ‖1 ≤ D1 ε
(
log

1
ε

)1/2
,

for small enough ε. Using lemma 3.6 in Ghosal and Van der Vaart (2001) [40], we note

moreover that there exists a constant D2 such that, for any F ∈ F :

‖PF − PF ′ ‖1 ≤ D2

(
ε+

N∑
j=1

∣∣F [zj − ε, zj + ε]− pj

∣∣).
So there exists a constant D > 0 such that if F satisfies

∑N
j=1 |F [zj − ε, zj + ε]− pj | ≤ ε, then

‖PF − PF ∗ ‖1 ≤ D ε
(
log

1
ε

)1/2
.



90 Non-parametric Bayesian Misspecification

Let Q(P ) be the measure defined by dQ(P ) = (p0/pF ∗) dP . The assumption that p0/pF ∗ is

essentially bounded implies that there exists a constant K > 0 such that:

‖Q(PF1)−Q(PF2) ‖1 ≤ K ‖PF1 − PF2 ‖1 ,

for all F1, F2 ∈ F . Since Q(PF ∗) = P0, it follows that there exists a constant D′ > 0 such

that for small enough ε > 0:

{
F ∈ F :

N∑
j=1

|F [zj − ε, zj + ε]− pj | ≤ ε
}

⊂
{
F ∈ F : ‖Q(PF )− P0 ‖1 ≤ (D′)2ε

(
log

1
ε

)1/2 }
.

We have that dQ(PF )/dP0 = pF /pF ∗ and P0(pF /pF ∗) ≤ P0(U/L) < ∞. The Hellinger

distance is bounded by the square root of the L1-distance. Therefore, applying lemma 3.18

with η = η(ε) = D′ε1/2(log(1/ε))1/4, we see that the set of measures PF with F in the set on

the right side of the last display is contained in the set{
PF : F ∈ F ,−P0 log

pF

pF ∗
≤ ζ2(ε), P0

(
log

pF

pF ∗

)2
≤ ζ2(ε)

}
⊂ B(ζ(ε), PF ∗ ;P0),

where ζ(ε) = D′′η(ε)
(
log(1/η(ε))

)
≤ D′′D′ε1/2

(
log(1/ε)

)5/4, for an appropriate constant D′′,

and small enough ε. It follows that

Π
(
B(ζ(ε), PF ∗ ;P0)

)
≥ Π

{
F ∈ F :

N∑
j=1

|F [zj − ε, zj + ε]− pj | ≤ ε
}
.

Following Ghosal et al. (2000) [39] (lemma 6.1) or lemma A.2 in Ghosal and Van der Vaart

(2001) [40], we see that the prior measure at the right hand side of the previous display is

lower bounded by:

c1 exp
(
−c2N log(1/ε)

)
≥ exp

(
−L(log(1/ε))2

)
≥ exp

(
−L′(log(1/ζ(ε)))2

)
,

where c1 > 1, c2 > 0 are constants and L = C2c2 > 0. So if we can find a sequence εn such

that for each sufficiently large n, there exists an ε > 0 such that:

εn ≥ ζ(ε), nε2n ≥
(
log

1
ζ(ε)

)2
,

then Π
(
B(εn, PF ∗ ;P0)

)
≥ Π

(
B(ζ(ε), PF ∗ ;P0)

)
≥ exp(−L′nε2n) and hence (3.6) is satisfied.

One easily shows that for εn = log n/
√
n and ζ(ε) = 1/

√
n, the two requirements are fulfilled

for sufficiently large n. �

3.4 Regression

Let P0 be the distribution of a random vector (X,Y ) satisfying Y = f0(X) + e0 for inde-

pendent random variables X and e0 taking values in a measurable space (X ,A ) and in R,
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respectively and a measurable function f0 : X → R. The variables X and e0 have given

marginal distributions, which may be unknown, but are fixed throughout the following. The

purpose is to estimate the regression function f0 based on a random sample of variables

(X1, Y1), . . . , (Xn, Yn) with the same distribution as (X,Y ).

A Bayesian approach to this problem might start from the specification of a prior distri-

bution on a given class F of measurable functions f : X → R. If the distributions of X and

e0 are known, this is sufficient to determine a posterior. If these distributions are not known,

then one might proceed to introduce priors for these unknowns as well. The approach we take

here is to fix the distribution of e0 to a normal or Laplace distribution, while aware of the fact

that its true distribution may be different. We investigate the consequences of the resulting

model misspecification. We shall show that misspecification of the error distribution does

not have serious consequences for estimation of the regression function. In this sense a non-

parametric Bayesian approach possesses the same robustness to misspecification as minimum

contrast estimation using least squares or minimum absolute deviation. We shall also see that

the use of the Laplace distribution requires no conditions on the tail of the distribution of the

errors, whereas the normal distribution appears to give good results only if these tails are not

too big. Thus the tail robustness of minimum absolute deviation versus the nonrobustness of

the method of least squares also extends to Bayesian regression.

We build the posterior based on a regression model Y = f(X)+e for X and e independent,

as is the assumption on the true distribution of (X,Y ). If we assume that the distribution PX

of X has a known form, then this distribution cancels out of the expression for the posterior

on f . If, instead, we put independent priors on f and PX respectively, then the prior on

PX would disappear upon marginalization of the posterior of (f, PX) relative to f . Thus for

investigating the posterior for f we may assume without loss of generality that the marginal

distribution of X is known. It can be absorbed in the dominating measure µ for the model.

For f ∈ F , let Pf be the distribution of the random variable (X,Y ) satisfying Y = f(X)+e

for X and e independent variables, X having the same distribution as before and e possessing

a given density p, possibly different from the density of the true error e0. We shall consider

the cases that p is normal or Laplace. Given a prior Π on F , the posterior distribution for f

is given by

B 7→
∫
B

∏n
i=1 p

(
Yi − f(Xi)

)
dΠ(f)∫ ∏n

i=1 p
(
Yi − f(Xi)

)
dΠ(f)

.

We shall show that this distribution concentrates near f0 + Ee0 in the case that p is a normal

density and near f0 + median(e0) if p is Laplace, if these translates of the true regression

function f0 are contained in the model F . If the prior is misspecified also in the sense that

f0 + µ /∈ F (where µ is the expectation or median of e0), then under some conditions this

remains true with f0 replaced by a ‘projection’ f∗ of f0 on F . In agreement with the notation

in the rest of the paper we shall denote the true distribution of an observation (X,Y ) by P0

(stressing that, in general, P0 is different from Pf with f = 0). The model P as in the

statement of the main results is the set of all distributions Pf on X × R with f ∈ F .
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3.4.1 Normal regression

Suppose that the density p is the standard normal density p(z) = (2π)−1/2 exp(−1
2z

2). Then,

with µ = Ee0,

log
pf

pf0

(X,Y ) = −1
2(f − f0)2(X) + e0(f − f0)(X),

−P0 log
pf

pf0

= 1
2P0(f − f0 − µ)2 − 1

2µ
2.

(3.25)

It follows that the Kullback-Leibler divergence f 7→ −P0 log(pf/p0) is minimized for f = f∗ ∈
F minimizing the map f 7→ P0(f − f0 − µ)2.

In particular, if f0 + µ ∈ F , then the minimizer is f0 + µ and Pf0+µ is the point in the

model that is closest to P0 in the Kullback-Leibler sense. If also µ = 0, then, even though

the posterior on Pf will concentrate asymptotically near Pf0 , which is typically not equal to

P0, the induced posterior on f will concentrate near the true regression function f0. This

favorable property of Bayesian estimation is analogous to that of least squares estimators,

also for non-normal error distributions.

If f0 + µ is not contained in the model, then the posterior for f will in general not be

consistent. We assume that there exists a unique f∗ ∈ F that minimizes f 7→ P0(f−f0−µ)2,

as is the case, for instance, if F is a closed, convex subset of L2(P0). Under some conditions

we shall show that the posterior concentrates asymptotically near f∗. If µ = 0, then f∗ is the

projection of f0 into F and the posterior still behaves in a desirable manner. For simplicity

of notation we assume that E0e0 = 0.

The following lemma shows that (3.10) is satisfied for a multiple of the L2(P0)-distance

on F .

Lemma 3.6. Let F be a class of uniformly bounded functions f : X → R such that either

f0 ∈ F or F is convex and closed in L2(P0). Assume that f0 is uniformly bounded, that

E0e0 = 0 and that E0e
M |e0| < ∞ for every M > 0. Then there exist positive constants

C1, C2, C3 such that, for all m ∈ N, f, f1, . . . , fm ∈ F and λ1, . . . , λm ≥ 0 with
∑

i λi = 1,

P0 log
pf

pf∗
≤ −1

2P0(f − f∗)2, (3.26)

P0

(
log

pf∗

pf

)2
≤ C1P0(f − f∗)2,

sup
0<α<1

− logP0

(∑
i λipfi

pf∗

)α
≥ C2

∑
i

λi

(
P0(fi − f∗)2 − C3P0(f − fi)2

)
.

Proof We have

log
pf

pf∗
(X,Y ) = −1

2

[
(f0 − f)2 − (f0 − f∗)2

]
(X)− e0(f∗ − f)(X). (3.27)

The second term on the right has mean zero by assumption. The first term on the right has

expectation −1
2P0(f∗ − f)2 if f0 = f∗, as is the case if f0 ∈ F . Furthermore, if F is convex

the minimizing property of f∗ implies that P0(f0− f∗)(f∗− f) ≥ 0 for every f ∈ F and then



Regression 93

the expectation of the first term on the right is bounded above by −1
2P0(f∗− f)2. Therefore,

in both cases (3.26) holds.

From (3.27) we also have, with M a uniform upper bound on F and f0,

P0

(
log

pf

pf∗

)2 ≤ P0

[
(f∗ − f)2(2f0 − f − f∗)2

]
+ 2P0e

2
0P0(f∗ − f)2,

P0

(
log

pf

pf∗

)2( pf

pf∗

)α ≤ P0

[
(f∗ − f)2(2f0 − f − f∗)2 + 2e20(f

∗ − f)2
]
e2α(M2+M |e0|).

Both right sides can be further bounded by a constant times P0(f − f∗)2, where the constant

dependens on M and the distribution of e0 only.

In view of lemma 3.8 (below) with p = pf∗ and qi = pfi
, we see that there exists a constant

C > 0 depending on M only such that for all λi ≥ 0 with
∑

i λi = 1,∣∣∣ 1− P0

(∑
i λipfi

pf∗

)α
− αP0 log

pf∗∑
i λipfi

∣∣∣ ≤ 2α2C
∑

i

λiP0(fi − f∗)2. (3.28)

By lemma 3.8 with α = 1 and p = pf and similar arguments we also have that, for any f ∈ F ,∣∣∣ 1− P0

(∑
i λipfi

pf

)
− P0 log

pf∑
i λipfi

∣∣∣ ≤ 2C
∑

i

λiP0(fi − f)2.

For λi = 1 this becomes∣∣∣ 1− P0

(pfi

pf

)
− P0 log

pf

pfi

∣∣∣ ≤ 2CP0(fi − f)2.

Taking differences we obtain that∣∣∣P0 log
pf∑

i λipfi

−
∑

i

λiP0 log
pf

pfi

∣∣∣ ≤ 4C
∑

i

λiP0(fi − f)2.

By the additivity of the logarithm this inequality remains true if f on the left is replaced by

f∗. Combine the resulting inequality with (3.28) to find that

1− P0

(∑
i λipfi

pf∗

)α
≥ α

∑
i

λiP0 log
pf∗

pfi

− 2α2C
∑

i

λiP0(f∗ − fi)2 − 4C
∑

i

λiP0(fi − f)2

≥
(α

2
− 2α2C

)∑
i

λiP0(f∗ − fi)2 − 4C
∑

i

λiP0(fi − f)2,

where we have used (3.26). For sufficiently small α > 0 and suitable constants C2, C3 the

right side is bounded below by the right side of the lemma. Finally the left side of the lemma

can be bounded by the supremum over α ∈ (0, 1) of the left side of the last display, since

− log x ≥ 1− x for every x > 0. �

In view of the preceding lemma the estimation of the quantities involved in the main

theorems can be based on the L2(P0) distance.
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The ‘neighborhoods’ B(ε, Pf∗ ;P0) involved in the prior mass conditions (3.6) and (3.13)

can be interpreted in the form

B(ε, Pf∗ ;P0) =
{
f ∈ F : P0(f − f0)2 ≤ P0(f∗ − f0)2 + ε2, P0(f − f∗)2 ≤ ε2

}
.

If P0(f −f∗)(f∗−f0) = 0 for every f ∈ F (as is the case if f∗ = f0 or if f∗ lies in the interior

of F ) then this reduces to an L2(P0)-ball around f∗, by Pythagoras’ theorem.

In view of the preceding lemma and lemma 3.1 the entropy for testing in (3.7) can be

replaced by the local entropy of F for the L2(P0)-metric. The rate of convergence of the

posterior distribution guaranteed by theorem 3.1 is then also relative to the L2(P0)-distance.

These observations yield the following theorem.

Theorem 3.7. Assume the conditions of lemma 3.6 and in addition that P0(f−f∗)(f∗−f0) =

0 for every f ∈ F . If εn is a sequence of strictly positive numbers with εn → 0 and nε2n →∞
such that for a constant L > 0 and all n:

Π
(
f ∈ F : P0(f − f∗)2 ≤ ε2n

)
≥ e−Lnε2n , (3.29)

N
(
εn,F , ‖ · ‖P0,2) ≤ enε2n , (3.30)

then Πn

(
f ∈ F : P0(f − f∗)2 ≥ Mε2n

∣∣ X1, . . . , Xn

)
→ 0 in L1(Pn

0 ), for every sufficiently

large constant M .

There are many special cases of interest of this theorem and the more general results that

can be obtained from theorems 3.1 and 3.2 using the preceding reasoning. Some of these

are considered in the context of the well-specified regression model (see Shen and Wasserman

(2001) [83]). The necessary estimates on the prior mass and the entropy are not different

for other problems than the regression model. Entropy estimates can also be found in work

on rates of convergence of minimum contrast estimators. For these reasons we exclude a

discussion of concrete examples.

The following pair of lemmas were used in the proof of the preceding results.

Lemma 3.7. There exists a universal constant C such that for any probability measure P0

and any finite measures P and Q and any 0 < α ≤ 1,∣∣∣1− P0

(q
p

)α
− αP0 log

p

q

∣∣∣ ≤ α2CP0

[(
log

p

q

)2((q
p

)α
1{q>p} + 1{q≤p}

)]
.

Proof The function R defined by R(x) = (ex − 1 − x)/(x2ex) for x ≥ 0 and R(x) =

(ex − 1− x)/x2 for x ≤ 0 is uniformly bounded on R by a constant C. We can write

P0

(q
p

)α
= 1 + αP0 log

q

p
+ P0R

(
α log

q

p

)(
α log

q

p

)2[(q
p

)α
1{q>p} + 1{q≤p}

]
.

The lemma follows. �
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Lemma 3.8. There exists a universal constant C such that for any probability measure P0

and all finite measures P,Q1, . . . , Qm and constants 0 < α ≤ 1, λi ≥ 0 with
∑

i λi = 1∣∣∣1− P0

(∑
i λiqi
p

)α
− αP0 log

p∑
i λiqi

∣∣∣ ≤ 2α2C
∑

i

λiP0

(
log

qi
p

)2[(qi
p

)2
+ 1
]
.

Proof In view of lemma 3.7 with q =
∑

i λiqi, it suffices to bound

P0

[(
log
∑

i λiqi
p

)2((∑
i λiqi
p

)α
1P

i λiqi>p + 1P
i λiqi≤p

)]
,

by the right side of the lemma. We can replace α in the display by 2 and make the expression

larger. Next we bound the two terms corresponding to the decomposition by indicators

separately.

By the convexity of the map x 7→ x log x(
log
∑

i λiqi
p

)(∑
i λiqi
p

)
≤
∑

i

λi

(
log

qi
p

)(qi
p

)
.

If
∑

i λiqi > p, then the left side is positive and the inequality is preserved when we square

on both sides. Convexity of the map x 7→ x2 allows to bound the square of the right side as

in the lemma.

By the concavity of the logarithm

− log
∑

i λiqi
p

≤ −
∑

i

λi log
qi
p
.

On the the set
∑

i λiqi < p the left side is positive and we can again take squares on both

sides and preserve the inequality. �

3.4.2 Laplace regression

Suppose that the error-density p is equal to the Laplace density p(x) = 1
2 exp(−|x|). Then,

log
pf

pf0

(X,Y ) = −
(∣∣e0 + f0(X)− f(X)

∣∣− |e0|),
−P0 log

pf

pf0

= P0Φ(f − f0),

for Φ(ν) = E0

(
|e0 − ν| − |e0|

)
. The function Φ is minimized over ν ∈ R at the median of e0.

It follows that if f0 +m, for m the median of e0, is contained in F , then the Kullback-Leibler

divergence −P0 log(pf/p0) is minimized over f ∈ F at f = f0 +m. If F is a compact, convex

subset of L1(P0), then in any case there exists f∗ ∈ F that minimizes the Kullback-Leibler

divergence, but it appears difficult to determine this concretely in general. For simplicity of

notation we shall assume that m = 0.

If the distribution of e0 is smooth, then the function Φ will be smooth too. Because it is

minimal at ν = m = 0 it is reasonable to expect that, for ν in a neighborhood of m = 0 and

some positive constant C0

Φ(ν) = E0

(
|e0 − ν| − |e0|

)
≥ C0|ν|2. (3.31)
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Because Φ is convex, it is also reasonable to expect that its second derivative, if it exists, is

strictly positive.

Lemma 3.9. Let F be a class of uniformly bounded functions f : X → R and let f0

be uniformly bounded. Assume that either f0 ∈ F and (3.31) holds, or that F is convex

and compact in L1(P0) and that Φ is twice continuously differentiable with strictly positive

second derivative. Then there exist positive constants C0, C1, C2, C3 such that, for all m ∈ N,

f, f1, . . . , fm ∈ F and λ1, . . . , λm ≥ 0 with
∑

i λi = 1,

P0 log
pf

pf∗
≤ −C0P0(f − f∗)2, (3.32)

P0

(
log

pf∗

pf

)2
≤ C1P0(f − f∗)2,

sup
0<α<1

− logP0

(∑
i λipfi

pf∗

)α
≥ C2

∑
i

λi

(
P0(fi − f∗)2 − C3P0(f − fi)2

)
.

Proof Suppose first that f0 ∈ F , so that f∗ = f0. As Φ is monotone on (0,∞) and

(−∞, 0), inequality (3.31) is automatically also satisfied for ν in a given compactum (with C0

depending on the compactum). Choosing the compactum large enough such that (f −f∗)(X)

is contained in it with probability one, we conclude that (3.32) holds (with f0 = f∗).

If f∗ is not contained in F but F is convex, we obtain a similar inequality with f∗ replacing

f0, as follows. Because f∗ minimizes f 7→ P0Φ(f − f0) over F and ft = (1 − t)f∗ + tf ∈ F

for t ∈ [0, 1], the right derivative of the map t 7→ P0Φ(ft − f0) is nonnegative at t = 0. This

yields P0Φ′(f∗ − f0)(f − f∗) ≥ 0. By a Taylor expansion

P0 log
pf∗

pf
= P0

(
Φ(f − f0)− Φ(f∗ − f0)

)
= P0Φ′(f∗ − f0)(f − f∗) + 1

2P0Φ′′(f̃ − f0)(f − f∗)2,

for some f̃ between f and f∗. The first term on the right is nonnegative and the function

Φ′′ is bounded away from zero on compacta by assumption. Thus the right side is bounded

below by a constant times P0(f − f∗)2 and again (3.32) follows.

Because log(pf/pf∗) is bounded in absolute value by |f − f∗|, we also have, with M a

uniform upper bound on F and f0,

P0

(
log

pf

pf∗

)2
≤ P0(f∗ − f)2,

P0

(
log

pf

pf∗

)2( pf

pf∗

)α
≤ P0(f∗ − f)2e2αM .

As in the proof of lemma 3.6 we can combine these inequalities, (3.32) and lemma 3.8 to

obtain the result. �

As for regression using the Laplace density for the error-distribution, the preceding lemma

reduces the entropy calculations for the application of theorem 3.1 to estimates of the L2(P0)-

entropy of the class of regression functions F . The resulting rate of convergence is the same
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as in the case where a normal distribution is used for the error. A difference with the normal

case is that presently no tail conditions of the type E0e
ε|e0| < ∞ are necessary. Instead the

lemma assumes a certain smoothness of the true distribution of the error e0.

3.5 Parametric models

The behavior of posterior distributions for finite-dimensional, misspecified models was con-

sidered in Berk (1966) [8] and more recently by Bunke and Milhaud (1998) [20] (see also

the references in the latter). In this section we show that the basic result that the posterior

concentrates near a minimal Kullback-Leibler point at the rate
√
n follows from our general

theorems under some natural conditions. We first consider models indexed by a parameter

in a general metric space and relate the rate of convergence to the metric entropy of the

parameter set. Next we specialize to Euclidean parameter sets.

Let {pθ : θ ∈ Θ} be a collection of probability densities indexed by a parameter θ in a

metric space (Θ, d). Let P0 be the true distribution of the data and assume that there exists

a θ∗ ∈ Θ, such that for all θ, θ1, θ2 ∈ Θ and some constant C > 0,

P0 log
pθ

pθ∗
≤ −C d2(θ, θ∗), (3.33)

P0

(√pθ1

pθ2

− 1
)2
≤ d2(θ1, θ2), (3.34)

P0

(
log

pθ1

pθ2

)2
≤ d2(θ1, θ2). (3.35)

The first inequality implies that θ∗ is a point of minimal Kullback-Leibler divergence θ 7→
−P0 log(pθ/p0) between P0 and the model. The second and third conditions are (integrated)

Lipschitz conditions on the dependence of pθ on θ. The following lemma shows that in the

application of theorems 3.1 and 3.2 these conditions allow one to replace the entropy for

testing by the local entropy of Θ relative to (a multiple of) the natural metric d .

In examples it may be worthwhile to relax the conditions somewhat. In particular, the

conditions (3.34)-(3.35) can be ‘localized’. Rather than assuming that they are valid for every

θ1, θ2 ∈ Θ the same results can be obtained if they are valid for every pair (θ1, θ2) with

d(θ1, θ2) sufficiently small and every pair (θ1, θ2) with arbitrary θ1 and θ2 = θ∗. For θ2 = θ∗

and P0 = Pθ∗ (i.e. the well-specified situation), condition (3.34) is a bound on the Hellinger

distance between Pθ∗ and Pθ1 .

Lemma 3.10. Under the preceding conditions there exist positive constants C1, C2 such that,

for all m ∈ N, θ, θ1, . . . , θm ∈ Θ and λ1, . . . , λm ≥ 0 with
∑

i λi = 1,

∑
i

λid
2(θi, θ

∗)− C1

∑
i

λid
2(θ, θi) ≤ C2 sup

0<α<1
− logP0

(∑
i λipθi

pθ∗

)α
.

Proof In view of lemma 3.12 (below) with p = pθ∗ , (3.34) and (3.35), there exists a constant
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C such that ∣∣∣ 1− P0

(∑
i λipθi

pθ∗

)α
− αP0

(
log

pθ∗∑
i λipθi

) ∣∣∣ ≤ 2α2C
∑

i

λid
2(θi, θ

∗). (3.36)

By lemma 3.12 with α = 1, p = pθ, (3.34) and (3.35),

∣∣∣ 1− P0

(∑
i λipθi

pθ

)
− P0

(
log

pθ∑
i λipθi

) ∣∣∣ ≤ 2C
∑

i

λid
2(θi, θ).

We can evaluate this with λi = 1 (for each i in turn) and next subtract the convex combination

of the resulting inequalities from the preceding display to obtain∣∣∣P0

(
log

pθ∑
i λipθi

)
−
∑

i

λiP0

(
log

pθ

pθi

) ∣∣∣ ≤ 4C
∑

i

λid
2(θi, θ).

By the additivity of the logarithm this remains valid if we replace θ in the left side by θ∗.

Combining the resulting inequality with (3.33) and (3.36) we obtain

1− P0

(∑
i λipθi

pθ∗

)α
≥ α

∑
i

λid
2(θi, θ

∗)(C − 2α)− 4C
∑

i

λid
2(θi, θ).

The lemma follows upon choosing α > 0 sufficiently small and using − log x ≥ 1− x. �

If the prior on the model {pθ : θ ∈ Θ} is induced by a prior on the parameter set Θ, then

the prior mass condition (3.13) translates into a lower bound for the prior mass of the set

B(ε, θ∗;P0) =
{
θ ∈ Θ : −P0 log

pθ

pθ∗
≤ ε2, P0

(
log

pθ

pθ∗

)2
≤ ε2

}
.

In addition to (3.33), it is reasonable to assume a lower bound of the form

P0 log
pθ

pθ∗
≥ −C d2(θ, θ∗), (3.37)

at least for small values of d(θ, θ∗). This together with (3.35) implies that B(ε, θ∗;P0) contains

a ball of the form {θ : d(θ, θ∗) ≤ C1ε} for small enough ε. Thus in the verification of (3.6) or

(3.13) we may replace B(ε, P ∗;P0) by a ball of radius ε around θ∗. These observations lead

to the following theorem.

Theorem 3.8. Let (3.33)–(3.37) hold. If for sufficiently small A and C,

sup
ε>εn

logN(Aε, {θ ∈ Θ : ε < d(θ, θ∗) < 2ε}, d) ≤ nε2n,

Π(θ : jεn < d(θ, θ∗) < 2jεn)
Π(θ : d(θ, θ∗) ≤ Cεn)

≤ enε2nj2/8,

then Π
(
θ : d(θ, θ∗) ≥Mnεn |X1, . . . , Xn

)
→ 0 in L1(Pn

0 ) for any Mn →∞.
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3.5.1 Finite-dimensional models

Let Θ be an open subset of m-dimensional Euclidean space equipped with the Euclidean

distance d and let {pθ : θ ∈ Θ} be a model satisfying (3.33)–(3.37).

Then the local covering numbers as in the preceding theorem satisfy, for some constant

B,

N
(
Aε, {θ ∈ Θ : ε < d(θ, θ∗) < 2ε}, d

)
≤
(B
A

)m
,

(see e.g. Ghosal et al. (2000) [39], section 5). In view of lemma 3.2, condition (3.7) is satisfied

for εn a large multiple of 1/
√
n. If the prior Π on Θ possesses a density that is bounded away

from zero and infinity, then

Π
(
θ : d(θ, θ∗) ≤ jε

)
Π
(
B(ε, θ∗;P0)

) ≤ C2j
m,

for some constant C2. It follows that (3.13) is satisfied for the same εn. Hence the posterior

concentrates at rate 1/
√
n near the point θ∗.

The preceding situation arises if the minimal point θ∗ is interior to the parameter set

Θ. An example is fitting an exponential family, such as the Gaussian model, to observations

that are not sampled from an element of the family. If the minimal point θ∗ is not interior

to Θ, then we cannot expect (3.33) to hold for the natural distance and different rates of

convergence may arise. We include a simple example of the latter type, which is somewhat

surprising.

Example 3.1. Suppose that P0 is the standard normal distribution and the model consists of

all N(θ, 1)-distributions with θ ≥ 1. The minimal Kullback-Leibler point is θ∗ = 1. If the

prior possesses a density on [1,∞) that is bounded away from 0 and infinity near 1, then the

posterior concentrates near θ∗ at the rate 1/n.

One easily shows that:

−P0 log
pθ

pθ∗
= 1

2(θ − θ∗)(θ + θ∗),

− logP0(pθ/pθ∗)α = 1
2α(θ − θ∗)

(
θ + θ∗ − α(θ − θ∗)

)
.

(3.38)

This shows that (3.11) is satisfied for a multiple of the metric d(pθ1 , pθ2) =
√
|θ1 − θ2| on

Θ = [1,∞). Its strengthening (3.10) can be verified by the same methods as before, or

alternatively the existence of suitable tests can be established directly based on the special

nature of the normal location family. (A suitable test for an interval (θ1, θ2) can be obtained

from a suitable test for its left end point.) The entropy and prior mass can be estimated as

in regular parametric models and conditions (3.7)-(3.13) can be shown to be satisfied for εn a

large multiple of 1/
√
n. This yields the rate 1/

√
n relative to the metric

√
|θ1 − θ2| and hence

the rate 1/n in the natural metric.

Theorem 3.2 only gives an upper bound on the rate of convergence. In the present situation

this appears to be sharp. For instance, for a uniform prior on [1, 2] the posterior mass of the
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interval [c, 2] can be seen to be, with Zn =
√
nX̄n,

Φ(2
√
n− Zn)− Φ(c

√
n− Zn)

Φ(2
√
n− Zn)− Φ(

√
n− Zn)

≈
√
n− Zn

c
√
n− Zn

e−
1
2 (c2−1)n+Zn(c−1)

√
n,

where we use Mills’ ratio to see that Φ(yn)−Φ(xn) ≈ (1/xn)φ(xn) if xn, yn → c ∈ (0, 1) such

that xn/yn → 0. This is bounded away from zero for c = cn = 1 + C/n and fixed C.

Lemma 3.11. There exists a universal constant C such for any probability measure P0 and

any finite measures P and Q and any 0 < α ≤ 1,∣∣∣ 1− P0

(q
p

)α
− αP0 log

p

q

∣∣∣ ≤ α2CP0

[(√q

p
− 1
)2

1{q>p} +
(
log

p

q

)2
1{q≤p}

]
.

Lemma 3.12. There exists a universal constant C such that, for any probability measure P0

and any finite measures P , Q1, . . . , Qm and any λ1, . . . , λm ≥ 0 with
∑

i λi = 1 and 0 < α ≤ 1,

the following inequality holds:∣∣∣1− P0

(∑
i λiqi
p

)α
− αP0 log

p∑
i λiqi

∣∣∣ ≤ 2α2C
∑

i

λiP0

[(√qi
p
− 1
)2

+
(
log

qi
p

)2]
.

Proofs The function R defined by R(x) = (ex− 1−x)/α2(ex/2α− 1)2 for x ≥ 0 and R(x) =

(ex−1−x)/x2 for x ≤ 0 is uniformly bounded on R by a constant C, independent of α ∈ (0, 1].

(This may be proved by noting that the functions (ex−1)/α(eαx−1) and (ex−1−x)/(ex/2−1)2

are bounded, where this follows for the first by developing the exponentials in their power

series.) For the proof of the first lemma, we can proceed as in the proof of lemma 3.7. For

the proof of the second lemma we proceed as in the proof of lemma 3.8, this time also making

use of the convexity of the map x 7→ |
√
x− 1|2 on [0,∞). �

3.6 Existence of tests

The proofs of theorems 3.1 and 3.2 rely on tests of P0 versus the positive, finite measures Q(P )

obtained from points P that are at positive distance from the set of points with minimal

Kullback-Leibler divergence. Because we need to test P0 against finite measures (i.e. not

necessarily probability measures), known results on tests using the Hellinger distance, such

as in Le Cam (1986) [67] or Ghosal et al. (2000) [39] do not apply. It turns out that in this

situation the Hellinger distance may not be appropriate and instead we use the full Hellinger

transform. The aim of this section is to prove the existence of suitable tests and give upper

bounds on their power. We first formulate the results in a general notation and then specialize

to the application in misspecified models.

3.6.1 General setup

Let P be a probability measure on a measurable space (X ,A ) (playing the role of P0) and

let Q be a class of finite measures on (X ,A ) (playing the role of the measures Q with
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dQ = (p0/p
∗) dP ). We wish to bound the minimax risk for testing P versus Q, defined by

π(P,Q) = inf
φ

sup
Q∈Q

(
Pφ+Q(1− φ)

)
,

where the infimum is taken over all measurable functions φ : X → [0, 1]. Let co(Q) denote

the convex hull of the set Q.

Lemma 3.13. If there exists a σ-finite measure that dominates all Q ∈ Q, then:

π(P,Q) = sup
Q∈co(Q)

(
P (p < q) +Q(p ≥ q)

)
.

Moreover, there exists a test φ that attains the infimum in the definition of π(P,Q).

Proof If µ′ is a measure dominating Q, then a σ-finite measure µ exists that dominates both

Q and P (for instance, µ = µ′ +P ). Let p and q be µ-densities of P and Q, for every Q ∈ Q.

The set of test-functions φ can be identified with the positive unit ball Φ of L∞(X ,A , µ),

which is dual to L1(X ,A , µ), since µ is σ-finite. If equipped with the weak-∗ topology,

the positive unit ball Φ is Hausdorff and compact by the Banach-Alaoglu theorem (see e.g.

Megginson (1998) [70], theorem 2.6.18). The convex hull co(Q) (or rather the corresponding

set of µ-densities) is a convex subset of L1(X ,A , µ). The map:

L∞(X ,A , µ)× L1(X ,A , µ) → R,

(φ,Q) 7→ φP + (1− φ)Q,

is concave in Q and convex in φ. (Note that in the current context we write φP instead

of Pφ, in accordance with the fact that we consider φ as a bounded linear functional on

L1(X ,A , µ).) Moreover, the map is weak-∗-continuous in φ for every fixed Q (note that every

weak-∗-converging net φα
w−∗−→ φ by definition satisfies φαQ → φQ for all Q ∈ L1(X ,A , µ)).

The conditions for application of the minimax theorem (see, e.g., Strasser (1985) [85], p. 239)

are satisfied and we conclude:

inf
φ∈Φ

sup
Q∈co(Q)

(
φP + (1− φ)Q

)
= sup

Q∈co(Q)
inf
φ∈Φ

(
φP + (1− φ)Q

)
.

The expression on the left side is the minimax testing risk π(P,Q). The infimum in the right

side is attained at the point φ = 1{p < q}, which leads to the first assertion of the lemma

upon substitution.

The second assertion of the lemma follows because the function φ 7→ sup{φP + (1− φ)Q :

Q ∈ co(Q)} is a supremum of weak-∗-continuous functions and hence attains its min+imum

on the compactum Φ. �

It is possible to express the right side of the preceding lemma in the L1-distance between

P and Q, but this is not useful for the following. Instead, we use a bound in terms of the

Hellinger transform ρα(P,Q), defined by, for 0 < α < 1,

ρα(P,Q) =
∫
pαq1−α dµ.
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By Hölder’s inequality this quantity is finite for all finite measures P and Q. The definition

is independent of the choice of dominating measure µ.

For any pair (P,Q) and every α ∈ (0, 1), we can bound

P (p < q) +Q(p ≥ q) =
∫

p<q
p dµ+

∫
p≥q

q dµ

≤
∫

p<q
pαq1−α dµ+

∫
p≥q

pαq1−α dµ = ρα(P,Q).
(3.39)

Hence the right side of the preceding lemma is bounded by supQ ρα(P,Q), for all α ∈ (0, 1).

The advantage of this bound is the fact that it factorizes if P and Q are product measures.

For ease of notation define

ρα(P,Q) = sup
{
ρα(P,Q) : P ∈ co(P), Q ∈ co(Q)

}
.

Lemma 3.14. For any 0 < α < 1 and classes P1, P2, Q1, Q2 of finite measures:

ρα(P1 ×P2,Q1 ×Q2) ≤ ρα(P1,Q1) ρα(P2,Q2),

where P1 ×P2 denotes the class of product measures {P1 × P2 : P1 ∈ P1, P2 ∈ P2}.

Proof Let P ∈ co(P1 ×P2) and Q ∈ co(Q1 ×Q2) be given. Since both are (finite) convex

combinations, σ-finite measures µ1 and µ2 can always be found such that both P and Q have

µ1 × µ2 densities which both can be written in the form of a finite convex combination as

follows:

p(x, y) =
∑

i

λip1i(x)p2i(y), λi ≥ 0,
∑

i

λi = 1,

q(x, y) =
∑

j

κjq1j(x)q2j(y), κj ≥ 0,
∑

j

κj = 1,

for µ1 × µ2-almost-all pairs (x, y) ∈ X ×X . Here p1i and q1j are µ1-densities for measures

belonging to P1 and Q1 respectively (and analogously p2i and q2j are µ2-densities for measures

in P2 and Q2). This implies that we can write:∫
pαq1−α d(µ1 × µ2)

=
∫ {∫ (∑

i λip1i(x)p2i(y)∑
i λip1i(x)

)α(∑j κjq1j(x)q2j(y)∑
j κjq1j(x)

)1−α
dµ2(y)

}
×
(∑

i

λip1i(x)
)α(∑

j

κjq1j(x)
)1−α

dµ1(x),

(where, as usual, the integrand of the inner integral is taken equal to zero whenever the µ1-

density equals zero). The inner integral is bounded by ρα(P2,Q2) for every fixed x ∈ X .

After substituting this upper bound the remaining integral is bounded by ρα(P1,Q1). �

Combining (3.39) with lemmas 3.14 and 3.13, we obtain the following theorem.
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Theorem 3.9. If P is a probability measure on (X ,A ) and Q is a dominated set of finite

measures on (X ,A ), then for every n ≥ 1 there exists a test φn : X n → [0, 1] such that for

all 0 < α < 1:

sup
Q∈Q

(
Pnφn +Qn(1− φn)

)
≤ ρα(P,Q)n.

The bound given by the theorem is useful only if ρα(P,Q) < 1. For probability measures

P and Q we have

ρ1/2(P,Q) = 1− 1
2

∫
(
√
p−√q)2 dµ,

and hence we might use the bound with α = 1/2 if the Hellinger distance of co(Q) to P

is positive. For a general finite measure Q the quantity ρ1/2(P,Q) may be bigger than 1

and depending on Q, the Hellinger transform ρα(P,Q) may even lie above 1 for every α. The

following lemma shows that this is controlled by the (generalized) Kullback-Leibler divergence

−P log(q/p).

Lemma 3.15. For a probability measure P and a finite measure Q, the function ρ : [0, 1] →
R : α 7→ ρα(Q,P ) is convex on [0, 1] with:

ρα(Q,P ) → P (q > 0), as α ↓ 0, ρα(Q,P ) → Q(p > 0), as α ↑ 1,

and with the derivative at α = 0 satisfying

dρα(Q,P )
dα

∣∣∣
α=0

= P log(q/p)1q>0,

(which may be equal to −∞).

Proof The function α 7→ eαy is convex on (0, 1) for all y ∈ [−∞,∞), implying the convexity

of α 7→ ρα(Q,P ) = P (q/p)α on (0, 1). The function α 7→ yα = eα log y is continuous on [0, 1]

for any y > 0, is decreasing for y < 1, increasing for y > 1 and constant for y = 1. By

monotone convergence, as α ↓ 0,

Q
(p
q

)α
1{0<p<q} ↑ Q

(p
q

)0
1{0<p<q} = Q(0 < p < q).

By the dominated convergence theorem, with dominating function (p/q)1/21{p≥q} (which lies

above (p/q)α1{p≥q} for α ≤ 1/2), we have (as α→ 0):

Q
(p
q

)α
1{p≥q} → Q

(p
q

)0
1{p≥q} = Q(p ≥ q).

Combining the two preceding displays above, we see that ρ1−α(Q,P ) = Q(p/q)α → Q(p > 0)

as α ↓ 0.

By the convexity of the function α 7→ eαy the map α 7→ fα(y) = (eαy − 1)/α decreases as

α ↓ 0, to (d/dα)|α=0fα(y) = y, for every y. For y ≤ 0 we have fα(y) ≤ 0, while for y ≥ 0, by

Taylor’s formula,

fα(y) ≤ sup
0<α′≤α

yeα
′y ≤ yeαy ≤ 1

ε
e(α+ε)y.
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Hence we conclude that fα(y) ≤ 0 ∨ ε−1e(α+ε)y1y≥0. Consequently, we have:

α−1(eα log(q/p) − 1) ↓ log(q/p), as α ↓ 0,

and is bounded above by 0∨ ε−1(q/p)2ε1q≥p for small α > 0, which is P -integrable for 2ε < 1.

We conclude that

1
α

(ρα(Q,P )− ρ0(Q,P )) =
1
α
P
(
(q/p)α − 1

)
1q>0 ↓ P log(q/p)1q>0,

as α ↓ 0, by the monotone convergence theorem. �
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Figure 3.1 The Hellinger transforms α 7→ ρα(P, Q), for P = N(0, 2) and Q respectively the measure defined by

dQ = (dN(3/2, 1)/dN(0, 1)) dP (left) and dQ = (dN(3/2, 1)/dN(1, 1)) dP (right). Intercepts with the vertical

axis at the right and left of the graphs equal P (q > 0) and Q(p > 0) respectively. The slope at 0 equals (minus)

the Kullback-Leibler divergence P log(p/q).

Two typical graphs of the Hellinger transform α 7→ ρα(Q,P ) are shown in Figure 3.6.1

(corresponding to fitting a unit variance normal location model in a situation that the obser-

vations are sampled from an N(0, 2)-distribution). For P a probability measure with P � Q

the Hellinger transform is equal to 1 at α = 0, but will eventually increase to a level that is

above 1 near α = 1 if Q(p > 0) > 1. Unless the slope P log(p/q) is negative it will never

decrease below the level 1. For probability measures P and Q this slope equals minus the

Kullback-Leibler distance and hence is strictly negative unless P = Q. In that case the graph

is strictly below 1 on (0, 1) and ρ1/2(P,Q) is a convenient choice to work with. For a general

finite measure Q, the Hellinger transform ρα(Q,P ) is guaranteed to assume values strictly

less than 1 near α = 0 provided that the Kullback-Leibler divergence P log(p/q) is negative,

which is not automatically the case. For testing a composite alternative Q, we shall need that

this is the case uniformly in Q ∈ co(Q). For a convex alternative Q theorem 3.9 guarantees

the existence of tests based on n observations with error probabilities bounded by e−nε2 if

ε2 ≤ sup
0<α<1

sup
Q∈Q

log
1

ρα(Q,P )
.
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In some of the examples we can achieve inequalities of this type by bounding the right side

below by a (uniform) Taylor expansion of α 7→ − log ρα(P,Q) in α near α = 0. Such arguments

are not mere technical generalizations: they can be necessary already to prove posterior

consistency relative to misspecified standard parametric models.

If P (q = 0) > 0, then the Hellinger transform is strictly less than 1 at α = 0 and hence

good tests exist, even though it may be true that ρ1/2(P,Q) > 1. The existence of good tests

is obvious in this case, since we can reject Q if the observations land in the set q = 0.

In the above we have assumed that Q is dominated. If this is not the case, then the results

go through, provided that we use Le Cam’s generalized tests (see Le Cam (1986) [67]), i.e.

we define

π(P,Q) = inf
φ

sup
Q∈Q

(
φP + (1− φ)Q

)
,

where the infimum is taken over the set of all continuous, positive linear maps φ : L1(X ,A ) 7→
R such that φP ≤ 1 for all probability measures P . This collection of functionals includes the

linear maps that arise from integration of measurable functions φ : X 7→ [0, 1], but may be

larger. Such tests would be good enough for our purposes, but the generality appears to have

little additional value for our application to misspecified models.

The next step is to extend the upper bound to alternatives Q that are possibly not convex.

We are particularly interested in alternatives that are complements of balls around P in some

metric. Let L+
1 (X ,A ) be the set of finite measures on (X ,A ) and let τ : L+

1 (X ,A ) ×
L+

1 (X ,A ) 7→ R be such that τ(P, ·) : Q 7→ R is a nonnegative function (written in a notation

so as to suggest a distance from P to Q), which is dominated by supα(− log ρα(P, ·)) in the

sense that for all Q ∈ Q:

τ2(P,Q) ≤ τ̄2(P,Q) := sup
0<α<1

log
1

ρα(P,Q)
. (3.40)

For ε > 0 define Nτ (ε,Q) to be the minimal number of convex subsets of {Q ∈ L+
1 (X ,A ) :

τ̄(P,Q) > ε/2} needed to cover {Q ∈ Q : ε < τ(P,Q) < 2ε} and assume that Q is such that

this number is finite for all ε > 0. (The requirement that these convex subset have τ̄ -distance

ε/2 to P is essential.) Then the following theorem applies.

Theorem 3.10. Let P is a probability measure and Q is a dominated set of finite measures

on (X ,A ). Assume that τ : L+
1 (X ,A ) × L+

1 (X ,A ) 7→ R satisfies (3.40). Then for all

ε > 0 and all n ≥ 1, there exists a test φn such that for all J ∈ N:

Pnφn ≤
∞∑

j=1

Nτ (jε,Q) e−nj2ε2/4,

sup
{Q:τ(P,Q)>Jε}

Qn
(
1− φn

)
≤ e−nJ2ε2/4.

(3.41)

Proof Fix n ≥ 1 and ε > 0 and define Qj = {Q ∈ Q : jε < τ(P,Q) ≤ (j + 1)ε}. By

assumption there exists, for every j ≥ 1, a finite cover of Qj by Nj = Nτ (jε,Q) convex sets
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Cj,1, . . . , Cj,Nj of finite measures, with the further property that:

inf
Q∈Cj,i

τ̄(P,Q) >
jε

2
, (1 ≤ i ≤ Nj).

According to theorem 3.9, for all n ≥ 1 and for each set Cj,i, there exists a test φn,j,i such

that for all α ∈ (0, 1) we have:

Pnφn,j,i ≤ ρα(P,Cj,i)n,

sup
Q∈Cj,i

Qn
(
1− φn,j,i

)
≤ ρα(P,Cj,i)n.

By (3.40), we have:

sup
Q∈Cj,i

inf
0<α<1

ρα(P,Q) = sup
Q∈Cj,i

e−τ̄2(P,Q) ≤ e−j2ε2/4.

For fixed P and Q, the function α 7→ ρα(P,Q) is convex and can be extended continuously to

a convex function on [0, 1]. The function Q 7→ ρα(P,Q) with domain L+
1 (X ,A ) is concave.

By the minimax theorem (see e.g. Strasser (1985) [85], p. 239), the left side of the preceding

display equals:

inf
0<α<1

sup
Q∈Cj,i

ρα(P,Q) = inf
0<α<1

ρα(P,Cj,i).

It follows that:

Pnφn,j,i ∨ sup
Q∈Cj,i

Qn
(
1− φn,j,i

)
≤ e−nj2ε2/4.

Now define a new test function φn by:

φn = sup
j≥1

max
1≤i≤Nj

φn,j,i.

Then, for every J ≥ 1:

Pnφn ≤
∞∑

j=1

Nj∑
i=1

Pnφn,j,i ≤
∞∑

j=1

Nje
−nj2ε2/4,

sup
Q∈Q

Qn
(
1− φn

)
≤ sup

j≥J
max
i≤Nj

sup
Q∈Cj,i

Qn
(
1− φn,j,i

)
≤ sup

j≥J
e−nj2ε2/4 = e−nJ2ε2/4,

where Q = {Q : τ(P,Q) > Jε} = ∪j≥JQj . �

3.6.2 Application to misspecification

When applying the above in the proof for consistency in misspecified models the problem is

to test the true distribution P0 against measures Q = Q(P ) taking the form dQ = (p0/p
∗) dP

for P ∈ P. In this case the Hellinger transform takes the form ρα(Q,P0) = P0(p/p∗)α and

its right derivative at α = 0 is equal to P0 log(p/p∗). This is negative for every P ∈ P if and

only if P ∗ is the point in P at minimal Kullback-Leibler divergence to P0. This observation

illustrates that the measure P ∗ in theorem 3.1 is necessarily a point of minimal Kullback-

Leibler divergence, even if this is not explicitly assumed. We formalize this in the following

lemma.
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Lemma 3.16. If P ∗ is such that P0 log(p0/p
∗) <∞ and the right side of (3.11) is nonnegative,

then P0 log(p0/p
∗) ≤ P0 log(p0/p) for every P with P0(p/p∗) <∞. Consequently, the covering

numbers for testing Nt(ε,P, d;P0) can be finite only if P ∗ is a point of minimal Kullback-

Leibler divergence relative to P0.

Proof The assumptions imply that P0(p∗ > 0) = 1. If P0(p = 0) > 0, then P0 log(p0/p) = ∞
and there is nothing to prove. Thus we may assume that p is also strictly positive under P0.

Then, in view of lemma 3.15, the function g defined by g(α) = P0(p/p∗)α = ρα(Q,P0) is

continuous on [0, 1] with g(0) = P0(p > 0) = 1 and the right side of (3.11) can be nonnegative

only if g(α) ≤ 1 for some α ∈ [0, 1]. By convexity of g and the fact that g(0) = 1, this can

happen only if the right derivative of g at zero is nonpositive. In view of lemma 3.15 this

derivative is g′(0+) = P0 log(p/p∗).

Finiteness of the covering numbers for testing for some ε > 0 implies that the right side of

(3.11) is nonnegative, as every P ∈ P must be contained in one of the sets Bi in the definition

of Nt(ε,P, d;P0), in which case the right side of (3.11) is bounded below by ε2/4. �

If P0(p/p∗) ≤ 1 for every P ∈ P, then the measure Q defined by dQ = (p0/p
∗) dP is

a subprobability measure and hence by convexity the Hellinger transform α 7→ ρα(P0, Q) is

never above the level 1 and is strictly less than 1 at α = 1/2 unless P0 = Q. In such a case

there appears to be no loss in generality to work with the choice α = 1/2 only, leading to the

distance d as in lemma 3.3. This lemma shows that this situation arises if P is convex.

The following theorem translates theorem 3.9 into the form needed for the proof of our

main results. Recall the definition of the covering numbers for testing Nt(ε,P, d;P0) in (3.4).

Theorem 3.11. Suppose P ∗ ∈ P and P0(p/p∗) < ∞ for all P ∈ P. Assume that there

exists a nonincreasing function D such that for some εn ≥ 0 and every ε > εn:

Nt(ε,P, d;P0) ≤ D(ε). (3.42)

Then for every ε > εn there exists a test φn (depending on ε > 0) such that for every J ∈ N,

Pn
0 φn ≤ D(ε)

e−nε2/4

1− e−nε2/4
,

sup
{P∈P:d(P,P ∗)>Jε}

Q(P )n(1− φn) ≤ e−nJ2ε2/4.
(3.43)

Proof Define Q as the set of all finite measures Q(P ) as P ranges over P (where p0/p
∗ = 0

if p0 = 0) and define τ(Q1, Q2) = d(P1, P2). Then Q(P ∗) = P0 and hence d(P, P ∗) =

τ(Q(P ), P0). Identify P of theorem 3.9 with the present measure P0. By the definitions (3.4)

and (3.40) Nτ (ε,Q) ≤ Nt(ε,P, d) ≤ D(ε) for every ε > εn. Therefore, the test function

guaranteed to exist by theorem 3.9 satisfies:

Pn
0 φn ≤

∞∑
j=1

D(jε) e−nj2ε2/4 ≤ D(ε)
∞∑

j=1

e−nj2ε2/4,
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because D is nonincreasing. This can be bounded further (as in the assertion) since for all

0 < x < 1,
∑

n≥1 x
n2 ≤ x/(1− x). The second line in the assertion is simply the second line

in (3.41). �

3.7 Proofs of the main theorems

The following lemma is analogous to lemma 8.1 in Ghosal et al. (2000) [39] and can be proved

in the same manner.

Lemma 3.17. For given ε > 0 and P0 ∈ P define B(ε) by (3.5). Then for every C > 0 and

probability measure Π on P:

Pn
0

(∫ n∏
i=1

p

p∗
(Xi) dΠ(P ) < Π(B(ε, P ∗;P0))e−nε2(1+C)

)
≤ 1
C2nε2

.

Proof of theorem 3.2 In view of (3.7), the conditions of theorem 3.11 are satisfied, with

the function D(ε) = enε2n , (i.e. constant in ε > εn). Let φn be the test as in the assertion of

this theorem for ε = Mεn and M a large constant, to be determined later in the proof.

For C > 0, also to be determined later in the proof, let Ωn be the event∫
P

n∏
i=1

p

p∗
(Xi) dΠ(P ) ≥ e−(1+C)nε2nΠ

(
B(εn, P ∗;P0)

)
. (3.44)

Then Pn
0 (X n \ Ωn) ≤ 1/(C2nε2n), by lemma 3.17.

Set Π̂n(ε) = Πn

(
P ∈ P : d(P, P ∗) > ε | X1, . . . , Xn

)
. For every n ≥ 1 and J ∈ N we can

decompose:

Pn
0 Π̂n(JMεn) = Pn

0

(
Π̂n(JMεn)φn

)
+ Pn

0

(
Π̂n(JMεn)(1− φn)1Ωc

n

)
+ Pn

0

(
Π̂n(JMεn)(1− φn)1Ωn

)
.

(3.45)

We estimate the three terms on the right side separately. Because Π̂n(ε) ≤ 1, the middle term

is bounded by 1/(C2nε2n). This converges to zero as nε2n →∞ for fixed C and/or can be made

arbitrarily small by choosing a large constant C if nε2n is bounded away from zero.

By the first inequality in (3.43), the first term on the right of (3.45) is bounded by:

Pn
0

(
Π̂n(JMεn)φn

)
≤ Pn

0 φn ≤
e(1−M2/4)nε2n

1− e−nM2ε2n/4
.

For sufficiently large M , the expression on the right-hand side is bounded above by 2e−nε2nM2/8

for sufficiently large n and hence can be made arbitrarily small by choice of M , or converges

to 0 for fixed M if nε2n →∞.

Estimation of the third term on the right of (3.45) is more involved. Because P0(p∗ >

0) = 1, we can write

Pn
0

(
Π̂n(JMεn)(1− φn)1Ωn

)
= Pn

0 (1− φn)1Ωn

[∫
d(P,P ∗)>JMεn

∏n
i=1(p/p

∗)(Xi) dΠ(P )∫
P

∏n
i=1(p/p∗)(Xi) dΠ(P )

]
,

(3.46)
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where we have written the arguments Xi for clarity. By the definition of Ωn the integral in the

denominator is bounded below by e−(1+C)nε2nΠ(B(εn, P ∗;P0)). Inserting this bound, writing

Q(P ) for the measure defined by dQ(P ) = (p0/p
∗) dP , and using Fubini’s theorem, we can

bound the right side of the preceding display by

e(1+C)nε2n

Π
(
B(εn, P ∗;P0)

) ∫
d(P,P ∗)>JMεn

Q(P )n(1− φn) dΠ(P ). (3.47)

Setting Pn,j = {P ∈ P : Mεnj < d(P, P ∗) ≤Mεn(j+1)}, we can decompose {P : d(P, P ∗) >

JMεn} = ∪j≥JPn,j . The tests φn have been chosen to satisfy the inequality Pn
(
Ln(1−φn)

)
≤

e−nj2M2ε2n/4 uniformly in P ∈ Pn,j . (c.f. the second inequality in (3.43).) It follows that the

preceding display is bounded by

e(1+C)nε2n

Π
(
B(εn, P ∗;P0

)
)

∑
j≥J

e−nj2M2ε2n/4Πn(Pn,j) ≤
∑
j≥J

e(1+C)nε2n+nε2nM2j2/8−nj2M2ε2n/4,

by (3.13). For fixed C and sufficiently large M this converges to zero if nε2n is bounded away

from zero and J = Jn →∞. �

Proof of theorem 3.1 Because Π is a probability measure, the numerator in (3.13) is

bounded above by 1. Therefore, the prior mass condition (3.13) is implied by the prior mass

condition (3.6). We conclude that the assertion of theorem 3.1, but with M = Mn → ∞,

follows from theorem 3.2. That in fact it suffices that M is sufficiently large follows by

inspection of the preceding proof. �

Proof of theorem 3.4 The proof of this theorem follows the same steps as the preceding

proofs. A difference is that we cannot appeal to the preparatory lemmas and theorems to split

the proof in separate steps. The shells Pn,j = {P ∈ P : Mjεn < d(P,P∗) < M(j + 1)εn}
must be covered by sets Bn,j,i as in the definition (3.18) and for each such set we use the

appropriate element P ∗n,j,i ∈ P∗ to define a test φn,j,i and to rewrite the left side of (3.46).

We omit the details. �

Lemma 3.18 is used to upper bound the Kullback Leibler divergence and the expectation

of the squared logarithm by a function of the L1-norm. A similar lemma was presented in

Wong and Shen (1995) [97], where both p and q were assumed to be densities of probability

distributions. We generalise this result to the case where q is a finite measure and we are

forced to use the L1 instead of the Hellinger distance.

Lemma 3.18. For every b > 0 there exists a constant εb > 0 such that for every probability

measure P and finite measure Q with 0 < h2(p, q) < εbP (p/q)b,

P log
p

q
. h2(p, q)

(
1 +

1
b

log+

1
h(p, q)

+
1
b

log+ P
(p
q

)b)
+ ‖p− q‖1,

P
(
log

p

q

)2
. h2(p, q)

(
1 +

1
b

log+

1
h(p, q)

+
1
b

log+ P
(p
q

)b)2
.
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Proof The function r : (0,∞) → R defined implicitly by log x = 2(
√
x− 1)− r(x)(

√
x− 1)2

possesses the following properties:

• r is nonnegative and decreasing.

• r(x) ∼ log(1/x) as x ↓ 0, whence there exists ε′ > 0 such that r(x) ≤ 2 log(1/x) on

[0, ε′]. (A computer graph indicates that ε′ = 0.4 will do.)

• For every b > 0 there exists ε′′b > 0 such that xbr(x) is increasing on [0, ε′′b ]. (For b ≥ 1

we may take ε′′b = 1, but for b close to zero ε′′b must be very small.)

In view of the definition of r and the first property, we can write

P log
p

q
= −2P

(√q

p
− 1
)

+ Pr
(q
p

)(√q

p
− 1
)2

≤ h2(p, q) + 1−
∫
q dµ+ Pr

(q
p

)(√q

p
− 1
)2

≤ h2(p, q) + ‖p− q‖1 + r(ε)h2(p, q) + Pr
(q
p

)
1
{q
p
≤ ε
}
,

for any 0 < ε ≤ 4, where we use that |
√
q/p − 1| ≤ 1 if q/p ≤ 4. Next we choose ε ≤ ε′′b and

use the third property to bound the last term on the right by P (p/q)bεbr(ε). Combining the

resulting bound with the second property we then obtain, for ε ≤ ε′ ∧ ε′′b ∧ 4,

P log
p

q
≤ h2(p, q) + ‖p− q‖1 + 2 log

1
ε
h2(p, q) + 2εb log

1
ε
P
(p
q

)b
.

For εb = h2(p, q)/P (p/q)b the second and third terms on the right take the same form. If

h2(p, q) < εbP (p/q)b for a sufficiently small εb, then this choice is eligible and the first inequal-

ity of the lemma follows. Specifically, we can choose εb ≤ (ε′ ∧ ε′′b ∧ 4)b.

To prove the second inequality we first note that, since | log x| ≤ 2|
√
x− 1| for x ≥ 1,

P
(
log

p

q

)2
1
{q
p
≥ 1
}
≤ 4P

(√q

p
− 1
)2

= 4h2(p, q).

Next, with r as in the first part of the proof,

P
(
log

p

q

)2
1
{q
p
≤ 1
}
≤ 8P

(√q

p
− 1
)2

+ 2Pr2
(q
p

)(√q

p
− 1
)4

1
{q
p
≤ 1
}

≤ 8h2(p, q) + 2r2(ε)h2(p, q) + 2εbr2(ε)P
(p
q

)b
,

for ε ≤ ε′′b/2, in view of the third property of r. (The power of 4 in the first line of the array

can be lowered to 2 or 0, as |
√
q/p− 1| ≤ 1.) We can use the second property of r to bound

r(ε) and next choose εb = h2(p, q)/P (p/q)b to finish the proof. Specifically, we can choose

εb ≤ (ε′ ∧ ε′′b/2)
b. �



Chapter 4

Errors-In-Variables regression

In the first five sections of this chapter, we consider the asymptotic behaviour of the posterior

distribution for the errors-in-variables model. The model describes measurements consisting

of paired observations (X,Y ) that are represented in terms of an unobserved Z. The random

variable Z is related toX directly and to Y through a regression function f , both perturbed by

Gaussian errors. We assume that Z falls into a (known) bounded subset of the real line with

probability one, but otherwise leave its distribution unconstrained. In the semi-parametric

literature, the regression function comes from a parametric (see Taupin (2001) [86]), or even

linear (see, e.g. Anderson (1984) [2]) class of functions. In the following, we broaden that

assumption to non-parametric regression classes, discussing the errors-in-variables problem

also for Lipschitz and smooth functions.

Hence, the formulation we use involves two non-parametric components, the distribution

of Z and the regression function f . We give Hellinger rates of convergence for the posterior

distribution of the errors-in-variables density in non-parametric and parametric regression

classes, using the posterior rate-of-convergence theorem 1.8 (or rather, a version based on the

Hellinger metric entropy, c.f. Ghosal et al. (2000) [39]). Conditions that bound the rate of

convergence can be decomposed into two terms, one for each of the non-parametric components

of the model. The rate is then determined by the term that dominates the bound. A version

of the first five sections of this chapter is to be submitted to the Annals of Statistics for

publication.

Even in the case of a parametric class of regression functions, the rate is 1/
√
n only up

to a logarithmic correction, due to the (non-parametric) distribution of Z. Nevertheless,

in the semi-parametric analyses referred to above, point-estimation of parametric regression

functions proceeds (efficiently) at rate 1/
√
n. In the last section of this chapter, we use the

main result of chapter 2, theorem 2.1, to discuss possibilities for the derivation of analogous

results in a Bayesian setting. The strategy that is outlined follows the least-favourable ap-

proach that is central in the semi-parametric literature and gives indications for the way to a

semi-parametric Bernstein-Von-Mises theorem.



112 Errors-In-Variables regression



Introduction 113

A Bayesian analysis of

Errors-In-Variables regression

B.J.K. Kleijn and A.W. van der Vaart

UC Berkeley Statistics Department

Free University Amsterdam

Abstract

We consider the asymptotic behaviour of the posterior distribution for the struc-

tural errors-in-variables model with non-parametric and parametric regression

classes. Generically, the formulation involves two non-parametric components,

one being the distribution of the unobserved random variable and the other the

regression function f . The prior on the former derives from a Dirichlet process

and the prior on the latter is a so-called net prior. Entropy and prior-mass con-

ditions that bound the rate are decomposed into two terms, one for each of the

non-parametric components. The rate at which the posterior for the errors-in-

variables density converges in Hellinger distance is then determined by the term

that dominates the bounds.

4.1 Introduction

The errors-in-variables model is intended for the study of samples consisting of paired obser-

vations (X,Y ), assumed to be distributed as follows:

X = Z + e1,

Y = f(Z) + e2,
(4.1)

where (e1, e2) and Z are independent and f belongs to a family of regression functions. Usu-

ally, the distribution of the errors (e1, e2) is assumed to be known up to a (finite-dimensional)

parameter σ whereas the distribution F of Z is completely unknown in the most general case.

The primary interest lies in estimation of the regression function f from a i.i.d. sample of pairs

(X1, Y1), (X2, Y2), . . . , (Xn, Yn) in the presence of the nuisance parameter F . Applications
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include all situations in which a functional dependence between measurements with errors

is to be established. A prototypical example of a situation in which the errors-in-variables

model applies, arises in experimental physics: often, the aim of an experiment is to establish

a functional dependence between two physical quantities rather than to infer from their dis-

tribution directly. The experiment involves repeated, simultaneous measurement of the two

quantities of interest, with errors that are due to the measurement apparatus. With regard

to the distribution of the latter, measurement of prepared, known signals or background noise

provide detailed information.

The primary difference between errors-in-variables and ordinary regression using a set

of design points x1, . . . , xn, is the stochastic nature of the variable X. Regarding X, the

variable e1 is referred to as the “random error”, whereas the variability of Z is said to be

the “systematic error” (Anderson (1984) [2]). Kendall and Stuart (1979) [54] distinghuish

between the “functional” errors-in-variables problem, in which Z is non-stochastic, taking

on the values of ‘design points’ z1, . . . , zn, and the “structural” errors-in-variables problem,

in which Z is stochastic. Best known is linear errors-in-variables regression, in which f is

assumed to depend linearly on z (see, e.g. [2] for an extensive overview of the literature).

Efficient estimators for the parameters of f have been constructed by Bickel and Ritov (1987)

[13], Bickel et al. (1998) [14] and Van der Vaart (1988, 1996) [87, 88]. Errors-in-variables

regression involving a parametric family of non-linear regression functions has been analysed

by Taupin and others (see Taupin (2001) [86] and references therein). In Fan and Troung

(1993) [31], the rate of convergence (in a weighted L2-sense) of Nadaraya-Watson-type kernel

estimators for the conditional expectation of Y given Z (and hence for the regression function)

are considered using deconvolution methods.

In this paper we analyse the structural errors-in-variables problem for non-parametric

families of regression functions in a Bayesian setting; we consider the behaviour of posterior

distributions for the parameter (σ, f, F ) in the asymptotic limit. It is stressed that in this

formulation, the errors-in-variables problem has two non-parametric components, one being

the distribution of the underlying variable Z and the other the regression function. The

emphasis lies on the interplay between these two non-parametric aspects of the model, as

illustrated by their respective contributions to the rate of convergence (see, e.g. theorems 4.3

and 4.4).

4.1.1 Model definition

We assume throughout this paper that there is some known constant A > 0 such that Z ∈
[−A,A] with probability one. Furthermore, we assume (unless indicated otherwise) that the

errors e1 and e2 are independent and distributed according to the same normal distribution

Φσ on R with mean zero and variance σ2 (i.e. a special case of restricted Gaussian errors in the

terminology of [13]). Writing ϕσ for the normal density of both e1 and e2, the model consists

of a family of distributions for the observations (X,Y ), parametrized by (σ, f, F ) ∈ I×F×D,
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where it is assumed that:

(a) I is a closed interval in the positive reals, bounded away from zero and infinity, i.e.

I = [σ, σ] ⊂ (0,∞).

(b) D is the collection of all probability distributions on the compact symmetric interval

[−A,A], parametrized by all corresponding Stieltjes functions F .

(c) F ⊂ CB[−A,A] ⊂ C[−A,A] is a bounded family of continuous regression functions

f : [−A,A] → [−B,B]. We shall distinguish various cases by further requirements,

including equicontinuity, Lipschitz- and smoothness-bounds. Also considered is the

parametric case, in which F is parametrized by a subset of Rk.

For all (σ, f, F ) ∈ I ×F ×D, we define the following convoluted density for the distribution

of observated pair (X,Y ):

pσ,f,F (x, y) =
∫

R
ϕσ

(
x− z

)
ϕσ

(
y − f(z)

)
dF (z), (4.2)

for all (x, y) ∈ R2.

It is stressed that when we speak of the errors-in-variables model P, we refer to the

collection of probability measures Pσ,f,F on R2 defined by the Lebesgue-densities parametrized

in the above display (rather than the parameter space I × F × D). In many cases we

regard P as a metric space, using either the Hellinger metric or L1(µ)-norm. As far as

the parameter space is concerned, the model may not be identifiable: if, for given F ∈ D,

two regression functions f, g ∈ F differ only on a set of F -measure zero, the corresponding

densities pσ,f,F and pσ,g,F are equal on all of R2 (for all σ ∈ I). Determination of the

true regression function f0 based on an i.i.d. P0-distributed sample can therefore be done

only F0-almost-everywhere (where P0 = Pσ0,f0,F0). Ultimately, the results we give are based

on the Hellinger distance, which, in the present circumstances, gives rise to a semi-metric

on the parameter space I × F × D for the same reason. The ‘well-known’ identifiability

problems in the linear errors-in-variables model (see e.g. Reiersøl (1950) [80]) arising due to

interchangability of Gaussian components of the distribution of Z with the error-distribution

(see also [2] and [13]) do not occur in our considerations, because we assume the distribution

of Z to be compactly supported.

4.1.2 Bayesian rates of convergence

Conditions for the theorem on Bayesian rates of convergence that is used in this paper are

formulated in terms of a specific kind of Kullback-Leibler neighbourhoods of the true distri-

bution P0 ∈ P and Hellinger covering numbers for the model. For all ε > 0 we define the

following neighbourhoods:

B(ε;P0) =
{
P ∈ P : −P0 log

p

p0
≤ ε2, P0

(
log

p

p0

)2
≤ ε2

}
. (4.3)
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Denote by N(ε,P,H) the covering numbers with respect to the Hellinger metric on P, i.e.

the minimal number of Hellinger balls of radius ε > 0 needed to cover the model P.

Theorem 4.1. Let P be a model and assume that the sample U1, U2, . . . is i.i.d. P0-distributed

for some P0 ∈ P. For a given prior Π, suppose that there exists a sequence of strictly positive

numbers εn with εn → 0 and nε2n →∞ and constants R1, R2 > 0, such that:

Π
(
B(εn;P0)

)
≥ e−R1nε2n , (4.4)

logN
(
εn,P,H

)
≤ R2nε

2
n, (4.5)

for all large enough n. Then, for every sufficiently large constant M , the posterior distribution

satisfies:

Πn

(
P ∈ P : H(P, P0) ≥Mεn

∣∣ U1, . . . , Un

)
→ 0, (4.6)

as n→∞, in P0-expectation.

The proof of this theorem can be found in Ghosal, Ghosh and Van der Vaart (2000)

[39]. The two main conditions of theorem 4.1 are a prior-mass condition (4.4) and an entropy

condition (4.5). Below we discuss the background of these conditions in turn. The lower bound

(4.4) on the prior mass of B(ε;P0) requires that the prior measure assigns a certain minimal

share of its total mass to the Kullback-Leibler neighbourhoods of P0 defined above. Since P0 is

unknown, a demonstration that (4.4) is satisfied usually requires proof that it is satisfied for all

P in the model, i.e. the prior in question places enough mass in neighbourhoods of all points in

the model. Therefore, a rough understanding of (4.4) for the best achievable rate εn is that a

corresponding prior spreads its mass ‘uniformly’ over P. The purpose of the entropy condition

is to measure the complexity of the model, with faster-growing entropies leading to slower

rates of convergence. From a more technical perspective, the entropy condition guarantees the

existence of sufficiently powerful test functions to separate P0 from complements of Hellinger

neighbourhoods. The minimal εn satisfying logN(εn,P,H) ≤ nε2n is roughly the fastest rate

of convergence for estimating a density in the model P relative to the Hellinger distance

obtainable by any method of estimation (c.f. Birgé (1983) [15]). Based on the sequence of

posterior distributions in (4.6), point-estimator sequences converging at the same rate can be

obtained (see, e.g. theorem 2.5 in [39]).

The assumption that the model is well-specified, i.e. P0 ∈ P, can be relaxed. In Kleijn

and Van der Vaart (2003) [57], the above theorem is given in the case of a misspecified model.

We do not give misspecified versions of the results, although we believe that the conditions of

the necessary theorems in [57] are met in the model we consider.

Notation and conventions

We denote the Lebesgue measure on R2 by µ; for a probability distribution P on R2 domi-

nated by µ, the corresponding density is denoted p. The Hellinger distance H(P,Q) between

two measures dominated by µ is defined as the L2(µ)-distance between the square-roots of
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their densities, i.e. without the additional factors favoured by some authors. The space of

continuous, real-valued functions on the interval [−A,A] ⊂ R is denoted C[−A,A]; the class of

functions in C[−A,A] that is uniformly bounded by a constant B > 0 is denoted CB[−A,A].

When considering families of regression functions, ‖ · ‖ denotes the uniform norm over the

interval [−A,A]. The space of all real-valued polynomials of degree n on [−A,A] is denoted

Pn. The Euclidean norm on Rk is denoted by ‖ · ‖Rk . The k-th derivative of a suitably

differentiable function f : [−A,A] → R is denoted f (k).

4.2 Main results

We consider regression classes F ⊂ CB[−A,A], i.e. there exists a (known) constant B > 0

such that ‖f‖ ≤ B for all f ∈ F , with a constraint that guarantees equicontinuity and allows

for the establishment of bounds on covering numbers with respect to the uniform norm. We

distinguish several non-parametric and parametric examples of such classes below, but remark

that other regression classes for which bounds on covering numbers exist, can also be used.

(i) LipM (α) (for some M > 0 and 0 < α ≤ 1), the class of all Lipschitz functions f ∈
CB[−A,A] with constant M and exponent α, i.e.∣∣f(z)− f(z′)

∣∣ ≤M |z − z′|α, (4.7)

for all z, z′ ∈ [−A,A].

(ii) Dα,M (q) (for some 0 < α ≤ 1, M > 0 and an integer q ≥ 1), the class of all q times

differentiable functions f ∈ CB[−A,A] for which the q-th derivative f (q) belongs to

LipM (α).

(iii) FΘ, a parametric class of regression functions which forms a subset of LipM (α) for some

α ∈ (0, 1] and M > 0. We assume that there exists a bounded, open subset Θ ⊂ Rk

for some k ≥ 1 such that FΘ = {fθ : θ ∈ Θ}. Furthermore, we assume that the map

θ 7→ fθ is Lipschitz-continuous, i.e. there exist constants L > 0 and ρ ∈ (0, 1] such that

for all θ1, θ2 ∈ Θ:

‖fθ1 − fθ2‖ ≤ L‖θ1 − θ2‖ρ
Rk . (4.8)

Often, it is more convenient to unify cases (i) and (ii) above, by considering the family of

classes Cβ,L[−A,A] defined as follows. For given β > 0 and L > 0, we define β to be the

greatest integer such that β < β and we consider, for suitable functions f : [−A,A] → R, the

norm:

‖f‖β = max
k≤β

‖f (k)‖+ sup
z1,z2

∣∣f (β)(z1)− f (β)(z2)
∣∣

|z1 − z2|β−β
,

where the supremum is taken over all pairs (z1, z2) ∈ [−A,A]2 such that z1 6= z2. The class

Cβ,L[−A,A] is then taken to be the collection of all continuous f : [−A,A] → R for which

‖f‖β ≤ L. Note that for 0 < β ≤ 1, β = 0 and Cβ,L[−A,A] is a Lipschitz class bounded by L;
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if β > 1, differentiability of a certain order is implied, as well as boundedness of all derivatives

and a Lipschitz property for the highest derivative.

As indicated in subsection 4.1.2, the Hellinger rate of convergence εn is bounded by two

conditions, one related to the small-ε behaviour of the (Hellinger) entropy of the model,

the other by the small-ε behaviour of the prior mass in Kullback-Leibler neighbourhoods of

the form (4.3). The first condition is considered in section 4.3: theorem 4.3 says that the

Hellinger covering number of the errors-in-variables model has an upper bound that consists

of two terms, one resulting from the (σ, F )-part of the model and the other from minimal

covering of the regression class:

logN(ε,P,H) ≤ L0

(
log

1
ε

)3
+ logN(Lε,F , ‖ . ‖), (4.9)

for small ε > 0 and some constants L,L0 > 0. If the regression class F is ‘small’ enough,

in the sense that the first term in the entropy bound displayed above dominates in the limit

ε→ 0, the candidate rates of convergence εn are parametric up to a logarithmic factor.

Lemma 4.1. If there exists a constant L1 > 0 such that:

logN(ε,F , ‖ . ‖) ≤ L1

(
log

1
ε

)3
, (4.10)

for small enough ε > 0, then the entropy condition (4.5) is satisfied by the sequence:

εn = n−1/2(log n)3/2, (4.11)

for large enough n.

Proof Under the above assumption, logN(ε,P,H) is upper bounded by the first term in

(4.9) with a larger choice for the constant. Note that the sequence εn as defined in (4.11)

satisfies εn ↓ 0 and nε2n → ∞. Also note that εn ≥ 1/n for large enough n, so that for some

L > 0,

logN(εn,F , ‖ . ‖) ≤ logN(1/n,F , ‖ . ‖) ≤ L(log n)3,

and nε2n = (log n)3, which proves that εn satisfies (4.5). �

It is also possible that the small-ε behaviour of the errors-in-variables entropy is dominated

by the covering numbers of the regression class. In that case the r.h.s. of (4.9) is replaced by

a single term proportional to logN(Lε,F , ‖ . ‖) for small enough ε. If the regression functions

constitute a Lipschitz or smoothness class, lemma 4.13 gives the appropriate upper bound for

the entropy, leading to the following candidate rates of convergence.

Lemma 4.2. For an errors-in-variables model P based on a regression class Cβ,M [−A,A],

the entropy condition (4.5) is satisfied by the sequence:

εn = n
− β

2β+1 , (4.12)

for large enough n.
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Proof As argued above, the Hellinger entropy of the errors-in-variables model is upper-

bounded as follows:

logN(ε,P,H)) ≤ K

ε1/β
,

for some constant K > 0 and small enough ε. The sequence εn satisfies εn ↓ 0 and nε2n →∞.

Furthermore, note that:

logN(εn,P,H) ≤ K n1/(2β+1) = Kn · n−
2β

2β+1 = Knε2n,

for large enough n. �

Similar reasoning applies to condition (4.4) for the small-ε behaviour of the prior mass

of Kullback-Leibler neighbourhoods of the form (4.3). Section 4.4 discusses the necessary

lemmas in detail. We define priors ΠI , ΠF and ΠD on the parametrizing spaces I, F and

D respectively and choose the prior Π on the model P as induced by their product under

the map (σ, f, F ) 7→ Pσ,f,F (which is measurable, as shown in lemma 4.10). The prior ΠI

is chosen as a probability measure on I with continuous and strictly positive density with

respect to the Lebesgue measure on I. Priors for the various regression classes discussed in

the beginning of this section are discussed in subsection 4.5.2. The prior ΠD on D is based on

a Dirichlet process with base measure α which has a continuous and strictly positive density

on all of [−A,A].

As with the covering numbers discussed above, we find (see theorem 4.4) that (the loga-

rithm of) the prior mass of Kullback-Leibler neighbourhoods is lower bounded by two terms,

one originating from the prior on the regression class and the other from the priors on the

remaining parameters in the model:

log Π
(
B
(
Kδ log(1/δ);P0

))
≥ −c

(
log

1
δ

)3
+ log ΠF

(
f ∈ F : ‖f − f0‖ ≤ δ

)
, (4.13)

for some constants K, c > 0 and small enough δ > 0. If the prior mass in F around the

true regression function f0 does not decrease too quickly with decreasing δ, the bound that

dominates (4.13) is proportional to the first term on the r.h.s., which leads to near-parametric

candidate rates of convergence.

Lemma 4.3. If there exists a constant c′ > 0 such that:

log ΠF

(
f ∈ F : ‖f − f0‖ ≤ ε

)
≥ −c′

(
log

1
ε

)3
, (4.14)

for small enough ε > 0, then the prior-mass condition (4.4) is satisfied by the sequence (4.11)

for large enough n.

Proof Condition (4.14) implies that (4.13) holds with the lower bound on the r.h.s. replaced

by only its first term with a larger choice for the constant c. The substitution ε = Kδ log(1/δ)

leads to a constant and a log log(1/δ) correction, both of which are dominated by log(1/δ) for

small enough δ. (See the proof of lemma 4.4, where a similar step is made.) It follows that:

log Π
(
B(ε;P0)

)
≥ −c′′

(
log

1
ε

)3
,
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for some constant c′′ > 0 and small enough ε. The remainder of the proof is identical to that

of lemma 4.1. �

However, it is also possible that the prior mass around f0 in the regression class decreases

more quickly than (4.14). In that case the lower bound on the r.h.s. of (4.13) is determined

by the prior on F . The following lemma assumes a so-called net-prior on the regression class

F , a construction that is explained in subsection 4.5.2.

Lemma 4.4. For an errors-in-variables model P based on a regression class Cβ,M [−A,A]

with a net-prior Π, the prior-mass condition (4.4) is satisfied by the sequence:

εn = n
− β

2β+1 (log n)
1
2β , (4.15)

for large enough n.

Proof Given β, the prior mass in neighbourhoods of the true regression function f0 for a net

prior Π is lower bounded by the expression on the r.h.s. in (4.38). Since this term dominates

in the r.h.s. of (4.13) for small δ, the prior mass of Kullback-Leibler neighbourhoods of P0 in

P satisfies the following lower bound:

log Π
(
B
(
Kδ log(1/δ);P0

))
≥ −L 1

δ1/β
,

for some constants K,L > 0 and small enough δ. Define ε = Kδ log(1/δ) and note that, for

small enough δ:

1
ε1/β

(
log

1
ε

)1/β
= K−1/β 1

δ1/β

(
log

1
δ

)−1/β(
log

1
δ
− logK − log log

1
δ

)1/β

≥ K−1/β 1
δ1/β

(
log

1
δ

)−1/β(
1
2 log

1
δ

)1/β

≥
(

1
2

)1/β
K−1/β 1

δ1/β
.

For the first inequality in the above display, we have used that logK ≤ log log 1
δ ≤

1
4 log 1

δ

(for small enough δ). We see that there exists a constant L′ > 0, such that, for small enough

ε > 0:

log Π
(
B(ε;P0)

)
≥ −L′ 1

ε1/β

(
log

1
ε

)1/β
.

The sequence εn satisfies εn ↓ 0 and nε2n →∞. Define the sequence an = n−β/(2β+1) and note

that εn ≥ an (for large enough n) so that for some constant R > 0:

log Π
(
B(εn;P0)

)
≥ log Π

(
B(an;P0)

)
≥ −L′ 1

a
1/β
n

(
log

1
an

)1/β

= −Rn
1

2β+1 (log n)
1
β = −Rnε2n,

for large enough n. �
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In the case of a parametric regression class (FΘ as defined under case (iii) in the beginning

of this section) and a prior on Θ with strictly positive and continuous density, the conditions of

lemmas 4.1 and 4.3 are satisfied. From lemma 4.15, we know that in the case of a parametric

class of regression functions, covering numbers satisfy (4.10). Furthermore, from lemma 4.17,

we know that for a parametric class, the prior mass in neighbourhoods of f0 satisfies (4.14).

The resulting conclusion for the rate of convergence in parametric regression classes is given

in the theorem below.

We summarize the main results in the following theorem by stating the rates of convergence

for the classes defined in the beginning of this section. The proof consists of combination of

the preceding lemmas.

Theorem 4.2. For the specified regression classes, the assertion of theorem 4.1 holds with

the following rates of convergence.

(i) If F = LipM (α) (for some α ∈ (0, 1] and M > 0) with a net prior, the prior-mass

condition for neighbourhoods of f0 in the regression class determines the rate, given by

the sequence εn defined in lemma 4.4 with β = α:

εn = n−
α

2α+1 (log n)
1
2α .

(ii) If F = Dα,M (q) (for some M > 0 and integer q ≥ 1) with a net prior, the prior-mass

condition for neighbourhoods of f0 again determines the rate, given by the sequence εn
defined in lemma 4.4 with β = q + α:

εn = n
− q+α

2q+2α+1 (log n)
1

2q+2α .

(iii) If F = FΘ is a parametric class with a prior that has a continuous and strictly positive

density throughout Θ, the rate is determined by the posterior convergence with regard to

the parameter F and is given by:

εn = n−1/2(log n)3/2.

Concerning the parametric rate of convergence, it is stressed that this rate applies to the

full, non-parametric problem and can not be compared with semi-parametric rates for esti-

mation of the parameter θ in the presence of the nuisance parameter F . With regard to the

logarithmic corrections to the powers of n in the expressions for the rate of convergence in

Lipschitz- and smoothness-classes, we note that they originate from (the proof of) lemma 4.4:

the logarithm is introduced by the transition from δ to ε, which compensates for the loga-

rithmic correction in the extent of the Kullback-Leibler neighbourhoods B(Kδ log(1/δ);P0).

When considering near-parametric rates (as in lemmas 4.1 and 4.3), logarithmic corrections

of this kind do not influence the calculation, but they do play a role in non-parametric regres-

sion. It is possible that these logarithmic corrections to the rate can be omitted, the proof
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depending on a version of theorem 4.1 along the lines of theorem 2.4 of Ghosal et al. (2000)

[39], in which the prior-mass condition is replaced by a more complicated, but less demanding

bound on a ratio of prior masses. Note that the rate (4.15) approaches that given in (4.12)

for large values of β, i.e. for regression classes with a high degree of differentiability.

Regarding classes with a high degree of differentiabilty, one might expect that suitably

restricted classes of analytic regression functions would allow for convergence at the rate (4.15)

in the limit β →∞, i.e. 1/
√
n. However, in that case (4.9) and (4.13) are dominated by the

contribution from the parameter F ∈ D, so the expected result would be the parametric rate

of convergence given above, i.e. 1/
√
n with logarithmic correction of the order (log n)3/2.

4.3 Model entropy

One of the two primary conditions in theorems on non-parametric Bayesian rates of conver-

gence (see, e.g. theorem 4.1), is an upper-bound on the covering numbers with respect to a

metric on the model, in our case the Hellinger metric. In this section, we relate the Hellinger

metric entropy of the model to entropy numbers of the three parametrizing spaces, i.e. I, F

and D. Due to technical reasons (see subsection 4.3.3, which contains the proofs of all lemmas

in this section), we can and shall express most results in terms of the L1(µ)-norm rather than

the Hellinger metric, demonstrating in the (proof of) theorem 4.3 that this does not influence

the entropy calculation.

4.3.1 Nets in parametrizing spaces

We start the discussion by considering the L1(µ)-distance between densities in the model that

differ only in one of the three parameters (σ, f, F ), the goal being the definition of an ε-net

over P from ε-nets over the spaces I, F and D separately.

With the following lemma, we indicate the possibility of generalizing the discussion that

follows to situations in which less is known about the error distribution, by a bound on the

L1(µ)-difference under variation of the parameter for the error distribution. For the next

lemma only, we define {ψσ : σ ∈ Σ} to be a family of Lebesgue densities of probability

distributions on R2, parametrized by σ in some (parametric or non-parametric) set Σ. The

densities pσ,f,F are still given by a convolution c.f. (4.2) (because we maintain the assumption

of independence of Z and (e, f)).

Lemma 4.5. For every f ∈ F and F ∈ D,

‖pσ,f,F − pτ,f,F ‖1,µ ≤ ‖ψσ − ψτ‖1,µ,

for all σ, τ ∈ Σ.

Specializing back to the situation of interest, we find the following lemma.
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Lemma 4.6. In the case of equally distributed, independent normal errors (e1, e2) with mean

zero and equal but unknown variance in the interval [σ, σ]:

‖ψσ − ψτ‖1,µ ≤ 4σσ−2|σ − τ |.

Similar inequalities can be derived for other parametric families of kernels, for instance

the Laplace kernel. In the case of a non-parametric family of error distributions, it may be

necessary to derive a (sharper) bound, based on the Hellinger distance between pσ,f,F and

pτ,f,F . This generalized approach is not pursued here and the rest of this paper relies on the

assumption that the errors (e1, e2) are as in the above lemma.

Next we consider the dependence of densities in the model on the regression function f .

Lemma 4.7. There exists a constant K > 0 such that for all σ ∈ I and all F ∈ D[−A,A]:

‖pσ,f,F − pσ,g,F ‖1,µ ≤ K‖f − g‖1,F , (4.16)

for all f, g ∈ F .

The bound depends on the distribution F for the underlying random variable Z and proves

the claim we made earlier, concerning identifiability of the regression function only up to null-

sets of the distribution F . To derive a bound that is independent of F , we note that for all

F ∈ D and all f, g ∈ C[−A,A]:

‖f − g‖1,F ≤ sup
{
|f − g|(z) : z ∈ [−A,A]

}
= ‖f − g‖, (4.17)

the right side being finite as a result of continuity of f and g and compactness of the interval

[−A,A]. Note that we cannot simply equate the uniform norm ‖ . ‖ in (4.17) to the L∞-norm

because the Lebesgue measure on [−A,A] does not dominate all F ∈ D.

The bound H2(P,Q) ≤ ‖p− q‖1,µ suggests that metric entropy numbers for the Hellinger

distance can safely be upper-bounded by those for the L1(µ)-norm. In cases where the class

of regression functions is non-parametric and in fact large enough to dominate the metric

entropy of the model, this line of reasoning is insufficient for optimal rates of convergence in

the Hellinger distance. The reason is the fact that it is the squared Hellinger distance that

is dominated by the L1(µ)-distance and not the Hellinger distance itself. As long as L1(µ)

entropy numbers are logarithmic, transition from L1(µ)- to Hellinger coverings leads only to

a larger constant. However, if the small-ε behaviour of L1(µ) entropy numbers is dominated

by terms of the form (4.29)), the replacement of ε by ε2 influences the calculation. Therefore,

we also provide the following lemma.

Lemma 4.8. For all σ ∈ I, f, g ∈ F and F ∈ D:

H(Pσ,f,F , Pσ,g,F ) ≤ 1
2σ

(∫
[−A,A]

(
f(z)− g(z)

)2
dF (z)

)1/2
.
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Although useful, the above bound depends on the particular values of σ, F , which is

undesirable in situations below. The lower bound for the interval I and the uniform bound

on |f − g|(z) serve to prove a bound on the Hellinger distance proportional to the uniform

norm (as opposed to its square-root) of the difference between regression parameters.

Corollary 4.1. There exists a constant L > 0 such that for all σ ∈ I, f, g ∈ F and F ∈ D:

H(Pσ,f,F , Pσ,g,F ) ≤ L‖f − g‖. (4.18)

The above two lemmas and the fact that approximation in the uniform norm of subclasses

of bounded continuous functions on closed intervals is well-understood, strongly suggests that

the class of regression functions is to be endowed with the uniform norm to find nets. We do

this in subsection 4.5.1 for the regression classes mentioned earlier.

To bound the contribution of the parameter F to the covering numbers of the model, we

approximate F by a discrete distribution F ′ with a number of support points that is bounded

by the approximation error in L1(µ). Note that the number of support points needed depends

on a power of log(1/ε), so that a sharper bound in terms of the Hellinger distance is not

necessary (see above).

Lemma 4.9. There exist constants C,C ′ > 0 such that for all (σ, f) ∈ I × F and F ∈ D,

there is a discrete F ′ on [−A,A] with less than C(log(1/ε))2 support points such that

‖pσ,f,F − pσ,f,F ′‖1,µ ≤ C ′ε.

We stress that the particular choice F ′ depends on the regression function f . The above

lemma implies that the set Dε of all discrete F ∈ D with less than C(log(1/ε))2 support points

parametrizes an ε-net over P. For any fixed pair (σ, f) ∈ I ×F , the ε-net parametrized by

Dε is a 2ε-net over the submodel Pσ,f = {pσ,f,F ∈ P : F ∈ D} so that

N
(
ε,Pσ,f , ‖ . ‖1,µ

)
≤ N

(
2ε, {pσ,f,F ∈ P : F ∈ Dε}, ‖ . ‖1,µ

)
.

The direct nature of the above approximation (as opposed to the procedure for the parameters

σ and f , where we first bound by a norm on the parametrizing variable and then calculate

the entropy in the parametrizing space) circumvents the notoriously difficult dependence of

mixture densities on their mixing distribution, responsible for the (logarithmically) slow rate

of convergence in deconvolution problems. Indeed, problems of this nature plague the method

of Fan and Truong (1993) [31], which is based on a kernel-estimate for F and leads to a

Nadaraya-Watson-type of estimator for the regression function. Here we are only interested

in covering the model P, which allows us to by-pass the deconvolution problem by means of

the above lemma.
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4.3.2 Metric entropy of the errors-in-variables model

This subsection is devoted entirely to the following theorem, which uses the lemmas of the

previous subsection to calculate the Hellinger entropy of the errors-in-variables model P.

Theorem 4.3. Suppose that the regression family F is one of those specified in the beginning

of section 4.2). Then there exist constants L,L′ > 0 such that the Hellinger covering numbers

of the model P satisfy:

logN(ε,P,H) ≤ L′
(
log

1
ε

)3
+ logN(Lε,F , ‖ . ‖), (4.19)

for small enough ε.

Proof If the class of regression functions F is a Lipschitz-class with exponent in (0, 1), we

set α equal to that exponent. In other cases we set α = 1.

Let ε > 0 be given, fix some σ ∈ I, f ∈ F . According to lemma (4.9) the collection Pε
σ,f of

all pσ,f,F ′ where F ′ is a discrete distribution in D with at most Nε = α2C
(
log(1/ε)

)2 support

points, forms an εα-net over Pσ,f with respect to the L1(µ)-norm. Therefore any εα-net Qε
σ,f

over Pε
σ,f is a 2εα-net over Pσ,f . Let Sε be a minimal εα-net for the simplex with `1-norm

in RNε . As is shown by lemma A.4 in Ghosal and Van der Vaart (2001) [40], the order of

Sε does not exceed (5/εα)Nε . Next we define the grid Gε = {0,±ε,±2ε, . . .} ⊂ [−A,A] and

Qε
σ,f as the collection of all distributions on [−A,A] obtained by distributing the weights in a

vector from Sε over the points in Gε. We project an arbitrary pσ,f,F ′ in Pε
σ,f onto Qε

σ,f in two

steps: given that F ′ =
∑Nε

i=1 λiδzi , for some set of Nε points zi ∈ [−A,A] and non-negative

weights such that
∑

i λi = 1, we first project the vector λ onto a vector in Sε and second,

shift the resulting masses to the closest point in Gε. One easily sees that the first step leads

to a new distribution F ′′ such that:

‖pσ,f,F ′ − pσ,f,F ′′‖1,µ ≤ ε.

As for the second step, in which F ′′ =
∑Nε

i=1 λ
′
iδzi is ‘shifted’ to a new distribution F ′′′ =∑Nε

i=1 λ
′
iδz′i such that |zi − z′i| ≤ ε, we note that:

∣∣pσ,f,F ′′ − pσ,f,F ′′′
∣∣(x, y) ≤ Nε∑

i=1

λ′i
∣∣ϕσ(x− zi)ϕσ(y − f(zi))− ϕσ(x− z′i)ϕσ(y − f(z′i))

∣∣
≤

Nε∑
i=1

λ′i

(∣∣ϕσ(x− zi)− ϕσ(x− z′i)
∣∣ϕσ(y − f(zi))

+
∣∣ϕσ(y − f(zi))− ϕσ(y − f(z′i))

∣∣ϕσ(x− z′i)
)
,

which implies that the L1(µ)-difference satisfies:

‖pσ,f,F ′′ − pσ,f,F ′′′‖1,µ

≤
Nε∑
i=1

λ′i

(∫ ∣∣ϕσ(x− zi)− ϕσ(x− z′i)
∣∣ dx+

∫ ∣∣ϕσ(y − f(zi))− ϕσ(y − f(z′i))
∣∣ dy).
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By assumption, the family of regression functions satisfies (4.7), which is used to establish

that there exists a constant K > 0 such that

‖pσ,f,F ′′ − pσ,f,F ′′′‖1,µ,≤ Kεα,

(for small enough ε), along the same lines as the proof of lemma 4.7. Summarizing, we assert

that for some constant K3 > 0, Qε
σ,f is a K2

3ε
α-net over Pσ,f . There exist an εα-net Iε over

I (with norm equal to absolute differences) and an εα/2-net Fε over F in the uniform norm.

(The order of Fε is bounded in lemmas 4.13 and 4.15.) By virtue of the triangle inequality

and with the help of lemma 4.5 and corollary 4.1, we find that constants K1,K2 > 0 exist

such that:

H(Pσ,f,F , Pτ,g,F ′) ≤ H(Pσ,f,F , Pτ,f,F ) +H(Pτ,f,F , Pτ,g,F ) +H(Pτ,g,F , Pτ,g,F ′)

≤ ‖pσ,f,F − pτ,f,F )‖1/2
1,µ +K‖f − g‖+ ‖pτ,g,F − pτ,g,F ′‖1/2

1,µ

≤ K1|σ − τ |1/2 +K2‖f − g‖+ ‖pτ,g,F − pτ,g,F ′‖1/2
1,µ ,

for all σ ∈ I, τ ∈ Iε, f ∈ F , g ∈ Fε and F, F ′ ∈ D. For every fixed pair (τ, g) ∈ Iε ×Fε, we

define the K2
3ε

α-net Qε
τ,g like above and choose F ′ in the above display so that pτ,g,F ′ lies in

Qε
τ,g and approximates pτ,g,F to within L1(µ)-distance proportional to εα. This shows that

the set:

Qε =
⋃{

Qε
τ,g : τ ∈ Iε, g ∈ Fε

}
,

forms a Kεα/2-net over P with respect to the Hellinger distance, where K = K1 +K2 +K3.

The order of this net can be calculated and forms an upper bound for the Hellinger covering

number of the model.

logN(Kεα/2,P,H) ≤ logN(εα, I, | . |) + logN(εα/2,F , ‖ . ‖) + logN(Qε
τ,g),

where N(Qε
τ,g) denotes the uniform bound on the number of points in the nets Qε

τ,g, given

by:

logN(Qε
τ,g) = L′′

(
log

1
ε

)3
,

for some constant L′′ > 0 as is easily checked from the above. Moreover, the covering numbers

for the finite-dimensional, bounded space I satisfy, for some constant L′′′ > 0:

logN(εα, I, | . |) ≤ L′′′ log
1
ε
.

(Note that in the two displays above, any exponent for ε (e.g. α/2) is absorbed in the constants

L′ and L′′). Note that for small enough ε, the contribution from the mixing parameter F

dominates that of the parameter σ. Eventually, we find the bound:

logN(ε,P,H) ≤ L′
(
log

1
ε

)3
+ logN(Lε,F , ‖ . ‖),

for small enough ε > 0 and some L,L′ > 0. �
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4.3.3 Proofs of several lemmas

Proof of lemma 4.5 Fix f ∈ F and F ∈ D, let σ, τ ∈ Σ be given. Consider the L1(µ)

difference:

‖pσ,f,F − pτ,f,F ‖1,µ ≤
∫

R

∫
R2

∣∣∣ψσ

(
x− z, y − f(z)

)
− ψτ

(
x− z, y − f(z)

)∣∣∣ dµ(x, y) dF (z),

by Fubini’s theorem. Translation invariance of the Lebesgue measure and the domain of inte-

gration R2 make it possible to translate over (z, f(z)) to render the inner integral independent

of z and integrate with respect to F with the following result:

‖pσ,f,F − pτ,f,F ‖1,µ ≤
∫

R2

∣∣∣ψσ(x, y)− ψτ (x, y)
∣∣∣ dµ(x, y),

thus leading to an upper bound that is independent of both f and F . �

Proof of lemma 4.6 The L1(µ)-difference of the densities ψσ and ψτ equals the total-

variational difference between the corresponding distributions Ψσ and Ψτ and can be expressed

in terms of the event {ψσ > ψτ} as follows:

‖ψσ − ψτ‖1,µ = 2
(
Ψσ(ψσ > ψτ )−Ψτ (ψσ > ψτ )

)
.

In the case of normally and equally distributed, independent errors (e1, e2) the kernel is

ψσ(x, y) = ϕσ(x)ϕσ(y), with σ ∈ I. Assuming that σ < τ , the event in question is a

ball in R2 of radius r0 centred at the origin (and its complement if σ > τ), where r20 =

(2σ2τ2/(τ2 − σ2)) log(τ2/σ2). Integrating the normal kernels over this ball, we find:

‖ψσ − ψτ‖1,µ = 2
∣∣∣e−1

2 (r0/σ)2 − e−
1
2 (r0/τ)2

∣∣∣ = 2e−
1
2 (r0/σ)2

∣∣∣1− σ2

τ2

∣∣∣ ≤ 4σ
σ2
|σ − τ |,

where we have used the upper and lower bounds for the interval I. �

Proof of lemma 4.7 Let σ ∈ I, F ∈ D[−A,A] and f, g ∈ F be given. Since the x-

dependence of the densities pσ,f,F and pσ,g,F is identical and can be integrated out, the L1(µ)-

difference can be upper-bounded as follows:

‖pσ,f,F − pσ,g,F ‖1,µ ≤
∫

R

∫
R

∣∣ϕσ

(
y − f(z)

)
− ϕσ

(
y − g(z)

)∣∣ dy dF (z).

Fix a y ∈ R and z ∈ [−A,A]. We note:

∣∣ϕσ(y − f(z))− ϕσ(y − g(z))
∣∣ ≤ ∣∣∣∫ y−g(z)

y−f(z)
ϕ′σ(u) du

∣∣∣ ≤ sup
{∣∣ϕ′σ(u)

∣∣ : u ∈ J
} ∣∣f(z)− g(z)

∣∣,
where J = [y−f(z)∨g(z), y−f(z)∧g(z)]. The uniform bound on the functions in the regression

class F guarantees that J ⊂ J ′ = [y −B, y +B]. If y ≥ 2B, then y −B ≥ 1
2y ≥ B > 0, so if,

in addition, 1
2y ≥ σ, we see that for all u ∈ J ′, u ≥ 1

2y ≥ σ, thus restricting u to the region in

which the derivative of the normal density decreases monotonously:∣∣ϕ′σ(u)
∣∣ ≤ ∣∣ϕ′σ(1

2y)
∣∣.
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Symmetry of the normal density allows us to draw the same conclusion if y lies below −2B

and −2σ. Using the explicit form of the normal density and the constant T = 2(B ∨ σ), we

derive the following upper bound on the supremum:

sup
{∣∣ϕ′σ(u)

∣∣ : u ∈ J
}
≤ Ks(y),

where the function s is given by:

s(y) =

|y|ϕ2σ(y), if |y| ≥ T ,

‖ϕ′σ‖∞, if |y| < T .

Note that s does not depend on the values of the parameters. Therefore:

‖pσ,f,F − pσ,g,F ‖1,µ ≤
∫

R

∫
R
Ks(y)

∣∣f(z)− g(z)
∣∣ dy dF (z).

Since the integral over s(y) is finite, the asserted bound follows. �

Proof of lemma 4.8 Consider a binary experiment E1 = (R3,B(3), {P,Q}), giving two pos-

sible distributions P,Q for the triplet (X,Y, Z) that describes the errors-in-variables model

(c.f. (4.1)). The map T that projects by T (X,Y, Z) = (X,Y ) leads to another binary exper-

iment E2 = (R2,B(2), {P T , QT }) which is less informative1 than E1. This property follows

from the fact that σ(X,Y ) ⊂ B(2) is such that T−1
(
σ(X,Y )

)
⊂ σ(X,Y, Z) ⊂ B(3), which

makes it possible to identify every test function in E2 with a test function in E1, while there

may exist test functions on R3 that are not measurable with respect to T−1
(
σ(X,Y )

)
. Corol-

lary 17.3 in Strasser (1985) [85] asserts that the Hellinger distance decreases when we make

the transition from a binary experiment to a less informative binary experiment, so we see

that:

H(P T , QT ) ≤ H(P,Q). (4.20)

In the case at hand, we choose P T = Pσ,f,F and QT = Pσ,g,F . From the definition of the

errors-in-variables model (4.1), we obtain the conditional laws:

LP

(
X,Y

∣∣ Z ) = N(Z, σ2)×N(f(Z), σ2),

LQ

(
X,Y

∣∣ Z ) = N(Z, σ2)×N(g(Z), σ2),

and, of course, LP (Z) = LQ(Z) = F . It follows that:

H2(P,Q) =
∫

R3

(
dP 1/2 − dQ1/2

)2
=
∫

R3

ϕσ(x− z)
(
ϕσ

(
y − f(z)

)1/2 − ϕσ

(
y − g(z)

)1/2
)2
dF (z) dx dy

=
∫

[−A,A]
H2
(
N(f(z), σ2), (N(g(z), σ2)

)
dF (z),

1The phrase “less informative” is defined in the sense of Le Cam, i.e. for every test function φ2 in E2, there

exists a test function φ1 in E1 such that Pφ1 ≤ P T φ2 and Qφ1 ≥ QT φ2 (see, for instance, Strasser (1985) [85],

definition 15.1).
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by Fubini’s theorem. A straightforward calculation shows that:

H2
(
N(f(z), σ2), (N(g(z), σ2)

)
= 2
(
1− e−

1
2

(
f(z)−g(z)

)2
/(2σ)2

)
≤ 1

4σ2

(
f(z)− g(z)

)2
,

where we use that 1 − e−x ≤ x for all x ≥ 0. Upon combination of the above two displays

and (4.20), we obtain:

H2(Pσ,f,F , Pσ,g,F ) ≤ 1
4σ2

∫
[−A,A]

(
f(z)− g(z)

)2
dF (z),

which proves the assertion. �

Proof of lemma 4.9 Let ε > 0, σ ∈ I, f ∈ F be given, fix M ≥ 2A ∨ 2B and k ≥ 1.

A Taylor-expansion up to order k − 1 of the exponential in the normal density demonstrates

that:

∣∣∣ϕσ(x− z)− 1
σ
√

2π

k−1∑
j=0

1
j!

(−1
2)j
(x− z

σ

)2j∣∣∣ ≤ 1
σ
√

2π
1
k!

(1
2)k
(x− z

σ

)2k

≤ 1
σ
√

2π

( e
2k

)k(x− z

σ

)2k
,

where we have used that k! ≥ kke−k. Similarly, we obtain:

∣∣∣ϕσ

(
y − f(z)

)
− 1
σ
√

2π

k−1∑
j=0

1
j!

(−1
2)j
(y − f(z)

σ

)2j∣∣∣ ≤ 1
σ
√

2π

( e
2k

)k(y − f(z)
σ

)2k
.

Considering |x|, |y| ≤M and using that σ ≥ σ > 0, we see that there exists a constant C1 > 0

(independent of σ and f) such that both residuals of the last two displays are bounded above

by (C1M
2/k)k. So for all x, y like above,∣∣pσ,f,F − pσ,f,F ′

∣∣(x, y)
≤ 1

2πσ2

∣∣∣∫ k−1∑
i,j=0

1
i!j!

(−1
2)i+j

(x− z

σ

)2i(y − f(z)
σ

)2j
d(F − F ′)(z)

∣∣∣
+ 4
(C1M

2

k

)k
+
(C1M

2

k

)2k
.

(4.21)

Lemma A.1 in Ghosal and Van der Vaart (2001) [40] asserts that there exists a discrete

distribution F ′ on [−A,A] with at most (k2 + 1) support points such that for all functions

ψf,ij(z) = z2if2j(z) the F - and F ′-expectations coincide, i.e.:∫
[−A,A]

ψf,ij dF =
∫

[−A,A]
ψf,ij dF

′.

Thus choosing F ′, the first term in (4.21) vanishes and we see that (for large enough k):

sup
|x|∨|y|≤M

∣∣pσ,f,F − pσ,f,F ′
∣∣(x, y) ≤ 5

(C1M
2

k

)k
. (4.22)
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For points (x, y) outside [−M,M ] × [−M,M ], we note that there exists a constant C2 > 0

such that for all |x| ≥ 2A, |y| ≥ 2B:

ϕσ(x− z) ≤ ϕσ

(
x
2

)
≤ C2ϕσ

(
x
2

)
,

ϕσ

(
y − f(z)

)
≤ ϕσ

(y
2

)
≤ C2ϕσ

(y
2

)
,

(C2 = ‖ϕσ‖∞/‖ϕσ‖∞ will do). Since M ≥ 2A ∨ 2B, there exists a constants C3, C4 > 0 such

that:∫
|x|∨|y|>M

pσ,f,F (x, y) dµ(x, y) ≤ C2

∫
|x|>M

ϕσ

(
x
2

)
dx

∫ ∫
ϕσ

(
y − f(z)

)
dF (z) dy

+ C2

∫
|y|>M

ϕσ

(y
2

)
dy

∫ ∫
ϕσ(x− z) dF (z) dx

= 4C2

∫
x>M

ϕσ

(
x
2

)
dx ≤ 4C2

∫
x>M

x

M
ϕσ

(
x
2

)
dx

≤ C3e
−C4M2

,

(4.23)

where we have used Fubini’s theorem and translation invariance of Lebesgue measure in the

second step and the fact that ϕ′σ(x) = −(x/σ2)ϕσ(x) in the last. Now, let ε > 0 be given. We

decompose the domain of integration for the L1(µ)-difference between pσ,f,F and pσ,f,F ′ into

the region where |x| ∨ |y| ≤ M and its complement. Using the uniform bound (4.22) on the

region bounded by M and (4.23) for the tails, we find that there is a constant D1 such that:

‖pσ,f,F − pσ,f,F ′‖1,µ ≤ D1

(
M2
(C1M

2

k

)k
+ e−C4M2

)
. (4.24)

In order to bound the r.h.s. by ε we fix M in terms of ε:

M =
√

1
C4

log 1
ε ,

and note that the lower bound M ≥ 2A∨2B is satisfied for small enough ε. Upon substitution,

the first term in (4.24) leads to (D1/C4)Dk
2 e

(k+1) log log
1
ε e−k log k (where D2 = C1/C4), so that

the choice:

k ≥ D3 log 1
ε ,

(for some large D3 > D2) suffices to upper bound the L1(µ)-difference appropriately. The

smallest integer k above the indicated bound serves as the minimal number of support points

needed. �

Note that the f -dependence of the functions ψf,ij carries over to the choice for F ′, which

is therefore f -dependent as well.

4.4 Model prior

Assume that the model is well-specified and denote by P0 ∈ P (corresponding to some, not

necessarily unique, σ0 ∈ I, f0 ∈ F and F0 ∈ D) the true distribution underlying the i.i.d.
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sample. We define a prior Π on P by defining priors on the parameter spaces I, F and D

and taking Π equal to the probability measure induced by the map (σ, f, F ) 7→ Pσ,f,F from

I×F ×D with product-measure to P. The prior on I is denoted ΠI and is assumed to have

a density πI , continuous and strictly positive at σ0. The prior ΠF on F is specified differently

for each of the classes defined in the beginning of section 4.2, but all have as their domain the

Borel σ-algebra generated by the norm topology on C[−A,A]. The definition of these priors

is postponed to subsection 4.5.2. The prior ΠD on D is based on a Dirichlet process with

base measure α which has a continuous and strictly positive density on all of [−A,A]. The

domain of ΠD is the Borel σ-algebra generated by the topology of weak convergence.

The fact that these priors are defined on the product of the parameter spaces rather than

the errors-in-variables model P itself, necessitates a lemma asserting appropriate measur-

ability. So before we discuss the properties of priors, we show that the map p̂ that takes

parameters (σ, f, F ) into densities pσ,f,F (c.f. (4.2)) is measurable.

Lemma 4.10. Endow I and F with their norm topology and D with the topology of weak

convergence. Then the map p̂ : I ×F ×D → L1(µ) is continuous in the product topology.

Proof The space D with the topology of weak convergence is metric, so the product topology

on I×F ×D is a metric topology as well. Let (σn, fn, Fn) be a sequence, converging to some

point (σ, f, F ) in I×F ×D as n→∞. As a result of the triangle inequality and lemmas 4.5–

4.7, the L1(µ)-distance satisfies:∥∥pσn,fn,Fn − pσ,f,F

∥∥
1,µ

≤ K1|σn − σ|+K2‖fn − f‖+
∥∥pσ,f,Fn − pσ,f,F

∥∥
1,µ
, (4.25)

for some constants K1,K2 > 0. Since Fn converges to F weakly, the continuity of the regres-

sion function f , combined with the continuity and boundedness of the Gaussian kernel and

the portmanteau lemma guarantee that∫
[−A,A]

ϕσ

(
x− z

)
ϕσ

(
y − f(z)

)
dFn(z) →

∫
[−A,A]

ϕσ

(
x− z

)
ϕσ

(
y − f(z)

)
dF (z),

as n → ∞ for all (x, y) ∈ R2. Using the (µ-integrable) upper-envelope for the model P and

dominated convergence, we see that∥∥pσ,f,Fn − pσ,f,F

∥∥
1,µ

→ 0,

and hence the r.h.s. of (4.25) goes to zero. We conclude that p̂ is continuous in the product

topology. �

Note that the L1(µ)- and Hellinger topologies on the model P are equivalent, so that the

above lemma implies continuity of p̂ in the Hellinger topology. Hence p̂−1 is a well-defined

map between the Borel σ-algebras of the model with the Hellinger topology and the product

I ×F ×D.

The following lemma establishes that the prior-mass condition (4.4) can be analysed for

the regression class and the parameter space for (σ, F ) separately. Lower bounds for the prior

mass in appropriate neighbourhoods of the point (σ0, F0) are incorporated immediately.
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Theorem 4.4. Suppose that the regression family F is one of those specified in the beginning

of section 4.2. Assume that the prior Π on P is of the product form indicated above. Then

there exist constants K, c, C > 0 such that:

Π
(
B
(
Kδ log(1/δ);P0

))
≥ C exp

(
−c
(
log(1/δ)

)3)ΠF

(
f ∈ F : ‖f − f0‖ ≤ δ

)
,

for small enough δ.

Proof If the class of regression functions F is a Lipschitz-class with exponent in (0, 1), we

set α equal to that exponent. In other cases we set α = 1.

Let ε > 0 be given. By lemma 4.9 there exists a discrete F ′0 in D with at most Nε =

C(log(1/ε))2 support points z1, . . . , zNε of the form F ′0 =
∑Nε

i=1 piδzi with
∑Nε

i=1 pi = 1, such

that:

‖pσ0,f0,F ′
0
− pσ0,f0,F0‖1,µ ≤ C ′εα,

for some constant C ′ > 0. Although the assertion of lemma 4.9 is stronger, we include the

power of α because we assume (without loss of generality) that the set of support points for

F ′0 is 2ε-separated. If this is not the case, take a maximal 2ε-separated subset and shift the

masses of other support points of F ′0 to points in the chosen subset within distance 2ε, to

obtain a new discrete distribution F ′′0 . Arguing as in the proof of theorem 4.3, we see that

the corresponding change in L1(µ)-distance between pσ0,f0,F ′
0

and pσ0,f0,F ′′
0

is upper-bounded

by a multiple of εα, since the family of regression functions satisfies (4.7) by assumption. The

distribution function F ′′0 so obtained may then replace F ′0. By lemma 4.11, there exists a

constant K3 > 0 such that for all F ∈ D:

‖pσ0,f0,F − pσ0,f0,F ′‖1,µ ≤ K3

(
εα +

Nε∑
i=1

∣∣F [zi − ε, zi + ε]− pi

∣∣).
Let (σ, f, F ) be a point in the parameter space of the model. The Hellinger distance between

pσ,f,F and pσ0,f0,F0 is upper-bounded as follows (for constants K1,K2 > 0):

H(Pσ,f,F ,Pσ0,f0,F0) ≤ H(Pσ,f,F , Pσ0,f,F ) +H(Pσ0,f,F , Pσ0,f0,F ) +H(Pσ0,f0,F , Pσ0,f0,F0)

≤
∥∥pσ,f,F − pσ0,f,F

∥∥1/2

1,µ
+H(Pσ0,f,F , Pσ0,f0,F ) +

∥∥pσ0,f0,F − pσ0,f0,F0

∥∥1/2

1,µ

≤ K1

∣∣σ − σ0

∣∣1/2 +K2

∥∥f − f0

∥∥
+
(∥∥pσ0,f0,F − pσ0,f0,F ′

0

∥∥
1,µ

+
∥∥pσ0,f0,F ′

0
− pσ0,f0,F0

∥∥
1,µ

)1/2
,

where we have used lemmas 4.5, 4.6 and corollary 4.1. Moreover, we see that there exists a

constant K4 > 0 such that for small enough η > 0 and P ∈ P such that H(P, P0) ≤ η:

−P0 log
p

p0
∨ P0

(
log

p

p0

)2
≤ K2

4η
2
(
log

1
η

)2
,
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as a result of lemma 4.12. Combining the last two displays and using definition (4.3), we find

that, for some constants K5,K6 > 0, the following inclusions hold:{
(σ, f, F ) ∈ I ×F ×D : |σ − σ0|1/2 ≤ εα, ‖f − f0‖ ≤ εα/2,

Nε∑
j=1

∣∣F [zj − ε, zj + ε]− pj

∣∣ ≤ εα
}

⊂
{

(σ, f, F ) ∈ I ×F ×D : H(Pσ,f,F , P0) ≤ K5ε
α/2
}

{
P ∈ P : H(P, P0) ≤ K5ε

α/2
}
⊂ B

(
K6ε

α/2 log(1/ε);P0

)
,

(4.26)

for small enough ε and with the notation p0 for the density of P0 (p0 = pσ0,f0,F0)). Using

the fact that the prior measure of the rectangle set on the l.h.s. of the first inclusion above

factorizes, we find that:

Π
(
B
(
K6ε

α/2 log(1/ε);P0

))
≥ ΠI

(
σ ∈ I : |σ − σ0|1/2 ≤ εα

)
ΠF

(
f ∈ F : ‖f − f0‖ ≤ εα/2

)
×ΠD

(
F ∈ D :

Nε∑
j=1

∣∣F [zj − ε, zj + ε]− pj

∣∣ ≤ εα
)
.

Note that εα ≥ ε for small enough ε, so that

ΠD

( Nε∑
j=1

∣∣F [zj − ε, zj + ε]− pj

∣∣ ≤ εα
)
≥ ΠD

( Nε∑
j=1

∣∣F [zj − ε, zj + ε]− pj

∣∣ ≤ ε
)
.

According to lemma 6.1 in Ghosal et al. (2000) [39] (also given as lemma A.2 in Ghosal and

Van der Vaart (2001) [40]), there are constants C ′, c′ > 0 such that

ΠD

( Nε∑
j=1

∣∣F [zj − ε, zj + ε]− pj

∣∣ ≤ ε
)
≥ C ′ exp

(
−c′Nε log(1/ε)

)
≥ C ′ exp

(
−c′C

(
log(1/ε)

)3)
.

Furthermore, continuity and strict positivity of the density of the prior ΠI imply that (see

the proof of lemma 4.17):

ΠI(σ ∈ I : |σ − σ0| ≤ εα) ≥ π1 ε
α = π1 exp

(
−α log(1/ε)

)
,

for some constant π1 > 0. Note that the exponent on the r.h.s. falls above all multiples of

−(log(1/ε))3 for small enough ε. Substitution of δ = εα/2 leads to the conclusion that there

exist constants K, c, C > 0 such that:

Π
(
B
(
Kδ log(1/δ);P0

))
≥ C exp

(
−c
(
log(1/δ)

)3)ΠF

(
f ∈ F : ‖f − f0‖ ≤ δ

)
,

for small enough δ. �

If the model is not identifiable in the parameter space I ×F ×D, the above conditions

are more stringent than necessary. The point (σ0, f0, F0) may not be the only one that is

mapped to P0, so the first inclusion in (4.26) may discount parts of the parameter space that

also contribute to the Kullback-Leibler neighbourhoods B(ε;P0). However, the methods we

use to lower-bound the prior mass rely on uniformity in the sense that neighbourhoods of

every point in the parameter space receive a certain minimal fraction of the total prior mass.

Therefore, identifiability issues do not affect the argument.



134 Errors-In-Variables regression

4.4.1 Lemmas

In the following lemma, it is assumed that the regression class F is one of those specified

in the beginning of section 4.2. If the class of regression functions is a Lipschitz-class with

exponent in (0, 1), we set α equal to that exponent. In other cases we set α = 1.

Lemma 4.11. Let ε > 0 be given and let F ′ =
∑N

i=1 piδzi be a convex combination of point-

masses, where the set {zi : i = 1, . . . , N} is 2ε-separated. Then there exists a constant K > 0

such that for all σ ∈ I, f ∈ F and all F ∈ D:

‖pσ,f,F − pσ,f,F ′‖1,µ ≤ K
(
εα +

N∑
i=1

∣∣F [zi − ε, zi + ε]− pi

∣∣),
for small enough ε.

Proof Let F be given. We partition the real line by R = ∪iAi ∪B, with B =
(
∩iBi

)
, where

Ai =
{
z : |z − zi| ≤ ε

}
, Bi =

{
z : |z − zi| > ε

}
,

and decompose the absolute difference between pσ,f,F and pσ,f,F ′ accordingly:

∣∣pσ,f,F − pσ,f,F ′
∣∣(x, y) =

∣∣∣∫
R
ϕσ(x− z)ϕσ

(
y − f(z)

)
d(F − F ′)(z)

∣∣∣
=
∣∣∣ N∑
i=1

∫
Ai

ϕσ(x− z)ϕσ(y − f(z)) d(F − F ′)(z) +
∫

B
ϕσ(x− z)ϕσ(y − f(z)) dF (z)

∣∣∣,
for all (x, y) ∈ R2. Integrating this expression over R2, we find that the L1(µ)-difference is

bounded as follows:

∥∥pσ,f,F − pσ,f,F ′
∥∥

1,µ
≤

N∑
i=1

∣∣F [zi − ε, zi + ε]− pi

∣∣+ F
( N⋂

i=1

Bi

)
+

N∑
i=1

∫
Ai

∫
R2

∣∣ϕσ(x− z)ϕσ(y − f(z))− ϕσ(x− zi)ϕσ(y − f(zi))
∣∣ dµ(x, y) dF (z),

by Fubini’s theorem and the triangle inequality. To upper-bound the last term on the r.h.s.

in the above display, we use that for all x, y ∈ R and z ∈ [−A,A]:∣∣ϕσ(x− z)ϕσ(y − f(z))− ϕσ(x− zi)ϕσ(y − f(zi))
∣∣

≤
∣∣ϕσ(x− z)− ϕσ(x− zi)

∣∣ϕσ(y − f(z)) +
∣∣ϕσ(y − f(z))− ϕσ(y − f(zi))

∣∣ϕσ(x− zi),

and argue as in the proof of lemma 4.7, to see that the integrand is bounded by a multiple

of |z − zi|α for small enough ε. Noting that the intervals [zi − ε, zi + ε] are disjoint due to

2ε-separation of the set {zi : i = 1, . . . , N}, we see that there exists a constant L′ > 0 such

that ∥∥pσ,f,F − pσ,f,F ′
∥∥

1,µ
≤ L′εα +

N∑
i=1

∣∣F [zi − ε, zi + ε]− pi

∣∣+ F
( N⋂

i=1

Bi

)
.
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Furthermore, by De Morgan’s law and the disjointness of the intervals [zi − ε, zi + ε]:

F
( N⋂

i=1

{
z : |z − zi| > ε

})
= 1− F

( N⋃
i=1

{
z : |z − zi| ≤ ε

})
=

N∑
i=1

pi −
N∑

i=1

F [zi − ε, zi + ε] ≤
N∑

i=1

∣∣F [zi − ε, zi + ε]− pi

∣∣,
which proves the assertion. �

Lemma 4.12. Let P,Q ∈ P be given. There exists a constant K > 0 such that for small

enough H(P,Q): ∫
p log

p

q
dµ ≤ K2H2(P,Q)

(
log

1
H(P,Q)

)2
,∫

p
(
log

p

q

)2
dµ ≤ K2H2(P,Q)

(
log

1
H(P,Q)

)2
.

(4.27)

The constant K does not depend on P,Q.

Proof Fix δ ∈ (0, 1] and consider the integral:

M2
δ =

∫
p
(p
q

)δ
dµ.

We shall prove that for a suitable choice of δ, M2
δ < ∞. Since all densities involved are

bounded away from zero and infinity on compacta, we consider only the domain O = R2 \
[−C,C]× [−C,C], for some large constant C ≥ A ∨B. Note that:∫

O
p
(p
q

)δ
dµ ≤

∫
O
U
(U
L

)δ
dµ,

where (L,U) forms an envelope for the model. This envelope follows from the fact that

the regression densities (4.2) fall in the class of mixture densities obtained by mixing the

normal kernel ϕσ(x)ϕσ(y) on R2 by means of a two-dimensional distribution that places all

its mass in the rectangle [−A,A] × [−B,B]. There exists a lower bound for this envelope

which factorizes into x- and y-envelopes (LX , UX) and (LY , UY ) that are constant on sets

that include [−A,A] and [−B,B] respectively and have Gaussian tails. The domain O can

therefore be partitioned into four subdomains in which either x or y is bounded and four

subdomains in which both coordinates are unbounded. Reflection-symmetries of the envelope

functions suffice to demonstrate that integrals of U(U/L)δ can be expressed as products of

trivially finite factors and integrals of the form:∫ ∞

L
UX(x)

(UX

LX

)δ
(x) dµ(x),

∫ ∞

L
UY (y)

(UY

LY

)δ
(y) dµ(y).

For large enough C, the envelope functions LX(x) and UX(x)) are equal to multiples of

ϕσ(x+A) and ϕσ(x−A)) on the domain (C,∞) and hence, for some constants c,K > 0:∫ ∞

L
UX(x)

(UX

LX

)δ
(x) dµ(x) ≤ K

∫ ∞

L
ecδx2

ϕσ(x−A) dx,



136 Errors-In-Variables regression

which is finite for small enough δ > 0. Similarly, one can prove finiteness of the integrals over

y. This proves that the condition for theorem 5 in Wong and Shen (1995) [97] is satisfied.

Note that the choice for δ is independent of p, q. Furthermore, the value of Mδ can be upper-

bounded independent of p, q, as is apparent from the above. Hence, for small enough η > 0,

(4.27) holds. �

4.5 Regression classes

Theorems 4.3 and 4.4 demonstrate that both the entropy and prior-mass conditions in theo-

rem 4.1 can be decomposed in a term that pertains to the regression function f and a term

pertaining to the parameters (σ, F ). This makes it possible to consider entropy and prior-mass

restricted to the regression class separately.

In the first subsection, we state a bound on the metric entropy of the classes Cβ,M [−A,A]

due to Kolmogorov, who derived it shortly after his introduction of the concept of covering

numbers. This bound is used in the second subsection to demonstrate that so-called net

priors can be used for non-parametric regression classes in this situation. Also discussed is

an alternative approach, that uses (adapted versions of) Jackson’s approximation theorem.

Up to a logarithmic correction, the second approach reproduces Kolmogorov’s bound for the

metric entropy, but upon application in the form of so-called sieve-priors, the resulting lower

bounds for the prior mass in neighbourhoods of the true regression function are sub-optimal

in a more grave manner. Nevertheless, we indulge in an explanation of the second approach,

because it provides a good example of the methods and subtleties of Bayesian procedures in

non-parametric problems. We also give the necessary bounds on the entropy and prior mass

of parametric regression classes.

4.5.1 Covering numbers of regression classes

The usefulness of bounds (4.17) and (4.18) indicates that the class of regression functions

parametrizing the model is best chosen within the (Banach-)space C[−A,A] of continuous

functions on the closed interval [−A,A] with the uniform norm ‖ . ‖. According to the Weier-

strass approximation, polynomials are dense in C[−A,A]; bounded families of polynomials

can therefore be used to approximate regression families F as characterised in point (c) at

the beginning of subsection 4.1.1. The Ascoli-Arzelà theorem asserts that if, in addition, F

is equicontinuous, it is relatively compact. Hence bounded, equicontinuous families F are

totally bounded in the norm-topology, rendering covering numbers finite,

N(ε,F , ‖ . ‖) <∞, (4.28)

for all ε > 0. As a side-remark, note that Schwartz’ conditions for consistency of Bayesian

procedures (see Schwarz (1965) [82]) require the existence of an asymptotically consistent
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sequence of test functions, which can be inferred from finiteness of covering numbers like

above (see, for instance, the subsection on consistency in [57]).

However, since we are interested in rates of convergence, finiteness of covering numbers is

not enough and a more detailed analysis of the behaviour of N(ε,F , ‖ . ‖) for small ε is needed.

We reproduce here a result due to Kolmogorov and Tikhomirov (1961) [60] (in a version as

presented in Van der Vaart and Wellner (1996) [89]), that gives the required bound:

Lemma 4.13. Let β > 0, M > 0 be given. There exists a constant K depending only on β

and A, such that:

logN
(
ε, Cβ,M [−A,A], ‖ · ‖

)
≤ K

(1
ε

)1/β
, (4.29)

for all ε > 0.

The proof of this lemma is a special version of the proof of theorem 2.7.1 in [89], which

consists of a fairly technical approximation by polynomials. To improve our understanding of

the above result, we briefly digress on an approach that is based on Jackson’s approximation

theorem.

Fix an n ≥ 1; Jackson’s approximation theorem (see Jackson (1930) [48]) says that if

f ∈ LipM (α), there exists an n-th order polynomial pn such that:

‖f − pn‖ ≤
K

nα
, (4.30)

where K > 0 is a constant that depends only on A and M . Moreover, if f ∈ Dα,M (q), there

exists a polynomial pn of degree n such that:

‖f − pn‖ ≤
K ′

nq+α
, (4.31)

where K ′ > 0 is a constant that depends on A, q, α and M . Indeed, in its most general

formulation, Jackson’s theorem applies to arbitrary continuous functions f , relating the degree

of approximation to the modulus of continuity. As such, it provides a more precise version of

Weierstrass’ theorem.

The class of all n-th degree polynomials is larger than needed for the purpose of defining

nets over the bounded regression classes we are interested in. Let B > 0 denote the constant

that bounds all functions in F . With given γ > 0, define P ′n = {p ∈ Pn : ‖p‖ ≤ (1+γ)B}. By

virtue of the triangle inequality, any polynomial used to approximate f as in (4.30) or (4.31)

satisfies a bound slightly above and arbitrarily close to B with increasing n. Hence, for large

enough n, P ′n is a L/nβ-net over Cβ,M [−A,A], where L > 0 is a constant that depends only

on the constants defining the regression class. For these finite-dimensional, bounded subsets

of C[−A,A], the order of suitable nets can be calculated. The upper-bound for the metric

entropy of Lipschitz and smoothness classes based on Jackson’s theorem takes the following

form.

Lemma 4.14. Let β > 0 and M > 0 be given. There exists a constant K ′ > 0 such that:

logN(ε, Cβ,M [−A,A], ‖ . ‖) ≤ K ′
(1
ε

)1/β
log

1
ε
,
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for small enough ε > 0.

Proof Let ε > 0 be given and choose n to be the smallest integer satisfying nβ ≥ 1/ε.

Define P ′′n = {p ∈ Pn : ‖p‖ ≤ L} for some L > B. As argued after (4.31), there is a

uniformly bounded set P ′n of polynomials of degree n that forms an ε-net over Cβ,M [−A,A].

If n is chosen large enough, P ′n is a proper subset of P ′′n . To calculate an upper bound for

the covering number of P ′n, let δ > 0 be given and let p1, . . . , pD be a (maximal) set of δ-

separated polynomials in P ′n, where D is the packing number D(δ, P ′n, ‖ . ‖). Note that the

balls Bi = {p ∈ P ′n : ‖p − pi‖ < 1
2δ}, (i = 1, . . . , D), do not intersect. If δ is chosen small

enough, Bi ⊂ P ′′n . The linear map p̂ : Rn+1 → Pn that takes a vector (a0, ..., an) into the

polynomial
∑n

m=0 amz
m is Borel measurable and is used to define the sets Ci = p̂−1(Bi). Note

that the sets Ci are obtained from C = p̂−1(P ′′n ) by rescaling and translation for all i. By the

same argument as used in the proof of lemma 4.32, we conclude that there is a constant L

such that the packing number satisfies:

D(δ, P ′n, ‖ . ‖) ≤
(L
δ

)n+1
,

for small enough δ > 0, which serves as an upper bound for the covering number as well.

Choosing δ equal to a suitable multiple of n−β for large enough n, we find a constant K ′ > 0

and a net over Cβ,M [−A,A] in Pn of order bounded by (K ′nβ)n+1. The triangle inequality

then guarantees the existence of a slightly less dense net over Cβ,M [−A,A] inside Cβ,M [−A,A]

of the same order. We conclude that there exists a constant K ′′ > 0 such that:

logN(ε, Cβ,M [−A,A], ‖ . ‖) ≤ K ′′n log nβ ,

for large enough n, which leads to the stated bound upon substitution of the relation between

ε and n. �

The power of ε in the bound asserted by the above lemma is that of lemma 4.13. The

logarithmic correction can be traced back to the n-dependence of the radius of the covering

balls Bi, i.e. the necessity of using finer and finer nets over P ′n to match the n-dependence in

the degree of approximation. Therefore, there is no obvious way of adapting the above proof

to eliminate the log(1/ε)-factor and Kolmogorov’s approach gives a strictly smaller bound on

the entropy. However, the above illustrates the origin of the β-dependence in the power of ε

more clearly.

For parametric classes (as given under (iii) in the beginning of section 4.2), the entropy

is bounded in the following lemma.

Lemma 4.15. For a parametric class FΘ, there exists a constant K > 0 such that the metric

entropy is bounded as follows:

logN(ε,FΘ, ‖ . ‖) ≤ K log
1
ε
, (4.32)

for small enough ε > 0.
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Proof Since, by assumption, Θ ⊂ Rk is bounded by some constant M ′ > 0, the covering

numbers of Θ are upper-bounded by the covering numbers of the ball B(M ′, 0) ⊂ Rk of

radius M ′ centred on 0. Let δ > 0 be given. Since covering numbers are bounded by packing

numbers, we see that:

N(δ,Θ, ‖ . ‖Rk) ≤ D(δ,B(M ′, 0), ‖ . ‖Rk).

Let θ1, . . . , θD (with D = D(δ,B(M ′, 0), ‖ . ‖Rk)) be a maximal δ-separated subset of B(M ′, 0).

The balls Bi = B(1
2δ, θi) do not intersect and are all contained in the ball B(M ′ + 1

2δ, 0) by

virtue of the triangle inequality. Therefore, the sum of the volumes of the balls Bi (which are

all equal and proportional to (1
2δ)

k, due to translation invariance and scaling behaviour of the

Lebesgue measure) lies below the volume of the ball B(M ′ + 1
2δ, 0). We conclude that:

D(δ,B(M ′, 0), ‖ . ‖Rk)(1
2δ)

k ≤ (M ′ + 1
2δ)

k.

Assuming that δ < 2M ′, we see that:

D(δ,B(M ′, 0), ‖ . ‖Rk) ≤
(4M ′

δ

)k
. (4.33)

Next, note that due to (4.8), any δ-net over Θ leads to a Lδρ-net over the regression class

FΘ, whence we see that:

N(Lδρ,FΘ, ‖ . ‖) ≤ N(δ,Θ, ‖ . ‖Rk). (4.34)

Let ε > 0 be given and choose δ = (ε/L)1/ρ. Combining (4.33) and (4.34), we find that there

exists a constant K > 0 such that:

logN(ε,FΘ, ‖ . ‖) ≤ K log
1
ε
,

for small enough ε. �

These bounds on the small-ε behaviour of the entropy are incorporated in the calculation

of bounds for the entropy of the errors-in-variables model through theorem 4.3.

4.5.2 Priors on regression classes

This subsection is devoted to the definition of a suitable prior ΠF on the regression class

F . The challenge is to show that ΠF places ‘enough’ mass in small neighbourhoods of any

point in the regression class. More specifically, a lower bound is needed for the prior mass of

neighbourhoods of the (unknown) regression function f0 ∈ F :

ΠF

(
f ∈ F : ‖f − f0‖ ≤ δ

)
, (4.35)

for small enough δ > 0 (refer to theorem 4.4).

Jackson’s theorem suggests that a natural definition of a prior on F entails the placement

of prior mass on all (finite-dimensional) linear spaces of n-th degree polynomials Pn on [−A,A],
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since their union is dense in C[−A,A] and therefore also in F . Fix the regression class F .

For all n ≥ 1 we define:

Fn = F ∩ Pn,

i.e. the subsets of n-th degree polynomials in the regression class2. Note that Fn ⊂ Fn+1

for all n, and that F lies in the closure of their union. The linear map p̂ : Rn+1 → Pn

that takes a vector (a0, ..., an) into the polynomial
∑n

m=0 amz
m can be used to define a subset

p̂−1(Fn) ⊂ Rk with Lebesgue measure strictly above zero. Normalizing the Lebesgue measure

to 1 on p̂−1(Fn), the inverse map p̂−1 serves to define a probability measure Πn on Fn. Any

sequence (bn)n≥0 such that bn ≥ 0 and
∑∞

n=0 bn = 1, may be used to define a prior ΠF by

the infinite convex combination:

ΠF (A) =
∞∑

n=0

bnΠn(A) =
∞∑

n=0

bnΠn(A ∩Fn), (4.36)

for all A in the Borel σ-algebra generated by the norm topology on F . Following Huang [45],

we refer to priors obtained in this manner as sieve priors (although arguably the sequence

(Πn)n≥1 is more deserving of this name than the (n-independent) prior ΠF ).

With a sieve prior, a proof of (4.4) amounts to showing that neighbourhoods of f0 have

intersections with the sets Fn and that the sum of the masses of these intersections is large

enough. Obviously, Jackson’s approximation provides a useful way to assert that balls cen-

tred on f0 intersect with all P ′n from a certain minimal n onward. However, as is apparent

from (4.35), this is not sufficient, because the relevant neighbourhoods are restricted to the

regression class F . One would have to show that these restricted neighbourhoods intersect

with the sets Fn.

Jackson’s theorem does not assert anything concerning Lipschitz-bounds of the approxi-

mating polynomial or derivatives thereof. The assertion that pn approximates f in uniform

norm leaves room for very sharp fluctuations of pn on small scales, even though it stays within

a bracket of the form [f−K/nβ , f+K/nβ ]. It is therefore possible that pn lies far outside Fn,

rendering neighbourhoods of pn in Pn unfit for the purpose. Although it is possible to adapt

Jackson’s theorem in such a way that the approximating polynomials satisfy a Lipschitz con-

dition that is arbitrarily close to that of the regression class, this adaptation comes at a price

with regard to the degree of approximation. As it turns out, this price leads to substantial

corrections for the rate of convergence and ultimately to sub-optimality (with respect to the

power of ε rather than logarithmically). That is not to say that sieve priors are in any sense

sub-optimal. (Indeed, sieve priors have been used with considerable success in certain situa-

tions; for an interesting example, see the developments in adaptive Bayesian estimation, for

2Alternatively, intersection of the spaces Pn with the model could be omitted and prior mass could be placed

on the entire space Pn (for every n ≥ 1). The support of the resulting prior ΠF (c.f. definition (4.36)) is then

strictly larger than the model F and theorem 4.1 no longer applies in the form given. Indeed, placing prior

mass on the approximating spaces rather than the model proper, would introduce new problems that manifest

themselves through the entropy condition (4.5) rather than the prior mass condition (4.4).
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instance in Huang [45].) The calculation underlying the claims made above merely shows that

the construction via adapted versions of Jackson’s theorem does not lead to optimal results,

leaving the possibility that a sieve prior satisfies (4.4) open. What it does show, however, is

that this may be very hard to demonstrate.

Therefore, we define the prior on the regression class in a different fashion, based on the

upper bounds for covering numbers obtained in the previous subsection. Let the regression

class F be a bounded, equicontinuous subset of C[−A,A], so that the covering numbers

N(ε,F , ‖ . ‖) are finite for all ε > 0. Let (am)m≥1 be a monotonically decreasing sequence,

satisfying am > 0 (for all m ≥ 1), and am ↓ 0. For every m ≥ 1, there exists an am-

net {fi ∈ F : i = 1, . . . , Nm} over F , where Nm = N(am,F , ‖ . ‖). We define, for every

m ≥ 1, a discrete probability measure Πm that distributes its mass uniformly over the set

{fi : i = 1, . . . , Nm}:

Πm =
Nm∑
i=1

1
Nm

δfi
.

Any sequence (bn)n≥0 such that bn ≥ 0 and
∑∞

n=0 bn = 1, may be used to define a prior ΠF

on F by the infinite convex combination:

ΠF (A) =
∞∑

m=0

bmΠm(A), (4.37)

for all A in the Borel σ-algebra generated by the norm topology on F . Priors defined in

this manner are referred to as a net priors and resemble those defined in Ghosal, Ghosh and

Ramamoorthi (1997) [38], (see also, Ghosal et al. (2000) [39]).

Note that for all m ≥ 1 and every f ∈ F , there is an fi satisfying ‖f − fi‖ ≤ am. So for

every f0 ∈ F and all δ > 0, we have:

Πm

(
‖f − f0‖ ≤ δ

)
≥ 1
Nm

,

if am ≤ δ, i.e. for all m large enough. This means that the priors Πm satisfy lower bounds

for the mass in neighbourhoods of points in the regression class, that are inversely related to

upper bounds satisfied by the covering numbers. As is demonstrated below, choices for the

sequences am and bm exist such that this property carries over to a prior of the form (4.37).

Lemma 4.16. Let β > 0 and M > 0 be given and define F to be the class Cβ,M [−A,A].

There exists a net prior ΠF and a constant K > 0 such that

log ΠF

(
f ∈ F : ‖f − f0‖ ≤ δ

)
≥ −K 1

δ1/β
, (4.38)

for small enough δ.

Proof Define, for all m ≥ 1, am = m−β . Then the covering number Nm satisfies, for some

constant K ′ > 0:

logNm = logN(am,F , ‖ . ‖) ≤ K ′a−1/β
m = K ′m,
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according to lemma 4.13. Let δ > 0 be given and choose the sequence bm = (1/2)m. Let M

be an integer such that:
1
δ1/β

≤M ≤ 1
δ1/β

+ 1.

Then for all m ≥M , am ≤ δ and, due to the inequality (4.37), the net prior ΠF satisfies:

ΠF

(
f ∈ F : ‖f − f0‖ ≤ δ

)
≥
∑

m≥M

bmΠm

(
‖f − f0‖ ≤ δ

)
≥
∑

m≥M

(e−K′

2

)m

≥ 1
2e
−K′M ≥ 1

2e
−K′(δ−1/β+1) ≥ 1

2e
−2K′δ−1/β

,

(4.39)

for small enough δ. �

For parametric classes, the prior mass in neighbourhoods of f0 is lower-bounded in the

following lemma.

Lemma 4.17. Assume that the regression class F is parametric: F = FΘ. Any prior ΠΘ

on Θ induces a prior ΠF with the Borel σ-algebra generated by the topology of the norm ‖ . ‖
as its domain. Furthermore, if ΠΘ is dominated by the Lebesgue measure and has a density

that is strictly positive at θ0, then there exists a constant R > 0 such that the prior mass in

neighbourhoods of f0 is bounded as follows:

log ΠF

(
f ∈ F : ‖f − f0‖ ≤ ε

)
≥ −R log

1
ε
, (4.40)

for small enough ε > 0.

Proof The Lipschitz condition (4.8) ensures that the map f̂ : Θ → FΘ : θ 7→ fθ is contin-

uous, implying measurability with respect to the corresponding Borel σ-algebras. So compo-

sition of ΠΘ with f̂−1 induces a suitable prior on FΘ. As for the second assertion, let δ > 0

be given. Since ΠΘ has a continuous Lebesgue density π : Θ → R that satisfies π(θ0) > 0 by

assumption and since θ0 is internal to Θ, there exists an open neighbourhood U ⊂ Θ of θ0
and a constant π1 > 0 such that π(θ) ≥ π1 for all θ ∈ U . Therefore, for all balls B(δ, θ0) ⊂ U

(i.e. for small enough δ > 0), we have:

ΠΘ

(
B(δ, θ0)

)
=
∫

B(δ,θ0)
π(θ) dθ ≥ Vkπ1δ

k,

where Vk is the Lebesgue measure of the unit ball in Rk. Note that due to property (4.8),{
θ ∈ Θ : ‖θ − θ0‖ ≤ δ

}
⊂
{
θ ∈ Θ : ‖fθ − f0‖ ≤ Lδρ

}
,

so that, for given ε > 0 and the choice δ = (ε/L)1/ρ:

log ΠF

(
f ∈ F : ‖f − f0‖ ≤ ε

)
≥ log ΠΘ

(
θ ∈ Θ : ‖θ − θ0‖ ≤ (ε/L)1/ρ

)
≥ log

(
Vkπ1(ε/L)k/ρ

)
≥ −R log

1
ε
,

for some constant R > 0 and small enough ε. �

The bounds on the small-ε behaviour of prior mass presented in this subsection are incor-

porated in the calculation of bounds for the prior mass of Kullback-Leibler neighbourhoods

B(ε;P0) through theorem 4.4.
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4.6 Optimal rate for the posterior of θ

Assume, from here on, that the family of regression functions is parametric, i.e. parametrized

by an open subset Θ of Rk for some finite dimension k ≥ 1. The most familiar example

is the linear errors-in-variables model, but the regression families studied in Taupin (2001)

[86] are also parametric. On the basis of the semi-parametric discussion, it is clear that

point-estimators for θ, at least in special cases, achieve rate 1/
√
n and can even be efficient.

Point-estimators derived from the posterior distribution given in previous sections cannot be

shown to converge at
√
n-rate, because the rate of convergence for the posterior is strictly

lower (see, e.g., theorem 2.5 in Ghosal et al. (2000) [39]). The purpose of the present section

is to understand under which conditions a posterior distribution for the parameter θ alone

converges to θ0 at rate 1/
√
n. In part, this is motivated by the more complicated problem

of deriving a Bernstein-Von-Mises theorem in semi-parametric estimation problems (see Shen

(2002) [84]). It is stressed that this section does not constitute a rigorous treatment, and

merely indicates future possibilities based on earlier results.

We assume that the random variables e1 and e2 are normally distributed with mean 0 and

have a known variances, both equal to 1. Hence the model P consists of probability measures

Pθ,F = Pσ=1,fθ,F , defined as in (4.2). The model is still assumed well-specified, i.e. there exist

θ0 ∈ Θ and F0 ∈ D such that P0 = Pθ0,F0 . Although not essential to the arguments that

follow, we also assume that the model is identifiable (which is reasonable for example in the

linear errors-in-variables model (see the introduction of [13])). We introduce a metric on the

space Θ×D as induced by the L1-metric for the densities pθ,F . The fact that the parameter

(θ0, F0) can be estimated consistently (which follows from the rate result derived in earlier

sections) allows us to restrict attention to neighbourhoods of the point of convergence. We

assume θ0 is an internal point of Θ and we assume that the restriction to Θ of the induced

L1-topology is equivalent to the Euclidean topology.

The Bayesian procedure for errors-in-variables estimation as given in earlier sections gives

rise to posterior convergence in Hellinger distance at 1/
√
n-rate corrected by a (log n)3/2 factor.

However, the parameter θ0 can be (point-)estimated at rate 1/
√
n, which suggests that the

posterior converges non-isotropically, in the following sense: picture the non-parametric model

in R2, where θ varies over the horizontal axis and F over the vertical (see figure 4.1).

The non-parametric rate (log n)3/2/
√
n for the pair (θ, F ) corresponds to the shrinking

sequence of circles centred on the point of convergence P0 and the results of previous sections

show that this sequence captures all posterior mass asymptotically. This does not preclude

the possibility that a sequence of smaller ellipses exists which also support all posterior mass

asymptotically, and moreover, that the axes spanning these ellipses shrink at different rates.

More particularly, it is possible that along the M -axis, the rate (log n)3/2/
√
n has to be

maintained, whereas the N -axis allows for the faster rate 1/
√
n. In that case, a (skew)

projection along the M -axis onto the θ-axis should suffice to achieve 1/
√
n-rate.
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In small neighbourhoods of P0, the above phenomenon is governed by the behaviour of the

likelihood. Continuing in a heuristic sense, one can think of the posterior density as propor-

tional to the likelihood asymptotically in small neighbourhoods of the point of convergence.

Asymptotic concentration of posterior mass in shrinking ellipses can then be inferred from a

suitable (i.e. second order) expansion of the likelihood. The approach we use here allows us to

restrict attention to the behaviour of the P0-expectation of the log-likelihood, or equivalently,

the Kullback-Leibler divergence with respect to P0.

M

P0

N

Figure 4.1 Convergence of the posterior distribution to

P0. The horizontal axis represents the parametric part

θ ∈ Θ; the vertical axis the non-parametric F ∈ D. The

sequence of concentric spheres are neighbourhoods of P0

that support almost all mass of the posterior and de-

crease in radius at rate (log n)3/2/
√

n. If the posterior

places almost all its mass in the dashed ellipses, spherical

neighbourhoods are inadequate and rates along the axes

M and N may differ. More specifically, the rate at which

the ellipses decrease in radius may be (log n)3/2/
√

n along

the M -axis and 1/
√

n along the N -axis.

A more rigorous analysis of the above requires a local reparametrization of the model P in

terms of two new parameters (φ,G) in Rk ×D, where the map (φ(θ, F ), G(θ, F )) is assumed

to be continuous, one-to-one and onto in an open neighbourhood U of (θ0, F0). Locally

around P0, the model P can be parametrized equivalently by (θ, F ) or (φ,G), i.e. there exist

densities qφ,G (defined in an open neighbourhood of (φ0, G0) = (φ(θ0, F0), G(θ0, F0))) such

that pθ,F = qφ(θ,F ),G(θ,F ) for all (θ, F ) ∈ U . For a neighbourhood W of φ0 in Θ and fixed G,
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the collection {qφ,G : φ ∈ W} defines a parametric submodel PG of P. On the submodels

PG, we shall impose regularity conditions, but we try to keep these weak in the sense that

they are not required to hold uniform in G, but for each choice of G separately. Furthermore,

we impose the requirement that for every submodel PG, there exists a unique φ∗G ∈ W such

that the Kullbach-Leibler divergence with respect to the true distribution P0 is minimized

over W :

−P0 log
qφ∗G,G

p0
= inf

φ∈W
−P0 log

qφ,G

p0
.

Let Gn be a sequence of parameters G defining a sequence Pn = PGn like above, with minima

φ∗n for the Kullback-Leibler divergence. Unless Gn happens to be equal to the true G0, the

model Pn is misspecified. For every n, we also choose a prior Πn on W and derive a posterior

on Pn based on an i.i.d. Pn
0 -distributed sample X1, . . . , Xn. The result is a sequence of

parametric models that satisfy the regularity conditions used in chapter 2, if the dependence

of the regression functions fθ on the parameter θ is sufficiently smooth. Moreover, suitable

choices of prior exist and testability of P0 versus alternatives in Pn at a fixed distance can

be related to the problem of testing P0 versus complements of Hellinger balls in the non-

parametric model (which was solved by means of the entropy condition in earlier sections).

Hence, based on theorem 2.2, it seems reasonable to assume that the posterior distributions

on each of the models Pn separately converge at rate 1/
√
n.

The following lemma proves the intuitively reasonable assertion that convergence at rate

1/
√
n of the posterior measures for a sequence of (misspecified) parametric submodels to

their individual Kullback-Leibler minima implies their convergence to the true value of the

parameter, if the sequence of minima itself converges at rate 1/
√
n. The sequence of submodels

may be chosen stochastically.

Lemma 4.18. Define a stochastic sequence of parametric models Pn like above. Assume that

the sequence of minima φ∗n satisfies:
√
n(φ∗n − φ0) = OP0(1). (4.41)

Furthermore, assume that for each of the (misspecified) models Pn, the posterior concentrates

around φ∗n at rate 1/
√
n in P0-expectation. Then, for every sequence Mn such that Mn →∞

Πn

(√
n‖φ− φ0‖ > Mn|X1, . . . , Xn

)
→ 0,

in P0-expectation.

Proof Let ε > 0 be given. Uniform tightness of the sequence
√
k(φ∗k−φ0) implies that there

exists a constant K such that:

sup
k≥1

Pn
0

(√
k‖φ∗k − φ0‖ > K

)
< ε. (4.42)

Define the events Ak = {
√
k‖φ∗k − φ0‖ ≤ K}. Let Mn be such that Mn → ∞. Taking

Ln,k = Mn/
√
n+K/

√
k, we see that

1Ak
Πn

(
‖φ− φ0‖ > Ln,k

∣∣∣ X1, . . . , Xn

)
≤ Πn

(
‖φ− φ∗k‖ > Mn/

√
n
∣∣∣ X1, . . . , Xn

)
,
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and therefore,

P0Πn

(
‖φ− φ0‖ > Ln,k

∣∣∣ X1, . . . , Xn

)
≤ P01Ak

Πn

(
‖φ− φ0‖ > Ln,k

∣∣∣ X1, . . . , Xn

)
+ P0(Ω \Ak)

≤ P0Πn

(
‖φ− φ∗k‖ > Mn/

√
n
∣∣∣ X1, . . . , Xn

)
+ ε.

LetM ′
n be given such thatM ′

n →∞. Introducing also a strictly positive sequence εl converging

to zero, we see that a corresponding sequence Kl exists such that (4.42) is satisfied for each

pair (εl,Kl). By traversing the sequence εl slowly enough, we can guarantee that Kl ≤ 1
2M

′
l

for all l ≥ 1. Replacing the fixed pair (ε,K) by the sequence (εl,Kl) in the above display and

specifying to the case k = n, we see that the assumed convergence:

P0Πn

(
‖φ− φ∗k‖ > Mn/

√
n
∣∣∣ X1, . . . , Xn

)
→ 0,

for every k and all sequences Mn →∞, implies that

P0Πn

(√
n‖φ− φ0‖ > Mn +Kn

∣∣∣ X1, . . . , Xn

)
→ 0.

The choice Mn = 1
2M

′
n then proves the assertion. �

For the misspecified models Pn, 1/
√
n-rate of posterior convergence (and also Bernstein-

von-Mises-type asymptotic normality) holds if the dependence of the likelihood on the pa-

rameter φ is sufficiently smooth (see, Kleijn and van der Vaart [58]).

What remains to be shown, is 1/
√
n-rate of convergence for the minima φ∗n, given that

we still have the freedom to fix the reparametrization and the choice for the model sequence

Pn. To see which choices may be expected to lead to the desired result, we turn again to

the simplified representation we used earlier, in terms of parameters (θ, F ) in R2. Assuming

second-order smoothness of the Kullback-Leibler divergence at P0, a Taylor expansion in (θ, F )

gives rise to the following:

−P0 log
pθ,F

p0
= 1

2(θ − θ0 F − F0)

(
Iθθ IθF

IFθ IFF

)(
θ − θ0

F − F0

)
+ . . . .

= 1
2Iθθ(θ − θ0)2 + 1

2IFF (F − F0)2 + (θ − θ0)IθF (F − F0) + . . . ,

(4.43)

up to third-order terms. Figure 4.2 gives the local behaviour of the Kullback-Leibler divergence

in terms of level sets, represented as ellipses to reflect the second-order expansion.

The reparametrization we choose is dictated by the axis M ′: if we choose the coordinate

φ(θ, F ) such that it is (approximately) constant along M ′, we may hope to double the order

of dependence of φ∗F −φ0 on F −F0. The simplest reparametrization that achieves this, is an

F -dependent shift D of θ: φ(θ, F ) = θ −D(F ),

G(θ, F ) = F,
(4.44)
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F

M’

D(F)

Figure 4.2 Local behaviour of the Kullback-Leibler

divergence around P0. The horizontal axis represents

the parametric part θ ∈ Θ; the vertical axis the non-

parametric F ∈ D. The ellipses are level-sets of the

Kullback-Leibler-divergence. Note that for every fixed

F , the Kullback-Leibler divergence as a function of θ is

locally parabolic with its minimum on the axis M ′. The

difference D(F ) is used to shift θ such that the resulting

coordinate is constant to second order along M ′, thus

aligning Kullback-Leibler minima.

as indicated in figure 4.2. In that case the models PG are simply shifted versions of Θ (locally

around θ0). Substituting (4.44) into (4.43) and requiring the term linear in F −F0 to vanish,

we find that with the choice:

D(F ) = I−1
θθ IθF (F − F0),

(where it is of course required that Iθθ is strictly positive) the same second-order expansion

in terms of (φ, F ) takes the (block-)diagonal form:

−P0 log
qφ,F

p0
= 1

2(φ− φ0 F − F0)

(
Iθθ 0

0 I

)(
φ− φ0

F − F0

)
+ . . . ,

where the I equals IFF − IθF I
−1
θθ IθF . Note that ∆(F0) = 0, so that φ0 = θ0. The upshot

is that minimizers of the Kullback-Leibler divergence are all equal to φ0 (i.e. are constant

along M ′) up to the order of the above expansion and, in particular, they depend on F − F0

in second order, rather than linearly. To conclude, we note that a consistent maximum-

likelihood estimator would approach (θ0, F0) along approximately the same axis M ′, since it

minimizes the empirical version of the Kullback-Leibler divergence. In fact, the construction

we are describing here coincides with a concept that plays a central role in the semi-parametric
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literature and goes under the name of the least-favourable direction: it is least-favourable

among one-dimensional submodels in the sense that it minimizes the Fisher-information and,

as such, provides lower bounds of asymptotic performance for semi-parametric estimation

procedures (see, e.g. chapter 25 in Van der Vaart (1998) [91]).

In the non-parametric case, we proceed along similar lines. Let F̂n = F̂n(X1, . . . , Xn)

be a sequence of estimators for F0, converging at rate εn. This sequence may be chosen as

follows: according to previous sections, the posterior concentrates its mass around (θ0, F0) at

rate εn = (log n)3/2/
√
n. Let (θ̂n, F̂n) be a sequence of (near-)maximisers of the maps:

(θ, F ) 7→ Πn(B(θ, F, εn) |X1, . . . , Xn ),

where B(θ, F, ε) ⊂ Θ × D is the L1(µ)-ball around (θ, F ) of radius ε. Such a sequence

converges to (θ0, F0) at rate εn = (log n)3/2/
√
n, because the posterior is a probability measure

concentrating its mass at the required rate. The marginal estimator sequence F̂n will suffice

for our purposes, but other point-estimators converging at comparable rates will suffice for

our purposes as well.

Assume that the Kullback-Leibler divergence is finite and twice continuously differentiable

in θ in a neighbourhood of (θ0, F0). For every fixed F , there is a second-order expansion of

the form:

−P0 log
pθ,F

p0
= 1

2(θ − θ∗F )VF (θ − θ∗F ) +O(‖θ − θ∗F ‖3), (4.45)

where θ∗F denotes the point at which the Kullback-Leibler divergence is minimal. The first-

order term vanishes, since by definition of θ∗F :

∂

∂θ
P0 log

pθ,F

p0

∣∣∣
θ=θ∗F

= 0.

If F = F0, this equation holds at θ = θ0. Subtracting the derivative of P0 log pθ,F

p0
at θ = θ0,

we obtain:

∂

∂θ
P0 log

pθ,F

p0

∣∣∣
θ=θ∗F

− ∂

∂θ
P0 log

pθ,F

p0

∣∣∣
θ=θ0

=
∂

∂θ
P0

(
log

pθ,F0

p0
− log

pθ,F

p0

) ∣∣∣
θ=θ0

.

When we substitute the expansion of the θ-derivative analogous to (4.45), we get:

VF (θ0 − θ∗F ) +O(‖θ0 − θ∗F ‖2) =
∂

∂θ
P0

(
log

pθ,F0

p0
− log

pθ,F

p0

) ∣∣∣
θ=θ0

.

Assuming that for every F ∈ D, the dependence θ 7→ log pθ,F (X) is differentiable with

respect to θ, P0-almost-surely, with score ˙̀
θ,F , and that differentiation and expectation may

be exchanged, we rewrite the above display in the form:

VF (θ∗F − θ0) +O(‖θ∗F − θ0‖2) = P0

( ˙̀
θ0,F − ˙̀

θ0,F0

)
.

Under the assumption that the matrix VF is invertible, we reparametrize by:φ(θ, F ) = θ − V −1
F P0

(
Πθ0,F

˙̀
θ0,F

)
,

G(θ, F ) = F,
(4.46)
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where the projection Πθ0,F pertains to the (L2(P0)-closure of) the tangent space for the

nuisance parameter F at the point (θ0, F ). Substituting, we find that up to higher order

terms (which can be expressed in different ways, for example with the help of the inverse

function theorem), the difference of φ∗F and φ0 behaves like:

φ∗F − φ0 ∼ V −1
F P0

(˜̀
θ0,F − ˜̀

θ0,F0

)
,

where ˜̀
θ,F is the efficient score function for θ. Note that φ∗F = φ(θ∗F , F ) by the assumption

that the minimum of the Kullback-Leibler divergence is unique in small neighbourhoods of

the point of convergence. It seems reasonable to expect the r.h.s. to satisfy:∥∥P0

(˜̀
θ0,F − ˜̀

θ0,F0

)∥∥ = O
(
‖pθ0,F − pθ0,F0‖α

)
, (4.47)

for some α > 1 (possibly even with α = 2). Substitution of the sequence F̂n chosen above

then leads to the desired result, since:

∥∥pθ0,F̂n
− pθ0,F0

∥∥α

1,µ
≤
∥∥pθ̂n,F̂n

− pθ0,F0

∥∥α

1,µ
= OP0

((log n)3α/2

nα/2

)
= OP0

( 1√
n

)
.

Actual implementation of the above in the errors-in-variables model requires that we shift the

parameter θ by an estimator sequence ∆n(X1, . . . , Xn) for the difference between score and

efficient score:
√
n
(
∆n −∆(F̂n)

)
= OP0(1).

Such estimators are known to exist and can be constructed explicitly (see [13]).

A proof of the Bernstein-Von-Mises theorem differs from the above, frequentist plug-in

approach in two important respects, because it is based on a marginal posterior distribution

for θ: first of all, a major part of the construction shown here stays ‘internal’ to the proof of

a Bernstein-Von-Mises theorem. For example the explicit construction of estimators ∆n like

in the above display is not necessary, because these do not have a place in the conditions or

assertions of a Bernstein-Von-Mises theorem. Secondly, we cannot rely on the Kullback-Leibler

divergence and its minimizers to ‘guide’ finite-dimensional Bernstein-Von-Mises assertions

along the least-favourable approach to (θ0, F0). Instead, the proof would incorporate an

expansion of the likelihood (combined with the Jacobian of the reparametrization used in

the above) in terms of the efficient score function, expressing local asymptotic normality in a

semi-parametric context. Restriction to suitable neighbourhoods of the point of convergence

should again follow from sequences of test: one sequence of tests that allow one to restrict to

(non-parametric) neighbourhoods converging at the slow, non-parametric rate, and the other,

based on the efficient score, allowing one to restrict to parametric neighbourhoods of θ0 at

rate 1/
√
n. The latter remarks, however, belong in future work rather than this thesis.
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Samenvatting

Een statistisch model is misgespecificeerd indien het de werkelijke verdeling van de data niet

bevat. Alleen in het geval dat het model volledig is, in de zin dat het alle verdelingen bestrijkt

die de data mogelijkerwijze kan hebben, kan men deze situatie op voorhand uitsluiten. De

reden voor het gebruik van misgespecificeerde modellen is niet alleen het feit dat volledige

modellen in praktijk te groot zijn voor toepassing van geëigende stellingen en schattingsmeth-

odes, maar ook vanwege de interpretatie die verleend kan worden aan de parameters in kleinere

modellen. Niettemin wordt op grote schaal gebruik gemaakt van de aanname dat het model

goed gespecificeerd is, zelfs in situaties waarin dit zeer onwaarschijnlijk geacht kan worden.

Het feit dat die veronderstelling dikwijls zonder consequenties blijft, doet vermoeden dat de

voorwaarde van een goed gespecificeerd model in stellingen tot op zekere hoogte overbodig

is, of vervangen kan worden door zwakkere voorwaardes op het model en de verdeling van de

data. Dit proefschrift kan worden samengevat als een poging dergelijke compatibiliteitsvoor-

waardes voor model en data te vinden, waar het stellingen in de asymptotiek van Bayesiaanse

methodes betreft.

Hoofdstuk 1 heeft tot doel de meest belangrijke concepten te introduceren op een zo een-

voudig mogelijk niveau, als inleiding op latere hoofdstukken waarin dezelfde concepten in

ingewikkeldere vorm terugkomen. Nadrukkelijk is getracht, analogieën tussen puntschatting

en Bayesiaanse methodes naar voren te brengen, voornamelijk om de toegankelijkheid voor

een breed publiek te garanderen. Met uitzondering van de laatste sectie, gaat het gehele

eerste hoofdstuk uit van een goed gespecificeerd model. Na een zeer beknopte introduc-

tie aangaande de keuze van een prior en de definitie van de posterior, wordt het asympto-

tisch gedrag van puntschatters besproken. Een en ander wordt gëıllustreerd aan de hand

van de maximum-likelihood schatter in parametrische modellen. Tevens wordt ingegaan op

lokaal-asymptotisch-normaal gedrag van de likelihood en asymptotische optimaliteitscriteria

voor puntschatters. Vervolgens concentreert zich de discussie op stellingen aangaande consis-

tentie (Doob, Schwarz), convergentiesnelheid (Ghosal–Ghosh–van-der-Vaart) en limietvorm

(Bernstein–Von-Mises) van de posterior. Tevens wordt toegelicht welke invloed dergelijke

eigenschappen van de posterior hebben op Bayesiaanse puntschatters. Het hoofdstuk sluit af

met een voorbeschouwing van de invloed van misspecificatie op de argumentatie.

Hoofdstuk 2 behandelt het limietgedrag van een posterior verdeling voor misgespeci-
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ficeerde, gladde, parametrische modellen. Het Bernstein–Von-mises theorema stelt dat, in

goed gespecificeerde modellen en onder bepaalde gladheidsvoorwaardes, de posterior con-

vergeert naar een normale verdeling. De laatste is gelocaliseerd op de maximum-likelihood

schatter en heeft als covariantie de inverse Fisher-informatie gedeeld door de grootte van het

sample. In een misgespecificeerd model kan een vergelijkbare stelling worden bewezen, waarbij

het punt van convergentie de Kullback-Leibler projectie van de ware verdeling is en de snelheid

van convergentie parametrisch blijft. De prijs die betaald wordt voor misspecificatie presen-

teert zich in de vorm van een grotere asymptotische variantie. Ook wordt aandacht besteed

aan stellingen aangaande convergentie-snelheid en consistentie onder zwakkere voorwaarden.

Hoofdstuk 3 behandelt de convergentiesnelheid van de posterior in niet-parametrische

modellen. De oneindige dimensie van het model heeft uiteenlopende consequenties: om te

beginnen is de definitie van een prior die zijn massa homogeen verdeelt over een oneindig-

dimensionaal model niet triviaal. Voorts is het bestaan van bruikbare rijen van test-functies

van kritiek belang. Beide problemen doen zich ook voor in het goed gespecificeerde geval.

Priors op modellen van waarschijnlijkheidsmaten stonden reeds in de jaren ’60–’70 volop in

de belangstelling. Het bestaan van test-functies kan worden afgeleid uit het gedrag van de

(Hellinger) metrische entropie van het model. In misgespecificeerde context blijkt de con-

structie van bruikbare priors analoog, maar moet voor het bestaan van test-rijen aanzienlijk

meer werk verricht worden. De convergentiesnelheid blijkt echter in veel gevallen niet gevoelig

voor model misspecificatie.

Hoofdstuk 4 geeft een Bayesiaanse analyse van Errors-In-Variables regressie. Het model

beschrijft twee variabelen waartussen bij benadering een functioneel verband bestaat. Niet

alleen is er sprake van “ruis” in beide gemeten grootheden, maar bovendien hangen beiden af

van een derde, ongemeten grootheid met onbekende verdeling. Het doel is schatting van het

functioneel verband. In de semi-parametrische literatuur wordt een parametrische familie van

regressie functies beschouwd en wordt de onbekende verdeling van de derde grootheid als niet-

parametrische nuisance behandeld. In het model dat in dit hoofdstuk wordt beschreven, wordt

ook de regressie-familie oneindig-dimensionaal verondersteld. Convergentiesnelheid voor de

posterior wordt gekwantificeerd in termen van de Hellinger afstand tussen dichtheden voor

het paar van gemeten grootheden. Het model heeft in dat geval twee niet-parametrische com-

ponenten. Het blijkt dat de convergentiesnelheid van de posterior bepaald wordt door de

langzaamst convergerende van de twee. Ook in dit geval zijn metrische entropy van het model

en uniformiteit van de prior bepalend voor het asymptotisch gedrag. De semi-parametrische

analyse wordt gemaakt in het tweede, deels speculatieve gedeelte van dit hoofdstuk: indien

de familie van regressie functies parametrisch gekozen wordt, dient zich de mogelijkheid aan

om het materiaal uit hoofdstuk 2 te gebruiken in een bewijs van parametrische convergen-

tiesnelheid. De methode is gebaseerd op de zogenaamde “least-favourable direction”, die ook

centraal staat in de semi-parametrisch benadering van het probleem. Een en ander biedt

tevens uitzicht op een semi-parametrische versie van het Bernstein–Von-Mises bewijs.
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Cover Illustrations

The figure on the front cover originates from Bayes (1763), An essay towards solving a problem in the doctrine of

chances, (see [3] in the bibliography), and depicts what is nowadays known as Bayes’ Billiard. To demonstrate

the uses of conditional probabilities and Bayes’ Rule, Bayes came up with the following example: one white ball

and n red balls are placed on a billiard table of length normalized to 1, at independent, uniformly distributed

positions. Conditional on the distance X of the white ball to one end of the table, the probability of finding

exactly k of the n red balls closer to that end, is easily seen to be:

P
`
k

˛̨
X = x

´
=

n!

k! (n− k)!
xk(1− x)n−k.

One finds the probability that k red balls are closer than the white, by integrating with respect to the position

of the white ball:

P ( k ) =
1

n + 1
.

Application of Bayes’ Rule then gives rise to a Beta-distribution B(k + 1, n − k + 1) for the position of the

white ball conditional on the number k of red balls that are closer. The density:

βk+1,n−k+1(x) =
(n + 1)!

k! (n− k)!
xk(1− x)n−k,

for this Beta-distribution is the curve drawn at the bottom of the billiard in the illustration.

The illustation on the back of the cover shows (part of) Thomas Bayes’ autograph.


