Confidence sets in a sparse stochastic block model with two communities of unknown sizes

arXiv:2108.07078 [math.ST]

Bas Kleijn
KdV Institute for Mathematics

Universiteit van Amsterdam
ABSTRACT

In a sparse stochastic block model with two communities of unequal sizes we derive two posterior concentration inequalities, for (1) posterior (almost-)exact recovery of the community structure; (2) a construction of confidence sets for the community assignment from credible sets with finite graph sizes, enabling exact frequentist uncertain quantification with Bayesian credible sets at non-asymptotic graph sizes. It is argued that a form of early stopping applies to MCMC sampling of the posterior to enable the computation of confidence sets at larger graph sizes.

[Based on joint work with J. van Waaij]

B. Kleijn, J. van Waaij, arxiv:1810.09533, 2108.07078
Part I

Sparse stochastic block models
Erdös-Rényi random graphs

Fix $n \geq 1$, denote $G_n = (V_n, E_n)$ complete graph with n vertices and percolate edges,

For every $e \in E_n$ independently, include e in $E'_n \subset E_n$ wp. p_n.

Result random graph $G(n, p_n) = (V_n, E'_n)$ (Erdös, Rényi (1959–1961)).
Sparsity phases of the Erdös-Rényi random graph

Fragmented

\[p_n < \frac{1}{n} \]
Many fragments
clusters \(\leq O(\log(n)) \)
\[E(N_i) = O(1) \]

Kesten-Stigum

\[\frac{1}{n} < p_n = a_n/n < \frac{\log(n)}{n} \]
Giant component
cluster \(\sim O(n) \)
\[E(N_i) = O(a_n) \]

Chernoff-Hellinger

\[p_n > \frac{\log(n)}{n} \]
Connected
cluster = \(n \)
\[E(N_i) = O(\log(n)) \]
Two-community stochastic block model

Consider $G_n = (V_n, E_n)$ with community assignment $\theta_n \in \Theta_n = \{0, 1\}^n$. Split $V_n = Z_0(\theta_n) \cup Z_1(\theta_n)$. For every $e \in E_n$ independently,

\[
\begin{cases}
 p_n, & \text{if } e \text{ lies within } Z_0 \text{ or } Z_1, \\
 q_n, & \text{if } e \text{ lies between } Z_0 \text{ and } Z_1.
\end{cases}
\]

Three-community SBM graph $X^n = (V_n, E'_n) \in \mathcal{X}_n$, $X^n \sim P_{\theta_n}$
Community detection

Example SBM with $n = 12$, $0 < q_n \ll p_n < 1$, $\theta_n = 000000111111$

Observation
Data $X^n \sim P_{\theta_n}$

Unobserved
Communities of θ_n
$Z_0(\theta_n), Z_1(\theta_n)$

Detection
Estimate with
$\hat{Z}_0(X^n), \hat{Z}_1(X^n)$
Asymptotic community detection

Definition 8.1 Given community assignments \(\theta_n \) for all \(n \geq 1 \), an estimator sequence \(\hat{\theta}_n : \mathcal{X}_n \rightarrow \Theta_n \) is said to recover \(\theta_n \) exactly, if,

\[
P_{\theta_n} \left(\hat{\theta}_n(X^n) = \theta_n \right) \rightarrow 1,
\]
as \(n \rightarrow \infty \).

Let \(k : \Theta_n \times \Theta_n \rightarrow \{0, 1, \ldots, n\} \) denote the Hamming distance.

Definition 8.2 Given community assignments \(\theta_n \) for all \(n \geq 1 \) and some sequence of error rates \((k_n) \) of order \(k_n = O(n) \), an estimator sequence \(\hat{\theta}_n : \mathcal{X}_n \rightarrow \Theta_n \) is said to recover \(\theta_n \) almost-exactly with error rate \(k_n \), if,

\[
P_{\theta_n} \left(k(\hat{\theta}_n(X^n), \theta_n) \leq k_n \right) \rightarrow 1,
\]
as \(n \rightarrow \infty \).
Part II

Posterior concentration
Posterior concentration (I)

Let,

\[\rho(p, q) = p^{1/2}q^{1/2} + (1 - p)^{1/2}(1 - q)^{1/2}, \]

denote the Hellinger-affinity between two Bernoulli-distributions with parameters \(p, q \in (0, 1) \).

Theorem 10.1 For fixed \(n \geq 1 \), suppose \(X^n \sim P_{\theta_n} \) with \(\theta_n \in \Theta_n \) and choose the uniform prior on \(\Theta_n \). Then,

\[E_{\theta_n}\cap(\{\theta_n\}|X^n) \geq 1 - \frac{n}{2}\rho(p_n, q_n)^{n/2} e^{n\rho(p_n, q_n)^{n/2}}, \]

implying that if,

\[n\rho(p_n, q_n)^{n/2} \to 0, \quad (1) \]

then the posterior recovers the true community assignment exactly.
Exact recovery in the Chernoff-Hellinger phase

Sparsity

\[p_n = a_n \frac{\log(n)}{n}, \quad q_n = b_n \frac{\log(n)}{n}. \]

Corollary 11.1 Assume the conditions of theorem 10.1. If the sequences \(a_n, b_n\) in the Chernoff-Hellinger phase satisfy,

\[
\left((\sqrt{a_n} - \sqrt{b_n})^2 - \frac{a_nb_n \log(n)}{2n} - 4 \right) \log(n) \to \infty,
\]

then the posterior recovers the community assignments exactly.

For \(a_n, b_n\) of order \(O(1)\), a simple sufficient conditions for exact recovery is,

\[
\left((\sqrt{a_n} - \sqrt{b_n})^2 - 4 \right) \log n \to \infty,
\]
Posterior concentration (II)

Define the (Hamming-)metric balls,

\[B_n(\theta_n, k_n) = \{ \eta_n \in \Theta_n : k(\eta_n, \theta_n) \leq k_n \} \],

(4)

Theorem 12.1 For fixed \(n \geq 1 \), suppose \(X^n \sim P_{\theta_n} \) with \(\theta_n \in \Theta_n \) and choose the uniform prior on \(\Theta_n \). For some \(\lambda_n \) with \(0 < \lambda_n < 1/2 \), let \(k_n \) be an integer such that \(k_n \geq \lambda_n n \). Then,

\[
E_{\theta_n} \Pi(B_n(\theta_n, k_n) \mid X^n) \geq 1 - \frac{1}{2} \left(\frac{e^{-1}}{\lambda_n \rho(p_n, q_n)^{n/2}} \right)^{\lambda_n n} \left(1 - \frac{e^{-1}}{\lambda_n \rho(p_n, q_n)^{n/2}} \right)^{-1}.
\]
Recovery in the Kesten-Stigum phase (I)

Sparsity \(p_n = \frac{c_n}{n}, \quad q_n = \frac{d_n}{n} \).

Proposition 13.1 If the sequences \(c_n, d_n \) and the fractions \(\lambda_n \) satisfy,
\[
\lambda_n n \left(\log(\lambda_n) + \frac{1}{4} \left(\sqrt{c_n} - \sqrt{d_n} \right)^2 - 1 \right) \to \infty,
\]
(5) then posteriors recover the community assignment almost-exactly with any error rate \(k_n \geq \lambda_n n \).

Corollary 13.2 Recovery c.f. (Decelle et al. (2011))

Let \(0 < \lambda < 1/2 \) be given. If, for some constant \(C > 1 \) and large enough \(n \),
\[
(\sqrt{c_n} - \sqrt{d_n})^2 > 4C(1 - \log(\lambda)),
\]
(6) then the posterior recovers the community assignment almost exactly with error rate \(k_n = \lambda n \).
Recovery in the Kesten-Stigum phase (II)

Corollary 14.1 Weak consistency (Mossel, Neeman, Sly (2016))
If the sequences c_n and d_n satisfy,

$$\frac{(c_n - d_n)^2}{2(c_n + d_n)} \to \infty,$$

(7)

the posterior recovers the true community assignment almost exactly with any error rate $k_n \geq \lambda_n n$ for some vanishing fraction $\lambda_n \to 0$.

Corollary 14.2 Let $0 < \lambda_n < 1/2$ be given, such that $\lambda_n \to 0$, $\lambda_n n \to \infty$. If, for some constant $C > 1$ and large enough n,

$$(\sqrt{c_n} - \sqrt{d_n})^2 + 4C \log(\lambda_n) \to \infty,$$

(8)

then the posterior recovers the community assignments almost exactly with error rate $k_n = \lambda_n n$.

14
Part III

Uncertainty quantification
Bayesian and frequentist uncertainty quantified

Definition 16.1 Given \(n \geq 1 \), a prior \(\Pi_n \) and data \(X^n \), a **credible set** of credible level \(1 - \gamma \) is any \(D(X^n) \subset \Theta_n \) such that:

\[
\Pi(D(X^n)|X^n) \geq 1 - \gamma,
\]

\(P_{\Pi_n} \)-almost-surely. In case \(\gamma = 0 \), \(D(X^n) \) is the support of the posterior.

Definition 16.2 Given \(\theta_n \in \Theta_n \) and data \(X^n \sim P_{\theta_n} \), a **confidence set** \(C(X^n) \subset \Theta_n \) of confidence level \(1 - \alpha \) is defined by any \(x^n \mapsto C(x^n) \subset \Theta_n \) such that,

\[
P_{\theta_n}(\theta_n \in C(X^n)) \geq 1 - \alpha.
\]
Lemma 17.1 Fix $n \geq 1$, let $\theta_n \in \Theta_n$, $X^n \sim P_{\theta_n}$ be given. For any $B \subset \Theta_n$, $0 < \beta < 1$,

$$E_{\theta_n} \Pi(B|X^n) \geq 1 - \beta \implies P_{\theta_n}(B \cap D(X^n) \neq \emptyset) \geq 1 - \frac{\beta}{1 - \gamma}.$$

for any credible set $D(X^n) \subset \Theta_n$ of credible level $1 - \gamma$.

![Diagram showing the enlargement of set D by sets $B(\theta)$ to form set C.](image)
Credible sets are confidence sets (I)

Proposition 18.1 For fixed $n \geq 1$, suppose $X^n \sim P_{\theta_n}$ with $\theta_n \in \Theta_n$. Every credible set $D(X^n)$ of credible level $1 - \gamma$ is a confidence set of confidence level,

$$P_{\theta_n}(\theta_n \in D(X^n)) \geq 1 - \frac{n}{2(1 - \gamma)}\rho(p_n, q_n)^{n/2} e^{n\rho(p_n, q_n)^{n/2}}. \quad (9)$$

Method 18.2 For graph size n, realised graph $X^n = x^n$, known p, q and realised posterior $\Pi(\cdot | X^n = x^n)$, choose a desired confidence level $0 < 1 - \alpha < 1$, we choose credible level,

$$1 - \gamma = \min\{1, (n/2\alpha)\rho(p, q)^{n/2} e^{n\rho(p, q)^{n/2}}\}. \quad (10)$$
Example 19.1 Take $p = 0.9$, $q = 0.1$ and confidence level $1 - \alpha = 0.95$. $\rho(p, q) = 0.6$ and $(n/2)\rho(p, q)^{n/2} \approx 0.0211$. As n varies,

any (unenlarged) credible set of credible level $1 - \gamma$ is a confidence set of confidence level 0.95
Enlarged credible sets are confidence sets (I)

The k-enlargement $C(X^n)$ of $D(X^n)$ is the union of all Hamming balls of radius $k \geq 1$ that are centred on points in $D(X^n)$,

$$C(X^n) = \left\{ \theta_n \in \Theta_n : \exists \eta_n \in D_n(X^n), k(\theta_n, \eta_n) \leq k \right\},$$

Proposition 20.1 For fixed $n \geq 1$, suppose $X^n \sim P_{\theta_n}$ with $\theta_n \in \Theta_n$. Define $k = \lceil \lambda n \rceil$. Then the k-enlargement $C(X^n)$ of any credible set $D(X^n)$ of level $1 - \gamma$ is a confidence set of confidence level,

$$P_{\theta_n}(\theta_n \in C(X^n)) \geq 1 - \frac{1}{2(1 - \gamma)} \left(\frac{e \rho(p_n, q_n)^{n/2}}{\lambda n} \right)^{\lambda n} \left(1 - \frac{e \rho(p_n, q_n)^{n/2}}{\lambda n} \right)^{-1}.$$
Enlarged credible sets are confidence sets (II)

Example 21.1 Again $p = 0.9$, $q = 0.1$ and confidence level $1 - \alpha = 0.95$. For $\lambda = 0.05$ and varying graph size n,

any $0.05n$-enlarged credible set of credible level $1 - \gamma$ is also a confidence set of confidence level 0.95.

Required credible level for confidence level $1 - \alpha = 0.95$ ($\lambda = 0.05$)

\[n \]
Enlarged credible sets are confidence sets (III)

Example 22.1 Again $p = 0.9$, $q = 0.1$ and confidence level $1 - \alpha = 0.95$. For $\lambda = 0.1$ and varying graph size $n,$

any $0.1n$-enlarged credible set of credible level $1 - \gamma$ is also a confidence set of confidence level 0.95

![Diagram](image_url)
Enlarged credible sets are confidence sets (IV)

Example 23.1 Again \(p = 0.9, \ q = 0.1 \) and confidence level \(1 - \alpha = 0.95 \). For \(\lambda = 0.25 \) and varying graph size \(n \),

any \(0.25n \)-enlarged credible set of credible level \(1 - \gamma \) is also a confidence set of confidence level 0.95.

![Graph showing the relationship between \(n \) and \(1 - \gamma \).

Required credible level for confidence level \(1 - \alpha = 0.95 \) \((\lambda = 0.25) \).
Part IV

Asymptotic uncertainty quantification
Asymptotic credible and confidence sets

Definition 25.1 Let \((\Theta, \mathcal{G})\) with priors \(\Pi_n\) and a collection \(\mathcal{D}\) of measurable subsets of \(\Theta\) be given. **Credible sets** \((D_n)\) of credible levels \(1 - o(a_n)\) are maps \(D_n : \mathcal{X}_n \rightarrow \mathcal{D}\) such that,

\[
P(\Theta \setminus D_n(X^n) | X^n) = o(a_n),
\]

\(P_{\Pi_n}\)-almost-surely.

Definition 25.2 Maps \(x \mapsto C_n(x) \subset \Theta\) are asymptotically consistent confidence sets (of levels \(1 - o(a_n)\)), if,

\[
P_{\theta,n}(\theta \notin C_n(X^n)) \rightarrow 0, \quad (= o(a_n))
\]

for all \(\theta \in \Theta\). \(C_n\) is asymptotically informative, if for all \(\theta' \neq \theta\),

\[
P_{\theta',n}(\theta \in C_n(X^n)) \rightarrow 0
\]
Credible sets with converging posteriors

Theorem 26.1 Suppose that $0 < \epsilon \leq 1$, $P_{\theta_0,n} \ll P_n^{\Pi_n}$ and

\[
\Pi \left(d_n(\theta_n, \theta_{0,n}) \leq r_n \mid X^n \right) \xrightarrow{P_{\theta_0,n}} 1
\]

Let $\hat{D}_n(X^n) = B_n(\hat{\theta}_n, \hat{r}_n)$ be level-$1 - \epsilon$ credible balls of minimal radii.

Then with high $P_{\theta_0,n}$-probability $\hat{r}_n \leq r_n$ and the sets,

\[
C_n(X^n) = B_n(\hat{\theta}_n, \hat{r}_n + r_n) \subset B_n(\hat{\theta}_n, 2r_n)
\]

have asymptotic coverage,

\[
P_{\theta_0,n} \left(\theta_{0,n} \in C_n(X^n) \right) \to 1,
\]
Credible sets \textit{without} converging posteriors

\textbf{Theorem 27.1} Let $0 \leq a_n \leq 1$, $a_n \downarrow 0$ and $b_n > 0$ such that $a_n = o(b_n)$ be given and let D_n denote level-$(1 - a_n)$ credible sets. Furthermore, for all $\theta \in \Theta$, let B_n be set functions such that,

(i) $\Pi_n(B_n(\theta_0)) \geq b_n,$

(ii) $P_{\theta_0,n} < b_n a_n^{-1} P_n | B_n(\theta_0).$

Then the credible sets D_n, enlarged by the sets B_n, are \textit{asymptotically consistent} confidence sets C_n, that is,

$$P_{\theta_0,n}(\theta_0 \in C_n(X^n)) \rightarrow 1.$$
Discussion

Sharpness of the bounds If posterior concentration bounds are not sharp, lower bounds for credible levels become unnecessary high and enlargement radii become unnecessarily large.

Early stopping Since only community assignments with high posterior probabilities are needed in credible sets of low credible level, small MCMC samples may not hamper the construction of confidence sets: some form of early stopping of the MCMC sequence may be justified.

Generalization and cross validation All of this generalizes and can be verified by simulation and cross validation.

Thank you for your attention

arXiv:2108.07078 [math.ST]
Extra Remote contiguity
Remote contiguity

Definition 30.1 Given $(P_n), (Q_n)$, Q_n is contiguous w.r.t. P_n ($Q_n \triangleleft P_n$), if for any msb $\psi_n : \mathcal{X}^n \rightarrow [0, 1]$

$$P_n \psi_n = o(1) \Rightarrow Q_n \psi_n = o(1)$$

Definition 30.2 Given $(P_n), (Q_n)$ and a $a_n \downarrow 0$, Q_n is a_n-remotely contiguous w.r.t. P_n ($Q_n \triangleleft a_n^{-1} P_n$), if for any msb $\psi_n : \mathcal{X}^n \rightarrow [0, 1]$

$$P_n \psi_n = o(a_n) \Rightarrow Q_n \psi_n = o(1)$$

Remark 30.3 Contiguity is stronger than remote contiguity.

Note that $Q_n \triangleleft P_n$ iff $Q_n \triangleleft a_n^{-1} P_n$ for all $a_n \downarrow 0$.
Le Cam’s first lemma

Lemma 31.1 Given \((P_n), (Q_n)\) like above, \(Q_n \prec P_n\) iff:

(i) If \(T_n \xrightarrow{P_n} 0\), then \(T_n \xrightarrow{Q_n} 0\)

(ii) Given \(\epsilon > 0\), there is a \(b > 0\) such that \(Q_n(\frac{dQ_n}{dP_n} > b) < \epsilon\)

(iii) Given \(\epsilon > 0\), there is a \(c > 0\) such that \(\|Q_n - Q_n \wedge c P_n\| < \epsilon\)

(iv) If \(dP_n/dQ_n \xrightarrow{Q_n-w.} f\) along a subsequence, then \(P(f > 0) = 1\)

(v) If \(dQ_n/dP_n \xrightarrow{P_n-w.} g\) along a subsequence, then \(Eg = 1\)
Criteria for remote contiguity

Lemma 32.1 Given \((P_n), (Q_n)\), \(a_n \downarrow 0\), \(Q_n \prec a_n^{-1} P_n\) if any of the following holds:

(i) For any bnd msb \(T_n : \mathcal{X}^n \rightarrow \mathbb{R}\), \(a_n^{-1} T_n \xrightarrow{P_n} 0\), implies \(T_n \xrightarrow{Q_n} 0\)

(ii) Given \(\epsilon > 0\), there is a \(\delta > 0\) s.t. \(Q_n(\frac{dP_n}{dQ_n} < \delta a_n) < \epsilon\) f.l.e.n.

(iii) There is a \(b > 0\) s.t. \(\liminf_{n \to \infty} b a_n^{-1} P_n(\frac{dQ_n}{dP_n} > b a_n^{-1}) = 1\)

(iv) Given \(\epsilon > 0\), there is a \(c > 0\) such that \(\|Q_n - Q_n \wedge c a_n^{-1} P_n\| < \epsilon\)

(v) Under \(Q_n\), every subsequence of \((a_n(\frac{dP_n}{dQ_n})^{-1})\) has a weakly convergent subsequence