
C++ Programmeermethoden, Assignment4:
Virus Game

Bas Terwijn

May 6, 2024

1 Introduction

In this assignment we will create our own computer game and practice using
Modern C++ concepts: dynamic polymorphism, RAII, STL Containers, and
STL Algorithms. You will be graded on your software being “simple” (as in
not overly complex). Software that is more simple is easier to understand
and easier to change. These characteristics are important for software that is
in use in the real world as often software needs to be changed regularly. We
will use Kate Gregory’s description of simple software from her “Simplicity:
not just for beginners” talk, take some time to watch it first. It is also
part of the exam material!

2 Tasks

Next, install and run VirusGame on your computer using the installation
instructions provided, have a look at the documentation and code to get
somewhat familiar with it. Then work on the following tasks.

1

https://www.youtube.com/watch?v=n0Ak6xtVXno
https://www.youtube.com/watch?v=n0Ak6xtVXno
https://bitbucket.org/bterwijn/virusgame


2.1 task1: Dynamic Polymorphism

Currently in VirusGame.cpp all Virus units are stored in a static array:

Virus units[max_nr_units];

But we want to be able to add objects of other classes as units besides
only the “Virus” objects. In addition we want to handle the “player” object
as just another unit so the code gets simpler. Therefore change the “units”
array so that units of different types can be added to it by using dynamic
polymorphism.

2.2 task2: Avoid Duplicate Code

Avoid having duplicate code or expressions or said differently: don’t repeat
yourself (DRY). The Virus::step() function is currently already a duplicate
of Player::step(). Find a good way to avoid that and any other duplication,
maybe using ’inheritance’.

2.3 task3: RAII

When using dynamic polymorphism you will often have to dynamically al-
locate memory when you instantiate objects. This could be done using the
“new” keyword. However, you will then also have to remember to deallocate
the memory using the “delete” keyword to avoid memory leaks when it is
no longer needed. Forgetting or double deallocation is a big security risks.
A better alternative is to use RAII (Resource Acquisition Is Initialization).
With RAII the deallocation of a resource is put in a destructor of an object
so that is automatically done only once when an object goes out of scope and
its destructor gets called. Use RAII in your code to make sure all resources
are deallocated automatically. For more information see:

• RAII documentation

• video Back to Basics: RAII in C++, Andre Kostur

2.4 task4: STL Containers

The modern Standard Template Library containers are the preferred
data structures in C++. Prefer std::vector over a static array as:

2

https://en.cppreference.com/w/cpp/language/raii
https://www.youtube.com/watch?v=Rfu06XAhx90
http://www.cplusplus.com/reference/stl/


• it can grow to arbitrary size

• it knows its own size

• it doesn’t decay to a pointer when passed to a function

• an assignment makes a full (deep) copy

• it has only little overhead compared to a static array

Therefore replace the static array mentioned in task1:

Virus units[max_nr_units];

and the ”nr units” counter with a std::vector. Also prefer STL contain-
ers if you decide to add other data structures.

2.5 task5: STL Algorithms

ES.1 of C++ Core Guidelines recommends using the standard library
over “handcrafted code”. Therefore use as much as possible the functions
defined in the STL Algorithms Library instead of for example raw for-
loops. For a gentle introduction to STL Algorithms see the “105 STL
Algorithms in Less Than an Hour” talk by Jonathan Boccara.

2.6 task6: Your Own Creative Game Extension

The VirusGame is not yet finished. Extend it so it has interesting game
play. Maybe the player has to avoid touching the viruses, or shoot them,
or bump into them to bounce them into an anti-virus unit. Add at least
one other unit type (see “task1: dynamic polymorphism”). Maybe also
add some special effects like explosions or tire skid marks or keep a score.
The more creative the better, make it fun. You are free to change anything
in the provided source code. Design your own game, but if you need some
inspiration see:

• VirusGame Example

Write a short description of your extensions with references to the source
code in the README.md file. Maybe also describe how your game should
be played, in case it is not obvious, just so that graders don’t miss anything
when grading.

3

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/container
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lib
https://en.cppreference.com/w/cpp/algorithm
https://www.youtube.com/watch?v=2olsGf6JIkU
https://www.youtube.com/watch?v=2olsGf6JIkU
https://youtu.be/VqADxoTYNoo


2.7 task7 (advanced, optional): SOLID principles

As source code grows from a few hundred lines to many thousands of lines
it tends to get harder and harder to change. This is one of the most difficult
problems in software engineering. There are different schools of thought on
how to alleviate this problem. One of these is using the SOLID principles
which focuses on reducing code dependencies. For the SOLID principles see
the “Breaking Dependencies: The SOLID Principles” and “Free
Your Functions!” talks by Klaus Iglberger. Try to use the SOLID prin-
ciples to decide how to (re)structure your code. Describe the code structure
decisions you made in relation to the SOLID principles in the README.md
file with references to your source code.

3 Grading

Your grade will follow from which tasks you complete to a satisfactory level:

task points
task1: Polymorphism 1.5
task2: Avoid Duplicate Code 1
task3: RAII 1.5
task4: STL Containers 1
task5: STL Algorithms 1
task6: Creative Extension 4
task7: SOLID principles (bonus) +1

Points will be deducted for code that is not simple as described by the before
mentioned “Simplicity: not just for beginners” talk by Kate Gregory.

4 Submission

Submit your code as a zip file of the whole VirusGame project before the
deadline on Canvas. Remove the compiled executables (the ”build” direc-
tory) and other derivatives that are not needed to compile your code in order
to reduce the size. If you add other dependencies (additional libraries) de-
scribe them in the README.md so graders can install them. Double check
that your submission contains all required files and compiles before you sub-
mit.

4

https://www.youtube.com/watch?v=Ntraj80qN2k
https://www.youtube.com/watch?v=WLDT1lDOsb4
https://www.youtube.com/watch?v=WLDT1lDOsb4
https://www.youtube.com/watch?v=n0Ak6xtVXno

	Introduction
	Tasks
	task1: Dynamic Polymorphism
	task2: Avoid Duplicate Code
	task3: RAII
	task4: STL Containers
	task5: STL Algorithms
	task6: Your Own Creative Game Extension
	task7 (advanced, optional): SOLID principles

	Grading
	Submission

