Category Theory 2017 - Exercise sheet 1

1. The objects of **Rel** are sets and an arrow $A \to B$ is a subset $R \subseteq A \times B$. The identity arrow on a set A is $\{\langle a, a \rangle \in A \times A \ a \in A\}$. For $R: A \to B$ and $S: B \to C$, the composition $S \circ R$ is given by

$$S \circ R := \{ \langle a, c \rangle \in A \times C \mid \exists b \in B \ (\langle a, b \rangle \in R \land \langle b, c \rangle \in S) \}$$

- (a) Show that **Rel** is a category.
- (b) Show that there is a functor **Sets** \rightarrow **Rel** taking objects to themselves and a function $f: A \rightarrow B$ to its graph,

$$G(f) := \{ \langle a, f(a) \rangle \mid a \in A \}$$

- 2. Show that there is an isomorphism $F: \operatorname{\mathbf{Rel}} \to \operatorname{\mathbf{Rel}}^{\operatorname{op}}$. (An *isomorphism* from a category \mathbb{C} to a category \mathbb{D} is a functor $F: \mathbb{C} \to \mathbb{D}$ such that there exists a functor $G: \mathbb{D} \to \mathbb{C}$ with $F \circ G = 1_{\mathbb{D}}$ and $G \circ F = 1_{\mathbb{C}}$.)
- 3. Show how to define a functor $F: \mathbf{Cat} \to \mathbf{Cat}$ such that for each category $\mathbb{C}, F(\mathbb{C}) = \mathbb{C}^{\mathrm{op}}.$
- 4. Let \mathbb{C} be a category. We will define a new category \mathbb{C}^{\rightarrow} , called the *arrow* category on \mathbb{C} . Each object of the arrow category is an arrow $f: A \rightarrow B$ of \mathbb{C} . An arrow from $f: A \rightarrow B$ to $g: C \rightarrow D$, is a pair of arrows $h: A \rightarrow C$ and $k: B \rightarrow D$ such that $k \circ f = g \circ h$.
 - (a) Check that \mathbb{C}^{\rightarrow} is a category.
 - (b) Show how to define a functor $F: \mathbf{Cat} \to \mathbf{Cat}$ such that $F(\mathbb{C}) = \mathbb{C}^{\to}$.