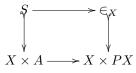
Category Theory 2017 - Exercise sheet 11

- 1. In the lecture we defined a subobject classifier to be a subobject $A \rightarrow \Omega$ such that for any subobject $X \rightarrow Y$ there exists a unique map $f: Y \rightarrow \Omega$ such that $f^*A = X$. Deduce from this that A = 1 and hence that this definition coincides with Awodey's.
- 2. Let \mathbb{C} be a small category. Recall that we define the presheaf Ω by taking $\Omega(a)$ to be the set of sieves on a.
 - (a) Show how to define Ω on morphisms and check that this is a presheaf.
 - (b) Recall that we define the natural transformation ⊤: 1 → Ω by taking ⊤_a(*) to be the maximal sieve on a (the set of all morphisms into a). Let Y be a presheaf, and let X be a subpresheaf of Y. Define f: Y → Ω by taking f_c(y) to be {α: d → c | d ∈ Ob(ℂ), y ⋅_B α ∈ X(d)}. Show that the square below is a pullback:

- (c) Show that f is the unique morphism with this property and deduce that Ω is a subobject classifier.
- 3. Let X be an object of a category \mathbb{C} . A power object on X is an object PX, together with a subobject $\in_X \to X \times PX$ such that for every object A and every subobject $S \to X \times A$ there exists a unique map $A \to PX$ making the diagram below a pullback:



- (a) Show that in **Sets** every object has a power object.
- (b) Show that in any *topos* (a category with finite limits, exponentials and a subobject classifier) every object has a power object. (Hint: Take PX to be Ω^X .)
- 4. A topos is 2-valued if a coproduct inclusion $1 \to 1 + 1$ is a subobject classifier. Show that M**Sets** is 2-valued if and only if M is a group. (Hint: An *ideal* in a monoid M is a subset $I \subseteq M$ such that if $g \in I$ and $h \in M$ then $gh \in I$. Show that a monoid is a group if and only if the only ideals are \emptyset and M.)