Category Theory 2017 - Exercise sheet 2

- 1. Show that for any category \mathbb{C} , there is a functor $H: \mathbb{C}^{\text{op}} \times \mathbb{C} \to \text{Sets}$ such that for objects C and D of \mathbb{C} , H(C, D) = Hom(C, D).
- 2. Let \mathbb{C} be a category and let $f: A \to B$ be an isomorphism in \mathbb{C} .
 - (a) Show that the inverse of f is unique (i.e. if g and g' are both inverses of f then g = g') and that the inverse is also an isomorphism.
 - (b) Show that for any functor $F \colon \mathbb{C} \to \mathbb{D}$, F(f) is also an isomorphism and its inverse is $F(f^{-1})$.
- 3. Let f, g, h be morphisms such that $h = g \circ f$.
 - (a) Show that if g and f are both monomorphisms, then so is h.
 - (b) Show that if g and f are both epimorphisms, then so is h.
 - (c) Show that if h is monic, then so is f.
 - (d) Show that if h is epic, then so is g.
 - (e) Show that if any two of h, f and g are isomorphisms, then so is the third.
- (a) Show that a morphism f: A → B in Sets is monic if and only if it is an injective function.
 - (b) Show that a morphism $f: A \to B$ in **Sets** is epic if and only if it is a surjective function.
 - (c) Show that a morphism $f: A \to B$ in **Mon** is monic if and only if it is an injective function.
 - (d) Show that the inclusion $i: \mathbb{N} \to \mathbb{Z}$ is an epimorphism in **Mon**. Deduce that there is a morphism in **Mon** which is both monic and epic, but not an isomorphism.
- 5. A morphism $f: A \to B$ in a category \mathbb{C} is an absolute epimorphism if for all functors $F: \mathbb{C} \to \mathbb{D}$, F(f) is an epimorphism; f is a split epimorphism if for some $g: B \to A$, $f \circ g = 1_B$. Show that f is an absolute epimorphism if and only if it is a split epimorphism. (Hint for (\Rightarrow) : Consider the functor $\operatorname{Hom}(B, -): \mathbb{C} \to \operatorname{\mathbf{Sets}}$, and use question 4.(b))