Category Theory 2017 - Exercise sheet 3

Exercise 1. In this exercise \mathbb{C} is a category with binary products and A, B and C are objects in \mathbb{C} .

- (a) Show that $A \times (B \times C) \cong (A \times B) \times C$.
- (b) Define the ternary product of objects A_0, A_1 and A_2 to be an object P equipped with morphisms $\pi_i \colon P \to A_i \ (i \in \{0, 1, 2\})$ such that for any object Q and any triple of morphisms $f_i \colon Q \to A_i \ (i \in \{0, 1, 2\})$ there exists a unique morphism $m \colon Q \to P$ such that $\pi_i m = f_i$ for every $i \in \{0, 1, 2\}$. Show that the ternary product of A_0, A_1, A_2 is unique up to isomorphism.
- (c) Use (b) to give an alternative solution to (a).
- **Exercise 2.** (a) Show that the category **Sets** has equalizers, coproducts and coequalizers.
 - (b) Do the same for the category **Top** of topological spaces and continuous maps.
- **Exercise 3.** (a) Show that if 1 is a terminal object in a category \mathbb{C} , then $\mathbb{C}/1 \cong \mathbb{C}$.
 - (b) Show that if $A \times B$ is the product of two objects A and B in \mathbb{C} , then $\mathbb{C}/(A \times B) \cong \mathbb{C}/A \times \mathbb{C}/B$.
 - (c) Let X be an object in a category \mathbb{C} . Show that \mathbb{C}/X has a terminal object. Show that if \mathbb{C} has coproducts, then so does \mathbb{C}/X ; and similarly for equalizers.
 - (d) Assume X is an object in a category \mathbb{C} with products. Show that the functor $\Sigma_X : \mathbb{C}/X \to \mathbb{C}$ which sends $A \to X$ to A preserves epis.