Category Theory 2017 - Exercise sheet 3

Exercise 1. In this exercise \mathbb{C} is a category with binary products and A, B and C are objects in \mathbb{C}.
(a) Show that $A \times(B \times C) \cong(A \times B) \times C$.
(b) Define the ternary product of objects A_{0}, A_{1} and A_{2} to be an object P equipped with morphisms $\pi_{i}: P \rightarrow A_{i}(i \in\{0,1,2\})$ such that for any object Q and any triple of morphisms $f_{i}: Q \rightarrow A_{i}(i \in\{0,1,2\})$ there exists a unique morphism $m: Q \rightarrow P$ such that $\pi_{i} m=f_{i}$ for every $i \in\{0,1,2\}$. Show that the ternary product of A_{0}, A_{1}, A_{2} is unique up to isomorphism.
(c) Use (b) to give an alternative solution to (a).

Exercise 2. (a) Show that the category Sets has equalizers, coproducts and coequalizers.
(b) Do the same for the category Top of topological spaces and continuous maps.

Exercise 3. (a) Show that if 1 is a terminal object in a category \mathbb{C}, then $\mathbb{C} / 1 \cong \mathbb{C}$.
(b) Show that if $A \times B$ is the product of two objects A and B in \mathbb{C}, then $\mathbb{C} /(A \times B) \cong \mathbb{C} / A \times \mathbb{C} / B$.
(c) Let X be an object in a category \mathbb{C}. Show that \mathbb{C} / X has a terminal object. Show that if \mathbb{C} has coproducts, then so does \mathbb{C} / X; and similarly for equalizers.
(d) Assume X is an object in a category \mathbb{C} with products. Show that the functor $\Sigma_{X}: \mathbb{C} / X \rightarrow \mathbb{C}$ which sends $A \rightarrow X$ to A preserves epis.

