Category Theory 2017 - Exercise sheet 5

- 1. Let X be an object in some category \mathbb{C} .
 - (a) Show that on the collection of monomorphisms in \mathbb{C} with codomain X we can define an equivalence relation by declaring two monomorphisms $m : A \to X$ and $n : B \to X$ to be equivalent if there is an isomorphism $f : A \to B$ such that nf = m.
 - (b) An equivalence class of monomorphisms with codomain X with respect to the equivalence relation in (a) is called a *subobject* of X. Show that the collection of subobjects Sub(X) is partially ordered by saying that $[m] \leq [n]$ if there is a map f such that nf = m. Show that this is well-defined and that the morphism f is a monomorphism and unique whenever it exists.
 - (c) Show that in the category **Sets** the poset Sub(X) is isomorphic to the power set $\mathcal{P}(X)$ of X, ordered by inclusion.
 - (d) Show that if \mathbb{C} has pullbacks, then for every object X, $\operatorname{Sub}(X)$ has all finite meets. Also show that these finite meets are preserved by the pullback functors $f^* : \operatorname{Sub}(X) \to \operatorname{Sub}(Y)$ for any $f : Y \to X$.
- 2. Let \mathbb{C} be a complete category. Show that \mathbb{C}^{\rightarrow} is also complete.
- 3. Define the following functor $\mathcal{P} \colon \mathbf{Sets}^{\mathrm{op}} \to \mathbf{Sets}$. For a set X, let $\mathcal{P}(X)$ be the power set of X. For a morphism $f \colon X \to Y$ (a function $Y \to X$), and $A \in \mathcal{P}(X)$, define $\mathcal{P}(f)(A)$ to be the preimage $f^{-1}(A)$.
 - (a) Check that \mathcal{P} is a well defined functor.
 - (b) Show that \mathcal{P} preserves all small limits.
- 4. Let $F: \mathbf{Sets} \to \mathbf{Mon}$ be the free monoid functor. Show that F preserves all small colimits. (Hint: Let $U: \mathbf{Mon} \to \mathbf{Sets}$ be the forgetful functor and use the universal mapping property of free monoids).