Category Theory 2017 - Exercise sheet 6

1. Show how to construct the following isomorphisms.
(a) $(A \times B)^{C} \cong A^{C} \times B^{C}$
(b) $\left(A^{B}\right)^{C} \cong A^{B \times C}$
(c) $1^{A} \cong 1$
2. (a) Suppose we are given two natural transformations α from F to G and β from G to H as in the following diagram:

Show how to define a natural transformation $\beta \circ \alpha$ from F to H. Deduce that there is a category $[\mathbb{C}, \mathbb{D}]$ where the objects are functors from \mathbb{C} to \mathbb{D} and the morphisms are natural transformations.
(b) Show that $[\mathbb{C}, \mathbb{D}]$ is the exponential $\mathbb{D}^{\mathbb{C}}$ in Cat.
(c) Suppose we are given two natural transformations α and α^{\prime} like in the following diagram:

Show how to define a natural transformation $\alpha^{\prime} \bullet \alpha$ from $F^{\prime} \circ F$ to $G^{\prime} \circ G$.
(d) Suppose we are given four natural transformations like in the following diagram:

Show that $\left(\beta^{\prime} \bullet \beta\right) \circ\left(\alpha^{\prime} \bullet \alpha\right)=\left(\beta^{\prime} \circ \alpha^{\prime}\right) \bullet(\beta \circ \alpha)$.
3. (a) Let τ be a natural transformation as in the following diagram:

Show that τ is an isomorphism as a morphism in $[\mathbb{C}, \mathbb{D}]$ if and only if for all objects C of \mathbb{C}, τ_{C} is an isomorphism as a morphism in \mathbb{D}. (We refer to such maps as natural isomorphisms)
(b) (If time). Let \mathbb{J} be the category with 2 objects, and two non-identity morphisms, as illustrated below:

Show that there is a correspondence between natural isomorphisms from \mathbb{C} to \mathbb{D} and maps $\mathbb{J} \times \mathbb{C} \rightarrow \mathbb{D}$.
4. (For students familiar with computability theory) We define the category PER of partial equivalence relations as follows. An object of PER is a pair (A, R) where $A \subseteq \mathbb{N}$ and R is an equivalence relation on A. A morphism from (A, R) to (B, S) is an equivalence class of partial computable functions ϕ such that for all $a \in A, \phi(a) \downarrow$ and for all $a, a^{\prime} \in A a R a^{\prime} \mathrm{im}-$ plies $\phi(a) S \phi\left(a^{\prime}\right)$, with the equivalence relation $\phi \sim \phi^{\prime}$ when for all $a \in A$, $\phi(a) S \phi^{\prime}(a)$.
Show that PER is a cartesian closed category with a natural numbers object and all finite limits and finite colimits.

