Category Theory 2017 - Exercise sheet 7

- 1. Show that the category of partial maps, **Par**, and the category of pointed sets, **Sets**_{*}, are equivalent.
- 2. Let $F \colon \mathbb{C} \to \mathbb{D}$.

We say F is *faithful* if for all objects X and Y of \mathbb{C} and all morphisms $f, g: X \to Y$, if F(f) = F(g) then f = g. (In other words, for all objects X and Y the function F(-): Hom $(X, Y) \to \text{Hom}(FX, FY)$ is injective).

We say F is *full* if for all objects X and Y of \mathbb{C} and all morphisms $f: F(X) \to F(Y)$, there exists some $f': X \to Y$ such that F(f') = f. (In other words, for all objects X and Y the function F(-): Hom $(X, Y) \to$ Hom(FX, FY) is surjective.)

We say F is essentially surjective if for every object Z of \mathbb{D} there exists an object Z' in \mathbb{C} together with an isomorphism $i: F(Z') \to Z$.

Show that F is an equivalence of categories if and only if it is full, faithful and essentially surjective.

- 3. Show that equivalence of categories is an equivalence relation on the class of categories.
- 4. A category is *skeletal* if whenever two objects are isomorphic, they are in fact equal. Show that every category is equivalent to a skeletal category.