Category Theory 2017 - Exercise sheet 8

- 1. Let **C** be a small category. Suppose we are given $P, Q \in \mathbf{Sets}^{\mathbf{C}^{\circ p}}$ and natural transformations $\phi, \psi \colon P \to Q$. Show that if for every representable yC and every natural transformation $\theta \colon yC \to P$ we have $\phi \circ \theta = \psi \circ \theta$ then $\phi = \psi$. (We say that the representables generate $\mathbf{Sets}^{\mathbf{C}^{\circ p}}$.)
- 2. Let **C** be a small category. Show that **Sets**^{**C**^{op}} is cartesian closed and that the Yoneda embedding $y: \mathbf{C} \to \mathbf{Sets}^{\mathbf{C}^{op}}$ preserves any exponentials that exist in **C**.
- 3. Let **C** be a small category. Show that $\mathbf{Sets}^{\mathbf{C}^{\mathrm{op}}}$ has a natural numbers object.
- 4. Let \mathbb{C} be complete and cocomplete, and let \mathbb{I} be a small category. Show that the diagonal functor $\mathbb{C} \to \mathbb{C}^{\mathbb{I}}$ has both a left and a right adjoint.
- 5. Prove that the forgetful functor $U: \mathbf{Top} \to \mathbf{Sets}$ has both a left and a right adjoint.