Category Theory 2017 - Exercise sheet 9

- 1. Let X and Y be sets, and let $f: Y \to X$ be a function. Let $\mathcal{P}(X)$ be the poset of subsets of X ordered by inclusion and similarly define the poset $\mathcal{P}(Y)$ for Y. We define $f^*: \mathcal{P}(X) \to \mathcal{P}(Y)$ to be the preimage map (for $U \subseteq X, f^*(U) := \{y \in Y \mid f(y) \in U\}$). Show that f^* has both a left adjoint (which we denote \exists_f) and a right adjoint (which we denote \forall_f).
- 2. Let \mathbb{C} be a category and X an object of \mathbb{C} . Consider the forgetful functor $\mathbb{C}/X \to \mathbb{C}$.
 - (a) When does the functor have a right adjoint?
 - (b) Suppose that it has a right adjoint $\mathbb{C} \to \mathbb{C}/X$. When does the right adjoint itself have its own right adjoint?
- 3. Suppose we have two functors F and G as below:

$$\mathbb{C} \underbrace{\overset{F}{\overbrace{G}}}_{G} \mathbb{D}$$

(a) Suppose that F and G form an adjunction $F \dashv G$. Show how to construct natural transformations $\eta: 1_{\mathbb{C}} \Rightarrow GF$ and $\epsilon: FG \Rightarrow 1_{\mathbb{D}}$ making the following two diagrams commute for all objects X of \mathbb{C} and all objects Y of \mathbb{D} :

(We refer to η and ϵ as the *unit* and *counit* of the adjunction respectively, and we refer to the commutative diagrams above as the *triangular identities*).

- (b) Conversely, suppose that we are given natural transformations $\eta: 1_{\mathbb{C}} \Rightarrow GF$ and $\epsilon: FG \Rightarrow 1_{\mathbb{D}}$ satisfying the triangular identities. Show that $F \dashv G$.
- 4. Suppose we are given $F: \mathbb{C} \to \mathbb{D}$. We say F is an *adjoint equivalence* if there exists $G: \mathbb{D} \to \mathbb{C}$ together with natural isomorphisms $\eta: 1_{\mathbb{C}} \Rightarrow GF$ and $\epsilon: FG \Rightarrow 1_{\mathbb{D}}$ that satisfy the triangular identities from question 3. Show that if F is full, faithful and essentially surjective then F is an adjoint equivalence.